

# 000 001 002 003 004 005 UNLOC: LEVERAGING DEPTH UNCERTAINTIES FOR 006 FLOORPLAN LOCALIZATION 007 008 009 010 011 012 013 014 015 016 017 018 019

Anonymous authors

Paper under double-blind review



020 Figure 1: UnLoc processes an input image sequence to predict the floorplan depth (in meters)  
021 and associated uncertainty for each image column. Using these predictions, it generates a probability  
022 distribution over potential  $SE(2)$  camera poses and outputs the most likely one (blue arrow). The  
023 ground truth pose is also shown (red arrow), overlapped by the predicted pose.

## 024 ABSTRACT

025  
026 We propose UnLoc, an efficient data-driven solution for sequential camera local-  
027 ization within floorplans. Floorplan data is readily available, long-term persistent,  
028 and robust to changes in visual appearance. We address key limitations of  
029 recent methods, such as the lack of uncertainty modeling in depth predictions and  
030 the necessity for custom depth networks trained for each environment. We intro-  
031 duce a novel probabilistic model that incorporates uncertainty estimation, model-  
032 ing depth predictions as explicit probability distributions. By leveraging off-the-  
033 shelf pre-trained monocular depth models, we eliminate the need to rely on per-  
034 environment-trained depth networks, enhancing generalization to unseen spaces.  
035 We evaluate UnLoc on large-scale synthetic and real-world datasets, demon-  
036 strating significant improvements over existing methods in terms of accuracy and ro-  
037 bustness. Notably, we achieve 2.7 times higher localization recall on long se-  
038 quences (100 frames) and 42.2 times higher on short ones (15 frames) than the  
039 state of the art on the challenging LaMAR HGE dataset. The code will be public.

## 040 1 INTRODUCTION

041 Camera localization within indoor environments is a fundamental problem in computer vision, es-  
042 sential for applications in augmented reality and robotics. Accurate localization enables devices  
043 to understand their spatial context, facilitating tasks such as navigation, object interaction, and au-  
044 tonomous exploration. Traditional localization methods often rely on pre-built 3D models (Sattler  
045 et al., 2011; 2016b; Liu et al., 2017; Sarlin et al., 2019; Panek et al., 2022) or extensive image  
046 databases (Schonberger & Frahm, 2016; Arandjelovic et al., 2016; Keetha et al., 2023; Wei et al.,  
047 2024), which are storage-intensive and require substantial maintenance, limiting their scalability to  
048 new or dynamically changing environments.

049  
050 Floorplans offer a lightweight and readily available alternative for indoor localization. As 2D rep-  
051 resentations of spaces, floorplans are easy to obtain (Liu et al., 2018; Yue et al., 2023) and remain  
052 unaffected by changes in appearance, such as furniture rearrangements or lighting variations. Re-  
053 cent methods have leveraged floorplans for localization by aligning images with the map (Howard-



Figure 2: **Main method overview.** At timestep  $t$ , UnLoc aligns an image with gravity and processes it through a monodepth encoder. The extracted features, along with a binary mask from the gravity alignment, are used to predict the floorplan depth  $\hat{d}_t$  and uncertainty  $\hat{b}_t$  via masked attentions. These predictions form equiangular rays, allowing for uncertainty-aware matching with the floorplan’s occupancy map. A histogram filter fuses the observation likelihood with the integrated past belief.

Jenkins & Prisacariu, 2022; Min et al., 2022; Chen et al., 2024), enabling devices to localize within new environments as long as a floorplan is available.

Among these, F<sup>3</sup>Loc (Chen et al., 2024) has emerged as a recent promising approach for sequential visual floorplan localization, significantly outperforming all previous baselines. It integrates observations over time using a histogram filter, achieving impressive accuracy and computational efficiency on a range of datasets. However, as promising as it is, F<sup>3</sup>Loc has notable limitations that hinder its practical deployment, which we aim to improve upon in this paper:

**Lack of Uncertainty Modeling.** F<sup>3</sup>Loc combines monocular and multi-view depth estimation. However, it assumes that the resulting predictions are all of similar accuracy, and it has no means to represent and predict the uncertainties in the depth predictions. In indoor environments, depth estimation is often unreliable in regions with glass walls, open doorways, or large, featureless walls. When fusing a sequence of predictions, not accounting for uncertainty, inaccurate depth predictions adversely affect the localization process, leading to erroneous pose estimates.

**Dataset-Specific Depth.** F<sup>3</sup>Loc relies on a custom depth prediction network trained separately for each dataset or environment. This per-dataset training requirement poses significant challenges for scalability and robustness. Collecting sufficient depth data for retraining the depth network for every new environment is impractical, especially when rapid deployment is desired.

This paper addresses these shortcomings by introducing a novel visual floorplan localization method that incorporates uncertainty estimation into monocular depth prediction and uses it to robustly fuse predictions from a sequence of images. Also, our method enables us to leverage pre-trained monocular depth models. Our contributions are as follows:

*Uncertainty-Aware Depth Prediction:* We model floorplan depth predictions as explicit probability distributions, assuming a Laplace distribution centered at the predicted depth with scale parameter given by the uncertainty estimate. This formulation allows us to represent the confidence associated with each prediction. This uncertainty-aware approach improves localization by weighting predictions according to their reliability in challenging regions, and it further provides principled weights for the post-processing optimization, yielding higher accuracy.

*Leveraging Off-the-Shelf Depth Models:* Rather than designing or training custom depth networks for each environment as F<sup>3</sup>Loc does, we directly employ state-of-the-art monodepth models pre-trained on large-scale datasets (Yang et al., 2024b). Our formulation treats these models as plug-and-play modules, demonstrating that reliable localization can be achieved with any sufficiently strong depth predictor, without requiring environment-specific retraining.

The proposed UnLoc (see Fig. 1) achieves significant improvements in accuracy and robustness across multiple datasets compared to prior methods.

## 2 RELATED WORK

**Visual localization** is a fundamental problem in computer vision, addressed through various approaches. Traditional methods include image retrieval techniques (Chum et al., 2007; Jégou et al., 2010; Arandjelovic et al., 2016; Keetha et al., 2023; Wei et al., 2024), which find the most similar images in a database and estimate the pose of the query image based on the retrieved ones. Structure-

108 from-Motion-based approaches (Agarwal et al., 2011; Schonberger & Frahm, 2016; Sattler et al.,  
 109 2016a; Panek et al., 2022) build a 3D model of the environment and establish 2D-3D correspondences  
 110 by matching local descriptors, computing camera poses using minimal solvers (Kukelova  
 111 et al., 2008) and RANSAC (Fischler & Bolles, 1981) or its recent variants (Barath et al., 2020;  
 112 Barath & Matas, 2021). Scene coordinate regression methods (Brachmann et al., 2017a;b) learn to  
 113 regress the 3D coordinates of image pixels, while pose regression techniques (Kendall et al., 2015;  
 114 Kendall & Cipolla, 2017) use networks to predict a 6-DoF camera pose from input images directly.  
 115 These methods often rely on pre-built 3D models that are storage-intensive and scene-specific, lim-  
 116 iting their applicability in unseen environments.

117 To overcome this, **floorplan-based localization** methods have emerged, utilizing overhead images  
 118 or floorplans to estimate the  $SE(2)$  pose of the camera (Workman et al., 2015; Tian et al., 2017).  
 119 These approaches can localize images in new scenes as long as a floorplan is provided. Floorplan  
 120 localization is frequently associated with LiDAR sensors (Mostofi et al., 2014; Yin et al., 2019; Zim-  
 121 mberman et al., 2022), which are impractical for widespread mobile device use. Alternative methods  
 122 reconstruct 3D geometry using depth cameras (Winterhalter et al., 2015) or visual odometry (Mur-  
 123 Artal et al., 2015). Some approaches extract geometric features like room edges to align with the  
 124 floorplan (Bonardi et al., 2019; Lin et al., 2019). However, these methods often assume known  
 125 camera or room height, which is not always feasible.

126 Recent learning-based methods aim to use only RGB images for floorplan localization.  
 127 LaLaLoc (Howard-Jenkins et al., 2021) estimates the position of panoramic images in a floorplan by  
 128 embedding map and image features into a shared space. LaLaLoc++ (Howard-Jenkins & Prisacariu,  
 129 2022) removes the known camera and ceiling height assumption by directly embedding the floor-  
 130 plan. LASER (Min et al., 2022) represents the floorplan as a set of points and uses PointNet (Qi  
 131 et al., 2017) to embed the visible points for each pose, aligning them with image features in a shared  
 132 space. PF-Net (Karkus et al., 2018) integrates localization within a differentiable particle filtering  
 133 framework, using a learned similarity between images and corresponding map patches. F<sup>3</sup>Loc (Chen  
 134 et al., 2024) utilizes metric monocular depth prediction but requires training custom depth networks,  
 135 which can limit generalizability, and assumes that all predictions are of the same quality.

136 **Sequence-based localization** methods enhance robustness by integrating information over time.  
 137 Bayesian filtering (Dellaert et al., 1999; Chu et al., 2015; Karkus et al., 2018; Bonardi et al., 2019;  
 138 Mendez et al., 2020) is commonly used to fuse sequential observations, like particle (Dellaert et al.,  
 139 1999) and histogram filters (Thrun, 2002). PF-Net (Karkus et al., 2018) employs a differentiable  
 140 particle filter for localization but relies on learned observation models that may not generalize well.  
 F<sup>3</sup>Loc (Chen et al., 2024) uses sequential observations and integrates them by a histogram filter.

141 **Depth estimation** provides valuable geometric information for localization (Chen et al., 2024). Re-  
 142 cent advances in pre-trained monocular depth (monodepth) models (Ranftl et al., 2021; Birk et al.,  
 143 2023; Guizilini et al., 2023; Yin et al., 2023; Hu et al., 2024; Yang et al., 2024a;b; Bochkovskii  
 144 et al., 2024), trained on large-scale datasets, enable accurate metric or relative depth predictions  
 145 out-of-the-box, without per-scene training. In this work, we leverage such off-the-shelf networks  
 146 for image-based floorplan localization, thereby avoiding custom model training and improving gen-  
 147 eralization across domains.

148 **Depth uncertainty** is crucial for reliable use of depth predictions in downstream tasks. Neural net-  
 149 work uncertainty is commonly categorized as aleatoric (data) or epistemic (model) (Kendall & Gal,  
 150 2017; Poggi et al., 2020). Aleatoric uncertainty captures inherent observation noise by modeling  
 151 a distribution over the network output. It is most relevant in regions of the observation space with  
 152 higher noise and does not decrease with more data. A typical approach trains the network to predict  
 153 parameters of a parametric distribution via log-likelihood maximization (Nix & Weigend, 1994),  
 154 usually adding negligible computational overhead (Kendall & Gal, 2017).

155 Epistemic uncertainty reflects model limitations by placing a distribution over the model parameters.  
 156 It is most useful with small datasets or safety-critical tasks and decreases as more data becomes  
 157 available. Estimating epistemic uncertainty generally incurs significant computation cost (Kendall &  
 158 Gal, 2017). Common strategies include Monte Carlo Dropout (Srivastava et al., 2014), bootstrapped  
 159 ensembles (Lakshminarayanan et al., 2017), and Bayesian neural networks (MacKay, 1992).

160 For pixel-wise monocular depth estimation, prior work has explored both types. Kendall & Gal  
 161 (2017) propose a method to estimate aleatoric and epistemic uncertainty jointly. Poggi et al. (2020)

evaluate approaches of both types and propose a self-teaching model for aleatoric uncertainty. Liu et al. (2019) model aleatoric uncertainty by discretizing depth into bins. Roessle et al. (2022) predict aleatoric uncertainty via Gaussian depth distributions with learned variance. In floorplan localization, F<sup>3</sup>Loc (Chen et al., 2024) estimates floorplan depth assuming a uniform confidence. In contrast, we model aleatoric uncertainty explicitly to capture ambiguities from glass walls, doorways, and occlusions. Although epistemic uncertainty could help for out-of-distribution scenes, we focus on aleatoric uncertainty for computational efficiency in real-time histogram filtering, leaving epistemic modeling for future work. Our Laplace-based formulation enables uncertainty-aware matching, improving robustness and convergence in challenging indoor environments.

### 3 FLOORPLAN LOCALIZATION WITH UNLOC

**3.1. Method Overview.** We estimate the 2D pose  $\mathbf{s}_t = [s_{x,t}, s_{y,t}, s_{\phi,t}]$  within a known 2D floorplan, where  $s_{x,t}$  and  $s_{y,t}$  denote position coordinates and  $s_{\phi,t}$  represents orientation. Our approach takes as input a sequence of  $t$  RGB images, relative poses between these images, gravity direction, camera intrinsics, and the geometric layout of the floorplan. To ensure out-of-the-box usability of the method, input floorplans are provided solely as occupancy grid data without any semantic labels.

An overview of our main method is shown in Fig. 2. Each image is aligned with gravity and processed by a pre-trained encoder (Yang et al., 2024b) to extract features. These features, along with a binary mask from the gravity alignment, are input to a masked attention mechanism that predicts the floorplan depth, defined as the depth to the nearest occupied area in the floorplan. The predicted depth is then used to construct equiangular rays, which are matched against the floorplan to produce a localization estimate. Finally, we combine this estimate with the previous posterior localization using a histogram filter to compute the updated posterior estimate.

Our approach differs from prior methods in two main ways: (1) we model floorplan depth as an explicit probability distribution to quantify uncertainty, enhancing sequential localization when fusing predictions; (2) we use an off-the-shelf pre-trained monodepth network instead of a custom network that requires per-dataset training, thereby effectively leveraging models trained on extensive data without additional training efforts.

**3.2. Gravity Alignment.** Real-world applications often involve images captured from hand-held or head-mounted devices, resulting in arbitrary orientations. To address this, we preprocess images to align them with gravity. We achieve alignment by utilizing the camera’s roll ( $\psi$ ) and pitch ( $\theta$ ) angles to define rotation matrices. The rotation for roll is given as  $\mathbf{R}_x(\psi)$  and for pitch as  $\mathbf{R}_y(\theta)$ . The combined matrix from the gravity-aligned frame to the camera frame is calculated as  $\mathbf{R}_{cg} = \mathbf{R}_y(\theta) \cdot \mathbf{R}_x(\psi)$ . The inverse transformation, from the camera frame to the gravity-aligned frame, is given by:  $\mathbf{R}_{gc} = \mathbf{R}_{cg}^\top$ . Using these rotations, we compute a homography  $\mathbf{H}$  to warp the image into the gravity-aligned frame  $\mathbf{H} = \mathbf{K} \cdot \mathbf{R}_{gc} \cdot \mathbf{K}^{-1}$ , where  $\mathbf{K}$  is the camera intrinsic matrix. This process also produces a binary mask indicating pixels that are invalid after alignment due to the warping. The gravity-aligned RGB image and the mask are then used for subsequent feature extraction.

Note that the gravity direction and camera intrinsics are usually accessible from sensors on smartphones and head-mounted devices. If this information is not directly available, methods such as GeoCalib (Veicht et al., 2024) can be used to estimate both the intrinsics and gravity direction.

**3.3. Feature Extraction.** Recent visual floorplan localization methods (Howard-Jenkins et al., 2021; Howard-Jenkins & Prisacariu, 2022; Min et al., 2022; Chen et al., 2024) rely on encoders pre-trained on ImageNet (Deng et al., 2009) for image classification tasks, such as ResNet-50 (He et al., 2016). However, we posit that encoders trained on tasks more closely related to floorplan depth estimation could yield better performance. To explore this, we utilize encoders pre-trained on dense monocular depth estimation tasks. These encoders, optimized on large-scale depth datasets, provide superior features for floorplan depth estimation without requiring additional depth training from scratch. From the state-of-the-art models (Birkl et al., 2023; Guizilini et al., 2023; Yin et al., 2023; Hu et al., 2024; Yang et al., 2024a;b; Bochkovskii et al., 2024), we select the recent Depth Anything v2 model (Yang et al., 2024b) due to its state-of-the-art performance in both relative and metric depth estimation and low inference times compared to similarly accurate models (Bochkovskii et al., 2024). Specifically, we use the encoder fine-tuned for indoor environments. We extract features from its last layer and apply bilinear interpolation to match the spatial dimensions the subsequent



Figure 3: **Floorplan depth predictions** (in meters) for images from the LaMAR HGE dataset. **Top:** input images. **Bottom:** depth predictions by  $F^3Loc$  (red) and our proposed  $UnLoc$  (blue), with predicted uncertainties visualized. The horizontal axis represents the image column index, ranging from left (0) to right (image width  $w$ ). A gray dotted line indicates the ground truth depth.

masked attention mechanism requires. Note that the proposed pipeline is *agnostic* to the monodepth network, which could easily be replaced as better methods are published.

**3.4. Masked Attention.** We implement a masked attention mechanism inspired by Chen et al. (2024) to predict floorplan depth, using the interpolated features and gravity alignment mask as inputs. Our model predicts two 1D vectors:  $\hat{\mathbf{d}}_t$ , representing floorplan depth estimates, and  $\hat{\mathbf{b}}_t$ , denoting the uncertainty associated with each estimate. The uncertainty quantification allows the model to account for varying confidence levels across regions in the image, particularly in challenging areas with ambiguous visual cues or distant objects.

Before inputting to the attention mechanism, we reduce the channel dimensions of the interpolated encoder features using a convolutional layer. The resulting features serve as keys and values in the attention mechanism, while 1D queries are formed through average pooling. Positional encodings for the queries are derived from their 1D coordinates, whereas for the keys and values, positional encodings are mapped from the corresponding 2D image coordinates. By applying the gravity alignment mask, we focus the attention mechanism on observable regions of the image.

The output of the masked attention layer is fed into two parallel fully connected layers: one predicting the depth estimates  $\hat{\mathbf{d}}_t$ , and the other predicting the uncertainties  $\hat{\mathbf{b}}_t$ . This dual output allows for uncertainty-aware matching with the floorplan in subsequent steps.

**3.5. Uncertainty-Aware Matching.** Using the predicted depth  $\hat{\mathbf{d}}_t$  and uncertainty  $\hat{\mathbf{b}}_t$ , we compute the observation likelihood over the entire floorplan. The predicted uncertainty  $\hat{\mathbf{b}}_t$  represents aleatoric uncertainty, capturing the inherent observation noise in floorplan depth estimation that arises from scene ambiguities such as glass surfaces, open doorways, and featureless walls. To formulate the observation model, we treat each predicted depth value as drawn from a probability distribution. We model the predicted floorplan depth and its uncertainty as our observation  $\mathbf{o}_t$  and define the observation likelihood as

$$p(\mathbf{o}_t | \mathbf{s}_t) = \prod_{j=1}^R \frac{1}{2 \cdot \tilde{b}_{t,j}} \cdot \exp \left( -\frac{|\tilde{d}_{t,j} - d_j(\mathbf{s}_t)|}{\tilde{b}_{t,j}} \right), \quad (1)$$

where  $\tilde{d}_{t,j}$  and  $\tilde{b}_{t,j}$  are the predicted depth and uncertainty interpolated from  $\hat{\mathbf{d}}_t$  and  $\hat{\mathbf{b}}_t$  at ray angle  $\alpha_j$ , and  $R$  is the number of rays. The corresponding floorplan depth  $d_j(\mathbf{s}_t)$  is computed from the floorplan ray length as

$$d_j(\mathbf{s}_t) = r_j(\mathbf{s}_t) \cdot \cos(\alpha_j), \quad (2)$$

where  $r_j(\mathbf{s}_t)$  is the ray length from pose  $\mathbf{s}_t$  in direction  $\alpha_j$ . In Eq. 1, the observation likelihood is modeled as a product of independent Laplace distributions, with  $\tilde{d}_{t,j}$  as location parameter and  $\tilde{b}_{t,j}$  as scale parameter. We choose the Laplace distribution for two key reasons. First, its heavier tails compared to the Gaussian distribution provide robustness to larger prediction errors that commonly occur in challenging indoor scenes (see Sec. A.2.4 for empirical evidence). Second, it enables efficient closed-form likelihood computation essential for real-time histogram filtering.

| Model                     | T=100, N=37 |                | T=50, N=78   |             | T=35, N=111 |           | T=20, N=200 |           | T=15, N=268 |           |
|---------------------------|-------------|----------------|--------------|-------------|-------------|-----------|-------------|-----------|-------------|-----------|
|                           | SR@1m (%) ↑ | RMSE (succ.) ↓ | RMSE (all) ↓ | SR@1m (%) ↑ | @1m (%) ↑   | @1m (%) ↑ | @1m (%) ↑   | @1m (%) ↑ | @1m (%) ↑   | @1m (%) ↑ |
| GT Depth                  | 100.0       | 0.07           | 0.07         | 98.7        | 91.0        | 76.0      | 72.0        | —         | —           | —         |
| LASeR                     | 59.5        | 0.39           | 1.96         | —           | —           | —         | —           | —         | —           | —         |
| F <sup>3</sup> Loc fusion | 94.6        | 0.12           | 0.51         | 94.6        | 69.4        | 46.0      | 41.8        | —         | —           | —         |
| F <sup>3</sup> Loc mono   | 89.2        | 0.18           | 0.88         | 70.5        | 55.9        | 34.0      | 28.4        | —         | —           | —         |
| F <sup>3</sup> Loc mono*  | 86.5        | 0.14           | 0.80         | 70.5        | 57.7        | 35.5      | 32.1        | —         | —           | —         |
| + Depth Anything v2       | 94.6        | 0.11           | 0.50         | 89.7        | 76.6        | 60.5      | 56.3        | —         | —           | —         |
| UnLoc w/o post-processing | 97.3        | 0.16           | 0.28         | 92.3        | 88.3        | 70.5      | 65.3        | —         | —           | —         |
| UnLoc                     | 97.3        | 0.16           | 0.28         | 94.9        | 92.8        | 86.5      | 81.3        | —         | —           | —         |

Table 1: **Sequential localization** on the Gibson(t) dataset (Xia et al., 2018). We report the success rates and the RMSE over the successful and all sequences when the sequence length (T) is 100. We report the success rate for all other lengths, considering a localization a success if the accuracy of the last 10 frames is within 1m of the ground truth (GT). We also show the number of sequences tested (N) in each setting. In the first row, we report the localization accuracy with the GT depth. \* indicates that the F<sup>3</sup>Loc model was trained by us.

When uncertainty  $\hat{b}_{t,j}$  is high, the distribution becomes flatter, naturally down-weighting unreliable observations in the pose estimation process. As a result, the filter can rely more on confident predictions while remaining robust to uncertain ones. This uncertainty-aware matching yields a 3D likelihood volume representing the observation likelihoods of all possible camera poses  $\mathbf{s}_t$ .

**3.6. Histogram Filter.** We estimate the posterior probability of the pose over time using a histogram filter, similar to the one introduced in Chen et al. (2024). At each time step, we update the posterior by combining the likelihood with the prior belief propagated through the motion model. To do this, the posterior is formulated as a 3D probability volume and expressed via Bayes’ theorem as

$$p(\mathbf{s}_t \mid \mathbf{o}_t, \mathbf{t}_t) = \frac{1}{Z} \sum_{\mathbf{s}_t} p(\mathbf{s}_t \mid \mathbf{s}_{t-1}, \mathbf{t}_t) \cdot p(\mathbf{o}_t \mid \mathbf{s}_t), \quad (3)$$

where  $Z$  is a normalization constant and  $p(\mathbf{s}_t \mid \mathbf{s}_{t-1}, \mathbf{t}_t)$  denotes the transition probability. Let us highlight that the uncertainty  $\hat{b}_t$  of the depth prediction directly affects Eq. 3 through its last element:  $p(\mathbf{o}_t \mid \mathbf{s}_t)$  (see Eq. 1).

The motion model describes the evolution of the state given the ego-motion measurements  $\mathbf{t}_t = [t_{x,t}, t_{y,t}, t_{\phi,t}]$  and is defined as follows:

$$\mathbf{s}_t = \mathbf{s}_{t-1} \oplus \mathbf{t}_t + \boldsymbol{\omega}_t, \quad (4)$$

where  $\boldsymbol{\omega}_t = [\omega_{x,t}, \omega_{y,t}, \omega_{\phi,t}]$  represents Gaussian transition noise with covariance  $\boldsymbol{\Sigma} = \text{diag}(\sigma_x^2, \sigma_y^2, \sigma_{\phi}^2)$ , and  $\oplus$  denotes the state update operation. The transition probability can thus be written as follows:

$$p(\mathbf{s}_t \mid \mathbf{s}_{t-1}, \mathbf{t}_t) = \exp \left( -\frac{1}{2} (\mathbf{s}_t - \mathbf{s}_{t-1} \oplus \mathbf{t}_t)^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{s}_t - \mathbf{s}_{t-1} \oplus \mathbf{t}_t) \right).$$

To efficiently implement the update, the multiplication with the transition probability in Eq. 3 is handled using two decoupled filters: translation and rotation. See Chen et al. (2024) for additional details on the filter implementation. The resulting probability volume corresponds to the posterior probability. By sequentially applying the transition and observation updates, we obtain the posterior probability distribution over the camera pose at each time step.

**3.7. Training.** We train our model by minimizing the negative log-likelihood of the predicted depth and uncertainty with respect to the ground truth (GT) floorplan depth at the GT pose. Specifically, we use the following loss:

$$L_d = \sum_{i=1}^D \left( \log(\hat{b}_i) + \frac{|\hat{d}_i - d_i(\mathbf{s})|}{\hat{b}_i} \right), \quad (5)$$

where  $\hat{d}_i$  and  $\hat{b}_i$  are the predicted depth and uncertainty for the  $i^{\text{th}}$  image column,  $d_i(\mathbf{s})$  is the GT floorplan depth at the GT pose  $\mathbf{s}$ , and  $D$  is the number of image columns for which depth is predicted. This loss corresponds to the negative log-likelihood of a Laplace distribution, encouraging

|          | Model                      | T=100, N=11 |                |              | T=50, N=24  |           | T=35, N=35 | T=20, N=63 | T=15, N=85 |
|----------|----------------------------|-------------|----------------|--------------|-------------|-----------|------------|------------|------------|
|          |                            | SR@1m (%) ↑ | RMSE (succ.) ↓ | RMSE (all) ↓ | SR@1m (%) ↑ | @1m (%) ↑ | @1m (%) ↑  | @1m (%) ↑  | @1m (%) ↑  |
| Original | GT Depth                   | 100.0       | 0.20           | 0.20         | 91.7        | 85.7      | 73.1       | 56.5       |            |
|          | $\hat{F}^3\text{Loc}$ mono | 36.4        | 0.45           | 27.38        | 16.7        | 5.7       | 1.6        | 1.2        |            |
|          | + Depth Anything v2        | 100.0       | 0.38           | 0.38         | 66.7        | 42.9      | 23.8       | 9.4        |            |
|          | UnLoc w/o post-processing  | 100.0       | 0.34           | 0.34         | 75.0        | 60.0      | 36.5       | 20.0       |            |
|          | UnLoc                      | 100.0       | 0.25           | 0.25         | 75.0        | 74.3      | 63.5       | 50.6       |            |
| Cropped  | GT Depth                   | 100.0       | 0.23           | 0.23         | 100.0       | 96.2      | 76.1       | 58.1       |            |
|          | $\hat{F}^3\text{Loc}$ mono | 75.0        | 0.53           | 4.93         | 29.4        | 7.7       | 2.2        | 0.0        |            |
|          | + Depth Anything v2        | 100.0       | 0.51           | 0.51         | 82.4        | 53.9      | 34.8       | 16.1       |            |
|          | UnLoc w/o post-processing  | 100.0       | 0.45           | 0.45         | 94.1        | 76.9      | 50.0       | 33.9       |            |
|          | UnLoc                      | 100.0       | 0.41           | 0.41         | 94.1        | 88.5      | 71.7       | 62.9       |            |

Table 2: **Sequential localization** on the LaMAR HGE dataset and on its cropped version used by Chen et al. (2024). We report the success rates (SR) and RMSE over the successful and all sequences when the sequence length (T) is 100, and the SR for all other lengths, considering a localization a success if the accuracy of the last 10 frames is within 1m of the GT. We also show the number of sequences tested (N). The first row reports the localization accuracy with the GT depth.

accurate depth predictions while accounting for uncertainty. The logarithmic term discourages infinite predictions for uncertainty.

**3.8. Post-Processing Optimization.** While our main method provides accurate camera poses, residual drift and misalignment with local depth measurements may accumulate. To reduce such errors, we perform a lightweight post-processing optimization over the last  $k$  frames. We use  $k = 10$  in our experiments. The goal is to refine the trajectory by applying a global rigid correction, parameterized by an SE(2) transformation composed of an in-plane rotation and translation. We initialize the trajectory by computing the last pose as  $\hat{s}_T = \arg \max_{s_T} p(s_T \mid o_T, t_T)$  and then backpropagating  $k - 1$  steps using the ego-motion measurements and the inverse motion model without noise as

$$\hat{s}_t = \hat{s}_{t+1} \ominus t_{t+1}, \quad t \in [T - k + 1, T - 1], \quad (6)$$

where  $\ominus$  is the inverse state update operation. Let the resulting, estimated trajectory over the last  $k$  frames be denoted as  $\{\hat{s}_t\}_{t=T-k+1}^T$ . We introduce a global SE(2) correction  $\Delta s$  acting on the XY-plane of the camera poses, parameterized by angle  $\theta \in \mathbb{R}$  and translation  $\mathbf{p} \in \mathbb{R}^2$  as follows:

$$\tilde{s}_t(\theta, \mathbf{p}) = \Delta s(\theta, \mathbf{p}) \cdot \hat{s}_t, \quad t \in [T - k + 1, T]. \quad (7)$$

The optimization minimizes the uncertainty-weighted sum of differences between predicted depths  $\tilde{d}_{t,j}$  and floorplan depths  $d_{t,j}$  at the refined poses  $\tilde{s}_t(\theta, \mathbf{p})$  across all rays of the last  $k$  frames as

$$\mathcal{L}_{\text{post}}(\theta, \mathbf{p}) = \sum_{t=T-k+1}^T \sum_j^R \frac{1}{\tilde{b}_{t,j}} \cdot |\tilde{d}_{t,j} - d_j(\tilde{s}_t(\theta, \mathbf{p}))|. \quad (8)$$

This weighted L1 objective is designed so that frames with higher predicted uncertainty contribute less to the optimization, which is expected to help the refinement remain robust to noisy predictions. The use of an SE(2) correction keeps the refinement computationally lightweight while enforcing global consistency in the local window of frames. We solve for the optimal correction parameters  $(\theta^*, \mathbf{p}^*) = \arg \min_{\theta, \mathbf{p}} \mathcal{L}_{\text{post}}(\theta, \mathbf{p})$  using a gradient-based optimizer, with floorplan depths  $d_j(\tilde{s}_t(\theta, \mathbf{p}))$  updated at each iteration.

| Model                  | Gibson(t)  |          | LaMAR HGE  |          |
|------------------------|------------|----------|------------|----------|
|                        | Extraction | Matching | Extraction | Matching |
| $F^3\text{Loc}$ fusion | 0.030s     | 0.003s   | —          | —        |
| $F^3\text{Loc}$ mono   | 0.015s     | 0.003s   | —          | —        |
| $F^3\text{Loc}$ mono*  | 0.015s     | 0.003s   | 0.089s     | 0.797s   |
| + Depth Anything v2    | 0.185s     | 0.003s   | 0.179s     | 0.746s   |
| UnLoc                  | 0.174s     | 0.004s   | 0.185s     | 0.880s   |

Table 3: **Runtime** in secs on the Gibson (Xia et al., 2018) and LaMAR HGE datasets (Sarlin et al., 2022). We independently show the depth prediction time per frame and match it to the floorplan.

## 4 EXPERIMENTS

**Datasets.** We evaluate our method and the baselines on three widely-used datasets: Gibson (Xia et al., 2018), and two versions of LaMAR (Sarlin et al., 2022). The *Gibson* dataset (Xia et al., 2018)

378 contains 118 synthetic scenes (each smaller than 300m<sup>2</sup>). Following Chen et al. (2024), we use two  
 379 subsets: Gibson (f) for training, (24,779 sequences of 4 frames each), and Gibson (t) for testing  
 380 (118 trajectories ranging from 280 to 5,152 steps). It features upright camera poses, low to medium  
 381 occlusion, and a large FoV of 108°.  
 382

*LaMAR*: To evaluate in real-world settings, we use a subset of LaMAR (Sarlin et al., 2022), focusing  
 383 on indoor sequences of the HGE building. This large-scale scene covers approx. 22,500 m<sup>2</sup>. The  
 384 dataset includes camera poses, degrees of occlusion from low to high, and a narrow FoV of 48°. It  
 385 consists of 16 sessions totaling 5,187 images, split into 12 sessions for training (3,820 images), one  
 386 for validation, and 3 for testing. While prior work (Chen et al., 2024) is only evaluated on a custom  
 387 version of this scene, cropping challenging parts (e.g., long corridors), we use the entire scene.  
 388

**Baseline.** We compare to F<sup>3</sup>Loc (Chen et al., 2024) as it is the state-of-the-art floorplan localization  
 389 approach. We use their pre-trained models and also train them ourselves with the provided code  
 390 to make them applicable to the LaMAR dataset. While we consider its purely monocular version  
 391 (F<sup>3</sup>Loc mono) as our main competitor, we also show results for F<sup>3</sup>Loc fusion, which uses both  
 392 monodepth and multiview stereo. Let us note that our method can also easily benefit from multiview  
 393 stereo. Additionally, to study the individual contribution of our uncertainty-aware depth prediction,  
 394 we evaluate our approach without post-processing.  
 395

**Metrics.** We report the success rate (SR) and consider sequential localization at  $X$  meters successful  
 396 if the prediction is within a radius of  $X$  meters over the last 10 frames. We compare SR for various  
 397 numbers of frames. Also, we show the RMSE (over the last 10 frames) of our trajectory tracking in  
 398 both succeeded and all runs.  
 399

**Results on Gibson(t).** Table 1 reports results on the synthetic Gibson(t) dataset. We evaluate SR (%)  
 400 and RMSE (in meters) over both successful and all sequences for length-100 sequences, and report  
 401 SR for other lengths, considering localization successful if the accuracy over the last 10 frames is  
 402 within 1 meter of the ground truth (GT). The number of sequences is also shown. The first row gives  
 403 the upper bound performance using GT depth. Note that post-processing can still improve upon it.  
 404

Without post-processing, our method already achieves substantial gains over both the original F<sup>3</sup>Loc  
 405 and its variant using DepthAnything v2 for depth prediction, thanks to uncertainty modeling. Post-  
 406 processing further boosts performance, especially on short sequences. For instance, on 15-frame se-  
 407 quences, it yields a 16-point SR improvement, even surpassing the GT-depth version. Compared to  
 408 F<sup>3</sup>Loc mono, our method achieves a 52.9-point SR gain. Importantly, UnLoc maintains an SR above  
 409 80% even on 15-frame sequences, whereas F<sup>3</sup>Loc (with either the original encoder or DepthAny-  
 410 thing) requires at least 50 frames to reach this level. Excelling on short sequences is particularly  
 411 relevant for real-world applications, where time-to-localize is critical.  
 412

For completeness, we also include LASER (Min et al., 2022) results (as reported in Chen et al.  
 413 (2024)), which lag behind both F<sup>3</sup>Loc and UnLoc by a wide margin.  
 414

**Results on LaMAR.** Table 2 reports results on the LaMAR HGE dataset. Since F<sup>3</sup>Loc does not  
 415 provide a pre-trained model for this dataset, we evaluate it using a model trained by us. LaMAR is  
 416 a challenging real-world dataset with both small environments (offices and rooms) and large ones  
 417 (halls and long corridors). The monodepth predictor of F<sup>3</sup>Loc struggles in these conditions, yield-  
 418 ing very low success rates even for long sequences. Replacing the encoder of F<sup>3</sup>Loc with Depth  
 419 Anything v2 already yields more accurate results than the original model.  
 420

The proposed UnLoc, equipped with uncertainty modeling and uncertainty-weighted post-  
 421 processing, brings substantial gains. Compared to F<sup>3</sup>Loc, the success rate rises from 1.2% to 50.6%  
 422 (a 42.2-fold improvement) on 15-frame sequences and from 36.4% to 100% (a 2.7-fold improve-  
 423 ment) on 100-frame sequences. On the cropped dataset variant (Chen et al., 2024), success rates  
 424 increase by 25.0 to 80.8 percentage points, depending on the sequence length. Both uncertainty  
 425 modeling and post-processing contribute significantly to these improvements. These results demon-  
 426 strate that UnLoc markedly improves upon the state of the art in complex, realistic scenarios by  
 427 leveraging off-the-shelf depth predictors with uncertainty estimation. The improvements are com-  
 428plementary and each component contributes to the overall accuracy.  
 429

Figure 3 shows examples of floorplan depth predictions and uncertainties. UnLoc consistently out-  
 430 performs F<sup>3</sup>Loc on these challenging cases. Notably, in the last example, our method returns the  
 431 correct depth while the ground truth is incorrect.

| 432 | Model                     | SR@1m (%; T=100) $\uparrow$ | (T=50) $\uparrow$ | (T=35) $\uparrow$ | (T=20) $\uparrow$ | (T=15) $\uparrow$ |
|-----|---------------------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|
| 433 | GT Depth                  | 100.0                       | 100.0             | 57.1              | 53.8              | 22.2              |
| 434 | F <sup>3</sup> Loc mono   | 0.0                         | 0.0               | 0.0               | 0.0               | 0.0               |
| 435 | UnLoc w/o post-processing | <b>50.0</b>                 | 20.0              | 0.0               | 15.4              | 0.0               |
| 436 | UnLoc                     | <b>50.0</b>                 | <b>40.0</b>       | <b>57.1</b>       | <b>30.8</b>       | <b>16.7</b>       |

437  
438 Table 4: **Localization** on the LaMAR CAB dataset with models trained on LaMAR HGE. We report  
439 the success rates (SR) for sequence lengths 100, 50, 35, 20, and 15.

| 440 | Model                                | T=100        | T=50        | T=35        | T=20        | T=15        |
|-----|--------------------------------------|--------------|-------------|-------------|-------------|-------------|
| 441 | DINOv2 (L)                           | 90.9         | 45.8        | 20.0        | 9.5         | 3.5         |
| 442 | DINOv2 (L) w/ Uncertainty            | <b>100.0</b> | <b>54.2</b> | <b>31.4</b> | <b>15.9</b> | <b>5.9</b>  |
| 443 | DepthPro                             | 90.9         | 62.5        | 40.0        | 17.5        | 4.7         |
| 444 | DepthPro w/ Uncertainty              | <b>100.0</b> | <b>70.8</b> | <b>51.4</b> | <b>31.7</b> | <b>14.1</b> |
| 445 | Depth Anything V2 (L)                | <b>100.0</b> | 66.7        | 42.9        | 23.8        | 9.4         |
| 446 | Depth Anything V2 (L) w/ Uncertainty | <b>100.0</b> | <b>75.0</b> | <b>60.0</b> | <b>36.5</b> | <b>20.0</b> |
| 447 | Depth Anything V2 (B)                | 90.9         | 62.5        | 28.6        | 12.7        | 2.4         |
| 448 | Depth Anything V2 (B) w/ Uncertainty | <b>100.0</b> | <b>66.7</b> | <b>42.9</b> | <b>30.2</b> | <b>12.9</b> |
| 449 | Depth Anything V2 (S)                | 81.8         | 41.7        | 22.9        | 7.9         | 4.7         |
| 450 | Depth Anything V2 (S) w/ Uncertainty | <b>100.0</b> | <b>54.2</b> | <b>37.1</b> | <b>17.5</b> | <b>5.9</b>  |

451 Table 5: **Sequential localization with UnLoc using different encoders** on LaMAR HGE (Sarlin  
452 et al., 2022). Results are without post-processing. Success rate for different sequence lengths (local-  
453 ization is a success if the last 10 frames are within 1m of GT). We compare DINOv2 (Oquab et al.,  
454 2024) with DepthPro (Bochkovskii et al., 2024) and different pre-trained models of Depth Anything  
455 V2 (Yang et al., 2024b) (L: large, B: base, S: small), both with and without uncertainty estimation.

456 Table 4 presents results on the LaMAR CAB building using models trained on the LaMAR HGE  
457 dataset. While this is not a strict zero-shot scenario – since the same sensor is used in a differ-  
458 ent building – it effectively demonstrates the generalization capabilities of UnLoc. Our approach  
459 achieves accurate localization in this new environment, whereas F<sup>3</sup>Loc fails completely. We pro-  
460 vide additional results on this cross-domain task in the supp. mat (see Sec. A.2.2).

461 **Runtime.** Table 3 presents the average runtime per frame for each method. As expected, using an  
462 off-the-shelf depth prediction network incurs a higher computational cost than the custom network  
463 used in Chen et al. (2024). On the Gibson dataset, all methods run efficiently, though our proposed  
464 method is slightly slower due to the more complex depth predictor. On the LaMAR dataset, all  
465 methods require approximately one second per frame. In practical applications, a lower frame rate  
466 is acceptable since new frames may not always provide significantly new information at high rates.  
467 Also, UnLoc excels on short sequences, achieving accurate localization with fewer frames. The  
468 post-processing takes, on average, 0.96 seconds once at the end of the process.

469 **Summary.** The results on both synthetic and real-world datasets confirm that UnLoc outperforms  
470 the state of the art in terms of accuracy and robustness. We achieve significant improvements in  
471 sequential visual floorplan localization by addressing the limitations of the state of the art and lever-  
472 aging uncertainty-aware depth predictions from pre-trained models. UnLoc maintains real-time  
473 performance while enhancing scalability and generalization to new scenes.

#### 475 4.1 ABLATION STUDIES

476 **Monocular Depth Networks.** We further examine the impact of different encoder networks on  
477 our method’s performance using the LaMAR HGE dataset (Table 5). Specifically, we eval-  
478 uate the general-purpose encoder DINOv2 (Oquab et al., 2024), the monodepth encoder DepthPro  
479 (Bochkovskii et al., 2024), and three encoder variants of Depth Anything v2 (Yang et al., 2024b) –  
480 large (L), base (B), and small (S). The results show that the monodepth encoders DepthPro and Depth  
481 Anything v2 (L) outperform the similarly-sized general-purpose encoder DINOv2, with Depth Any-  
482 thing v2 (L) achieving the highest overall performance. This indicates that pre-trained monodepth  
483 encoders provide more effective features for floorplan depth prediction. Within the Depth Anything  
484 v2 models, performance scales positively with model size. Importantly, incorporating the proposed  
485 depth uncertainty estimation consistently improves success rates across *all* encoders. For instance,

incorporating depth uncertainties with the base model elevates its performance to match that of the large variant. This demonstrates that uncertainty estimation effectively compensates for smaller model sizes, enhancing robustness without incurring additional computational costs.

**Efficiency Analysis.** Fig. 4 illustrates the SR on the Gibson(t) dataset versus model size (left) and runtime (right). To show a fair model comparison, we do not perform post-processing optimization here. Our method improves substantially over F<sup>3</sup>Loc even with smaller models: Using the small Depth Anything v2 model, it achieves about a 10 percentage point higher success rate compared to F<sup>3</sup>Loc fusion, while maintaining similar runtime. This highlights the efficiency of our approach in terms of accuracy versus computational resources.

## 5 CONCLUSION

We propose a visual floorplan localization method, UnLoc, that addresses key limitations of prior approaches by incorporating uncertainty estimation into depth prediction and leveraging pre-trained monodepth models. Modeling depth predictions as probability distributions allows us to quantify uncertainty, leading to improved accuracy, especially in challenging environments. Experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of accuracy and robustness while operating efficiently. Our approach offers a practical and scalable solution for visual floorplan localization across diverse indoor environments. The source code and trained models will be publicly released.

## REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. The code required for data preprocessing, model training, model evaluation, along with trained models, will be released upon acceptance. Training procedures are described in A.1.1 and dataset creation details are provided in A.1.2.

## REFERENCES

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M Seitz, and Richard Szeliski. Building rome in a day. In *Comm. of the ACM*, 2011.

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In *CVPR*, 2016.

Daniel Barath and Jiri Matas. Graph-cut RANSAC: Local optimization on spatially coherent structures. In *IEEE TPAMI*, 2021.

Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri Matas. MAGSAC++, a fast, reliable and accurate robust estimator. In *CVPR*, 2020.

Reiner Birk, Diana Wofk, and Matthias Müller. Midas v3. 1—a model zoo for robust monocular relative depth estimation. In *arXiv preprint arXiv:2307.14460*, 2023.

Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R Richter, and Vladlen Koltun. Depth Pro: Sharp Monocular Metric Depth in Less Than a Second. In *arXiv preprint arXiv:2410.02073*, 2024.

Federico Boniardi, Abhinav Valada, Rohit Mohan, Tim Caselitz, and Wolfram Burgard. Robot localization in floor plans using a room layout edge extraction network. In *IEEE/RSJ Int. Conf. on Int. Rob. and Sys.*, 2019.



**Figure 4: Efficiency Analysis.** Performance of sequential localization versus model size (left) and runtime (right) on an NVIDIA Quadro RTX 6000 GPU. The success rate (SR) is defined as the percentage of sequences of length  $T = 25$  for which the posterior remains within an error radius of 1m in the 10 frames. The values are averaged over all test sequences from the Gibson(t) dataset.

Modeling depth predictions as probability distributions allows us to quantify uncertainty, leading to improved accuracy, especially in challenging environments. Experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of accuracy and robustness while operating efficiently. Our approach offers a practical and scalable solution for visual floorplan localization across diverse indoor environments. The source code and trained models will be publicly released.

540 Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel, Stefan  
 541 Gumhold, and Carsten Rother. DSAC-differentiable RANSAC for camera localization. In *CVPR*,  
 542 2017a.

543 Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel, Stefan  
 544 Gumhold, and Carsten Rother. DSAC - differentiable RANSAC for camera localization. In  
 545 *CVPR*, 2017b.

546 Changan Chen, Rui Wang, Christoph Vogel, and Marc Pollefeys. F3Loc: Fusion and Filtering for  
 547 Floorplan Localization. In *CVPR*, 2024.

548 Hang Chu, Dong Ki Kim, and Tsuhan Chen. You are here: Mimicking the human thinking process  
 549 in reading floor-plans. In *ICCV*, 2015.

550 Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman. Total recall:  
 551 Automatic query expansion with a generative feature model for object retrieval. In *ICCV*, 2007.

552 Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo localization for  
 553 mobile robots. In *IEEE Int. Conf. on Rob. and Aut.*, 1999.

554 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
 555 hierarchical image database. In *CVPR*, 2009.

556 Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting  
 557 with applications to image analysis and automated cartography. In *Comm. of the ACM*, 1981.

558 Vitor Guizilini, Igor Vasiljevic, Dian Chen, Rareş Ambruş, and Adrien Gaidon. Towards zero-shot  
 559 scale-aware monocular depth estimation. In *ICCV*, 2023.

560 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
 561 nition. In *CVPR*, 2016.

562 Henry Howard-Jenkins and Victor Adrian Prisacariu. LaLaLoc++: Global floor plan comprehension  
 563 for layout localisation in unvisited environments. In *ECCV*, 2022.

564 Henry Howard-Jenkins, Jose-Raul Ruiz-Sarmiento, and Victor Adrian Prisacariu. Lalaloc: Latent  
 565 layout localisation in dynamic, unvisited environments. In *ICCV*, 2021.

566 Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang  
 567 Yu, Chunhua Shen, and Shaojie Shen. Metric3D v2: A Versatile Monocular Geometric Foun-  
 568 dation Model for Zero-shot Metric Depth and Surface Normal Estimation. In *arXiv preprint*  
 569 *arXiv:2404.15506*, 2024.

570 Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors  
 571 into a compact image representation. In *CVPR*, 2010.

572 Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter networks with application to visual  
 573 localization. In *PMLR Conf. Rob. Learn.*, 2018.

574 Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula, Sebastian Scherer,  
 575 Madhava Krishna, and Sourav Garg. Anyloc: Towards universal visual place recognition. In  
 576 *IEEE Rob. Aut. Letters*, 2023.

577 Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep  
 578 learning. In *CVPR*, 2017.

579 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer  
 580 vision? In *NeurIPS*, 2017.

581 Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-  
 582 time 6-dof camera relocalization. In *ICCV*, 2015.

583 Diederik P Kingma. Adam: A method for stochastic optimization. In *arXiv preprint*  
 584 *arXiv:1412.6980*, 2014.

594 Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of minimal problem  
 595 solvers. In *ECCV*, 2008.

596

597 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive  
 598 uncertainty estimation using deep ensembles. *NeurIPS*, 2017.

599 Cheng Lin, Changjian Li, and Wenping Wang. Floorplan-jigsaw: Jointly estimating scene layout  
 600 and aligning partial scans. In *ICCV*, 2019.

601

602 Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan, and Jan Kautz. Neural  $rgb(r)$  d  
 603 sensing: Depth and uncertainty from a video camera. In *CVPR*, 2019.

604 Chen Liu, Jiaye Wu, and Yasutaka Furukawa. Floornet: A unified framework for floorplan recon-  
 605 struction from 3d scans. In *ECCV*, 2018.

606

607 Liu Liu, Hongdong Li, and Yuchao Dai. Efficient global 2d-3d matching for camera localization in  
 608 a large-scale 3d map. In *ICCV*, 2017.

609 David JC MacKay. A practical bayesian framework for backpropagation networks. In *Neural com-*  
 610 *putation*, 1992.

611

612 Oscar Mendez, Simon Hadfield, Nicolas Pugeault, and Richard Bowden. SeDAR: reading floorplans  
 613 like a human—using deep learning to enable human-inspired localisation. In *IJCV*, 2020.

614 Zhixiang Min, Naji Khosravan, Zachary Bessinger, Manjunath Narayana, Sing Bing Kang, Enrique  
 615 Dunn, and Ivaylo Boyadzhiev. Laser: Latent space rendering for 2d visual localization. In *ICCV*,  
 616 2022.

617 N Mostofi, M Elhabiby, and N El-Sheimy. Indoor localization and mapping using camera and  
 618 inertial measurement unit (IMU). In *Pos. Loc. Nav. Symp.*, 2014.

619

620 Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM: a versatile and  
 621 accurate monocular SLAM system. In *IEEE Trans. Rob.*, 2015.

622

623 David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability  
 624 distribution. In *Int. Conf. Neural Networks*, 1994.

625

626 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 627 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning  
 628 Robust Visual Features without Supervision. In *Machine Learning Research Journal*, 2024.

629

630 Vojtech Panek, Zuzana Kukelova, and Torsten Sattler. Meshloc: Mesh-based visual localization. In  
 631 *ECCV*, 2022.

632

633 Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. On the uncertainty of self-  
 634 supervised monocular depth estimation. In *CVPR*, 2020.

635

636 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets  
 637 for 3d classification and segmentation. In *CVPR*, 2017.

638

639 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.  
 640 In *ICCV*, 2021.

641

642 Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P Srinivasan, and Matthias Nießner.  
 643 Dense depth priors for neural radiance fields from sparse input views. In *CVPR*, 2022.

644

645 Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine:  
 646 Robust hierarchical localization at large scale. In *CVPR*, 2019.

647

648 Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L Schönberger, Pablo Speciale, Lukas Gruber, Vik-  
 649 tor Larsson, Ondrej Miksik, and Marc Pollefeys. Lamar: Benchmarking localization and mapping  
 650 for augmented reality. In *ECCV*, 2022.

651

652 Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization using direct 2d-to-3d  
 653 matching. In *ICCV*, 2011.

648 Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc Pollefeys. Large-scale location recog-  
 649 nition and the geometric burstiness problem. In *CVPR*, 2016a.  
 650

651 Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized matching for large-  
 652 scale image-based localization. In *IEEE TPAMI*, 2016b.  
 653

654 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *CVPR*, 2016.  
 655

656 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.  
 657 Dropout: a simple way to prevent neural networks from overfitting. In *Journal of machine learning  
 658 research*, 2014.

659 Sebastian Thrun. Probabilistic robotics. In *Comm. of the ACM*, 2002.  
 660

661 Yicong Tian, Chen Chen, and Mubarak Shah. Cross-view image matching for geo-localization in  
 662 urban environments. In *CVPR*, 2017.  
 663

664 Alexander Veicht, Paul-Edouard Sarlin, Philipp Lindenberger, and Marc Pollefeys. GeoCalib:  
 665 Learning Single-image Calibration with Geometric Optimization. In *ECCV*, 2024.  
 666

667 Tong Wei, Philipp Lindenberger, Jiri Matas, and Daniel Barath. Breaking the frame: Image retrieval  
 668 by visual overlap prediction. In *arXiv preprint arXiv:2406.16204*, 2024.  
 669

670 Wera Winterhalter, Freya Fleckenstein, Bastian Steder, Luciano Spinello, and Wolfram Burgard. Acc-  
 671 curate indoor localization for RGB-D smartphones and tablets given 2D floor plans. In *IEEE/RSJ  
 672 Int. Conf. on Int. Rob. and Sys.*, 2015.  
 673

674 Scott Workman, Richard Souvenir, and Nathan Jacobs. Wide-area image geolocalization with aerial  
 675 reference imagery. In *CVPR*, 2015.  
 676

677 Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson  
 678 env: Real-world perception for embodied agents. In *CVPR*, 2018.  
 679

680 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth  
 681 anything: Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024a.  
 682

683 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang  
 684 Zhao. Depth Anything V2. In *arXiv preprint arXiv:2406.09414*, 2024b.  
 685

686 Huan Yin, Yue Wang, Xiaqing Ding, Li Tang, Shoudong Huang, and Rong Xiong. 3d lidar-based  
 687 global localization using siamese neural network. In *IEEE Trans. Int. Transp. Sys.*, 2019.  
 688

689 Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua  
 690 Shen. Metric3d: Towards zero-shot metric 3d prediction from a single image. In *ICCV*, 2023.  
 691

692 Yuanwen Yue, Theodora Kontogianni, Konrad Schindler, and Francis Engelmann. Connecting the  
 693 dots: Floorplan reconstruction using two-level queries. In *CVPR*, 2023.  
 694

695 Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large  
 696 photo-realistic dataset for structured 3d modeling. In *ECCV*, 2020.  
 697

698 Nicky Zimmerman, Tiziano Guadagnino, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss. Long-  
 699 term localization using semantic cues in floor plan maps. In *IEEE Rob. Aut. Letters*, 2022.  
 700

## 698 A APPENDIX 699

700 This section provides further implementation details (Sec. A.1), as well as additional quantitative  
 701 (Sec. A.2) and qualitative results (Sec. A.3).

702 A.1 ADDITIONAL IMPLEMENTATION DETAILS  
703704 A.1.1 TRAINING DETAILS  
705706 For our evaluations, we train the models on the full training split of the respective dataset for 50  
707 epochs. The training set is shuffled at the beginning of each epoch to ensure variability, and the  
708 models are trained using a batch size of four. We employ Adam (Kingma, 2014) with a fixed  
709 learning rate of  $1 \times 10^{-3}$ .710 A.1.2 DATASET DETAILS: LaMAR HGE AND CAB  
711712 To tailor the LaMAR dataset (Sarlin et al., 2022) for our experimental requirements, we apply a  
713 series of preprocessing steps and customizations, following a similar strategy to Chen et al. (2024).  
714 The dataset originally includes images captured by iOS and Hololens devices. We restrict ourselves  
715 to the images recorded by the iOS devices from the mapping part of the dataset. We filter the dataset  
716 to retain only the indoor poses, excluding outdoor data. For the *LaMAR HGE Complete* dataset,  
717 we utilize all indoor camera poses recorded at the HGE location. In contrast, the *LaMAR HGE*  
718 *Cropped* dataset focuses on a smaller region, specifically a reduced area around the center of the  
719 HGE floorplan. To avoid transitions between different floorplans in the *LaMAR CAB* dataset, we  
720 restrict the data to a single floor, specifically floor F of the CNB building.721 We use the official building floorplans as basis and apply selected manual modifications. Room  
722 numbers, stairs, and doors connecting two corridors that are typically open are removed, while all  
723 other doors are represented as solid walls. For the mapping of LaMAR 6 DoF poses to 2D floorplans  
724 we proceed as follows: We identify four significant building entrance doorways visible in the image  
725 sequences, positioned to span the entire floorplan area. For each doorway, we determine: (1) the  
726 LaMAR ground truth (x, y) position in meters when the camera crosses the threshold, and (2) the  
727 corresponding pixel location of that doorway in the floorplan. The pixel positions are manually  
728 marked by visually identifying doorway locations in the architectural floorplan and examining the  
729 images to determine when the camera crosses each threshold. We then fit a 2D affine transformation  
730 (6 parameters, 8 constraints from 4 point pairs) mapping meter coordinates to pixel coordinates  
731 using least squares. This transformation is applied to all ground truth positions. Yaw angles are  
732 extracted directly from the ground truth quaternions. While we lack independent ground truth for  
733 the 2D poses, multiple consistency checks suggest the alignment is reliable: low affine fit residuals,  
734 trajectories align with building geometry, and raycast depths match observed structure. Using these  
735 2D poses, the ground truth floorplan depths required for training are derived from the modified  
736 floorplans via the raycasting method from Chen et al. (2024).737 The splits are fixed prior to experimentation and are not adjusted in any way to favor any method.  
738 For LaMAR HGE, the split includes 12 sessions used for training, one for validation, and three  
739 for testing. The test sessions were selected with the following goals: First, to include the session  
740 illustrated in Figure 11 of F<sup>3</sup>Loc Chen et al. (2024) for qualitative comparison, and second, to ensure  
741 diversity across lighting and occlusion conditions. The three test sessions therefore span (i) daytime  
742 with moderate occlusion, (ii) daytime with heavy occlusion due to an ongoing exhibition, and (iii)  
743 nighttime with minimal occlusion. For LaMAR CAB, the split includes 1 session for training (only  
744 in case of fine-tuning) and 2 for testing. Here, all sessions had similar daytime and occlusion.745 A.2 ADDITIONAL QUANTITATIVE RESULTS  
746747 A.2.1 SINGLE-FRAME LOCALIZATION  
748749 In this section, we evaluate the performance of each method in single-frame localization tasks. While  
750 our primary focus is sequential localization, analyzing single-frame performance provides valuable  
751 insights into the individual components of our approach.752 Table 6 presents the results on the Gibson(t) (Xia et al., 2018), Structured3D (Zheng et al., 2020),  
753 and LaMAR HGE (Sarlin et al., 2022) datasets. We report the localization recall, i.e., the percentage  
754 of frames localized within specified accuracy thresholds. Across all datasets, making use of an off-  
755 the-shelf monodepth encoder instead of a custom depth predictor leads to substantial improvements  
in all metrics. Specifically, F<sup>3</sup>Loc with Depth Anything v2 outperforms the original F<sup>3</sup>Loc by a

756 significant margin in terms of both mean absolute error (MAE; in meters) and localization recall.  
 757 This demonstrates the effectiveness of leveraging pre-trained depth models.  
 758

759 As anticipated, incorporating depth uncertainties into the single-frame estimation does not have a  
 760 large impact on the Gibson(t) and Structured3D datasets. This can be attributed to the fact that  
 761 uncertainty estimation is particularly beneficial when combining multiple measurements over time,  
 762 as in sequential localization. However, on the challenging LaMAR dataset, which features complex  
 763 environments with varying occlusions and narrow fields of view, uncertainty estimation leads to  
 764 improvements in recall across most thresholds. This suggests that uncertainty modeling helps with  
 765 handling complex and real-world scenarios.  
 766

### 767 A.2.2 GENERALIZATION BETWEEN DATASETS

768  
 769 To demonstrate the generalization capabilities of our proposed UnLoc, we train models on the  
 770 LaMAR HGE dataset and assess their performance on LaMAR CAB. The evaluation includes a  
 771 comparison between UnLoc and F<sup>3</sup>Loc mono across various scenarios, with and without fine-tuning  
 772 on a limited number of frames (n=200) from the LaMAR CAB dataset. The results, presented in Ta-  
 773 ble 7 and 8, demonstrate that UnLoc without any additional training on the target domain converges  
 774 within 2m of the ground truth (GT) for trajectories of length T=100, outperforming the F<sup>3</sup>Loc mono  
 775 variants. Furthermore, the results show that fine-tuning on a small amount of target-domain data  
 776 leads to performance increases in both the sequential and single-image localization. This indicates  
 777 a certain adjustment to new datasets is still necessary for optimal results.  
 778

### 779 A.2.3 REAL-TIME CONSIDERATIONS FOR LARGE-SCALE FLOORPLANS

780  
 781 As shown in Table 3 of the main paper, matching operations dominate the runtime for large floor-  
 782 plans. To further reduce the computational cost on large-scale floorplans, we investigate two strate-  
 783 gies: (1) decreasing the frequency of observation updates, performing them only after every  $\Delta T$   
 784 transition updates, and (2) employing a coarser grid for the matching with the floorplan.  
 785

786 Table 9 presents the sequential localization performance on the LaMAR HGE dataset with less  
 787 frequent observation updates. Evaluating our proposed UnLoc on trajectories of length T=100,  
 788 halving the observation frequency has no negative impact on localization accuracy. Even when  
 789 observation updates are performed at every 10<sup>th</sup> step, UnLoc achieves convergence in nearly every  
 790 second case. Results are shown without post-processing optimization.  
 791

792 An ablation study on grid resolution is provided in Table 10. The uncertainty-aware matching stage  
 793 of the UnLoc pipeline compares probabilistic floorplan depth predictions with occupancy infor-  
 794 mation from the floorplan. The computational cost and mapping quality in this stage are directly  
 795 influenced by the grid resolution. A finer grid enhances mapping quality but leads to increased com-  
 796 putational cost. In our experiments in the main paper, we assume a grid resolution of 0.1m  $\times$  0.1m.  
 797 The results show that coarsening the grid to 0.25m  $\times$  0.25m reduces the matching time by a factor  
 798 of over six, at the expense of only a slight decrease in localization performance.  
 799

### 800 A.2.4 DEPTH UNCERTAINTY DISTRIBUTION

801 We compare two approaches for modeling depth uncertainty in UnLoc: a Laplacian model (ours)  
 802 and a Gaussian model, as proposed by Roessle et al. (2022). In the Gaussian model, the obser-  
 803 vation likelihood in Eq. 1 is modified to a product of independent Gaussian distributions instead  
 804 of Laplacian distributions, with  $\tilde{d}_{d,j}$  as mean parameter and  $\tilde{b}_{t,j}$  as standard deviation parameter.  
 805 Correspondingly, the loss function in Eq. 5 is adapted to reflect the negative log-likelihood of the  
 806 Gaussian distribution rather than the Laplacian distribution.  
 807

808 Table 11 reports the sequential localization performance on the LaMAR HGE dataset for vary-  
 809 ing sequence lengths  $T$ . Although both models achieve a perfect success rate for long sequences  
 810 ( $T = 100$ ), our Laplacian model consistently outperforms the Gaussian model on shorter sequences,  
 811 demonstrating superior convergence behavior.  
 812

|              | Model                                                    | Depth pred.  |              |             | Recall (%) ↑ |             |             |             |             |             |
|--------------|----------------------------------------------------------|--------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
|              |                                                          | MAE (m) ↓    | Cos Sim ↑    | 0.1m        | 0.5m         | 1m          | 1m 30°      | 2m          | 5m          | 10m         |
| Gibson(t)    | GT Depth                                                 | 0.00         | 1.000        | 47.1        | 79.0         | 80.3        | 79.8        | 82.4        | 90.6        | 98.5        |
|              | F <sup>3</sup> Loc fusion                                | 0.28         | 0.980        | 15.6        | 53.6         | 59.1        | 57.6        | 64.4        | 82.7        | 97.3        |
|              | F <sup>3</sup> Loc mono                                  | 0.43         | 0.976        | 7.3         | 40.3         | 49.1        | 47.3        | 55.5        | 79.6        | 97.7        |
|              | F <sup>3</sup> Loc mono*                                 | 0.42         | 0.973        | 8.2         | 39.2         | 46.5        | 44.6        | 54.5        | 79.7        | 97.7        |
|              | + Depth Anything v2                                      | <b>0.23</b>  | <b>0.981</b> | 19.3        | <b>62.5</b>  | <b>66.5</b> | <b>65.6</b> | <b>70.6</b> | <b>85.2</b> | <b>98.1</b> |
|              | UnLoc                                                    | 0.25         | <b>0.981</b> | <b>19.7</b> | 61.1         | 64.7        | 63.8        | 68.7        | 84.4        | 97.6        |
| Structured3D | GT Depth                                                 | 0.00         | 1.000        | 32.2        | 63.4         | 65.0        | 64.3        | 68.6        | 81.6        | 96.4        |
|              | PF-net (copied from Chen et al. (2024))                  | —            | —            | 0.2         | 1.3          | 3.2         | 0.9         | —           | —           | —           |
|              | LASER (copied from Chen et al. (2024))                   | —            | —            | 0.7         | 6.4          | 10.4        | 8.7         | —           | —           | —           |
|              | F <sup>3</sup> Loc mono (copied from Chen et al. (2024)) | —            | —            | 1.5         | 14.6         | 22.4        | 21.3        | —           | —           | —           |
|              | F <sup>3</sup> Loc mono*                                 | 0.51         | 0.971        | 1.7         | 19.2         | 27.7        | 26.5        | 35.1        | 62.6        | 94.3        |
|              | + Depth Anything v2                                      | <b>0.37</b>  | 0.979        | <b>5.5</b>  | <b>34.2</b>  | <b>40.4</b> | <b>39.3</b> | <b>45.8</b> | 68.0        | 94.9        |
| LaMAR        | UnLoc                                                    | 0.39         | 0.979        | 5.3         | 33.9         | 38.8        | 37.6        | 44.9        | <b>68.3</b> | <b>95.1</b> |
|              | GT Depth                                                 | 0.00         | 1.000        | 14.3        | 44.7         | 49.2        | 49.2        | 49.5        | 52.5        | 56.3        |
|              | F <sup>3</sup> Loc mono*                                 | 3.29         | 0.930        | 0.0         | 0.1          | 0.8         | 0.8         | 1.2         | 3.4         | 8.6         |
|              | + Depth Anything v2                                      | 2.08         | 0.957        | <b>0.5</b>  | 6.8          | 11.3        | 11.3        | 13.9        | 17.6        | 22.8        |
| UnLoc        | <b>2.02</b>                                              | <b>0.958</b> | 0.4          | <b>11.3</b> | <b>17.1</b>  | <b>17.1</b> | <b>19.2</b> | <b>22.9</b> | <b>27.5</b> |             |

Table 6: **Single-frame localization** on the Gibson(t) (Xia et al., 2018), LaMAR HGE (Sarlin et al., 2022), and Structured3D (Zheng et al., 2020) datasets. We report the mean absolute error (MAE) in meters and the cosine similarity (Cos Sim) of the depth feature embeddings to assess the accuracy of the depth prediction. For camera localization accuracy, we report the recall (%) at various distance thresholds. The first row in each dataset section shows the localization performance using ground truth (GT) depth, providing an upper bound. \* indicates that the F<sup>3</sup>Loc model was trained by us.

| Model                                 | T=100, N=2   |                |              | T=50, N=5    |             | T=35, N=7   |             | T=20, N=13 |           | T=15, N=18 |  |
|---------------------------------------|--------------|----------------|--------------|--------------|-------------|-------------|-------------|------------|-----------|------------|--|
|                                       | SR@2m (%) ↑  | RMSE (succ.) ↓ | RMSE (all) ↓ | SR@2m (%) ↑  | @2m (%) ↑   | @2m (%) ↑   | @2m (%) ↑   | @2m (%) ↑  | @2m (%) ↑ | @2m (%) ↑  |  |
| GT Depth                              | 100.0        | 0.09           | 0.09         | 100.0        | 57.1        | 53.8        | 22.2        | —          | —         | —          |  |
| F <sup>3</sup> Loc mono*              | 0.0          | nan            | 14.90        | 0.0          | 0.0         | 0.0         | 0.0         | —          | —         | 0.0        |  |
| F <sup>3</sup> Loc mono* (ft: 5 ep.)  | 0.0          | nan            | 6.86         | 20.0         | 0.0         | 0.0         | 0.0         | —          | —         | 0.0        |  |
| F <sup>3</sup> Loc mono* (ft: 10 ep.) | 50.0         | 0.66           | 3.59         | 0.0          | 0.0         | 0.0         | 0.0         | —          | —         | 0.0        |  |
| UnLoc                                 | <b>100.0</b> | 0.71           | 0.71         | 40.0         | 57.1        | 30.8        | 16.7        | —          | —         | —          |  |
| UnLoc (ft: 5 ep.)                     | <b>100.0</b> | 0.42           | 0.42         | <b>100.0</b> | <b>85.7</b> | 30.8        | <b>33.3</b> | —          | —         | —          |  |
| UnLoc (ft: 10 ep.)                    | <b>100.0</b> | <b>0.35</b>    | <b>0.35</b>  | <b>100.0</b> | 71.4        | <b>38.5</b> | 22.2        | —          | —         | —          |  |

Table 7: **Sequential localization** on the LaMAR CAB dataset (Sarlin et al., 2022) with models trained on LaMAR HGE. We report the success rates (SR) and the RMSE over the successful and all sequences when the sequence length (T) is 100. We report the success rate for all other lengths, considering a localization a success if the accuracy of the last 10 frames is within 2m of the ground truth (GT). We also show the number of sequences tested (N) in each setting. In the first row, we report the localization accuracy with the GT depth. “ft” indicates the model was fine-tuned on the LaMAR CAB dataset (Sarlin et al., 2022) for the specified number of epochs (ep.). \* indicates the F<sup>3</sup>Loc model was trained by us.

### A.3 ADDITIONAL QUALITATIVE RESULTS

#### A.3.1 OBSERVATION LIKELIHOOD

A qualitative comparison of the predicted observation likelihoods between F<sup>3</sup>Loc and UnLoc on the Gibson(t) dataset is presented in Figure 5. As shown, our UnLoc approach consistently delivers more accurate predictions than F<sup>3</sup>Loc. Moreover, UnLoc with uncertainty takes advantage of predicted low uncertainties in floorplan depth estimates, enabling it to more effectively reduce the observation likelihood for less probable states.

#### A.3.2 POSTERIOR PROBABILITY

Figure 6 compares the posterior probability evolution of UnLoc with those of F<sup>3</sup>Loc mono and F<sup>3</sup>Loc fusion across three trajectories from the Gibson(t) dataset. In all three cases, UnLoc outperforms both baselines, achieving substantially faster convergence to the true pose. Notably, UnLoc converges within five or fewer frames in each trajectory, a result that generally holds for around two thirds of the trajectories of the Gibson(t) dataset (without post-processing), as shown in Table 1 of the main paper.

864

865

866

867

| Model                     | Depth pred. |              |      | Recall (%) ↑ |            |            |             |             |             |
|---------------------------|-------------|--------------|------|--------------|------------|------------|-------------|-------------|-------------|
|                           | MAE (m) ↓   | Cos Sim ↑    | 0.1m | 0.5m         | 1m         | 1m 30°     | 2m          | 5m          | 10m         |
| GT Depth                  | 0.00        | 1.000        | 17.5 | 32.5         | 33.0       | 33.0       | 36.0        | 42.0        | 50.5        |
| F3Loc mono*               | 2.79        | 0.892        | 0.0  | 0.0          | 0.5        | 0.0        | 1.0         | 3.5         | 12.5        |
| F3Loc mono* (ft: 5 ep.)   | 1.47        | 0.940        | 0.0  | 0.5          | 1.0        | 0.5        | 3.5         | 7.5         | 20.0        |
| F3Loc mono* (ft: 10 ep.)  | 1.52        | 0.940        | 0.0  | 0.5          | 1.0        | 1.0        | 2.5         | 7.5         | 19.0        |
| <b>UnLoc</b>              | 1.39        | 0.970        | 0.0  | 1.0          | 2.5        | 2.5        | 3.5         | 9.0         | 24.0        |
| <b>UnLoc</b> (ft: 5 ep.)  | <b>0.78</b> | <b>0.974</b> | 0.0  | <b>4.0</b>   | <b>9.0</b> | <b>8.0</b> | <b>11.0</b> | 18.0        | <b>30.0</b> |
| <b>UnLoc</b> (ft: 10 ep.) | 0.79        | 0.971        | 0.0  | 3.0          | 5.5        | 5.5        | 10.0        | <b>20.0</b> | <b>30.0</b> |

Table 8: **Single-frame localization** on the LaMAR CAB dataset (Sarlin et al., 2022) with models trained on LaMAR HGE. We report the mean absolute error (MAE) in meters and the cosine similarity (Cos Sim) to assess the accuracy of the depth prediction. For camera localization accuracy, we report the recall (%) at various distance thresholds. The first row shows the localization performance using ground truth (GT) depth, providing an upper bound. “ft” indicates the model was fine-tuned on LaMAR CAB for the specified number of epochs (ep.). \* indicates that the F<sup>3</sup>Loc model was trained by us.

871

872

873

874

875

876

877

878

879

880

881

882

883

| Model                            | SR@1m (%) ↑  |              |             |             |
|----------------------------------|--------------|--------------|-------------|-------------|
|                                  | Δt=1         | Δt=2         | Δt=4        | Δt=10       |
| GT Depth                         | 100.0        | 100.0        | 100.0       | 45.5        |
| F3Loc mono*                      | 36.4         | 27.3         | 18.2        | 0.0         |
| <b>UnLoc</b> w/o post-processing | <b>100.0</b> | <b>100.0</b> | <b>72.7</b> | <b>45.5</b> |

Table 9: **Sequential Localization** on LaMAR HGE dataset (Sarlin et al., 2022) with less frequent observation updates. We report the success rates (SR) for a sequence length (T) of 100 and different interval lengths between observations (Δt). We consider a localization a success if the accuracy of the last 10 frames is within 1m of the ground truth (GT). In the first row, we report the localization accuracy with the GT depth. \* indicates the F<sup>3</sup>Loc model was trained by us.

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

| Grid resolution | SR@1m (%) ↑  |             |             |             |             |              | Feat. extr. | Matching     | Timing (s) |
|-----------------|--------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|------------|
|                 | T=100        | T=50        | T=35        | T=20        | T=15        |              |             |              |            |
| 0.1m x 0.1m     | <b>100.0</b> | <b>75.0</b> | <b>60.0</b> | <b>36.5</b> | <b>20.0</b> | <b>0.185</b> | 0.880       |              |            |
| 0.25m x 0.25m   | 90.9         | 70.8        | 57.1        | 30.2        | 15.3        | <b>0.185</b> |             | <b>0.140</b> |            |

Table 10: **Sequential localization and timing** of our UnLoc approach without post-processing on the LaMAR HGE dataset (Sarlin et al., 2022) for different grid resolutions. We report the success rates (SR) various sequence lengths (T). We consider a localization a success if the accuracy of the last 10 frames is within 1m of the ground truth (GT). We report the runtimes (feature extraction and matching) averaged over all test sequences on an NVIDIA Quadro RTX 6000 GPU.

| Model                     | SR@1m (%; T=100) ↑ | (T=50) ↑    | (T=35) ↑    | (T=20) ↑    | (T=15) ↑   |
|---------------------------|--------------------|-------------|-------------|-------------|------------|
| <b>UnLoc</b> w/ Laplacian | <b>100.0</b>       | <b>54.2</b> | <b>37.1</b> | <b>17.5</b> | <b>4.7</b> |
| <b>UnLoc</b> w/ Gaussian  | <b>100.0</b>       | 41.7        | 20.0        | 6.3         | 0.0        |

Table 11: **Sequential Localization with UnLoc using different uncertainty models.** Comparison of depth uncertainty distributions on LaMAR HGE (Sarlin et al., 2022) without post-processing using a Depth Anything v2 (Small) depth network. Success rates (SR) are reported for varying sequence lengths  $T$ .

918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935      Image      Floorplan       $F^3Loc$       Ours w/o Uncertainty      Ours w/ Uncertainty  
 936                                
 937                                
 938                                
 939                                
 940                                
 941                                
 942                                
 943                                
 944  
 945  
 946  
 947  
 948  
 949  
 950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971

Figure 5: **Observation likelihoods.**

Figure 6: **Posterior evolution.**