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Figure 1: UnLoc processes an input image sequence to predict the floorplan depth (in meters) and
associated uncertainty for each image column. Using these predictions, it generates a probability
distribution over potential SE(2) camera poses and outputs the most likely one (blue arrow). The
ground truth pose is also shown (red arrow), overlapped by the predicted pose.

ABSTRACT

We propose UnLoc, an efficient data-driven solution for sequential camera local-
ization within floorplans. Floorplan data is readily available, long-term persistent,
and robust to changes in visual appearance. We address key limitations of re-
cent methods, such as the lack of uncertainty modeling in depth predictions and
the necessity for custom depth networks trained for each environment. We intro-
duce a novel probabilistic model that incorporates uncertainty estimation, model-
ing depth predictions as explicit probability distributions. By leveraging off-the-
shelf pre-trained monocular depth models, we eliminate the need to rely on per-
environment-trained depth networks, enhancing generalization to unseen spaces.
We evaluate UnLoc on large-scale synthetic and real-world datasets, demonstrat-
ing significant improvements over existing methods in terms of accuracy and ro-
bustness. Notably, we achieve 2.7 times higher localization recall on long se-
quences (100 frames) and 42.2 times higher on short ones (15 frames) than the
state of the art on the challenging LaMAR HGE dataset. The code will be public.

1 INTRODUCTION

Camera localization within indoor environments is a fundamental problem in computer vision, es-
sential for applications in augmented reality and robotics. Accurate localization enables devices
to understand their spatial context, facilitating tasks such as navigation, object interaction, and au-
tonomous exploration. Traditional localization methods often rely on pre-built 3D models (Sattler
et al., 2011; 2016b; Liu et al., 2017; Sarlin et al., 2019; Panek et al., 2022) or extensive image
databases (Schonberger & Frahm, 2016; Arandjelovic et al., 2016; Keetha et al., 2023; Wei et al.,
2024), which are storage-intensive and require substantial maintenance, limiting their scalability to
new or dynamically changing environments.

Floorplans offer a lightweight and readily available alternative for indoor localization. As 2D rep-
resentations of spaces, floorplans are easy to obtain (Liu et al., 2018; Yue et al., 2023) and remain
unaffected by changes in appearance, such as furniture rearrangements or lighting variations. Re-
cent methods have leveraged floorplans for localization by aligning images with the map (Howard-
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Figure 2: Main method overview. At timestep t, UnLoc aligns an image with gravity and processes
it through a monodepth encoder. The extracted features, along with a binary mask from the gravity
alignment, are used to predict the floorplan depth d̂t and uncertainty b̂t via masked attentions. These
predictions form equiangular rays, allowing for uncertainty-aware matching with the floorplan’s
occupancy map. A histogram filter fuses the observation likelihood with the integrated past belief.

Jenkins & Prisacariu, 2022; Min et al., 2022; Chen et al., 2024), enabling devices to localize within
new environments as long as a floorplan is available.

Among these, F3Loc (Chen et al., 2024) has emerged as a recent promising approach for sequen-
tial visual floorplan localization, significantly outperforming all previous baselines. It integrates
observations over time using a histogram filter, achieving impressive accuracy and computational
efficiency on a range of datasets. However, as promising as it is, F3Loc has notable limitations that
hinder its practical deployment, which we aim to improve upon in this paper:

Lack of Uncertainty Modeling. F3Loc combines monocular and multi-view depth estimation.
However, it assumes that the resulting predictions are all of similar accuracy, and it has no means
to represent and predict the uncertainties in the depth predictions. In indoor environments, depth
estimation is often unreliable in regions with glass walls, open doorways, or large, featureless walls.
When fusing a sequence of predictions, not accounting for uncertainty, inaccurate depth predictions
adversely affect the localization process, leading to erroneous pose estimates.

Dataset-Specific Depth. F3Loc relies on a custom depth prediction network trained separately for
each dataset or environment. This per-dataset training requirement poses significant challenges for
scalability and robustness. Collecting sufficient depth data for retraining the depth network for every
new environment is impractical, especially when rapid deployment is desired.

This paper addresses these shortcomings by introducing a novel visual floorplan localization method
that incorporates uncertainty estimation into monocular depth prediction and uses it to robustly fuse
predictions from a sequence of images. Also, our method enables us to leverage pre-trained monoc-
ular depth models. Our contributions are as follows:
Uncertainty-Aware Depth Prediction: We model floorplan depth predictions as explicit probability
distributions, assuming a Laplace distribution centered at the predicted depth with scale parameter
given by the uncertainty estimate. This formulation allows us to represent the confidence associated
with each prediction. This uncertainty-aware approach improves localization by weighting predic-
tions according to their reliability in challenging regions, and it further provides principled weights
for the post-processing optimization, yielding higher accuracy.
Leveraging Off-the-Shelf Depth Models: Rather than designing or training custom depth networks
for each environment as F3Loc does, we directly employ state-of-the-art monodepth models pre-
trained on large-scale datasets (Yang et al., 2024b). Our formulation treats these models as plug-
and-play modules, demonstrating that reliable localization can be achieved with any sufficiently
strong depth predictor, without requiring environment-specific retraining.
The proposed UnLoc (see Fig. 1) achieves significant improvements in accuracy and robustness
across multiple datasets compared to prior methods.

2 RELATED WORK

Visual localization is a fundamental problem in computer vision, addressed through various ap-
proaches. Traditional methods include image retrieval techniques (Chum et al., 2007; Jégou et al.,
2010; Arandjelovic et al., 2016; Keetha et al., 2023; Wei et al., 2024), which find the most similar
images in a database and estimate the pose of the query image based on the retrieved ones. Structure-
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from-Motion-based approaches (Agarwal et al., 2011; Schonberger & Frahm, 2016; Sattler et al.,
2016a; Panek et al., 2022) build a 3D model of the environment and establish 2D-3D correspon-
dences by matching local descriptors, computing camera poses using minimal solvers (Kukelova
et al., 2008) and RANSAC (Fischler & Bolles, 1981) or its recent variants (Barath et al., 2020;
Barath & Matas, 2021). Scene coordinate regression methods (Brachmann et al., 2017a;b) learn to
regress the 3D coordinates of image pixels, while pose regression techniques (Kendall et al., 2015;
Kendall & Cipolla, 2017) use networks to predict a 6-DoF camera pose from input images directly.
These methods often rely on pre-built 3D models that are storage-intensive and scene-specific, lim-
iting their applicability in unseen environments.

To overcome this, floorplan-based localization methods have emerged, utilizing overhead images
or floorplans to estimate the SE(2) pose of the camera (Workman et al., 2015; Tian et al., 2017).
These approaches can localize images in new scenes as long as a floorplan is provided. Floorplan
localization is frequently associated with LiDAR sensors (Mostofi et al., 2014; Yin et al., 2019; Zim-
merman et al., 2022), which are impractical for widespread mobile device use. Alternative methods
reconstruct 3D geometry using depth cameras (Winterhalter et al., 2015) or visual odometry (Mur-
Artal et al., 2015). Some approaches extract geometric features like room edges to align with the
floorplan (Boniardi et al., 2019; Lin et al., 2019). However, these methods often assume known
camera or room height, which is not always feasible.

Recent learning-based methods aim to use only RGB images for floorplan localization.
LaLaLoc (Howard-Jenkins et al., 2021) estimates the position of panoramic images in a floorplan by
embedding map and image features into a shared space. LaLaLoc++ (Howard-Jenkins & Prisacariu,
2022) removes the known camera and ceiling height assumption by directly embedding the floor-
plan. LASER (Min et al., 2022) represents the floorplan as a set of points and uses PointNet (Qi
et al., 2017) to embed the visible points for each pose, aligning them with image features in a shared
space. PF-Net (Karkus et al., 2018) integrates localization within a differentiable particle filtering
framework, using a learned similarity between images and corresponding map patches. F3Loc (Chen
et al., 2024) utilizes metric monocular depth prediction but requires training custom depth networks,
which can limit generalizability, and assumes that all predictions are of the same quality.

Sequence-based localization methods enhance robustness by integrating information over time.
Bayesian filtering (Dellaert et al., 1999; Chu et al., 2015; Karkus et al., 2018; Boniardi et al., 2019;
Mendez et al., 2020) is commonly used to fuse sequential observations, like particle (Dellaert et al.,
1999) and histogram filters (Thrun, 2002). PF-Net (Karkus et al., 2018) employs a differentiable
particle filter for localization but relies on learned observation models that may not generalize well.
F3Loc (Chen et al., 2024) uses sequential observations and integrates them by a histogram filter.

Depth estimation provides valuable geometric information for localization (Chen et al., 2024). Re-
cent advances in pre-trained monocular depth (monodepth) models (Ranftl et al., 2021; Birkl et al.,
2023; Guizilini et al., 2023; Yin et al., 2023; Hu et al., 2024; Yang et al., 2024a;b; Bochkovskii
et al., 2024), trained on large-scale datasets, enable accurate metric or relative depth predictions
out-of-the-box, without per-scene training. In this work, we leverage such off-the-shelf networks
for image-based floorplan localization, thereby avoiding custom model training and improving gen-
eralization across domains.

Depth uncertainty is crucial for reliable use of depth predictions in downstream tasks. Neural net-
work uncertainty is commonly categorized as aleatoric (data) or epistemic (model) (Kendall & Gal,
2017; Poggi et al., 2020). Aleatoric uncertainty captures inherent observation noise by modeling
a distribution over the network output. It is most relevant in regions of the observation space with
higher noise and does not decrease with more data. A typical approach trains the network to predict
parameters of a parametric distribution via log-likelihood maximization (Nix & Weigend, 1994),
usually adding negligible computational overhead (Kendall & Gal, 2017).

Epistemic uncertainty reflects model limitations by placing a distribution over the model parameters.
It is most useful with small datasets or safety-critical tasks and decreases as more data becomes
available. Estimating epistemic uncertainty generally incurs significant computation cost (Kendall &
Gal, 2017). Common strategies include Monte Carlo Dropout (Srivastava et al., 2014), bootstrapped
ensembles (Lakshminarayanan et al., 2017), and Bayesian neural networks (MacKay, 1992).

For pixel-wise monocular depth estimation, prior work has explored both types. Kendall & Gal
(2017) propose a method to estimate aleatoric and epistemic uncertainty jointly. Poggi et al. (2020)
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evaluate approaches of both types and propose a self-teaching model for aleatoric uncertainty. Liu
et al. (2019) model aleatoric uncertainty by discretizing depth into bins. Roessle et al. (2022) pre-
dict aleatoric uncertainty via Gaussian depth distributions with learned variance. In floorplan lo-
calization, F3Loc (Chen et al., 2024) estimates floorplan depth assuming a uniform confidence. In
contrast, we model aleatoric uncertainty explicitly to capture ambiguities from glass walls, door-
ways, and occlusions. Although epistemic uncertainty could help for out-of-distribution scenes, we
focus on aleatoric uncertainty for computational efficiency in real-time histogram filtering, leav-
ing epistemic modeling for future work. Our Laplace-based formulation enables uncertainty-aware
matching, improving robustness and convergence in challenging indoor environments.

3 FLOORPLAN LOCALIZATION WITH UNLOC

3.1. Method Overview. We estimate the 2D pose st = [sx,t, sy,t, sϕ,t] within a known 2D floor-
plan, where sx,t and sy,t denote position coordinates and sϕ,t represents orientation. Our approach
takes as input a sequence of t RGB images, relative poses between these images, gravity direction,
camera intrinsics, and the geometric layout of the floorplan. To ensure out-of-the-box usability of
the method, input floorplans are provided solely as occupancy grid data without any semantic labels.

An overview of our main method is shown in Fig. 2. Each image is aligned with gravity and pro-
cessed by a pre-trained encoder (Yang et al., 2024b) to extract features. These features, along with
a binary mask from the gravity alignment, are input to a masked attention mechanism that predicts
the floorplan depth, defined as the depth to the nearest occupied area in the floorplan. The predicted
depth is then used to construct equiangular rays, which are matched against the floorplan to produce
a localization estimate. Finally, we combine this estimate with the previous posterior localization
using a histogram filter to compute the updated posterior estimate.

Our approach differs from prior methods in two main ways: (1) we model floorplan depth as an ex-
plicit probability distribution to quantify uncertainty, enhancing sequential localization when fusing
predictions; (2) we use an off-the-shelf pre-trained monodepth network instead of a custom network
that requires per-dataset training, thereby effectively leveraging models trained on extensive data
without additional training efforts.

3.2. Gravity Alignment. Real-world applications often involve images captured from hand-held
or head-mounted devices, resulting in arbitrary orientations. To address this, we preprocess images
to align them with gravity. We achieve alignment by utilizing the camera’s roll (ψ) and pitch (θ)
angles to define rotation matrices. The rotation for roll is given as Rx(ψ) and for pitch as Ry(θ).
The combined matrix from the gravity-aligned frame to the camera frame is calculated as Rcg =
Ry(θ) ·Rx(ψ). The inverse transformation, from the camera frame to the gravity-aligned frame, is
given by: Rgc = R⊤

cg . Using these rotations, we compute a homography H to warp the image into
the gravity-aligned frame H = K ·Rgc ·K−1, where K is the camera intrinsic matrix. This process
also produces a binary mask indicating pixels that are invalid after alignment due to the warping.
The gravity-aligned RGB image and the mask are then used for subsequent feature extraction.

Note that the gravity direction and camera intrinsics are usually accessible from sensors on smart-
phones and head-mounted devices. If this information is not directly available, methods such as
GeoCalib (Veicht et al., 2024) can be used to estimate both the intrinsics and gravity direction.

3.3. Feature Extraction. Recent visual floorplan localization methods (Howard-Jenkins et al.,
2021; Howard-Jenkins & Prisacariu, 2022; Min et al., 2022; Chen et al., 2024) rely on encoders pre-
trained on ImageNet (Deng et al., 2009) for image classification tasks, such as ResNet-50 (He et al.,
2016). However, we posit that encoders trained on tasks more closely related to floorplan depth
estimation could yield better performance. To explore this, we utilize encoders pre-trained on dense
monocular depth estimation tasks. These encoders, optimized on large-scale depth datasets, provide
superior features for floorplan depth estimation without requiring additional depth training from
scratch. From the state-of-the-art models (Birkl et al., 2023; Guizilini et al., 2023; Yin et al., 2023;
Hu et al., 2024; Yang et al., 2024a;b; Bochkovskii et al., 2024), we select the recent Depth Anything
v2 model (Yang et al., 2024b) due to its state-of-the-art performance in both relative and metric
depth estimation and low inference times compared to similarly accurate models (Bochkovskii et al.,
2024). Specifically, we use the encoder fine-tuned for indoor environments. We extract features
from its last layer and apply bilinear interpolation to match the spatial dimensions the subsequent
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Figure 3: Floorplan depth predictions (in meters) for images from the LaMAR HGE dataset. Top:
input images. Bottom: depth predictions by F3Loc (red) and our proposed UnLoc (blue), with
predicted uncertainties visualized. The horizontal axis represents the image column index, ranging
from left (0) to right (image width w). A gray dotted line indicates the ground truth depth.

masked attention mechanism requires. Note that the proposed pipeline is agnostic to the monodepth
network, which could easily be replaced as better methods are published.

3.4. Masked Attention. We implement a masked attention mechanism inspired by Chen et al.
(2024) to predict floorplan depth, using the interpolated features and gravity alignment mask as
inputs. Our model predicts two 1D vectors: d̂t, representing floorplan depth estimates, and b̂t,
denoting the uncertainty associated with each estimate. The uncertainty quantification allows the
model to account for varying confidence levels across regions in the image, particularly in challeng-
ing areas with ambiguous visual cues or distant objects.

Before inputting to the attention mechanism, we reduce the channel dimensions of the interpolated
encoder features using a convolutional layer. The resulting features serve as keys and values in the
attention mechanism, while 1D queries are formed through average pooling. Positional encodings
for the queries are derived from their 1D coordinates, whereas for the keys and values, positional
encodings are mapped from the corresponding 2D image coordinates. By applying the gravity align-
ment mask, we focus the attention mechanism on observable regions of the image.

The output of the masked attention layer is fed into two parallel fully connected layers: one predict-
ing the depth estimates d̂t, and the other predicting the uncertainties b̂t. This dual output allows for
uncertainty-aware matching with the floorplan in subsequent steps.

3.5. Uncertainty-Aware Matching. Using the predicted depth d̂t and uncertainty b̂t, we compute
the observation likelihood over the entire floorplan. The predicted uncertainty b̂t represents aleatoric
uncertainty, capturing the inherent observation noise in floorplan depth estimation that arises from
scene ambiguities such as glass surfaces, open doorways, and featureless walls. To formulate the
observation model, we treat each predicted depth value as drawn from a probability distribution.
We model the predicted floorplan depth and its uncertainty as our observation ot and define the
observation likelihood as

p(ot | st) =
R∏

j=1

1

2 · b̃t,j
· exp

(
−|d̃t,j − dj(st)|

b̃t,j

)
, (1)

where d̃t,j and b̃t,j are the predicted depth and uncertainty interpolated from d̂t and b̂t at ray angle
αj , and R is the number of rays. The corresponding floorplan depth dj(st) is computed from the
floorplan ray length as

dj(st) = rj(st) · cos(αj), (2)

where rj(st) is the ray length from pose st in direction αj . In Eq. 1, the observation likelihood
is modeled as a product of independent Laplace distributions, with d̃t,j as location parameter and
b̃t,j as scale parameter. We choose the Laplace distribution for two key reasons. First, its heav-
ier tails compared to the Gaussian distribution provide robustness to larger prediction errors that
commonly occur in challenging indoor scenes (see Sec. A.2.4 for empirical evidence). Second,
it enables efficient closed-form likelihood computation essential for real-time histogram filtering.
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T=100, N=37 T=50, N=78 T=35, N=111 T=20, N=200 T=15, N=268
Model SR@1m (%) ↑ RMSE (succ.) ↓ RMSE (all) ↓ SR@1m (%) ↑ @1m (%) ↑ @1m (%) ↑ @1m (%) ↑
GT Depth 100.0 0.07 0.07 98.7 91.0 76.0 72.0
LASER 59.5 0.39 1.96 – – – –
F3Loc fusion 94.6 0.12 0.51 94.6 69.4 46.0 41.8
F3Loc mono 89.2 0.18 0.88 70.5 55.9 34.0 28.4
F3Loc mono∗ 86.5 0.14 0.80 70.5 57.7 35.5 32.1
+ Depth Anything v2 94.6 0.11 0.50 89.7 76.6 60.5 56.3
UnLoc w/o post-processing 97.3 0.16 0.28 92.3 88.3 70.5 65.3
UnLoc 97.3 0.16 0.28 94.9 92.8 86.5 81.3

Table 1: Sequential localization on the Gibson(t) dataset (Xia et al., 2018). We report the success
rates and the RMSE over the successful and all sequences when the sequence length (T) is 100. We
report the success rate for all other lengths, considering a localization a success if the accuracy of
the last 10 frames is within 1m of the ground truth (GT). We also show the number of sequences
tested (N) in each setting. In the first row, we report the localization accuracy with the GT depth. ∗

indicates that the F3Loc model was trained by us.

When uncertainty b̃t,j is high, the distribution becomes flatter, naturally down-weighting unreliable
observations in the pose estimation process. As a result, the filter can rely more on confident pre-
dictions while remaining robust to uncertain ones. This uncertainty-aware matching yields a 3D
likelihood volume representing the observation likelihoods of all possible camera poses st.

3.6. Histogram Filter. We estimate the posterior probability of the pose over time using a histogram
filter, similar to the one introduced in Chen et al. (2024). At each time step, we update the posterior
by combining the likelihood with the prior belief propagated through the motion model. To do this,
the posterior is formulated as a 3D probability volume and expressed via Bayes’ theorem as

p(st | ot, tt) =
1

Z

∑
st

p(st | st−1, tt) · p(ot | st), (3)

where Z is a normalization constant and p(st | st−1, tt) denotes the transition probability. Let
us highlight that the uncertainty b̂t of the depth prediction directly affects Eq. 3 through its last
element: p(ot | st) (see Eq. 1).

The motion model describes the evolution of the state given the ego-motion measurements tt =
[tx,t, ty,t, tϕ,t] and is defined as follows:

st = st−1 ⊕ tt + ωt, (4)

where ωt = [ωx,t, ωy,t, ωϕ,t] represents Gaussian transition noise with covariance Σ =
diag(σ2

x, σ
2
y, σ

2
ϕ), and ⊕ denotes the state update operation. The transition probability can thus

be written as follows:

p(st | st−1, tt) = exp

(
−1

2
(st − st−1 ⊕ tt)

⊤Σ−1(st − st−1 ⊕ tt)

)
.

To efficiently implement the update, the multiplication with the transition probability in Eq. 3 is
handled using two decoupled filters: translation and rotation. See Chen et al. (2024) for additional
details on the filter implementation. The resulting probability volume corresponds to the posterior
probability. By sequentially applying the transition and observation updates, we obtain the posterior
probability distribution over the camera pose at each time step.

3.7. Training. We train our model by minimizing the negative log-likelihood of the predicted depth
and uncertainty with respect to the ground truth (GT) floorplan depth at the GT pose. Specifically,
we use the following loss:

Ld =

D∑
i=1

(
log(b̂i) +

|d̂i − di(s)|
b̂i

)
, (5)

where d̂i and b̂i are the predicted depth and uncertainty for the ith image column, di(s) is the GT
floorplan depth at the GT pose s, and D is the number of image columns for which depth is pre-
dicted. This loss corresponds to the negative log-likelihood of a Laplace distribution, encouraging
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T=100, N=11 T=50, N=24 T=35, N=35 T=20, N=63 T=15, N=85
Model SR@1m (%) ↑ RMSE (succ.) ↓ RMSE (all) ↓ SR@1m (%) ↑ @1m (%) ↑ @1m (%) ↑ @1m (%) ↑

O
ri

gi
na

l GT Depth 100.0 0.20 0.20 91.7 85.7 73.1 56.5
F3Loc mono 36.4 0.45 27.38 16.7 5.7 1.6 1.2
+ Depth Anything v2 100.0 0.38 0.38 66.7 42.9 23.8 9.4
UnLoc w/o post-processing 100.0 0.34 0.34 75.0 60.0 36.5 20.0
UnLoc 100.0 0.25 0.25 75.0 74.3 63.5 50.6

C
ro

pp
ed

GT Depth 100.0 0.23 0.23 100.0 96.2 76.1 58.1
F3Loc mono 75.0 0.53 4.93 29.4 7.7 2.2 0.0
+ Depth Anything v2 100.0 0.51 0.51 82.4 53.9 34.8 16.1
UnLoc w/o post-processing 100.0 0.45 0.45 94.1 76.9 50.0 33.9
UnLoc 100.0 0.41 0.41 94.1 88.5 71.7 62.9

Table 2: Sequential localization on the LaMAR HGE dataset and on its cropped version used
by Chen et al. (2024). We report the success rates (SR) and RMSE over the successful and all
sequences when the sequence length (T) is 100, and the SR for all other lengths, considering a
localization a success if the accuracy of the last 10 frames is within 1m of the GT. We also show the
number of sequences tested (N). The first row reports the localization accuracy with the GT depth.

accurate depth predictions while accounting for uncertainty. The logarithmic term discourages infi-
nite predictions for uncertainty.

3.8. Post-Processing Optimization. While our main method provides accurate camera poses, resid-
ual drift and misalignment with local depth measurements may accumulate. To reduce such errors,
we perform a lightweight post-processing optimization over the last k frames. We use k = 10 in our
experiments. The goal is to refine the trajectory by applying a global rigid correction, parameter-
ized by an SE(2) transformation composed of an in-plane rotation and translation. We initialize the
trajectory by computing the last pose as ŝT = argmaxsT p(sT | oT , tT ) and then backpropagating
k − 1 steps using the ego-motion measurements and the inverse motion model without noise as

ŝt = ŝt+1 ⊖ tt+1, t ∈ [T − k + 1, T − 1], (6)
where ⊖ is the inverse state update operation. Let the resulting, estimated trajectory over the last
k frames be denoted as {ŝt}Tt=T−k+1. We introduce a global SE(2) correction ∆s acting on the
XY-plane of the camera poses, parameterized by angle θ ∈ R and translation p ∈ R2 as follows:

s̃t(θ,p) = ∆s(θ,p) · ŝt, t ∈ [T − k + 1, T ]. (7)
The optimization minimizes the uncertainty-weighted sum of differences between predicted depths
d̃t,j and floorplan depths dt,j at the refined poses s̃t(θ,p) across all rays of the last k frames as

Lpost(θ,p) =

T∑
t=T−k+1

R∑
j

1

b̃t,j
· |d̃t,j − dj (̃st (θ,p)) |. (8)

This weighted L1 objective is designed so that frames with higher predicted uncertainty contribute
less to the optimization, which is expected to help the refinement remain robust to noisy predictions.
The use of an SE(2) correction keeps the refinement computationally lightweight while enforcing
global consistency in the local window of frames. We solve for the optimal correction param-
eters (θ∗,p∗) = argminθ,p Lpost(θ,p) using a gradient-based optimizer, with floorplan depths
dj (̃st (θ,p)) updated at each iteration.

Gibson(t) LaMAR HGE
Model Extraction Matching Extraction Matching

F3Loc fusion 0.030s 0.003s – –
F3Loc mono 0.015s 0.003s – –
F3Loc mono∗ 0.015s 0.003s 0.089s 0.797s
+ Depth Anything v2 0.185s 0.003s 0.179s 0.746s
UnLoc 0.174s 0.004s 0.185s 0.880s

Table 3: Runtime in secs on the Gibson (Xia et al., 2018) and LaMAR HGE datasets (Sarlin et al.,
2022). We independently show the depth prediction time per frame and match it to the floorplan.

4 EXPERIMENTS

Datasets. We evaluate our method and the baselines on three widely-used datasets: Gibson (Xia
et al., 2018), and two versions of LaMAR (Sarlin et al., 2022). The Gibson dataset (Xia et al., 2018)
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contains 118 synthetic scenes (each smaller than 300m2). Following Chen et al. (2024), we use two
subsets: Gibson (f) for training, (24,779 sequences of 4 frames each), and Gibson (t) for testing
(118 trajectories ranging from 280 to 5,152 steps). It features upright camera poses, low to medium
occlusion, and a large FoV of 108◦.

LaMAR: To evaluate in real-world settings, we use a subset of LaMAR (Sarlin et al., 2022), focusing
on indoor sequences of the HGE building. This large-scale scene covers approx. 22,500 m2. The
dataset includes camera poses, degrees of occlusion from low to high, and a narrow FoV of 48◦. It
consists of 16 sessions totaling 5,187 images, split into 12 sessions for training (3,820 images), one
for validation, and 3 for testing. While prior work (Chen et al., 2024) is only evaluated on a custom
version of this scene, cropping challenging parts (e.g., long corridors), we use the entire scene.

Baseline. We compare to F3Loc (Chen et al., 2024) as it is the state-of-the-art floorplan localization
approach. We use their pre-trained models and also train them ourselves with the provided code
to make them applicable to the LaMAR dataset. While we consider its purely monocular version
(F3Loc mono) as our main competitor, we also show results for F3Loc fusion, which uses both
monodepth and multiview stereo. Let us note that our method can also easily benefit from multiview
stereo. Additionally, to study the individual contribution of our uncertainty-aware depth prediction,
we evaluate our approach without post-processing.

Metrics. We report the success rate (SR) and consider sequential localization atX meters successful
if the prediction is within a radius of X meters over the last 10 frames. We compare SR for various
numbers of frames. Also, we show the RMSE (over the last 10 frames) of our trajectory tracking in
both succeeded and all runs.

Results on Gibson(t). Table 1 reports results on the synthetic Gibson(t) dataset. We evaluate SR (%)
and RMSE (in meters) over both successful and all sequences for length-100 sequences, and report
SR for other lengths, considering localization successful if the accuracy over the last 10 frames is
within 1 meter of the ground truth (GT). The number of sequences is also shown. The first row gives
the upper bound performance using GT depth. Note that post-processing can still improve upon it.

Without post-processing, our method already achieves substantial gains over both the original F3Loc
and its variant using DepthAnything v2 for depth prediction, thanks to uncertainty modeling. Post-
processing further boosts performance, especially on short sequences. For instance, on 15-frame se-
quences, it yields a 16-point SR improvement, even surpassing the GT-depth version. Compared to
F3Loc mono, our method achieves a 52.9-point SR gain. Importantly, UnLoc maintains an SR above
80% even on 15-frame sequences, whereas F3Loc (with either the original encoder or DepthAny-
thing) requires at least 50 frames to reach this level. Excelling on short sequences is particularly
relevant for real-world applications, where time-to-localize is critical.

For completeness, we also include LASER (Min et al., 2022) results (as reported in Chen et al.
(2024)), which lag behind both F3Loc and UnLoc by a wide margin.

Results on LaMAR. Table 2 reports results on the LaMAR HGE dataset. Since F3Loc does not
provide a pre-trained model for this dataset, we evaluate it using a model trained by us. LaMAR is
a challenging real-world dataset with both small environments (offices and rooms) and large ones
(halls and long corridors). The monodepth predictor of F3Loc struggles in these conditions, yield-
ing very low success rates even for long sequences. Replacing the encoder of F3Loc with Depth
Anything v2 already yields more accurate results than the original model.

The proposed UnLoc, equipped with uncertainty modeling and uncertainty-weighted post-
processing, brings substantial gains. Compared to F3Loc, the success rate rises from 1.2% to 50.6%
(a 42.2-fold improvement) on 15-frame sequences and from 36.4% to 100% (a 2.7-fold improve-
ment) on 100-frame sequences. On the cropped dataset variant (Chen et al., 2024), success rates
increase by 25.0 to 80.8 percentage points, depending on the sequence length. Both uncertainty
modeling and post-processing contribute significantly to these improvements. These results demon-
strate that UnLoc markedly improves upon the state of the art in complex, realistic scenarios by
leveraging off-the-shelf depth predictors with uncertainty estimation. The improvements are com-
plementary and each component contributes to the overall accuracy.

Figure 3 shows examples of floorplan depth predictions and uncertainties. UnLoc consistently out-
performs F3Loc on these challenging cases. Notably, in the last example, our method returns the
correct depth while the ground truth is incorrect.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model SR@1m (%; T=100) ↑ (T=50) ↑ (T=35) ↑ (T=20) ↑ (T=15) ↑
GT Depth 100.0 100.0 57.1 53.8 22.2
F3Loc mono 0.0 0.0 0.0 0.0 0.0
UnLoc w/o post-processing 50.0 20.0 0.0 15.4 0.0
UnLoc 50.0 40.0 57.1 30.8 16.7

Table 4: Localization on the LaMAR CAB dataset with models trained on LaMAR HGE. We report
the success rates (SR) for sequence lengths 100, 50, 35, 20, and 15.

Model T=100 T=50 T=35 T=20 T=15

DINOv2 (L) 90.9 45.8 20.0 9.5 3.5
DINOv2 (L) w/ Uncertainty 100.0 54.2 31.4 15.9 5.9
DepthPro 90.9 62.5 40.0 17.5 4.7
DepthPro w/ Uncertainty 100.0 70.8 51.4 31.7 14.1
Depth Anything V2 (L) 100.0 66.7 42.9 23.8 9.4
Depth Anything V2 (L) w/ Uncertainty 100.0 75.0 60.0 36.5 20.0
Depth Anything V2 (B) 90.9 62.5 28.6 12.7 2.4
Depth Anything V2 (B) w/ Uncertainty 100.0 66.7 42.9 30.2 12.9
Depth Anything V2 (S) 81.8 41.7 22.9 7.9 4.7
Depth Anything V2 (S) w/ Uncertainty 100.0 54.2 37.1 17.5 5.9

Table 5: Sequential localization with UnLoc using different encoders on LaMAR HGE (Sarlin
et al., 2022). Results are without post-processing. Success rate for different sequence lengths (local-
ization is a success if the last 10 frames are within 1m of GT). We compare DINOv2 (Oquab et al.,
2024) with DepthPro (Bochkovskii et al., 2024) and different pre-trained models of Depth Anything
V2 (Yang et al., 2024b) (L: large, B: base, S: small), both with and without uncertainty estimation.

Table 4 presents results on the LaMAR CAB building using models trained on the LaMAR HGE
dataset. While this is not a strict zero-shot scenario – since the same sensor is used in a differ-
ent building – it effectively demonstrates the generalization capabilities of UnLoc. Our approach
achieves accurate localization in this new environment, whereas F3Loc fails completely. We pro-
vide additional results on this cross-domain task in the supp. mat (see Sec. A.2.2).

Runtime. Table 3 presents the average runtime per frame for each method. As expected, using an
off-the-shelf depth prediction network incurs a higher computational cost than the custom network
used in Chen et al. (2024). On the Gibson dataset, all methods run efficiently, though our proposed
method is slightly slower due to the more complex depth predictor. On the LaMAR dataset, all
methods require approximately one second per frame. In practical applications, a lower frame rate
is acceptable since new frames may not always provide significantly new information at high rates.
Also, UnLoc excels on short sequences, achieving accurate localization with fewer frames. The
post-processing takes, on average, 0.96 seconds once at the end of the process.

Summary. The results on both synthetic and real-world datasets confirm that UnLoc outperforms
the state of the art in terms of accuracy and robustness. We achieve significant improvements in
sequential visual floorplan localization by addressing the limitations of the state of the art and lever-
aging uncertainty-aware depth predictions from pre-trained models. UnLoc maintains real-time
performance while enhancing scalability and generalization to new scenes.

4.1 ABLATION STUDIES

Monocular Depth Networks. We further examine the impact of different encoder networks on
our method’s performance using the LaMAR HGE dataset (Table 5). Specifically, we evalu-
ate the general-purpose encoder DINOv2 (Oquab et al., 2024), the monodepth encoder DepthPro
(Bochkovskii et al., 2024), and three encoder variants of Depth Anything v2 (Yang et al., 2024b) –
large (L), base (B), and small (S). The results show that the monodepth encoders DepthPro and Depth
Anything v2 (L) outperform the similarly-sized general-purpose encoder DINOv2, with Depth Any-
thing v2 (L) achieving the highest overall performance. This indicates that pre-trained monodepth
encoders provide more effective features for floorplan depth prediction. Within the Depth Anything
v2 models, performance scales positively with model size. Importantly, incorporating the proposed
depth uncertainty estimation consistently improves success rates across all encoders. For instance,
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incorporating depth uncertainties with the base model elevates its performance to match that of the
large variant. This demonstrates that uncertainty estimation effectively compensates for smaller
model sizes, enhancing robustness without incurring additional computational costs.

Figure 4: Efficiency Analysis. Performance of
sequential localization versus model size (left)
and runtime (right) on an NVIDIA Quadro RTX
6000 GPU. The success rate (SR) is defined as
the percentage of sequences of length T = 25 for
which the posterior remains within an error radius
of 1m in the 10 frames. The values are averaged
over all test sequences from the Gibson(t) dataset.

Efficiency Analysis. Fig. 4 illustrates the SR
on the Gibson(t) dataset versus model size (left)
and runtime (right). To show a fair model com-
parison, we do not perform post-processing op-
timization here. Our method improves sub-
stantially over F3Loc even with smaller mod-
els: Using the small Depth Anything v2 model,
it achieves about a 10 percentage point higher
success rate compared to F3Loc fusion, while
maintaining similar runtime. This highlights
the efficiency of our approach in terms of ac-
curacy versus computational resources.

5 CONCLUSION

We propose a visual floorplan localization
method, UnLoc, that addresses key limitations
of prior approaches by incorporating uncer-
tainty estimation into depth prediction and leveraging pre-trained monodepth models. Modeling
depth predictions as probability distributions allows us to quantify uncertainty, leading to improved
accuracy, especially in challenging environments. Experiments on both synthetic and real-world
datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms
of accuracy and robustness while operating efficiently. Our approach offers a practical and scalable
solution for visual floorplan localization across diverse indoor environments. The source code and
trained models will be publicly released.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. The code required for data preprocessing,
model training, model evaluation, along with trained models, will be released upon acceptance.
Training procedures are described in A.1.1 and dataset creation details are provided in A.1.2.
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A APPENDIX

This section provides further implementation details (Sec. A.1), as well as additional quantitative
(Sec. A.2) and qualitative results (Sec. A.3).
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A.1 ADDITIONAL IMPLEMENTATION DETAILS

A.1.1 TRAINING DETAILS

For our evaluations, we train the models on the full training split of the respective dataset for 50
epochs. The training set is shuffled at the beginning of each epoch to ensure variability, and the
models are trained using a batch size of four. We employ Adam (Kingma, 2014) with a fixed
learning rate of 1× 10−3.

A.1.2 DATASET DETAILS: LAMAR HGE AND CAB

To tailor the LaMAR dataset (Sarlin et al., 2022) for our experimental requirements, we apply a
series of preprocessing steps and customizations, following a similar strategy to Chen et al. (2024).
The dataset originally includes images captured by iOS and Hololens devices. We restrict ourselves
to the images recorded by the iOS devices from the mapping part of the dataset. We filter the dataset
to retain only the indoor poses, excluding outdoor data. For the LaMAR HGE Complete dataset,
we utilize all indoor camera poses recorded at the HGE location. In contrast, the LaMAR HGE
Cropped dataset focuses on a smaller region, specifically a reduced area around the center of the
HGE floorplan. To avoid transitions between different floorplans in the LaMAR CAB dataset, we
restrict the data to a single floor, specifically floor F of the CNB building.

We use the official building floorplans as basis and apply selected manual modifications. Room
numbers, stairs, and doors connecting two corridors that are typically open are removed, while all
other doors are represented as solid walls. For the mapping of LaMAR 6 DoF poses to 2D floorplans
we proceed as follows: We identify four significant building entrance doorways visible in the image
sequences, positioned to span the entire floorplan area. For each doorway, we determine: (1) the
LaMAR ground truth (x, y) position in meters when the camera crosses the threshold, and (2) the
corresponding pixel location of that doorway in the floorplan. The pixel positions are manually
marked by visually identifying doorway locations in the architectural floorplan and examining the
images to determine when the camera crosses each threshold. We then fit a 2D affine transformation
(6 parameters, 8 constraints from 4 point pairs) mapping meter coordinates to pixel coordinates
using least squares. This transformation is applied to all ground truth positions. Yaw angles are
extracted directly from the ground truth quaternions. While we lack independent ground truth for
the 2D poses, multiple consistency checks suggest the alignment is reliable: low affine fit residuals,
trajectories align with building geometry, and raycast depths match observed structure. Using these
2D poses, the ground truth floorplan depths required for training are derived from the modified
floorplans via the raycasting method from Chen et al. (2024).

The splits are fixed prior to experimentation and are not adjusted in any way to favor any method.
For LaMAR HGE, the split includes 12 sessions used for training, one for validation, and three
for testing. The test sessions were selected with the following goals: First, to include the session
illustrated in Figure 11 of F3Loc Chen et al. (2024) for qualitative comparison, and second, to ensure
diversity across lighting and occlusion conditions. The three test sessions therefore span (i) daytime
with moderate occlusion, (ii) daytime with heavy occlusion due to an ongoing exhibition, and (iii)
nighttime with minimal occlusion. For LaMAR CAB, the split includes 1 session for training (only
in case of fine-tuning) and 2 for testing. Here, all sessions had similar daytime and occlusion.

A.2 ADDITIONAL QUANTITATIVE RESULTS

A.2.1 SINGLE-FRAME LOCALIZATION

In this section, we evaluate the performance of each method in single-frame localization tasks. While
our primary focus is sequential localization, analyzing single-frame performance provides valuable
insights into the individual components of our approach.

Table 6 presents the results on the Gibson(t) (Xia et al., 2018), Structured3D (Zheng et al., 2020),
and LaMAR HGE (Sarlin et al., 2022) datasets. We report the localization recall, i.e., the percentage
of frames localized within specified accuracy thresholds. Across all datasets, making use of an off-
the-shelf monodepth encoder instead of a custom depth predictor leads to substantial improvements
in all metrics. Specifically, F3Loc with Depth Anything v2 outperforms the original F3Loc by a
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significant margin in terms of both mean absolute error (MAE; in meters) and localization recall.
This demonstrates the effectiveness of leveraging pre-trained depth models.

As anticipated, incorporating depth uncertainties into the single-frame estimation does not have a
large impact on the Gibson(t) and Structured3D datasets. This can be attributed to the fact that
uncertainty estimation is particularly beneficial when combining multiple measurements over time,
as in sequential localization. However, on the challenging LaMAR dataset, which features complex
environments with varying occlusions and narrow fields of view, uncertainty estimation leads to
improvements in recall across most thresholds. This suggests that uncertainty modeling helps with
handling complex and real-world scenarios.

A.2.2 GENERALIZATION BETWEEN DATASETS

To demonstrate the generalization capabilities of our proposed UnLoc, we train models on the
LaMAR HGE dataset and assess their performance on LaMAR CAB. The evaluation includes a
comparison between UnLoc and F3Loc mono across various scenarios, with and without fine-tuning
on a limited number of frames (n=200) from the LaMAR CAB dataset. The results, presented in Ta-
ble 7 and 8, demonstrate that UnLoc without any additional training on the target domain converges
within 2m of the ground truth (GT) for trajectories of length T=100, outperforming the F3Loc mono
variants. Furthermore, the results show that fine-tuning on a small amount of target-domain data
leads to performance increases in both the sequential and single-image localization. This indicates
a certain adjustment to new datasets is still necessary for optimal results.

A.2.3 REAL-TIME CONSIDERATIONS FOR LARGE-SCALE FLOORPLANS

As shown in Table 3 of the main paper, matching operations dominate the runtime for large floor-
plans. To further reduce the computational cost on large-scale floorplans, we investigate two strate-
gies: (1) decreasing the frequency of observation updates, performing them only after every ∆T
transition updates, and (2) employing a coarser grid for the matching with the floorplan.

Table 9 presents the sequential localization performance on the LaMAR HGE dataset with less
frequent observation updates. Evaluating our proposed UnLoc on trajectories of length T=100,
halving the observation frequency has no negative impact on localization accuracy. Even when
observation updates are performed at every 10th step, UnLoc achieves convergence in nearly every
second case. Results are shown without post-processing optimization.

An ablation study on grid resolution is provided in Table 10. The uncertainty-aware matching stage
of the UnLoc pipeline compares probabilistic floorplan depth predictions with occupancy infor-
mation from the floorplan. The computational cost and mapping quality in this stage are directly
influenced by the grid resolution. A finer grid enhances mapping quality but leads to increased com-
putational cost. In our experiments in the main paper, we assume a grid resolution of 0.1m × 0.1m.
The results show that coarsening the grid to 0.25m × 0.25m reduces the matching time by a factor
of over six, at the expense of only a slight decrease in localization performance.

A.2.4 DEPTH UNCERTAINTY DISTRIBUTION

We compare two approaches for modeling depth uncertainty in UnLoc: a Laplacian model (ours)
and a Gaussian model, as proposed by Roessle et al. (2022). In the Gaussian model, the obser-
vation likelihood in Eq. 1 is modified to a product of independent Gaussian distributions instead
of Laplacian distributions, with d̃d,j as mean parameter and b̃t,j as standard deviation parameter.
Correspondingly, the loss function in Eq. 5 is adapted to reflect the negative log-likelihood of the
Gaussian distribution rather than the Laplacian distribution.

Table 11 reports the sequential localization performance on the LaMAR HGE dataset for vary-
ing sequence lengths T . Although both models achieve a perfect success rate for long sequences
(T = 100), our Laplacian model consistently outperforms the Gaussian model on shorter sequences,
demonstrating superior convergence behavior.
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Depth pred. Recall (%) ↑
Model MAE (m) ↓ Cos Sim ↑ 0.1m 0.5m 1m 1m 30° 2m 5m 10m

G
ib

so
n(

t)
GT Depth 0.00 1.000 47.1 79.0 80.3 79.8 82.4 90.6 98.5
F3Loc fusion 0.28 0.980 15.6 53.6 59.1 57.6 64.4 82.7 97.3
F3Loc mono 0.43 0.976 7.3 40.3 49.1 47.3 55.5 79.6 97.7
F3Loc mono∗ 0.42 0.973 8.2 39.2 46.5 44.6 54.5 79.7 97.7
+ Depth Anything v2 0.23 0.981 19.3 62.5 66.5 65.6 70.6 85.2 98.1
UnLoc 0.25 0.981 19.7 61.1 64.7 63.8 68.7 84.4 97.6

St
ru

ct
ur

ed
3D

GT Depth 0.00 1.000 32.2 63.4 65.0 64.3 68.6 81.6 96.4
PF-net (copied from Chen et al. (2024)) – – 0.2 1.3 3.2 0.9 – – –
LASER (copied from Chen et al. (2024)) – – 0.7 6.4 10.4 8.7 – – –
F3Loc mono (copied from Chen et al. (2024)) – – 1.5 14.6 22.4 21.3 – – –
F3Loc mono∗ 0.51 0.971 1.7 19.2 27.7 26.5 35.1 62.6 94.3
+ Depth Anything v2 0.37 0.979 5.5 34.2 40.4 39.3 45.8 68.0 94.9
UnLoc 0.39 0.979 5.3 33.9 38.8 37.6 44.9 68.3 95.1

L
aM

A
R GT Depth 0.00 1.000 14.3 44.7 49.2 49.2 49.5 52.5 56.3

F3Loc mono∗ 3.29 0.930 0.0 0.1 0.8 0.8 1.2 3.4 8.6
+ Depth Anything v2 2.08 0.957 0.5 6.8 11.3 11.3 13.9 17.6 22.8
UnLoc 2.02 0.958 0.4 11.3 17.1 17.1 19.2 22.9 27.5

Table 6: Single-frame localization on the Gibson(t) (Xia et al., 2018), LaMAR HGE (Sarlin et al.,
2022), and Structured3D (Zheng et al., 2020) datasets. We report the mean absolute error (MAE) in
meters and the cosine similarity (Cos Sim) of the depth feature embeddings to assess the accuracy of
the depth prediction. For camera localization accuracy, we report the recall (%) at various distance
thresholds. The first row in each dataset section shows the localization performance using ground
truth (GT) depth, providing an upper bound. ∗ indicates that the F3Loc model was trained by us.

T=100, N=2 T=50, N=5 T=35, N=7 T=20, N=13 T=15, N=18
Model SR@2m (%) ↑ RMSE (succ.) ↓ RMSE (all) ↓ SR@2m (%) ↑ @2m (%) ↑ @2m (%) ↑ @2m (%) ↑
GT Depth 100.0 0.09 0.09 100.0 57.1 53.8 22.2
F3Loc mono* 0.0 nan 14.90 0.0 0.0 0.0 0.0
F3Loc mono* (ft: 5 ep.) 0.0 nan 6.86 20.0 0.0 0.0 0.0
F3Loc mono* (ft: 10 ep)) 50.0 0.66 3.59 0.0 0.0 0.0 0.0
UnLoc 100.0 0.71 0.71 40.0 57.1 30.8 16.7
UnLoc (ft: 5 ep.) 100.0 0.42 0.42 100.0 85.7 30.8 33.3
UnLoc (ft: 10 ep.) 100.0 0.35 0.35 100.0 71.4 38.5 22.2

Table 7: Sequential localization on the LaMAR CAB dataset (Sarlin et al., 2022) with models
trained on LaMAR HGE. We report the success rates (SR) and the RMSE over the successful and
all sequences when the sequence length (T) is 100. We report the success rate for all other lengths,
considering a localization a success if the accuracy of the last 10 frames is within 2m of the ground
truth (GT). We also show the number of sequences tested (N) in each setting. In the first row, we
report the localization accuracy with the GT depth. “ft” indicates the model was fine-tuned on the
LaMAR CAB dataset (Sarlin et al., 2022) for the specified number of epochs (ep.). ∗ indicates the
F3Loc model was trained by us.

A.3 ADDITIONAL QUALITATIVE RESULTS

A.3.1 OBSERVATION LIKELIHOOD

A qualitative comparison of the predicted observation likelihoods between F3Loc and UnLoc on the
Gibson(t) dataset is presented in Figure 5. As shown, our UnLoc approach consistently delivers more
accurate predictions than F3Loc. Moreover, UnLoc with uncertainty takes advantage of predicted
low uncertainties in floorplan depth estimates, enabling it to more effectively reduce the observation
likelihood for less probable states.

A.3.2 POSTERIOR PROBABILITY

Figure 6 compares the posterior probability evolution of UnLoc with those of F3Loc mono and
F3Loc fusion across three trajectories from the Gibson(t) dataset. In all three cases, UnLoc outper-
forms both baselines, achieving substantially faster convergence to the true pose. Notably, UnLoc
converges within five or fewer frames in each trajectory, a result that generally holds for around two
thirds of the trajectories of the Gibson(t) dataset (without post-processing ), as shown in Table 1 of
the main paper.
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Depth pred. Recall (%) ↑
Model MAE (m) ↓ Cos Sim ↑ 0.1m 0.5m 1m 1m 30° 2m 5m 10m

GT Depth 0.00 1.000 17.5 32.5 33.0 33.0 36.0 42.0 50.5
F3Loc mono* 2.79 0.892 0.0 0.0 0.5 0.0 1.0 3.5 12.5
F3Loc mono* (ft: 5 ep.) 1.47 0.940 0.0 0.5 1.0 0.5 3.5 7.5 20.0
F3Loc mono* (ft: 10 ep.) 1.52 0.940 0.0 0.5 1.0 1.0 2.5 7.5 19.0
UnLoc 1.39 0.970 0.0 1.0 2.5 2.5 3.5 9.0 24.0
UnLoc (ft: 5 ep.) 0.78 0.974 0.0 4.0 9.0 8.0 11.0 18.0 30.0
UnLoc (ft: 10 ep.) 0.79 0.971 0.0 3.0 5.5 5.5 10.0 20.0 30.0

Table 8: Single-frame localization on the LaMAR CAB dataset (Sarlin et al., 2022) with models
trained on LaMAR HGE. We report the mean absolute error (MAE) in meters and the cosine simi-
larity (Cos Sim) to assess the accuracy of the depth prediction. For camera localization accuracy, we
report the recall (%) at various distance thresholds. The first row shows the localization performance
using ground truth (GT) depth, providing an upper bound. “ft” indicates the model was fine-tuned
on LaMAR CAB for the specified number of epochs (ep.). ∗ indicates that the F3Loc model was
trained by us.

SR@1m (%) ↑
Model ∆t=1 ∆t=2 ∆t=4 ∆t=10

GT Depth 100.0 100.0 100.0 45.5
F3Loc mono* 36.4 27.3 18.2 0.0
UnLoc w/o post-processing 100.0 100.0 72.7 45.5

Table 9: Sequential Localization on LaMAR HGE dataset (Sarlin et al., 2022) with less frequent
observation updates. We report the success rates (SR) for a sequence length (T) of 100 and different
interval lengths between observations (∆t). We consider a localization a success if the accuracy of
the last 10 frames is within 1m of the ground truth (GT). In the first row, we report the localization
accuracy with the GT depth. ∗ indicates the F3Loc model was trained by us.

SR@1m (%) ↑ Timing (s)
Grid resolution T=100 T=50 T=35 T=20 T=15 Feat. extr. Matching

0.1m x 0.1m 100.0 75.0 60.0 36.5 20.0 0.185 0.880
0.25m x 0.25m 90.9 70.8 57.1 30.2 15.3 0.185 0.140

Table 10: Sequential localization and timing of our UnLoc approach without post-processing on
the LaMAR HGE dataset (Sarlin et al., 2022) for different grid resolutions. We report the success
rates (SR) various sequence lengths (T). We consider a localization a success if the accuracy of the
last 10 frames is within 1m of the ground truth (GT). We report the runtimes (feature extraction and
matching) averaged over all test sequences on an NVIDIA Quadro RTX 6000 GPU.

Model SR@1m (%; T=100) ↑ (T=50) ↑ (T=35) ↑ (T=20) ↑ (T=15) ↑
UnLoc w/ Laplacian 100.0 54.2 37.1 17.5 4.7
UnLoc w/ Gaussian 100.0 41.7 20.0 6.3 0.0

Table 11: Sequential Localization with UnLoc using different uncertainty models. Comparison
of depth uncertainty distributions on LaMAR HGE (Sarlin et al., 2022) without post-processing
using a Depth Anything v2 (Small) depth network. Success rates (SR) are reported for varying
sequence lengths T .
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Figure 5: Observation likelihoods.
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Figure 6: Posterior evolution.
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