

# SHARPNESS-AWARE MINIMIZATION CAN HALLUCINATE MINIMIZERS

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Sharpness-Aware Minimization (SAM) is a widely used method that steers training 012 toward flatter minimizers, which typically generalize better. In this work, how- 013 ever, we show that SAM can converge to *hallucinated minimizers*—points that are 014 not minimizers of the original objective. We theoretically prove the existence of 015 such hallucinated minimizers and establish conditions for local convergence to 016 them. We further provide empirical evidence demonstrating that SAM can indeed 017 converge to these points in practice. Finally, we present a simple yet effective 018 remedy for avoiding hallucinated minimizers.



032 Figure 1: Illustrative example of hallucinated minimizers. See Appendix D for details. (a) Smooth 033 function  $f$  with a minimizer set and an isolated maximizer. (b)  $f^{\text{SAM}} = f(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|})$ ; its 034 minimizers do not correspond to minimizers or stationary points of  $f$  and are therefore hallucinated. (c) 035 Vector field of  $\nabla f(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|})$ ; the hallucinated minimizers are attractors of the SAM iteration.

## 1 INTRODUCTION

040 It has been empirically observed in deep learning that flat minimizers tend to generalize better than 041 sharp ones (Neyshabur et al., 2017; Jiang et al., 2020). Motivated by this observation, Sharpness- 042 Aware Minimization (SAM) was proposed as a training method that fits the data while simultane- 043 ously regularizing against the sharpness (Foret et al., 2021; Zheng et al., 2021; Wu et al., 2020). 044 Specifically, for a differentiable function  $f: \mathbb{R}^d \rightarrow \mathbb{R}$ , SAM minimizes the objective

$$045 \quad 046 \quad 047 \quad f^{\text{SAM}}(x) := f\left(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|}\right),$$

048 where the perturbation radius  $\rho > 0$  controls the strength of the regularization. By encouraging con- 049 vergence to flat minimizers, SAM has demonstrated strong empirical performance and has inspired 050 a variety of practical variants (Foret et al., 2021).

051 However, although prior theoretical studies have analyzed the convergence of SAM to a minimizer 052 under various conditions, most rely on assumptions that rarely hold in deep learning, such as convex- 053 ity (Si & Yun, 2024) or a decaying perturbation radius (Khanh et al., 2024; Oikonomou & Loizou, 2025). Consequently, the validity of these convergence results is not guaranteed in practical settings.

054 **Contributions.** In this paper, we theoretically and empirically demonstrate that SAM can, in fact,  
 055 *hallucinate* minimizers, in the sense that its iterates may converge to points that are not minimizers  
 056 of the original objective, as illustrated in Figure 1. This finding reveals a previously unrecognized  
 057 failure mode of SAM in deep learning, one that is fundamentally distinct from issues caused by local  
 058 minima or saddle points. To address this, we present a simple switching strategy that effectively  
 059 avoids hallucinated minimizers.

060 **1.1 RELATED WORK**

061 **SAM and its variants.** Building on the observation that flat minimizers are stable under small  
 062 perturbations (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Chaudhari et al., 2019), SAM  
 063 was proposed as a method to seek such minimizers (Foret et al., 2021). SAM has demonstrated  
 064 remarkable performance across a wide range of deep learning tasks (Foret et al., 2021; Bahri et al.,  
 065 2022; Zhong et al., 2022; Lee et al., 2023), motivating numerous extensions.

066 One line of work improves SAM by modifying its perturbation direction. Kwon et al. (2021) adapted  
 067 the perturbation in a scale-invariant manner, while Kim et al. (2022) redefined it using Fisher infor-  
 068 mation geometry. Li et al. (2024) removed the full-batch gradient from the perturbation direction  
 069 and leveraged stochastic gradient noise for generalization. Li & Giannakis (2024) incorporated mo-  
 070 mentum into the perturbation to suppress variance and stabilize the adversary. Instead of altering the  
 071 perturbation itself, Zhuang et al. (2022) adjusted the gradient update through orthogonal decom-  
 072 position to reduce the surrogate gap.

073 Another line of research addresses the computational overhead of SAM, which stems from requiring  
 074 two gradient computations per step. Some approaches reduce the number of gradient evaluations:  
 075 Liu et al. (2022) computed the perturbation only periodically, Jiang et al. (2023) activated SAM  
 076 only when the gradient norm is large, and Du et al. (2022b) reused gradients to avoid the second  
 077 computation. Others restrict the scope of perturbations: Du et al. (2022a) applied them only to a  
 078 random subset of parameters and sharpness-sensitive data, while Mueller et al. (2023) showed that  
 079 limiting them to normalization layers preserves most of the benefits. Beyond reducing computation,  
 080 Xie et al. (2024) improved training efficiency by parallelizing the two gradient computations.

081 **Theoretical analyses of SAM.** Alongside its practical success, a growing body of theoretical work  
 082 has analyzed SAM and examined its generalization properties from multiple perspectives. Wen et al.  
 083 (2022) formalized the precise notion of sharpness minimized by SAM, clarifying its regularization  
 084 effect. Möllenhoff & Khan (2023) reinterpreted SAM as a relaxation of Bayesian inference. Chen  
 085 et al. (2023) showed that SAM mitigates noise fitting and improves generalization over stochastic  
 086 gradient descent. Wei et al. (2023) further demonstrated that SAM alone can enhance adversarial  
 087 robustness while maintaining clean accuracy.

088 Another line of work investigates the training dynamics and stability of SAM. Compagnoni et al.  
 089 (2023) analyzed SAM through the lens of stochastic differential equations, offering a continuous-  
 090 time perspective. Bartlett et al. (2023) studied quadratic objectives, showing how SAM oscillates  
 091 across narrow valleys before drifting toward wider minimizers. Dai et al. (2023) demonstrated that  
 092 normalization plays a key role in stabilizing SAM and ensuring robustness. Long & Bartlett (2024)  
 093 extended the edge-of-stability threshold of gradient descent to SAM, showing that it depends on the  
 094 gradient norm. More recently, Zhou et al. (2025) highlighted a late-phase effect, whereby SAM  
 095 selects flatter minimizers when applied in the later stages of training.

096 Finally, several works have investigated the convergence properties of SAM in diverse settings. An-  
 097 driushchenko & Flammarion (2022) proposed USAM, an unnormalized variant obtained by remov-  
 098 ing gradient normalization, and analyzed its convergence. Si & Yun (2024) provided a systematic  
 099 study across convex, strongly convex, and nonconvex regimes. Khanh et al. (2024) developed a con-  
 100 vergence analysis of SAM and its variants within the framework of inexact gradient descent. Most  
 101 recently, Oikonomou & Loizou (2025) analyzed SAM and USAM within a unified framework and  
 102 proved convergence under the Polyak–Łojasiewicz condition.

103 **Hallucinated minimizers and our contribution.** Several prior studies have reported that SAM  
 104 may converge to points that are not minimizers of the original loss. Kaddour et al. (2022) empirically  
 105 observed that SAM can become trapped at saddle points, and Kim et al. (2023); Compagnoni et al.

(2023) provided a theoretical explanation of this phenomenon using a continuous-time model of SAM. In another line of work, Bartlett et al. (2023) showed that the SAM update is equivalent to gradient descent on a surrogate function in the quadratic case, and Si & Yun (2024) proposed a virtual loss to extend this idea, although it is rigorously defined only in one dimension and lacks guarantees in higher dimensions.

In contrast, hallucinated minimizers represent a fundamentally different failure mode of SAM. They differ from saddle points in that they are not critical points of the original loss, and from surrogate-based interpretations in that they arise directly from the SAM objective. Our analysis applies to general nonconvex and high-dimensional settings and provides a rigorous characterization of hallucinated minimizers that can emerge in practical deep learning scenarios.

## 1.2 PRELIMINARIES AND NOTATION

Throughout the paper, we denote  $u(x) := \nabla f(x)/\|\nabla f(x)\|$  (for  $x$  such that  $\nabla f(x) \neq 0$ ). To optimize the SAM objective  $f^{\text{SAM}}(x)$ , we require its gradient  $\nabla f^{\text{SAM}}(x)$ . Under the standard smoothness assumption on  $f$ , this gradient is given by

$$\nabla f^{\text{SAM}}(x) = (I + \rho \nabla u(x)) \nabla f(x + \rho u(x)),$$

where  $\nabla u(x)$  denotes the Jacobian of  $u(x)$ . In practice, however, for computational simplicity, one does not use the exact gradient  $\nabla f^{\text{SAM}}$ . Instead, SAM employs the “shifted” gradient  $\nabla f(x + \rho u(x))$ . This yields the (full-batch) SAM iteration

$$x_{k+1} = x_k - \eta_k \nabla f(x_k + \rho u(x_k)), \quad k = 0, 1, 2, \dots,$$

where  $x_0 \in \mathbb{R}^d$  is the starting point and  $\eta_0, \eta_1, \dots \in \mathbb{R}_+$  is the sequence of step sizes. The perturbation radius  $\rho > 0$  controls the degree of “flatness”: larger values of  $\rho$  expand the neighborhood over which the loss is minimized, thereby steering the SAM iteration towards flatter minimizers. In practice, SAM is typically implemented with stochastic gradients. When clarification is needed, we refer to *SAM with full-batch gradients* versus *SAM with stochastic gradients*.

We introduce some notation. A function  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  is called *real-analytic* if its Taylor series at any point  $x_0$  converges to  $f$  on a neighborhood of  $x_0$ . For  $\alpha \in \mathbb{R}$ , the  $\alpha$ -superlevel set of  $f$  is defined as  $\{x : f(x) \geq \alpha\}$ . For a set  $C \subset \mathbb{R}^d$ , we write  $\partial C$  for its boundary. A set  $C$  is *connected* if it cannot be expressed as the union of two disjoint, nonempty open sets. The distance from a point  $x \in \mathbb{R}^d$  to a nonempty set  $C \subseteq \mathbb{R}^d$  is  $d(x, C) := \inf_{y \in C} \|x - y\|$ ; if  $C$  is closed, the infimum is attained, and hence  $d(x, C) = \min_{y \in C} \|x - y\|$ . For  $\delta > 0$ ,  $B_\delta(x)$  is the ball centered at  $x$  with radius  $\delta$  and the (closed)  $\delta$ -neighborhood of  $C$  is  $\mathcal{N}_\delta(C) = \{x : d(x, C) \leq \delta\}$ .

## 2 EXISTENCE OF HALLUCINATED MINIMIZERS

In this section, we establish—under very mild assumptions—the existence of hallucinated minimizers: local minimizers of  $f^{\text{SAM}}$  that are not even stationary points of the original function  $f$ . Formally, we define hallucinated minimizers as follows:

**Definition.** A point  $x \in \mathbb{R}^d$  is a *hallucinated minimizer* of  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  for  $\rho > 0$  if  $x$  is a local minimizer of  $f^{\text{SAM}} = f\left(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|}\right)$  while satisfying  $\nabla f(x) \neq 0$ .

When the loss function  $f$  is convex, hallucinated minimizers cannot arise, as shown in Theorem A.1 of Appendix A. In practical deep learning, however, the loss function  $f$  is highly nonconvex, and local *maximizers* of  $f$  can give rise to hallucinated minimizers.

### 2.1 SIMPLIFIED EXISTENCE PROOF WITH ISOLATED MAXIMIZERS

We begin with a simplified proof under the more restrictive assumption that  $f$  has an isolated local maximizer, defined as a point  $x^\bullet$  with an open neighborhood  $U$  such that

$$\nabla f(x) \neq 0 \text{ and } f(x) < f(x^\bullet) \text{ for all } x \in U \setminus \{x^\bullet\}.$$



Figure 2: Illustration of the proof for Theorem 2.1. The point  $x_h$  is the farthest from  $x_*$  among the points in  $C_\varepsilon$ . By the method of Lagrange multipliers, its gradient  $\nabla f(x_h)$  points exactly toward  $x_*$ .

**Theorem 2.1.** *Let  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  be continuously differentiable. Assume  $f$  has a global minimizer (not necessarily unique) and an isolated local maximizer. Then, a hallucinated minimizer exists for some  $\rho > 0$ .*

*Sketch of proof.* We provide a brief sketch of the argument, with full details deferred to Appendix A.1. Figure 2 illustrates the key idea of the construction.

Let  $\varepsilon > 0$  and define  $C_\varepsilon$  as the  $(f(x^*) - \varepsilon)$ -superlevel set restricted to a neighborhood of the isolated local maximizer  $x^*$ . For sufficiently small  $\varepsilon > 0$ , the set  $C_\varepsilon$  is compact and satisfies: (i) for every  $x \in C_\varepsilon$ , we have  $f(x^*) - \varepsilon \leq f(x) \leq f(x^*)$ ; (ii) the gradient  $\nabla f$  does not vanish on  $C_\varepsilon \setminus \{x^*\}$ ; and (iii)  $f(x) = f(x^*) - \varepsilon$  on the boundary  $\partial C_\varepsilon$ .

Next, consider  $g(x) = \|x - x_*\|^2$  and define

$$x_h \in \arg \max_{x \in C_\varepsilon} g(x) = \arg \max_{x \in \partial C_\varepsilon} g(x).$$

In words, if  $x_h$  maximizes  $g$  over  $C_\varepsilon$ , then it must lie on the boundary  $\partial C_\varepsilon$ . Since  $\partial C_\varepsilon$  coincides with  $\{x : f(x) = f(x^*) - \varepsilon\}$  near  $x_h$ , we apply the method of Lagrange multipliers to  $x_h \in \arg \max_{x \in \partial C_\varepsilon} g(x)$  to obtain

$$2(x_* - x_h) = \nabla g(x_h) = \lambda \nabla f(x_h).$$

The fact that  $\lambda > 0$  follows from the observation that  $\nabla f(x_h)$  points “toward” both  $x_*$  and  $x^*$ , as illustrated in Figure 2. Finally, setting  $\rho = \lambda \|\nabla f(x_h)\|/2$  yields

$$x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|} = x_*,$$

and hence  $f^{\text{SAM}}(x_h) = f(x_*)$ . Thus,  $x_h$  is a (global) minimizer of  $f^{\text{SAM}}$ .  $\square$

Importantly, the existence of a hallucinated minimizer also holds when  $x_*$  is a *local* minimizer, provided that  $f$  has a locally Lipschitz gradient. See Appendix A.2 for details.

The proof of Theorem 2.1 reveals the conditions under which a hallucinated minimizer is likely to arise. Figure 2 illustrates the core idea: given a minimizer  $x_*$ ,  $x_h$  satisfies  $x_* = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|}$ . This means that at  $x_h$ , the gradient points directly toward  $x_*$ . However, near a minimizer, the gradient typically points outward, making it difficult to identify such  $x_h$  in its immediate neighborhood. To resolve this, Theorem 2.1 requires the presence of a nearby maximizer, which allows the gradient to align in the desired direction and thus necessitates nonconvexity of the objective.

The proof also shows that the perturbation radius  $\rho$  must exceed the distance between minimizer and the maximizer, since  $x_h$  is the farthest point from  $x_*$  on the superlevel set  $C_\varepsilon$ . Because  $x_h \in C_\varepsilon$ , a hallucinated minimizer is located near the maximizer. This implies that hallucinated minimizers are typically associated with high loss values.

Taken together, these observations suggest that hallucinated minimizers generally arise in nonconvex objectives containing both local maximizers and minimizers, and that they tend to occur near a local maximizer within a high-loss region.

216  
217

## 2.2 EXISTENCE OF HALLUCINATED MINIMIZERS FOR NEURAL NETWORKS

218  
219

Theorem 2.1 assumes that the local maximizer is *isolated*. We now relax this assumption, since in neural networks, maximizers (like minimizers) often occur as sets.

220  
221  
222  
223

To this end, we leverage the real-analyticity of neural networks, an assumption that holds when training on a finite dataset (empirical loss) with real-analytic activation functions. We note that all commonly used activation functions are real-analytic, except for ReLU. Technically, real-analyticity affords us the Łojasiewicz inequality, which we use to rule out certain pathological cases.

224  
225  
226

Notably, our result does not rely on restrictive but common structural assumptions on the loss function, such as global smoothness or a quadratic form.

227  
228  
229

**Definition.** Let  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  be a continuous function. A nonempty connected set  $X^\bullet \subseteq \mathbb{R}^d$  is a *local maximizer set* of  $f$  if there exists  $\delta > 0$  such that  $X^\bullet$  is the maximizer set over its  $\delta$ -neighborhood. In other words,

$$X^\bullet = \arg \max_{y \in \mathcal{N}_\delta(X^\bullet)} f(y).$$

230  
231

Furthermore, we denote by  $f(X^\bullet)$  the common function value of  $f$  on  $X^\bullet$ .

232



233

234  
235  
236  
237  
238  
239

Figure 3: Illustration of a local maximizer set. The dotted unit circle is a local maximizer set of a real-analytic function and is not a singleton.

240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250

Figure 3: Illustration of a local maximizer set. The dotted unit circle is a local maximizer set of a real-analytic function and is not a singleton.

251  
252  
253

**Theorem 2.2.** Let  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  be real-analytic. Assume  $f$  has a global minimizer (not necessarily unique) and a bounded local maximizer set. Then, a hallucinated minimizer exists for some  $\rho > 0$ .

254  
255  
256  
257  
258  
259  
260

The proof of Theorem 2.2, fully presented in Appendix A.4, is analogous to that of Theorem 2.1, except that the isolatedness assumption is replaced by the real-analyticity assumption. A key technical point is to rule out the possibility that critical points accumulate densely around  $X^\bullet$ . This is achieved using the Łojasiewicz inequality:

261  
262  
263

**Lemma 2.3** (Łojasiewicz (1963)). If  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  is real-analytic, then for every  $p \in \mathbb{R}^d$ , there exist an open neighborhood  $U$  of  $p$ , a constant  $C > 0$ , and an exponent  $q \in (0, 1)$  such that

$$|f(p) - f(x)|^q \leq C \|\nabla f(x)\| \quad \text{for all } x \in U.$$

264  
265  
266  
267

**Most modern neural networks are real-analytic.** The real-analyticity assumption on  $f$  is practical in the context of deep learning. In particular, consider the empirical loss function

268  
269

$$f(\theta) = \sum_{i=1}^N \ell(h_\theta(X_i), Y_i),$$

270 where  $\theta \in \mathbb{R}^d$  denotes the neural network parameters. If the dataset is finite ( $N < \infty$ ),  $\ell(\cdot, \cdot)$   
 271 is real-analytic in its first argument (as is the case for most commonly used losses, such as cross-  
 272 entropy), and  $h_\theta$  is a neural network built from real-analytic activation functions (e.g., tanh, ELU,  
 273 GELU, SiLU, swish), then  $f(\theta)$  is real-analytic. More concretely,  $h_\theta$  may be a finite composition of  
 274 linear layers, convolution, attention, residual connections, layer normalization, batch normalization,  
 275 real-analytic activation functions, the softmax function, average pooling, and dropout. However,  $h_\theta$   
 276 cannot incorporate ReLU, leaky ReLU, or max-pooling, since these operations are non-smooth and  
 277 therefore non-analytic.

278 Further discussion and details are provided in Appendix A.3.  
 279

### 280 3 GEOMETRIC AND DYNAMICAL PROPERTIES OF HALLUCINATED MINIMIZERS

282 In this section, we establish a finer geometric property of hallucinated minimizers as well as a  
 283 dynamical property of the SAM iterates. Recall that we use the notation  $u(x) = \nabla f(x)/\|\nabla f(x)\|$ .  
 284

#### 285 3.1 THE SET OF HALLUCINATED MINIMIZERS CAN HAVE MANIFOLD STRUCTURES

287 The following theorem establishes that when the set of true minimizers has an  $m$ -dimensional mani-  
 288 fold structure, the set of hallucinated minimizers inherits the same geometric structure. In particular,  
 289 this result explains why, in Figure 1, the set of SAM minimizers appears as a curve.

290 **Theorem 3.1.** *Suppose  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  satisfies the assumptions of Theorem 2.2. Assume  $\mathcal{M} \subseteq$*   
 291 *argmin  $f$ , where  $\mathcal{M} \subseteq \mathbb{R}^d$  is a nonempty smooth  $m$ -dimensional manifold. Let  $x_h$  be a hallu-  
 292 *cinated minimizer with a corresponding  $\rho > 0$  as constructed in the proof of Theorem 2.2. If  
 293  $I + \rho \nabla u(x_h) \in \mathbb{R}^{d \times d}$  is nonsingular, then the set of hallucinated minimizers contains a smooth  
 294 manifold of dimension  $m$ .**

295 We defer the proof to Appendix B.1.  
 296

#### 297 3.2 HALLUCINATED MINIMIZERS ARE ATTRACTORS

299 We have established the existence of hallucinated minimizers, but does SAM actually converge to  
 300 them? Recall that the SAM iteration is given by

$$301 \quad x_{k+1} = x_k - \eta_k \nabla f(x_k + \rho u(x_k)), \quad k = 0, 1, 2, \dots,$$

303 where  $\eta_k > 0$  denotes the step size.

304 The answer is yes—hallucinated minimizers can indeed be attractors of the SAM dynamics. Thus,  
 305 the concern about hallucinated minimizers in neural network training is not merely hypothetical. In  
 306 Section 4, we provide empirical evidence that SAM can converge to hallucinated minimizers. In this  
 307 subsection, we theoretically establish local convergence to hallucinated minimizers.

308 **Theorem 3.2.** *Suppose  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  is real-analytic, and let  $H \subset \mathbb{R}^d$  be a bounded, connected set  
 309 of hallucinated minimizers of  $f$  for a fixed perturbation radius  $\rho > 0$ . Assume there exists  $\delta > 0$   
 310 such that the  $\delta$ -neighborhood of  $H$  contains no minimizers of  $f^{\text{SAM}}$  other than those already in  $H$ .  
 311 Assume further that every  $x_h \in H$  satisfies*

$$312 \quad 1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x_h))) > 0, \quad \text{where } \text{Sym}(\nabla u(x_h)) = \frac{1}{2}(\nabla u(x_h) + \nabla u(x_h)^\top).$$

314 If the initialization  $x_0$  is chosen sufficiently close to  $H$ , then there exists a sufficiently small fixed  
 315 step size  $\eta_k = \eta > 0$  such that the SAM iterates converge to  $H$ , in the sense that  $d(x_k, H) \rightarrow 0$ .

316 We defer the proof to Appendix B.2.  
 317

### 318 4 EMPIRICAL ANALYSES IN DEEP LEARNING

321 In this section, we empirically validate our theory by analyzing hallucinated minimizers in deep  
 322 learning. We show that SAM trajectories can, in practice, converge to hallucinated minimizers.  
 323 We further demonstrate that a simple switching strategy can effectively prevent this convergence,  
 324 providing a practical safeguard for SAM against this failure mode.



Figure 4: Visualizations of  $f$  and  $f^{\text{SAM}}$  around the hallucinated minimizer  $x_h$ . Plots (a) and (b) are taken on a 2-dimensional plane defined by  $x_h$  and two random directions. These show that  $x_h$  is indeed a minimizer of  $f^{\text{SAM}}$  but not a stationary point of  $f$ . Plot (c) depicts  $f^{\text{SAM}}$  on the 2-dimensional plane containing  $x_h$ ,  $x_0$ , and  $x_N$ , where  $x_0$  is a small perturbation of  $x_h$  and  $x_N$  is obtained after  $N = 1000$  SAM steps from  $x_0$ . The pink horizontal line segment indicates the set of hallucinated minimizers, showing that the SAM trajectory converges back to this set.

#### 4.1 SAM CAN CONVERGE TO HALLUCINATED MINIMIZERS

We first present an example in which SAM converges to a non-minimizer and confirm that the point is a hallucinated minimizer. We then examine how frequently such convergence occurs across diverse experimental settings.

**Do we really converge to hallucinated minimizers?** We begin with a simple neural network setting and provide an example where SAM converges to a hallucinated minimizer. Specifically, we train a two-layer neural network with Tanh activations on MNIST (LeCun et al., 1998) using full-batch updates, yielding a smooth objective. The experimental setup is described in Appendix C. With a perturbation radius  $\rho = 1.8$ , we train for over 20 million steps and observe that the trajectory converges to a single point  $x_h$ . At this point, the SAM gradient nearly vanishes ( $\|\nabla f(x_h + \rho u(x_h))\| = 4.8 \times 10^{-9}$ ), while the original gradient remains relatively large ( $\|\nabla f(x_h)\| = 0.0627$ ). Thus,  $x_h$  is a stationary point of  $f^{\text{SAM}}$  but not of  $f$ , showing that SAM can converge to a hallucinated stationary point.

To verify that  $x_h$  is indeed a *hallucinated minimizer*, we visualize the loss landscape around it, as shown in Figure 4. Following the method of Li et al. (2018), we define the plane

$$x(\alpha, \beta) = x_h + \alpha u + \beta v,$$

where  $u, v \in \mathbb{R}^d$  are orthogonal vectors of equal norm. In Figure 4a,  $x_h$  is clearly not a minimizer of  $f$ , whereas in Figure 4b, on the same plane, it appears as a minimizer of  $f^{\text{SAM}}$ . This demonstrates that SAM can converge to a hallucinated minimizer in neural networks.

To investigate the geometry around  $x_h$  in more detail, we add a small random perturbation to  $x_h$ , yielding a nearby point  $x_0$  with  $\|x_0 - x_h\| = 0.1$ . Starting from  $x_0$ , we run  $N = 1000$  additional SAM steps to reach  $x_N$ . Figure 4c shows the SAM objective on the plane spanned by  $x_h$ ,  $x_0$ ,  $x_N$ . The SAM trajectory (blue) is projected onto this plane, while the SAM minimizers (pink) are computed within a tolerance of  $10^{-9}$ . We observe that hallucinated minimizers form a connected set, consistent with prior work on connected minimizers in neural networks (Garipov et al., 2018) and with Theorem 3.1, which guarantees that this structure is preserved.

**How common are hallucinated minimizers?** Next, we investigate convergence to hallucinated minimizers across multiple experiments, showing that this phenomenon can occur frequently in deep learning. Figure 5 presents SAM training outcomes in the same full-batch setting as before, with 80 distinct seeds and 100,000 iterations for perturbation radii  $\rho = 1.0, 1.3, 1.6, 1.9$ . The top row shows SAM-only results, while the bottom row corresponds to the switching strategy discussed later. In this subsection, however, we focus on the SAM-only setting.



Figure 5: Training loss and test accuracy for SAM on MNIST with a 2-layer network using full-batch gradients. The top row shows the results from SAM-only training, while the bottom row shows the results from the switching strategy as described in Section 4.2. Final average test accuracies are 96.77%, 90.85%, 67.88%, and 13.36% for SAM-only training, compared to 97.77%, 97.73%, 97.69%, and 97.62% for the switching strategy. These results demonstrate that the switching strategy improves test accuracy and stabilizes outcomes across perturbation radii.

The experiments reveal that convergence to hallucinated minimizers depends on the perturbation radius  $\rho$ . At  $\rho = 1.0$ , training consistently converges to zero loss, indicating convergence to a true minimizer of the original loss. At  $\rho = 1.3$  and  $1.6$ , some trajectories stabilize at nonzero-loss points. At  $\rho = 1.9$ , most trajectories converge to such nonzero-loss points, indicating that SAM predominantly reaches hallucinated minimizers.

These findings provide strong evidence that hallucinated minimizers are not rare anomalies but occur consistently in deep learning when the perturbation radius  $\rho$  is large. This observation aligns with Theorem 2.1, whose proof requires the perturbation radius  $\rho$  to exceed the distance between a minimizer and a maximizer. At the same time, even for the same  $\rho$ , trajectories may converge either to a hallucinated minimizer or to a true minimizer, consistent with Theorem 3.2, which depends on the initialization's proximity to a hallucinated minimizer.

In the stochastic case, we train ResNet-18 (He et al., 2016) on CIFAR-100 (Krizhevsky, 2009) with mini-batch updates, following the FSAM implementation of Li et al. (2024). We observe a similar trend: larger perturbation radii lead to unstable training. Further details of the experimental settings and results are provided in Appendix C.

## 4.2 SWITCHING STRATEGY FOR AVOIDING HALLUCINATED MINIMIZERS

One obvious approach to avoiding hallucinated minimizers is to use a small perturbation radius  $\rho > 0$ . Indeed, hallucinated minimizers do not arise when  $\rho = 0$  (i.e., when SAM is not applied). However, the perturbation itself is the key mechanism that regularizes against sharpness, making it desirable to use a moderately large value of  $\rho$ .

In this subsection, we introduce a simple yet effective heuristic for avoiding hallucinated minimizers, which we call *switching*. The idea is to use plain gradient descent for the first 10% of training iterations and then switch to SAM.

As shown in Figure 5b, the switching strategy consistently drives the training loss to zero across all tested perturbation radii, including large values of  $\rho$  for which standard SAM fails to converge to the true minima. Figure 6 further demonstrates the improved *test* accuracy achieved under the switching strategy. Not only does switching yield higher test accuracy, but it also reduces sensitivity to the



Figure 6: Final test accuracy for SAM-only and the switching strategy on CIFAR-100 with ResNet-18 using stochastic gradients. Each curve shows the mean (bold) and standard deviation (shaded area) over 5 seeds, evaluated at perturbation radii  $\rho = 0.1, 0.2, \dots, 0.8$ . Both methods achieve peak accuracy at  $\rho = 0.3$ , with 77.05% for SAM-only and 77.49% for the switching strategy.

choice of  $\rho$ . This is a notable advantage, since the perturbation radius  $\rho$  is a difficult hyperparameter to tune in SAM.

The effectiveness of switching can be understood within our theoretical framework. The proof of Theorem 2.1 suggests that hallucinated minimizers tend to arise “near” local maximizers, and hence are more likely to occur in high-loss regions. This further implies that during the early stages of training, when loss values are large, SAM is particularly at risk of entering a basin of attraction of hallucinated minimizers. By first applying gradient descent to escape from high-loss regions before switching to SAM, this risk is mitigated. Consequently, our simple remedy ensures that SAM remains stable even for large perturbation radii.

A related mechanism was studied by Zhou et al. (2025), who applied SAM only in the later stages of training to improve generalization. In contrast, our results show that the switching strategy specifically prevents convergence to hallucinated minimizers, providing a complementary explanation for its effectiveness.

## 5 CONCLUSION

In this work, we identify a previously unrecognized failure mode of SAM: its tendency to converge to hallucinated minimizers. Our theoretical analysis establishes the existence of such minimizers under practical assumptions, and our empirical results validate the theory by demonstrating that SAM can indeed converge to them. To address this, we present a simple switching strategy that effectively avoids hallucinated minimizers.

Although our theoretical and empirical findings are consistent, gaps remain between the theoretical characterizations and broader empirical findings. These gaps open several interesting avenues for follow-up work.

One direction is to extend our theoretical analysis to the setting where SAM employs stochastic gradients rather than full-batch gradients. While our experiments suggest that hallucinated minimizers also arise in the stochastic case, a more rigorous theoretical understanding is desirable. Another direction is to analyze, from a theoretical standpoint, how likely it is for SAM to converge to hallucinated minimizers. Our experiments show that convergence to such minimizers is common, whereas our current theory only guarantees convergence within a local neighborhood of these points. Yet another direction is to extend the analysis to other variants of SAM. Our current results rely on the normalization of the ascent direction, which renders the magnitude of  $\nabla f(x)$  irrelevant in constructing hallucinated minimizers. For SAM variants that incorporate gradient magnitude in the ascent step, a modified analysis would be necessary.

486  
487

## REPRODUCIBILITY STATEMENT

488

We have taken extensive measures to ensure reproducibility. Complete proofs of all theorems, together with detailed assumptions, are provided in Appendix A and Appendix B. Experimental setups, including datasets and hyperparameters, are described in Appendices C and D. The implementation of our main experiments is provided in the supplementary materials and is also available through an anonymous repository at <https://anonymous.4open.science/r/SAM-can-hallucinate-minimizers-4B82>.

494

495

## REFERENCES

496

497

M. Andriushchenko and N. Flammarion. Towards understanding sharpness-aware minimization. *International Conference on Machine Learning*, 2022.

498

499

500

D. Bahri, H. Mobahi, and Y. Tay. Sharpness-aware minimization improves language model generalization. *Association for Computational Linguistics*, 2022.

501

502

503

504

P. L. Bartlett, P. M. Long, and O. Bousquet. The dynamics of sharpness-aware minimization: Bouncing across ravines and drifting towards wide minima. *Journal of Machine Learning Research*, 24(316):1–36, 2023.

505

506

507

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and R. Zecchina. Entropy-SGD: Biassing gradient descent into wide valleys. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(12):124018, 2019.

508

509

510

Z. Chen, J. Zhang, Y. Kou, X. Chen, C.-J. Hsieh, and Q. Gu. Why does sharpness-aware minimization generalize better than SGD? *Neural Information Processing Systems*, 2023.

511

512

513

E. M. Compagnoni, L. Biggio, A. Orvieto, F. N. Proske, H. Kersting, and A. Lucchi. An SDE for modeling SAM: Theory and insights. *International Conference on Machine Learning*, 2023.

514

515

Y. Dai, K. Ahn, and S. Sra. The crucial role of normalization in sharpness-aware minimization. *Neural Information Processing Systems*, 2023.

516

517

T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout. *arXiv:1708.04552*, 2017.

518

519

520

521

J. Du, H. Yan, J. Feng, J. T. Zhou, L. Zhen, R. S. M. Goh, and V. Tan. Efficient sharpness-aware minimization for improved training of neural networks. *International Conference on Learning Representations*, 2022a.

522

523

J. Du, D. Zhou, J. Feng, V. Tan, and J. T. Zhou. Sharpness-aware training for free. *Neural Information Processing Systems*, 2022b.

524

525

526

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently improving generalization. *International Conference on Learning Representations*, 2021.

527

528

529

T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode connectivity, and fast ensembling of DNNs. *Neural Information Processing Systems*, 2018.

530

531

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. *Computer Vision and Pattern Recognition*, 2016.

532

533

S. Hochreiter and J. Schmidhuber. Flat minima. *Neural Computation*, 9(1):1–42, 1997.

534

535

W. Jiang, H. Yang, Y. Zhang, and J. Kwok. An adaptive policy to employ sharpness-aware minimization. *International Conference on Learning Representations*, 2023.

536

537

538

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization measures and where to find them. *International Conference on Learning Representations*, 2020.

539

J. Kaddour, L. Liu, R. Silva, and M. J. Kusner. When do flat minima optimizers work? *Neural Information Processing Systems*, 2022.

540 N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training  
 541 for deep learning: Generalization gap and sharp minima. *International Conference on Learning*  
 542 *Representations*, 2017.

543 P. Khanh, H.-C. Luong, B. Mordukhovich, and D. Tran. Fundamental convergence analysis of  
 544 sharpness-aware minimization. *Neural Information Processing Systems*, 2024.

545 H. Kim, J. Park, Y. Choi, and J. Lee. Stability analysis of sharpness-aware minimization.  
 546 *arXiv:2301.06308*, 2023.

547 M. Kim, D. Li, S. X. Hu, and T. M. Hospedales. Fisher-SAM: Information geometry and sharpness-  
 548 aware minimization. *International Conference on Machine Learning*, 2022.

549 A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.

550 J. Kwon, J. Kim, H. Park, and I. K. Choi. ASAM: Adaptive sharpness-aware minimization for scale-  
 551 invariant learning of deep neural networks. *International Conference on Machine Learning*, 2021.

552 Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of handwritten digits, 1998. URL  
 553 <http://yann.lecun.com/exdb/mnist>.

554 H. Lee, H. Cho, H. Kim, D. Gwak, J. Kim, J. Choo, S. Yun, and C. Yun. Plastic: Improving input  
 555 and label plasticity for sample efficient reinforcement learning. *Neural Information Processing*  
 556 *Systems*, 2023.

557 J. M. Lee. *Introduction to Smooth Manifolds*. Springer Science & Business Media, 2nd edition,  
 558 2013.

559 B. Li and G. Giannakis. Enhancing sharpness-aware optimization through variance suppression.  
 560 *Neural Information Processing Systems*, 2024.

561 H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets.  
 562 *Neural Information Processing Systems*, 2018.

563 T. Li, P. Zhou, Z. He, X. Cheng, and X. Huang. Friendly sharpness-aware minimization. *Computer*  
 564 *Vision and Pattern Recognition*, 2024.

565 Y. Liu, S. Mai, X. Chen, C.-J. Hsieh, and Y. You. Towards efficient and scalable sharpness-aware  
 566 minimization. *Conference on Computer Vision and Pattern Recognition*, 2022.

567 S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. *Les équations aux*  
 568 *dérivées partielles*, 117(87–89), 1963.

569 P. M. Long and P. L. Bartlett. Sharpness-aware minimization and the edge of stability. *Journal of*  
 570 *Machine Learning Research*, 25(179):1–20, 2024.

571 I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts.  
 572 *arXiv:1608.03983*, 2016.

573 T. Möllenhoff and M. E. Khan. SAM as an optimal relaxation of Bayes. *International Conference*  
 574 *on Learning Representations*, 2023.

575 M. Mueller, T. Vlaar, D. Rolnick, and M. Hein. Normalization layers are all that sharpness-aware  
 576 minimization needs. *Neural Information Processing Systems*, 2023.

577 B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in deep  
 578 learning. *Neural Information Processing Systems*, 2017.

579 D. Oikonomou and N. Loizou. Sharpness-aware minimization: General analysis and improved rates.  
 580 *International Conference on Learning Representations*, 2025.

581 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,  
 582 L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. *Neural*  
 583 *Information Processing Systems*, 2019.

594 D. Si and C. Yun. Practical sharpness-aware minimization cannot converge all the way to optima.  
595 *Neural Information Processing Systems*, 2024.  
596

597 Z. Wei, J. Zhu, and Y. Zhang. Sharpness-aware minimization alone can improve adversarial robust-  
598 ness. *arXiv:2305.05392*, 2023.

599 K. Wen, T. Ma, and Z. Li. How does sharpness-aware minimization minimize sharpness? *OPT*  
600 *2022: Optimization for Machine Learning (NeurIPS 2022 Workshop)*, 2022.  
601

602 D. Wu, S.-T. Xia, and Y. Wang. Adversarial weight perturbation helps robust generalization. *Neural*  
603 *Information Processing Systems*, 2020.

604 W. Xie, T. Pethick, and V. Cevher. Sampa: Sharpness-aware minimization parallelized. *Neural*  
605 *Information Processing Systems*, 2024.  
606

607 Y. Zheng, R. Zhang, and Y. Mao. Regularizing neural networks via adversarial model perturbation.  
608 *Computer Vision and Pattern Recognition*, 2021.

609 Q. Zhong, L. Ding, L. Shen, P. Mi, J. Liu, B. Du, and D. Tao. Improving sharpness-aware minimiza-  
610 tion with Fisher mask for better generalization on language models. *arXiv:2210.05497*, 2022.  
611

612 Z. Zhou, M. Wang, Y. Mao, B. Li, and J. Yan. Sharpness-aware minimization efficiently selects  
613 flatter minima late in training. *International Conference on Learning Representations*, 2025.

614 J. Zhuang, B. Gong, L. Yuan, Y. Cui, H. Adam, N. C. Dvornek, S. Tatikonda, J. S. Duncan, and  
615 T. Liu. Surrogate gap minimization improves sharpness-aware minimization. *International Con-*  
616 *ference on Learning Representations*, 2022.  
617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A OMITTED DETAILS FOR SECTION 2  
649650 We begin by showing that the hallucinated minimizers cannot exist when the loss function is convex.  
651 For ease of exposition, throughout the appendices we use the following notation: for  $x \in \mathbb{R}^d$ , let  
652

653 
$$x^+ := x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|}.$$
  
654

655 **Proposition A.1.** *If the function  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  is convex, then there is no point  $x \in \mathbb{R}^d$  such that  
656  $\nabla f\left(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|}\right) = 0$ .*  
657658 *Proof.* Suppose  $\nabla f(x) \neq 0$  and  $\nabla f(x^+) = 0$ . Since  $f$  is convex,  $x^+$  must be a global minimizer.  
659 However, convexity also implies  
660

661 
$$f(x^+) \geq f(x) + \left\langle \nabla f(x), \rho \frac{\nabla f(x)}{\|\nabla f(x)\|} \right\rangle = f(x) + \rho \|\nabla f(x)\| > f(x),$$
  
662

663 which contradicts the optimality of  $x^+$ .  $\square$   
664666 A.1 FULL PROOF OF THEOREM 2.1  
667

668 We now provide the full proof of the existence theorem.

669 **Theorem 2.1.** *Let  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  be continuously differentiable. Assume  $f$  has a global minimizer  
670 (not necessarily unique) and an isolated local maximizer. Then, a hallucinated minimizer exists for  
671 some  $\rho > 0$ .*  
672673 *Proof.* Let  $x^*$  be a local maximizer with  $f(x^*) = M$ , and let  $C \subseteq U$  be a compact ball centered  
674 at  $x^*$  such that  $f(x) < f(x^*)$  for all  $x \in C$ . The strict inequality follows from  $x^*$  being an  
675 isolated critical point. Define  $m := \max_{\partial C} f(x) < M$  and consider the preimage  $f^{-1}([M - \varepsilon, M])$   
676 where  $0 < \varepsilon < M - m$ . Let  $C_\varepsilon$  denote the connected component of this preimage containing  
677  $x^* \in f^{-1}([M - \varepsilon, M])$ .678 By Lemma A.2,  $C_\varepsilon \subseteq \text{int } C$ , and hence  $C_\varepsilon$  is compact. Moreover, by Lemma A.3, the function  
679 value on the boundary satisfies  $f(x) = M - \varepsilon$  for all  $x \in \partial C_\varepsilon$ .680 Consider the squared distance function  $g(x) = \|x - x^*\|^2$ , and let  
681

682 
$$x_h \in \operatorname{argmax}_{C_\varepsilon} g(x), \quad x_h \neq x^*, \quad \text{and} \quad \rho := \|x_h - x^*\|.$$
  
683

684 Then,  $x_h$  must be on the boundary of  $C_\varepsilon$ , and thus  $f(x_h) = M - \varepsilon$ . Furthermore, since  $x^* \neq x_h$   
685 is the only critical point of  $f$  in  $C_\varepsilon$ , the gradient at  $x_h$  does not vanish. Consequently, there exists  
686 an open neighborhood  $V$  of  $x_h$  such that  $\Sigma := \{x \in V : f(x) = M - \varepsilon\}$  is an embedded  
687  $C^1$  hypersurface near  $x_h$ . By shrinking  $V$  if necessary, we may assume  $V \cap \partial C_\varepsilon = \Sigma$ . Thus,  
688 maximizing  $g(x)$  over  $C_\varepsilon$  is locally equivalent to maximizing  $g(x)$  over the hypersurface  $\Sigma$ . By the  
689 method of Lagrange multipliers, we obtain  
690

691 
$$\nabla g(x_h) = \lambda \nabla f(x_h).$$

692 That is, there exists  $\lambda > 0$  such that  
693

694 
$$2(x^* - x_h) = \lambda \nabla f(x_h)$$
  
695

696 by Lemma A.4. Taking norms of both sides yields  $\lambda = \frac{2\rho}{\|\nabla f(x_h)\|}$ . Therefore,  
697

698 
$$x^* = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|},$$
  
699

700 which implies that  $x_h$  is a hallucinated minimizer.  $\square$   
701

702 We now prove the three lemmas used in the proof of Theorem 2.1.

703 **Lemma A.2.** *The set  $C_\varepsilon$  from Theorem 2.1 is contained in  $\text{int } C$ . Hence, it is compact.*

702 *Proof.* Suppose  $x \in C_\varepsilon$ . If  $x \in \partial C$ , then  $f(x) \geq M - \varepsilon > m$ , contradicting the definition of  $m$  as  
 703 the maximum value of  $f$  on  $\partial C$ .  
 704

705 If instead  $x \in \text{ext } C = \mathbb{R}^d \setminus C$ , then  $\text{int } C$  and  $\mathbb{R}^d \setminus C$  are two nonempty disjoint open sets  
 706 that separate  $C_\varepsilon$ , contradicting the fact that  $C_\varepsilon$  is connected. Therefore,  $x$  must lie in  $\text{int } C$ , and  
 707  $C_\varepsilon \subseteq \text{int } C$ .  $\square$

708  
 709 The following lemma shows that every point on  $\partial C_\varepsilon$  in Theorem 2.1 lies on the same level set.  
 710

711 **Lemma A.3.** *Any point  $x \in \partial C_\varepsilon$  from Theorem 2.1 satisfies  $f(x) = M - \varepsilon$ .*

712  
 713  
 714 *Proof.* Take  $x \in \partial C_\varepsilon$ . If  $f(x) > M - \varepsilon$ , continuity of  $f$  implies that there exists  $r > 0$  such that  
 715  $f(y) > M - \varepsilon$  for all  $y$  in an open ball centered at  $x$  with radius  $r$ . This contradicts the fact that  $x$   
 716 is a boundary point of  $C_\varepsilon$ .

717 If  $f(x) < M - \varepsilon$ , this directly contradicts the fact that  $x \in f^{-1}([M - \varepsilon, M])$ . Therefore,  $f(x) =$   
 718  $M - \varepsilon$ .  $\square$

719  
 720 The next lemma establishes that  $\lambda > 0$  in Theorem 2.1.

721  
 722 **Lemma A.4.** *In the proof of Theorem 2.1, the vectors  $x_\star - x_h$  and  $\nabla f(x_h)$  point in the same  
 723 direction. Equivalently,  $\lambda > 0$ .*

724  
 725  
 726 *Proof.* Let  $V$  be an open neighborhood of  $x_h$ . By possibly shrinking  $V$ , we may assume the local  
 727 superlevel set  $\{x \in V : f(x) \geq M - \varepsilon\}$  is contained in  $C_\varepsilon$ . Then,  $x_h$  is a maximizer of  $g$  over the  
 728 feasible region  $\{x \in V : f(x) \geq M - \varepsilon\}$ .

729 Consider any feasible direction  $d \in \mathbb{R}^d$  with  $\langle \nabla f(x_h), d \rangle \geq 0$ . Let  $\gamma : (-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^d$  be a smooth  
 730 curve such that  $\gamma(0) = x_h$ ,  $\gamma'(0) = d$ , and  $\gamma(t) \in V$ . Then,  $f(\gamma(t)) \geq M - \varepsilon$  for sufficiently small  
 731  $t > 0$ . Moreover,  
 732

$$\left. \frac{d}{dt} f(\gamma(t)) \right|_{t=0} = \langle \nabla f(x_h), d \rangle \geq 0,$$

733 so  $\gamma(t)$  remains in the feasible set for small  $t > 0$ . Since  $x_h$  maximizes  $g$ , it follows that  
 734

$$\lim_{t \downarrow 0} \frac{d}{dt} g(\gamma(t)) = \lim_{t \downarrow 0} \frac{d}{dt} \|\gamma(t) - x_\star\|^2 = \lim_{t \downarrow 0} 2\langle \gamma(t) - x_\star, \gamma'(t) \rangle = 2\langle x_h - x_\star, d \rangle \leq 0.$$

735  
 736 Taking the feasible direction  $d = \nabla f(x_h)$  yields  
 737

$$2\langle x_h - x_\star, \nabla f(x_h) \rangle = -2\lambda \|\nabla f(x_h)\|^2 \leq 0.$$

738 Since  $\lambda \neq 0$ , this inequality implies  $\lambda > 0$ .  $\square$

## 744 A.2 EXTENDING THEOREM 2.1 TO LOCAL MINIMIZERS

745 We now extend Theorem 2.1 by relaxing the assumption that  $x_\star$  is a global minimizer. In fact, a  
 746 hallucinated minimizer can still exist when  $x_\star$  is only a local minimizer. To show this, we first  
 747 establish the following lemma.

748  
 749 **Lemma A.5.** *Suppose  $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$  for some  $L > 0$ , and that  $\nabla f(x) \neq 0$  and  
 750  $\nabla f(y) \neq 0$ . Then, we have*

$$751 \quad \|y + \rho u(y) - x - \rho u(x)\| \leq \left(1 + \frac{2\rho L}{\|\nabla f(x)\|}\right) \|y - x\|.$$

756 *Proof.* It follows from the triangle inequality that

$$\begin{aligned}
 758 \quad & \|y + \rho u(y) - x - \rho u(x)\| \\
 759 \quad & \leq \|y - x\| + \rho \left\| \frac{\nabla f(y)}{\|\nabla f(y)\|} - \frac{\nabla f(x)}{\|\nabla f(x)\|} \right\| \\
 760 \quad & \leq \|y - x\| + \rho \left\| \frac{\nabla f(y)}{\|\nabla f(y)\|} - \frac{\nabla f(y)}{\|\nabla f(x)\|} \right\| + \rho \left\| \frac{\nabla f(y)}{\|\nabla f(x)\|} - \frac{\nabla f(x)}{\|\nabla f(x)\|} \right\| \\
 761 \quad & \leq \|y - x\| + \rho \frac{\|\nabla f(x) - \nabla f(y)\|}{\|\nabla f(x)\|} + \rho \frac{\|\nabla f(y) - \nabla f(x)\|}{\|\nabla f(x)\|} \\
 762 \quad & \leq \|y - x\| + \rho \frac{2\rho L}{\|\nabla f(x)\|} \\
 763 \quad & \leq \|y - x\| \left( 1 + \frac{2\rho L}{\|\nabla f(x)\|} \right).
 \end{aligned}$$

□

770 Finally, we obtain the following corollary.

771 **Corollary A.6.** *Suppose  $f$  has a locally Lipschitz gradient. Then, Theorem 2.1 remains valid even*  
 772 *when  $x_*$  is a local minimizer of  $f$ .*

773 *Proof.* Recall the last equation of the proof of Theorem 2.1:

$$774 \quad x_* = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|}.$$

775 Consider an open ball centered at  $x_h$  with radius  $r$  chosen sufficiently small so that  $\nabla f$  does not  
 776 vanish on the ball. Let  $L > 0$  be such that  $\|\nabla f(x_h) - \nabla f(y)\| \leq L\|x_h - y\|$  for any  $y \in B_r(x_h)$ .  
 777 Since  $x_*$  is a local minimizer, there exists  $\delta > 0$  such that

$$778 \quad f(y) \geq f(x_*) \quad \forall y \text{ with } \|y - x_*\| \leq \delta.$$

779 Now consider an open ball centered at  $x_h$  with radius

$$780 \quad r^* := \min \left\{ \frac{\delta}{1 + \frac{2\rho L}{\|\nabla f(x_h)\|}}, r \right\}.$$

781 Then, for any  $y \in B_{r^*}(x_h)$ , we have

$$782 \quad \|x_* - y - \rho u(y)\| = \|x_h + \rho u(x_h) - y - \rho u(y)\| \leq \|x_h - y\| \left( 1 + \frac{2\rho L}{\|\nabla f(x_h)\|} \right) \leq \delta,$$

783 where the first inequality follows from Lemma A.5. Hence,

$$784 \quad f(y + \rho u(y)) \geq f(x_*).$$

785 This implies  $f^{\text{SAM}}(y) \geq f^{\text{SAM}}(x_h)$ , so  $x_h$  is a local minimizer of  $f^{\text{SAM}}$ , and therefore a hallucinated  
 786 minimizer. □

### 787 A.3 MOST MODERN NEURAL NETWORKS ARE REAL-ANALYTIC: FURTHER DISCUSSION

788 We now formalize the claim that the neural network  $\theta \mapsto h_\theta(X)$  is real-analytic in its parameters  $\theta$ .  
 789 By standard arguments, the following two lemmas establish that the final loss function

$$790 \quad f(\theta) = \sum_{i=1}^N \ell(h_\theta(X_i), Y_i)$$

801 is real-analytic under the assumptions on  $h_\theta$  stated in Section 2.

802 **Lemma A.7.** *If  $h_\theta: \mathbb{R}^d \rightarrow \mathbb{R}^h$  is a neural network with real-analytic activation functions, then  $h_\theta$*   
 803 *is real-analytic as a function of  $\theta$ .*

804 *Proof.* Fix input data  $x$  and let  $z$  denote the hidden states, which depend on  $x$  and  $\theta$ . Then,  $z$ , hence  
 805 the entire network  $h_\theta$ , is a finite composition of the following real-analytic mappings:

- (Layer normalization)  $z \mapsto \gamma \odot \frac{z - \mu_L(z)}{\sqrt{\sigma_L(z) + \varepsilon}} + \beta$ , where  $\mu_L(z)$  and  $\sigma_L(z)$  are the per-sample mean and variance;
- (Batch normalization)  $z \mapsto \gamma \odot \frac{z - \mu_B(z)}{\sqrt{\sigma_B(z) + \varepsilon}} + \beta$ , where  $\mu_B(z)$  and  $\sigma_B(z)$  are the per-channel mean and variance;
- (Activation)  $z \mapsto \sigma(z)$ , where  $\sigma$  is a real-analytic activation function;
- (Softmax)  $z \mapsto \mu(z)$ , where  $\mu$  is the softmax function;
- (Average pooling)  $z \mapsto Az$ , where  $A$  is a linear averaging operator;
- (Residual connection)  $z \mapsto z + F_\theta(z)$ , where  $F$  is real-analytic in  $\theta$ ;
- (Convolution layer)  $(z, W_i, b_i) \mapsto W_i * z + b_i$ , where  $*$  denotes the discrete convolution operator;
- (Dropout)  $z \mapsto m \odot z$ , where  $m$  is a masking operator;
- (Linear layer)  $(z, A_i, b_i) \mapsto A_i z + b_i$ ; and
- (Attention layer)  $(z, W_Q, W_K, W_V) \mapsto \mu\left(\frac{QK^\top}{\sqrt{d_{\text{attn}}}}\right)V$ , where  $Q = zW_Q$ ,  $K = zW_K$ ,  $V = zW_V$ , and  $d_{\text{attn}}$  is the size of the attention matrix  $Q, K$ .

Since the composition of real-analytic functions is real-analytic, it follows that  $h_\theta$  is real-analytic.  $\square$

Finally, the next lemma establishes that  $f$  is real-analytic. This follows directly from the fact that the composition of real-analytic functions is real-analytic; hence the proof is omitted.

**Lemma A.8.** *Let  $h_\theta$  be a (finite) neural network constructed with linear layers, attention, convolution, layer normalization, and real-analytic activation functions (all commonly used activation functions except ReLU are real-analytic). Then, for a real-analytic loss function  $\ell$ ,*

$$f(\theta) := \frac{1}{N} \sum_{i=1}^N \ell(h_\theta(X_i), Y_i)$$

*is real-analytic as a function of  $\theta$ .*

#### A.4 FULL PROOF OF THEOREM 2.2

The following lemma shows that, under the real-analyticity assumption, critical points cannot accumulate around the local maximizer set  $X$ . The argument relies on the Łojasiewicz inequality.

**Lemma A.9.** *Suppose  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  is real-analytic and  $X$  is a bounded local maximizer set of  $f$  with some  $\delta > 0$ . Then, there exists  $\varepsilon > 0$  with the following property: if  $x$  is a critical point in the  $\delta$ -neighborhood of  $X$  with  $f(x) \geq f(X) - \varepsilon$ , then  $x \in X$ .*

*Proof.* Define the closed  $\delta$ -neighborhood of  $X$  by  $\mathcal{N}_\delta(X) := \{y : d(y, X) \leq \delta\}$ . Since  $X$  is a bounded connected set,  $\mathcal{N}_\delta(X)$  is compact and connected. Let  $S$  denote the set of critical points in  $\mathcal{N}_\delta(X)$  that are not in  $X$ :

$$S = \{s \in \mathcal{N}_\delta(X) : \nabla f(s) = 0\} \setminus X.$$

If  $S = \emptyset$ , then the theorem holds for any  $\varepsilon > 0$ , and we are done. Assume instead that  $S \neq \emptyset$ . For each point  $x \in X$ , Lemma 2.3 guarantees the existence of an open neighborhood  $U_x$ , a constant  $C_x > 0$ , and an exponent  $q_x \in (0, 1)$  such that

$$|f(x) - f(y)|^{q_x} = |f(X) - f(y)|^{q_x} \leq C_x \|\nabla f(y)\|, \quad y \in U_x.$$

If  $y \in S$ , then

$$|f(X) - f(y)|^{q_x} \leq C_x \|\nabla f(y)\| = 0.$$

864 This implies  $f(y) = f(X)$ , which is a contradiction. Hence,  $S \subseteq C := \mathcal{N}_\delta(X) \setminus \bigcup_{x \in X} U_x$ . (Note  
 865 that  $C \neq \emptyset$  since  $S \neq \emptyset$ ). Since  $C$  is compact, define  
 866

$$867 \quad 0 < \varepsilon^* := f(X) - \max_{y \in C} f(y).$$

868 Then, any  $\varepsilon \in (0, \varepsilon^*)$  satisfies the theorem.  $\square$   
 869

870 Finally, we use Lemma A.9 to complete the proof of Theorem 2.2.  
 871

872 **Theorem 2.2.** *Let  $f: \mathbb{R}^d \rightarrow \mathbb{R}$  be real-analytic. Assume  $f$  has a global minimizer (not necessarily  
 873 unique) and a bounded local maximizer set. Then, a hallucinated minimizer exists for some  $\rho > 0$ .*  
 874

875 *Proof.* Define the closed  $\delta$ -neighborhood of a local maximizer set  $X$  as  $\mathcal{N}_\delta(X) := \{y : d(y, X) \leq \delta\}$ . Since  $X$  is a bounded connected set,  $\mathcal{N}_\delta(X)$  is compact and connected. By Lemma A.9, there  
 876 exists  $\varepsilon_1 > 0$  such that any critical point in  $\mathcal{N}_\delta(X)$  with function value at least  $f(X) - \varepsilon_1$  must lie  
 877 in  $X$ . Next, choose  $\varepsilon_2 > 0$  such that  $0 < \varepsilon_2 < f(X) - \max_{\partial \mathcal{N}_\delta(X)} f(x)$ .  
 878

879 Let  $\varepsilon := \min\{\varepsilon_1, \varepsilon_2\}$ , and consider the preimage  $f^{-1}([f(X) - \varepsilon, f(X)])$ . Define  $C_\varepsilon$  as the con-  
 880 nected component of this preimage that contains  $X$ .  
 881

882 By the same reasoning as in Lemma A.2,  $C_\varepsilon \subseteq \text{int } \mathcal{N}_\delta(X)$ , and hence  $C_\varepsilon$  is compact. Moreover,  
 883 by Lemma A.3, every point  $x \in \partial C_\varepsilon$  satisfies  $f(x) = f(X) - \varepsilon$ .  
 884

Now define  $g(x) = \|x - x_\star\|^2$  and let

$$885 \quad x_h \in \operatorname{argmax}_{C_\varepsilon} g(x), \quad x_h \neq x_\star, \quad \rho := \|x_h - x_\star\|.$$

887 Since the only critical points in  $C_\varepsilon$  are those in  $X$ , we have  $\nabla f(x_h) \neq 0$ . Thus, there exists  
 888 an open neighborhood  $V$  of  $x_h$  such that  $\Sigma := \{x \in V : f(x) = f(X) - \varepsilon\}$  is an embedded  
 889 smooth hypersurface near  $x_h$ . By possibly shrinking  $V$ , we may assume  $V \cap \partial C_\varepsilon = \Sigma$ . Therefore,  
 890 maximizing  $g(x)$  over  $C_\varepsilon$  is locally equivalent to maximizing  $g(x)$  over the hypersurface  $\Sigma$ .  
 891

Then, by the method of Lagrange multipliers, we obtain

$$892 \quad \nabla g(x_h) = \lambda \nabla f(x_h),$$

894 which implies that there exists  $\lambda > 0$  such that

$$895 \quad 2(x_\star - x_h) = \lambda \nabla f(x_h).$$

897 The positivity of  $\lambda$  follows from the same reasoning as in Lemma A.4. Taking norms of both sides  
 898 yields  $\lambda = \frac{2\rho}{\|\nabla f(x_h)\|}$ . Therefore,  
 899

$$900 \quad x_\star = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|},$$

902 which shows that  $x_h$  is a hallucinated minimizer.  $\square$   
 903

## 904 B OMITTED DETAILS FOR SECTION 3

### 905 B.1 PROOF OF THEOREM 3.1

908 In this subsection, we prove Theorem 3.1. The argument relies on the implicit function theorem,  
 909 which we state below.  
 910

911 **Theorem B.1** (Implicit function theorem, Lee (2013)). *Let  $U \subseteq \mathbb{R}^d \times \mathbb{R}^d$  be an open set, and let  
 912  $(x, y)$  denote the coordinates on  $U$ . Suppose  $\Phi: U \rightarrow \mathbb{R}^d$  is a smooth function,  $(a, b) \in U$ , and  
 913  $c = \Phi(a, b)$ . If the  $d \times d$  matrix*

$$914 \quad \left( \frac{\partial \Phi^i}{\partial y^j}(a, b) \right)$$

916 *is invertible, then there exist neighborhoods  $V_0 \subseteq \mathbb{R}^d$  of  $a$  and  $W_0 \subseteq \mathbb{R}^d$  of  $b$ , together with a  
 917 smooth function  $F: V_0 \rightarrow W_0$ , such that  $\Phi^{-1}(c) \cap (V_0 \times W_0)$  is the graph of  $F$ . In other words,  
 918  $\Phi(x, y) = c$  for  $(x, y) \in V_0 \times W_0$  if and only if  $y = F(x)$ .*

918 Now we prove Theorem 3.1.

919  
920 **Theorem 3.1.** Suppose  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  satisfies the assumptions of Theorem 2.2. Assume  $\mathcal{M} \subseteq$   
921  $\text{argmin} f$ , where  $\mathcal{M} \subseteq \mathbb{R}^d$  is a nonempty smooth  $m$ -dimensional manifold. Let  $x_h$  be a hallu-

922 cinated minimizer with a corresponding  $\rho > 0$  as constructed in the proof of Theorem 2.2. If  
923  $I + \rho \nabla u(x_h) \in \mathbb{R}^{d \times d}$  is nonsingular, then the set of hallucinated minimizers contains a smooth  
924 manifold of dimension  $m$ .

925 *Proof.* Let  $x_h$  be a hallucinated minimizer of  $f$  constructed in the proof of Theorem 2.2. Then, it  
926 satisfies

$$927 \quad x_\star = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|} = x_h + \rho u(x_h)$$

928 for some perturbation radius  $\rho > 0$ . Let  $V$  be an open neighborhood of  $x_h$  on which the gradient  
929 never vanishes. Such a neighborhood exists because  $\|\nabla f(x_h)\| > 0$  and  $\nabla f$  is continuous. Define  
930  $F : \mathbb{R}^d \times V \rightarrow \mathbb{R}^d$  by

$$931 \quad F(x, y) = y + \rho u(y) - x.$$

932 Clearly,  $F(x_\star, x_h) = 0$ , and by assumption,  $\frac{dF}{dy}(x_\star, x_h) = I + \rho \nabla u(x_h)$  is invertible. By the  
933 implicit function theorem, there exist open neighborhoods  $U_0 \subseteq \mathbb{R}^d$  of  $x_\star$  and  $V_0 \subseteq V$  of  $x_h$ ,  
934 together with a smooth map  $G : U_0 \rightarrow V_0$ , such that  $G(x_\star) = x_h$  and

$$935 \quad F(x, G(x)) = 0 \quad \forall x \in U_0.$$

936 This also implies that  $G$  is also a local diffeomorphism at  $x_\star$ , since the differential is invertible at  
937  $x_\star$ :

$$938 \quad -I + \frac{dF}{dy} \Big|_{y=x_h} \frac{dG}{dx} \Big|_{x=x_\star} = 0 \iff \frac{dG}{dx} \Big|_{x=x_\star} = \left( \frac{dF}{dy} \right) \Big|_{y=x_h}^{-1}.$$

939 In particular, there exists an open  $U \subseteq U_0$  around  $x_\star$  such that  $G|_U : U \rightarrow G(U)$  is a diffeomor-  
940 phism. Since  $U \cap \mathcal{M}$  is an  $m$ -dimensional manifold (without boundary), the image  $G(U \cap \mathcal{M})$   
941 under the diffeomorphism is also an  $m$ -dimensional manifold.

942 Finally, note that any  $y \in G(U \cap \mathcal{M})$  satisfies

$$943 \quad x = y + \rho \frac{\nabla f(y)}{\|\nabla f(y)\|},$$

944 where  $x = G^{-1}(y) \in \mathcal{M} \cap U$  and hence  $x \in \arg \min f$ . Thus,  $G(U \cap \mathcal{M})$  forms an  $m$ -dimensional  
945 manifold of hallucinated minimizers.  $\square$

## 952 B.2 PROOF OF THEOREM 3.2 AND FURTHER DISCUSSION

953 In this subsection, we prove Theorem 3.2 and then discuss the special case of isolated hallucinated  
954 minimizers.

955 **Theorem 3.2.** Suppose  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  is real-analytic, and let  $H \subset \mathbb{R}^d$  be a bounded, connected set  
956 of hallucinated minimizers of  $f$  for a fixed perturbation radius  $\rho > 0$ . Assume there exists  $\delta > 0$   
957 such that the  $\delta$ -neighborhood of  $H$  contains no minimizers of  $f^{\text{SAM}}$  other than those already in  $H$ .  
958 Assume further that every  $x_h \in H$  satisfies

$$959 \quad 1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x_h))) > 0, \quad \text{where } \text{Sym}(\nabla u(x_h)) = \frac{1}{2}(\nabla u(x_h) + \nabla u(x_h)^\top).$$

960 If the initialization  $x_0$  is chosen sufficiently close to  $H$ , then there exists a sufficiently small fixed  
961 step size  $\eta_k = \eta > 0$  such that the SAM iterates converge to  $H$ , in the sense that  $d(x_k, H) \rightarrow 0$ .  
962

963 *Proof.* First, we claim that the set  $H$  is closed (hence compact) by construction. Indeed, if  $x_h \in \bar{H}$ ,  
964 then the corresponding function value must equal  $f^{\text{SAM}}(\bar{H}) = \min f^{\text{SAM}}$ . By our assumption on  
965  $H$ , this implies  $x_h \in H$ . Hence  $H = \bar{H}$ .

966 Let  $\mathcal{N}_\delta(H)$  denote the closed  $\delta$ -neighborhood of  $H$  from the theorem assumption. Since  $1 +$   
967  $\rho \lambda_{\min}(\text{Sym}(\nabla u(x_h))) > 0$  and  $\|\nabla f(x_h)\| > 0$  for all  $x_h \in H$ , there exists an open neighbor-  
968 hood  $W$  of  $H$  such that  $1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x))) > 0$  and  $\|\nabla f(x)\| > 0$  for any  $x \in W$ . By  
969 shrinking  $\mathcal{N}_\delta(H)$  if necessary, we may assume  $\mathcal{N}_\delta(H) \subseteq W$  and  $f^{\text{SAM}}$  is real-analytic on  $\mathcal{N}_\delta(H)$ .

972 Applying an argument analogous to Lemma A.9, with local maximizers replaced by minimizers, we  
 973 obtain  $\varepsilon^* > 0$  such that if  $x$  is a critical point in  $\mathcal{N}_\delta(H)$  with  $f^{\text{SAM}}(x) \leq f^{\text{SAM}}(H) + \varepsilon^*$ , then  
 974  $x \in H$ .

975 Now consider the closed neighborhood  $\mathcal{N}_{\delta/2}(H)$ , and set  
 976

$$977 \quad m := \min_{x \in \partial\mathcal{N}_{\delta/2}(H)} f^{\text{SAM}}(x) > f_*,$$

980 where  $f_* = f^{\text{SAM}}(H)$ . The strict inequality follows from the construction of  $\mathcal{N}_\delta(H)$ . Choose  $\varepsilon > 0$   
 981 such that

$$982 \quad 0 < \varepsilon < m - f^{\text{SAM}}(H) = m - f_* \quad \text{and} \quad 0 < \varepsilon < \varepsilon^*.$$

984 Let  $C_\varepsilon$  be the connected component of the sublevel set  
 985

$$986 \quad (f^{\text{SAM}})^{-1}((-\infty, f_* + \varepsilon]) = (f^{\text{SAM}})^{-1}([f_*, f_* + \varepsilon])$$

987 that contains  $H$ . Then,  $C_\varepsilon$  is compact and contains no other critical points of  $f^{\text{SAM}}$  besides those in  
 988  $H$ . The proof of  $C_\varepsilon$  being bounded (hence compact) by  $\mathcal{N}_{\delta/2}(H)$  is analogous to Lemma A.2.  
 989

990 Define

$$991 \quad C_\rho := \{x : d(x, C_\varepsilon) \leq \rho\}.$$

993 Then,  $C_\rho$  is also compact. Set  
 994

$$995 \quad M := \max_{x \in C_\rho} \|\nabla f(x)\| > 0, \quad L := \max_{x \in \mathcal{N}_\delta(H)} \|\nabla^2 f(x)\| > 0,$$

997 and

$$998 \quad \gamma := \min_{x \in \mathcal{N}_\delta(H)} (1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x)))) > 0.$$

1000 Consider the SAM update with fixed  $\rho > 0$  and constant step size  $\eta_k = \eta$  chosen such that  
 1001

$$1002 \quad 0 < \eta < \min \left\{ \frac{\delta}{2M}, \frac{2\gamma}{L} \right\},$$

1005 and initialization at  $x_0 \in C_\varepsilon$ . We show by induction that the SAM iterates  $\{x_k\}$  remain in  $C_\varepsilon$ . The  
 1006 base case  $x_0 \in C_\varepsilon$  is true by assumption. Suppose  $x_k \in C_\varepsilon$ . Then, by definition of the SAM update,  
 1007  $x_k^+ \in C_\rho$  and  $x_{k+1} = x_k - \eta \nabla f(x_k^+)$ . We claim  $x_{k+1} \in \mathcal{N}_\delta(H)$ , since

$$1008 \quad \begin{aligned} d(x_{k+1}, H) &= \inf_{x_h \in H} \|x_{k+1} - x_h\| \\ 1009 &\leq \inf_{x_h \in H} \|x_k - x_h\| + \|x_{k+1} - x_k\| \\ 1010 &\leq \frac{\delta}{2} + \eta \|\nabla f(x_k^+)\| \\ 1011 &\leq \frac{\delta}{2} + \frac{\delta}{2M} \cdot M \\ 1012 &\leq \delta. \end{aligned}$$

1017 By  $L$ -smoothness of  $f^{\text{SAM}}$  on  $\mathcal{N}_\delta(H)$ ,

$$1020 \quad \begin{aligned} f^{\text{SAM}}(x_{k+1}) &\leq f^{\text{SAM}}(x_k) + \langle \nabla f^{\text{SAM}}(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \\ 1021 &= f^{\text{SAM}}(x_k) - \eta \langle \nabla f^{\text{SAM}}(x_k), \nabla f(x_k^+) \rangle + \frac{L\eta^2}{2} \|\nabla f(x_k^+)\|^2. \end{aligned}$$

1024 Since  
 1025

$$\nabla f^{\text{SAM}}(x) = (I + \rho \nabla u(x)) \nabla f(x^+),$$

1026 we obtain

$$\begin{aligned}
1028 f^{\text{SAM}}(x_{k+1}) &\leq f^{\text{SAM}}(x_k) - \eta \langle \nabla f^{\text{SAM}}(x_k), \nabla f(x_k^+) \rangle + \frac{L\eta^2}{2} \|\nabla f(x_k^+)\|^2 \\
1029 &= f^{\text{SAM}}(x_k) - \eta \rho \langle \nabla u(x_k) \nabla f(x_k^+), \nabla f(x_k^+) \rangle - \eta \|\nabla f(x_k^+)\|^2 + \frac{L\eta^2}{2} \|\nabla f(x_k^+)\|^2 \\
1030 &\leq f^{\text{SAM}}(x_k) - \eta \rho \lambda_{\min}(\text{Sym}(\nabla u(x_k))) \|\nabla f(x_k^+)\|^2 - \eta \|\nabla f(x_k^+)\|^2 + \frac{L\eta^2}{2} \|\nabla f(x_k^+)\|^2 \\
1031 &\leq f^{\text{SAM}}(x_k) - \eta \left(1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x_k))) - \frac{L\eta}{2}\right) \|\nabla f(x_k^+)\|^2 \\
1032 &\leq f^{\text{SAM}}(x_k) - \eta \left(\gamma - \frac{L\eta}{2}\right) \|\nabla f(x_k^+)\|^2 \\
1033 &< f^{\text{SAM}}(x_k),
\end{aligned}$$

1040 where the last inequality follows from  $0 < \eta < \frac{2\gamma}{L}$ . Moreover, since the descent property  
1041  $f^{\text{SAM}}(x_{k+1}) < f^{\text{SAM}}(x_k)$  holds when  $\eta$  is replaced by  $\eta t$  for  $t \in [0, 1]$ , the line segment from  $x_k$   
1042 to  $x_{k+1}$  lies within the sublevel set  $(f^{\text{SAM}})^{-1}([f_\star, f_\star + \varepsilon])$ . Thus, because  $x_k \in C_\varepsilon$ , we conclude  
1043  $x_{k+1} \in C_\varepsilon$  by the connectedness of  $C_\varepsilon$ . This completes the induction.

1044 Finally, since  $f^{\text{SAM}}(x_k)$  is decreasing and bounded below, we have  $\eta \left(\gamma - \frac{L\eta}{2}\right) \|\nabla f(x_k^+)\| \rightarrow 0$ .  
1045 Hence,  $\nabla f(x_k^+) \rightarrow 0$ . If  $x_\infty$  is a limit point of  $\{x_k\}_{k=0,1,\dots}$ , then  $\nabla f(x_\infty^+) = 0$ . By construction of  
1046  $C_\varepsilon$ , this implies  $x_\infty \in H$ . Therefore,  $d(x_k, H) \rightarrow 0$ .  $\square$

1047 To discuss point convergence to isolated hallucinated minimizers, we now turn to the case where the  
1048 manifold  $\mathcal{M}$  in Theorem 3.1 reduces to a single isolated point, i.e., 0-dimensional. In this case, we  
1049 can show that the corresponding hallucinated minimizer is also isolated. This can be viewed as the  
1050 special case where  $H$  in Theorem 3.2 is a singleton.

1051 **Lemma B.2.** *Let  $x_\star$  be a minimizer of a  $C^1$  function  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  satisfying the assumptions of  
1052 Theorem 2.1. Suppose  $x_\star$  is an isolated minimizer; that is, there exists an open neighborhood of  $x_\star$   
1053 in which it is the unique critical point and the unique minimizer. Let  $x_h$  be a hallucinated minimizer  
1054 of  $f$  constructed in the proof of Theorem 2.1 with  $\rho > 0$ . If  $I + \rho \nabla u(x_h)$  is invertible, then there  
1055 exists an open neighborhood  $W$  of  $x_h$  such that*

- 1056 •  $\nabla f$  never vanishes on  $W$ , and thus  $f^{\text{SAM}}$  is well-defined on  $W$ ;
- 1057 • no point other than  $x_h$  satisfies  $\nabla f(x^+) = 0$  in  $W$ ; and
- 1058 •  $x_h$  is the unique hallucinated minimizer in  $W$ .

1059 Such a point  $x_h$  is called an *isolated hallucinated minimizer*.

1060 *Proof.* Since  $x_h$  is a hallucinated minimizer of  $f$  constructed in the proof of Theorem 2.1, it satisfies

$$1066 x_\star = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|} = x_h + \rho u(x_h)$$

1067 for some perturbation radius  $\rho > 0$ . Let  $U_0$  and  $V_0$  be open neighborhoods of  $x_\star$  and  $x_h$ , respectively, as constructed in the proof of Theorem 3.1. Also, let  $U_1$  be an open neighborhood of  $x_\star$  that  
1068 contains no other minimizers, by assumption. Define  $W := G(U_0 \cap U_1)$ , where  $G$  is the  $C^1$  mapping  
1069 constructed in the proof of Theorem 3.1. We claim that  $W$  is the desired open neighborhood of  
1070  $x_h$ .

1071 First,  $W$  is open since  $G$  is a local diffeomorphism at  $x_\star$ . Moreover,  $f^{\text{SAM}}$  is well-defined on  $W$  by  
1072 the construction of  $V_0$ . Suppose  $y \in W$  satisfies  $\nabla f(y^+) = 0$ . Then, since

$$1076 x = y + \rho \frac{\nabla f(y)}{\|\nabla f(y)\|}$$

1077 for the unique  $x = G^{-1}(y) \in U_1$ , it follows that  $\nabla f(y^+) = \nabla f(x) = 0$ , contradicting the fact  
1078 that  $x$  is an isolated minimizer. Similarly, if  $y$  is a hallucinated minimizer, then the uniqueness of  
1079  $x = G^{-1}(y)$  implies  $x = x_\star$ , and hence  $y = x_h$ . This proves the claim.  $\square$



Figure 7: Visualizations of the hallucinated minimizer  $x_h$ : (a) original loss  $f$  along the line between  $x_h$  and  $x_h^+$ ; (b) SAM loss  $f^{\text{SAM}}$  over the plane defined by  $x_h$ ,  $x_N$ , and  $x'_N$ .

Then, as a corollary of Theorem 3.2 and the previous lemma, we obtain the following point convergence result.

**Corollary B.3.** *Assume  $f$  satisfies the assumptions in Theorem 2.1 and, in addition,  $f \in C^2$ . Let  $x_h$  be an isolated hallucinated minimizer of  $f$  for a fixed perturbation radius  $\rho > 0$ , constructed in the proof of Theorem 2.1. Suppose*

$$1 + \rho \lambda_{\min}(\text{Sym}(\nabla u(x_h))) > 0.$$

*Then, the SAM iterates, when initialized sufficiently close to  $x_h$ , converge to  $x_h$  for sufficiently small fixed step size  $\eta_k = \eta$ .*

The real-analytic property of  $f$  is used to apply the Łojasiewicz inequality in order to construct a neighborhood where critical points do not accumulate. However, since Lemma B.2 guarantees the existence of isolated hallucinated minimizers without this assumption, the real-analytic condition is not required here. Hence, the  $C^2$  assumption on  $f$  is sufficient to ensure the existence of constants  $L$  and  $\gamma$  as in the proof of Theorem 3.2.

## C EXPERIMENTAL DETAILS FOR SAM IN DEEP LEARNING

### C.1 SAM WITH FULL-BATCH GRADIENTS

In Section 4.1, we train a neural network using SAM with full-batch gradients. Specifically, the model is a two-layer network with 128 hidden units and Tanh activations, trained on the MNIST dataset (LeCun et al., 1998). The classification task uses cross-entropy loss. Training is implemented in PyTorch (Paszke et al., 2019) with a learning rate of 0.01, momentum 0.9, and no weight decay. We run 20 million updates with perturbation radius  $\rho = 1.8$  to obtain the convergence point  $x_h$ , whose loss landscape is shown in Figure 4. In this subsection, we provide additional visualizations to further examine the local properties of  $x_h$ .

Figure 7(a) presents a one-dimensional view along the line connecting  $x_h$  and  $x_h^+ = x_h + \rho \frac{\nabla f(x_h)}{\|\nabla f(x_h)\|}$ , parameterized as  $x(\alpha) = (1 - \alpha)x_h + \alpha x_h^+$ . The plot shows that  $x_h$  is not a minimizer of the original objective and that the surrounding loss landscape differs substantially from that around  $x_h^+$ . This demonstrates that the phenomenon of SAM converging to a hallucinated minimizer is fundamentally distinct from the case in which a saddle point becomes an attractor, which requires the surrounding quadratic structure to hold (Compagnoni et al., 2023).



Figure 8: Comparison of SAM-only and the switching strategy across different perturbation radii  $\rho$ . Results are obtained using SAM with full-batch gradients over 80 seeds. Bold lines indicate the mean, and shaded areas represent the standard deviation.

Figure 7(b) extends Figure 4(c) with an additional visualization of the SAM loss. We initialize  $x_0$  by adding a small random perturbation of magnitude 0.1 to  $x_h$ , and then perform  $N = 1000$  SAM steps, yielding the same  $x_N$  reported in Figure 4(c). Applying an independent perturbation followed by the same procedure gives  $x'_N$ . We then consider the plane spanned by  $x_h$ ,  $x_N$ , and  $x'_N$ , parameterized as  $x(\alpha, \beta) = x_h + \alpha u + \beta v$  with  $u = x_N - x_h$  and  $v$  chosen orthogonal to  $u$ . On this plane, the visualization shows that the hallucinated minimizers are not confined to a one-dimensional curve but instead extend into a two-dimensional surface-like structure.

In the experiments reported in Figure 5, we investigate SAM with full-batch gradients by varying both the perturbation radius and the random seeds. Under the same experimental setting, Figure 8 shows the final training loss and test accuracy at the last step for perturbation radii  $\rho = 1.0, 1.1, \dots, 2.0$ , evaluated across 80 seeds. The results demonstrate that the performance of SAM is highly sensitive to the perturbation radius, whereas the switching strategy maintains stable performance even for larger values of  $\rho$ .

## C.2 SAM WITH STOCHASTIC GRADIENTS

We examine whether the phenomena observed with full-batch SAM also arise in the stochastic setting, as shown in Figure 6. ResNet-18 is trained on CIFAR-100 with standard data augmentations, including random cropping with padding, horizontal flipping, and Cutout (DeVries & Taylor, 2017). The mini-batch size is 64, the learning rate 0.01, momentum 0.9, and weight decay  $10^{-4}$ . Training proceeds for 200 epochs with cosine-annealed learning rates (Loshchilov & Hutter, 2016), following the practical implementation of FSAM (Li et al., 2024). The switching strategy applies plain stochastic gradient descent for the first 10% of epochs before switching to stochastic SAM.

Under the same setting, Figure 9 reports the CIFAR-100 results, comparing SAM-only with the switching strategy. Experiments are conducted for perturbation radii  $\rho = 0.1, 0.4, 0.7, 1.0$  across 16 random seeds. Each curve shows training loss and test accuracy over epochs, with bold lines denoting the mean across seeds and shaded regions indicating the standard deviation. The results show that, as in the full-batch case, SAM performance degrades with larger perturbation radii, whereas the switching strategy remains stable and robust across all settings.

## D TWO-DIMENSIONAL SYNTHETIC FUNCTION FOR VISUALIZATION

To visualize how the SAM perturbation radius  $\rho$  affects the objective, we introduce the following two-dimensional synthetic function (originally illustrated in Figure 1):

$$f(x, y) = 0.8 \exp\left(-\frac{x^2 + y^2}{(2.5)^2}\right) \cdot W_X(x) - \exp(-(x + 1.55 \cos(y/1.5))^2) \cdot W_Y(y) + 1,$$



Figure 9: Training loss and test accuracy curves for SAM with stochastic gradients on CIFAR-100 using ResNet-18. The top row shows SAM-only training, while the bottom row applies a switching strategy that runs stochastic gradient descent for the first 10% of epochs before switching to SAM. Columns correspond to perturbation radii  $\rho \in \{0.1, 0.4, 0.7, 1.0\}$ . Final average test accuracies are 74.29%, 76.36%, 69.64%, and 61.58% for SAM-only, compared to 74.48%, 77.22%, 73.35%, and 67.93% for the switching strategy.

where

$$W_X(x) = \begin{cases} 0, & x \leq -1, \\ 0.5(1 - \cos(\pi(x + 1))), & -1 < x < 0, \\ 1, & x \geq 0, \end{cases}$$

$$W_Y(y) = \begin{cases} 1, & |y| \leq 0.6, \\ 0.5 \left(1 + \cos\left(\pi \cdot \frac{|y| - 0.6}{5.0}\right)\right), & 0.6 < |y| < 5.6, \\ 0, & |y| \geq 5.6. \end{cases}$$

The function  $f(x, y)$  is continuously differentiable, since all its components are smoothly joined. It is designed so that its minimizer set forms a curve. In fact, the global minimizer set of  $f$  is exactly

$$\{(x, y) \in \mathbb{R}^2 \mid x = -1.55 \cos\left(\frac{y}{1.5}\right), |y| \leq 0.6\}.$$

Figure 1 shows the original function  $f$ , the SAM objective  $f^{\text{SAM}}$ , and its gradient  $\nabla f(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|})$  at perturbation radius  $\rho = 2.8$ . To further examine the effect of the perturbation radius, Figures 10 and 11 illustrate how the SAM objective  $f^{\text{SAM}}$  and its gradient  $\nabla f(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|})$  evolve as  $\rho$  varies over the range 0, 0.5, ..., 3.5. In this setting, the SAM minimizers are defined as the regions where  $f^{\text{SAM}}$  attains its minimum values; in practice, they appear either as isolated points or as continuous curve-like structures.

An analysis of the SAM minimizers as a function of the perturbation radius  $\rho$  reveals two distinct regimes. For small  $\rho$ , the minimizers approach the critical points of  $f$ . Although  $f^{\text{SAM}}$  is not defined at a critical point, higher-resolution numerical experiments show convergence arbitrarily close to such points. At  $\rho = 0$ ,  $f^{\text{SAM}}$  coincides with  $f$ , and the minimizers exactly match those of  $f$ . For  $\rho = 0.5$ , the minimizers remain on the original minimizer set, whereas for  $\rho = 1.0$  and  $\rho = 1.5$ , they shift toward the maximizers of  $f$ . The corresponding gradient fields indicate that these critical points act as attractors of the SAM dynamics, consistent with the theoretical analysis of Compagnoni et al. (2023).

In contrast, for larger perturbation radii, the SAM minimizers form a curve on the right-hand side, starting near the maximizer and drifting outward as  $\rho$  increases. This behavior is consistent with the proof of Theorem 2.1, which shows that hallucinated minimizers emerge for a sufficiently large



Figure 10: SAM objective  $f^{\text{SAM}}(x)$  under different perturbation radii  $\rho$ . The corresponding SAM minimizers are shown in pink.



Figure 11: SAM gradient field  $\nabla f(x + \rho \frac{\nabla f(x)}{\|\nabla f(x)\|})$  for different perturbation radii  $\rho$ . The corresponding SAM minimizers are shown in pink.

1292  
1293  
1294  
1295  
perturbation radius  $\rho$ . Theorem 3.1 further establishes that these minimizers preserve the dimensionality of the original minimizer manifold. Meanwhile, the SAM gradient field shows that these minimizers act as attractors within their neighborhood, and the conditions of Theorem 3.2 are indeed satisfied. Taken together, these observations show that our theory offers a full theoretical explanation of the empirical phenomena of hallucinated minimizers in this example.

Figure 12: SAM on CIFAR-10 with ResNet-18: loss trajectories for different perturbation radii  $\rho$ .Table 1: SAM on CIFAR-10 with ResNet-18: final-step metrics across perturbation radii  $\rho$ .

| $\rho$ | $f(x)$ | $f^{\text{SAM}}(x)$ | $\ \nabla f(x)\ $ | $\ \nabla f(x^+)\ $ |
|--------|--------|---------------------|-------------------|---------------------|
| 1.0    | 0.2921 | 0.0009              | 6.0244            | 0.0169              |
| 1.2    | 0.3606 | 0.0009              | 7.1878            | 0.0091              |
| 1.4    | 0.5071 | 0.0014              | 8.9210            | 0.0089              |
| 1.6    | 1.2270 | 0.0011              | 2.8085            | 0.0105              |
| 1.8    | 0.7066 | 0.0016              | 3.1345            | 0.0303              |
| 2.0    | 0.8087 | 0.0017              | 2.4777            | 0.0245              |

## E HALLUCINATED MINIMIZERS IN A LARGER DEEP NETWORK

We provide an additional SAM experiment on CIFAR-10 with ResNet-18 to demonstrate that hallucinated minimizers can arise in practical deep learning settings. We sweep the perturbation radius  $\rho$  and track the training loss  $f(x)$  together with the SAM loss  $f^{\text{SAM}}(x)$ . At the final step, we report the gradient norm  $\|\nabla f(x)\|$  and the perturbed gradient norm  $\|\nabla f(x^+)\|$ .

We train ResNet-18 from scratch on CIFAR-10 using SAM with full-batch gradients. SGD is used as the base optimizer with learning rate  $10^{-3}$  and momentum 0.9. We apply standard per-channel normalization and do not use data augmentation. We run 10,000 SAM steps and sweep  $\rho \in \{1.0, 1.2, 1.4, 1.6, 1.8, 2.0\}$ .

Figure 12 shows the trajectories of the training loss  $f(x)$  and the SAM loss  $f^{\text{SAM}}(x)$  over steps. For each  $\rho$ , the training loss decreases and stabilizes at a nonzero value. The stabilized value differs across  $\rho$ . In contrast, the SAM loss converges to a value close to zero for all  $\rho$ . This indicates a severe mismatch between  $f(x)$  and  $f^{\text{SAM}}(x)$ : since  $f^{\text{SAM}}(x)$  evaluates the loss at a local perturbation of  $x$ , it is typically expected to be no smaller than  $f(x)$ .

Table 1 summarizes the final-step metrics for each  $\rho$ . We report the final values of  $f(x)$  and  $f^{\text{SAM}}(x)$ , along with the corresponding gradient norms. Consistent with Figure 12,  $f^{\text{SAM}}(x)$  is near zero for all  $\rho$ , whereas  $f(x)$  varies substantially across  $\rho$ . Moreover,  $\|\nabla f(x)\|$  remains relatively large, while  $\|\nabla f(x^+)\|$  is much smaller. These observations suggest that the SAM trajectory converges, since the per-step update magnitude in SAM is proportional to the perturbed gradient.

Taken together, Figure 12 and Table 1 show that the SAM trajectory converges while the training loss  $f(x)$  remains strictly positive, whereas the SAM loss  $f^{\text{SAM}}(x)$  approaches a value close to zero. This suggests that hallucinated minimizers can also occur in a larger network such as ResNet-18.