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ABSTRACT

Sharpness-Aware Minimization (SAM) is a widely used method that steers train-
ing toward flatter minimizers, which typically generalize better. In this work, how-
ever, we show that SAM can converge to hallucinated minimizers—points that are
not minimizers of the original objective. We theoretically prove the existence of
such hallucinated minimizers and establish conditions for local convergence to
them. We further provide empirical evidence demonstrating that SAM can indeed
converge to these points in practice. Finally, we propose a simple yet effective
remedy for avoiding hallucinated minimizers.

(a) Landscape of f (b) Landscape of fSAM (c) SAM gradient field

Figure 1: Illustrative example of hallucinated minimizers. See Appendix D for details. (a) Smooth
function f with a minimizer set and an isolated maximizer. (b) fSAM = f(x+ ρ ∇f(x)

∥∇f(x)∥ ); its mini-
mizers do not correspond to minimizers or stationary points of f and are therefore hallucinated. (c)
Vector field of ∇f(x+ ρ ∇f(x)

∥∇f(x)∥ ); the hallucinated minimizers are attractors of the SAM iteration.

1 INTRODUCTION

It has been empirically observed in deep learning that flat minimizers tend to generalize better than
sharp ones (Neyshabur et al., 2017; Jiang et al., 2020). Motivated by this observation, Sharpness-
Aware Minimization (SAM) was proposed as a training method that fits the data while simultane-
ously regularizing against the sharpness (Foret et al., 2021; Zheng et al., 2021; Wu et al., 2020).
Specifically, for a differentiable function f : Rd → R, SAM minimizes the objective

fSAM(x) := f

(
x+ ρ

∇f(x)

∥∇f(x)∥

)
,

where the perturbation radius ρ > 0 controls the strength of the regularization. By encouraging con-
vergence to flat minimizers, SAM has demonstrated strong empirical performance and has inspired
a variety of practical variants (Foret et al., 2021).

However, although prior theoretical studies have analyzed the convergence of SAM to a minimizer
under various conditions, most rely on assumptions that rarely hold in deep learning, such as convex-
ity (Si & Yun, 2024) or a decaying perturbation radius (Khanh et al., 2024; Oikonomou & Loizou,
2025). Consequently, the validity of these convergence results is not guaranteed in practical settings.
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Contributions. In this paper, we theoretically and empirically demonstrate that SAM can, in fact,
hallucinate minimizers, in the sense that its iterates may converge to points that are not minimizers
of the original objective, as illustrated in Figure 1. This finding reveals a previously unrecognized
failure mode of SAM in deep learning, one that is fundamentally distinct from issues caused by local
minima or saddle points. To address this, we present a simple switching strategy that effectively
avoids hallucinated minimizers.

1.1 RELATED WORK

SAM and its variants. Building on the observation that flat minimizers are stable under small
perturbations (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Chaudhari et al., 2019), SAM
was proposed as a method to seek such minimizers (Foret et al., 2021). SAM has demonstrated
remarkable performance across a wide range of deep learning tasks (Foret et al., 2021; Bahri et al.,
2022; Zhong et al., 2022; Lee et al., 2023), motivating numerous extensions.

One line of work improves SAM by modifying its perturbation direction. Kwon et al. (2021) adapted
the perturbation in a scale-invariant manner, while Kim et al. (2022) redefined it using Fisher infor-
mation geometry. Li et al. (2024) removed the full-batch gradient from the perturbation direction
and leveraged stochastic gradient noise for generalization. Li & Giannakis (2024) incorporated mo-
mentum into the perturbation to suppress variance and stabilize the adversary. Instead of altering the
perturbation itself, Zhuang et al. (2022) adjusted the gradient update through orthogonal decompo-
sition to reduce the surrogate gap.

Another line of research addresses the computational overhead of SAM, which stems from requiring
two gradient computations per step. Some approaches reduce the number of gradient evaluations:
Liu et al. (2022) computed the perturbation only periodically, Jiang et al. (2023) activated SAM
only when the gradient norm is large, and Du et al. (2022b) reused gradients to avoid the second
computation. Others restrict the scope of perturbations: Du et al. (2022a) applied them only to a
random subset of parameters and sharpness-sensitive data, while Mueller et al. (2023) showed that
limiting them to normalization layers preserves most of the benefits. Beyond reducing computation,
Xie et al. (2024) improved training efficiency by parallelizing the two gradient computations.

Theoretical analyses of SAM. Alongside its practical success, a growing body of theoretical work
has analyzed SAM and examined its generalization properties from multiple perspectives. Wen et al.
(2022) formalized the precise notion of sharpness minimized by SAM, clarifying its regularization
effect. Möllenhoff & Khan (2023) reinterpreted SAM as a relaxation of Bayesian inference. Chen
et al. (2023) showed that SAM mitigates noise fitting and improves generalization over stochastic
gradient descent. Wei et al. (2023) further demonstrated that SAM alone can enhance adversarial
robustness while maintaining clean accuracy.

Another line of work investigates the training dynamics and stability of SAM. Compagnoni et al.
(2023) analyzed SAM through the lens of stochastic differential equations, offering a continuous-
time perspective. Bartlett et al. (2023) studied quadratic objectives, showing how SAM oscillates
across narrow valleys before drifting toward wider minimizers. Dai et al. (2023) demonstrated that
normalization plays a key role in stabilizing SAM and ensuring robustness. Long & Bartlett (2024)
extended the edge-of-stability threshold of gradient descent to SAM, showing that it depends on the
gradient norm. More recently, Zhou et al. (2025) highlighted a late-phase effect, whereby SAM
selects flatter minimizers when applied in the later stages of training.

Finally, several works have investigated the convergence properties of SAM in diverse settings. An-
driushchenko & Flammarion (2022) proposed USAM, an unnormalized variant obtained by remov-
ing gradient normalization, and analyzed its convergence. Si & Yun (2024) provided a systematic
study across convex, strongly convex, and nonconvex regimes. Khanh et al. (2024) developed a con-
vergence analysis of SAM and its variants within the framework of inexact gradient descent. Most
recently, Oikonomou & Loizou (2025) analyzed SAM and USAM within a unified framework and
proved convergence under the Polyak–Łojasiewicz condition.

Hallucinated minimizers and our contribution. Several prior studies have reported that SAM
may converge to points that are not minimizers of the original loss. Kaddour et al. (2022) empirically
observed that SAM can become trapped at saddle points, and Kim et al. (2023); Compagnoni et al.
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(2023) provided a theoretical explanation of this phenomenon using a continuous-time model of
SAM. In another line of work, Bartlett et al. (2023) showed that the SAM update is equivalent to
gradient descent on a surrogate function in the quadratic case, and Si & Yun (2024) proposed a
virtual loss to extend this idea, although it is rigorously defined only in one dimension and lacks
guarantees in higher dimensions.

In contrast, hallucinated minimizers represent a fundamentally different failure mode of SAM. They
differ from saddle points in that they are not critical points of the original loss, and from surrogate-
based interpretations in that they arise directly from the SAM objective. Our analysis applies to
general nonconvex and high-dimensional settings and provides a rigorous characterization of hallu-
cinated minimizers that can emerge in practical deep learning scenarios.

1.2 PRELIMINARIES AND NOTATION

Throughout the paper, we denote u(x) := ∇f(x)/∥∇f(x)∥ (for x such that ∇f(x) ̸= 0). To
optimize the SAM objective fSAM(x), we require its gradient ∇fSAM(x). Under the standard
smoothness assumption on f , this gradient is given by

∇fSAM(x) =
(
I + ρ∇u(x)

)
∇f

(
x+ ρ u(x)

)
,

where ∇u(x) denotes the Jacobian of u(x). In practice, however, for computational simplicity, one
does not use the exact gradient ∇fSAM. Instead, SAM employs the “shifted” gradient ∇f

(
x +

ρ u(x)
)
. This yields the (full-batch) SAM iteration

xk+1 = xk − ηk ∇f
(
xk + ρ u(xk)

)
, k = 0, 1, 2, . . . ,

where x0 ∈ Rd is the starting point and η0, η1, . . . ∈ R+ is the sequence of step sizes. The pertur-
bation radius ρ > 0 controls the degree of “flatness”: larger values of ρ expand the neighborhood
over which the loss is minimized, thereby steering the SAM iteration towards flatter minimizers. In
practice, SAM is typically implemented with stochastic gradients. When clarification is needed, we
refer to SAM with full-batch gradients versus SAM with stochastic gradients.

We introduce some notation. A function f : Rd → R is called real-analytic if its Taylor series at any
point x0 converges to f on a neighborhood of x0. For α ∈ R, the α-superlevel set of f is defined as
{x : f(x) ≥ α}. For a set C ⊂ Rd, we write ∂C for its boundary. A set C is connected if it cannot
be expressed as the union of two disjoint, nonempty open sets. The distance from a point x ∈ Rd to
a nonempty set C ⊆ Rd is d(x,C) := infy∈C ∥x − y∥; if C is closed, the infimum is attained, and
hence d(x,C) = miny∈C ∥x− y∥. For δ > 0, Bδ(x) is the ball centered at x with radius δ and the
(closed) δ-neighborhood of C is Nδ(C) = {x : d(x,C) ≤ δ}.

2 EXISTENCE OF HALLUCINATED MINIMIZERS

In this section, we establish—under very mild assumptions—the existence of hallucinated mini-
mizers: local minimizers of fSAM that are not even stationary points of the original function f .
Formally, we define hallucinated minimizers as follows:

Definition. A point x ∈ Rd is a hallucinated minimizer of f : Rd → R for ρ > 0 if x is a local
minimizer of fSAM = f

(
x+ ρ ∇f(x)

∥∇f(x)∥

)
while satisfying ∇f(x) ̸= 0.

When the loss function f is convex, hallucinated minimizers cannot arise, as shown in Theorem A.1
of Appendix A. In practical deep learning, however, the loss function f is highly nonconvex, and
local maximizers of f can give rise to hallucinated minimizers.

2.1 SIMPLIFIED EXISTENCE PROOF WITH ISOLATED MAXIMIZERS

We begin with a simplified proof under the more restrictive assumption that f has an isolated local
maximizer, defined as a point x• with an open neighborhood U such that

∇f(x) ̸= 0 and f(x) < f(x•) for all x ∈ U \ {x•}.

3
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Cε

ρ = ∥xh − x⋆∥

∇f(xh)

x⋆

xh

x•

x⋆: global minimizer
x•: local maximizer
Cε: superlevel set near x•

xh: farthest from x⋆ on Cε

∇f(xh) points toward x⋆

Figure 2: Illustration of the proof for Theorem 2.1. The point xh is the farthest from x⋆ among the
points in Cε. By the method of Lagrange multipliers, its gradient ∇f(xh) points exactly toward x⋆.

Theorem 2.1. Let f : Rd → R be continuously differentiable. Assume f has a global minimizer
(not necessarily unique) and an isolated local maximizer. Then, a hallucinated minimizer exists for
some ρ > 0.

Sketch of proof. We provide a brief sketch of the argument, with full details deferred to Ap-
pendix A.1. Figure 2 illustrates the key idea of the construction.

Let ε > 0 and define Cε as the (f(x•)−ε)-superlevel set restricted to a neighborhood of the isolated
local maximizer x•. For sufficiently small ε > 0, the set Cε is compact and satisfies: (i) for every
x ∈ Cε, we have f(x•) − ε ≤ f(x) ≤ f(x•); (ii) the gradient ∇f does not vanish on Cε\{x•};
and (iii) f(x) = f(x•)− ε on the boundary ∂Cε.

Next, consider g(x) = ∥x− x⋆∥2 and define

xh ∈ argmax
x∈Cε

g(x) = argmax
x∈∂Cε

g(x).

In words, if xh maximizes g over Cε, then it must lie on the boundary ∂Cε. Since ∂Cε coincides
with {x : f(x) = f(x•) − ε} near xh, we apply the method of Lagrange multipliers to xh ∈
argmaxx∈∂Cε

g(x) to obtain

2(x⋆ − xh) = ∇g(xh) = λ∇f(xh).

The fact that λ > 0 follows from the observation that ∇f(xh) points “toward” both x⋆ and x•, as
illustrated in Figure 2. Finally, setting ρ = λ∥∇f(xh)∥/2 yields

xh + ρ ∇f(xh)
∥∇f(xh)∥ = x⋆,

and hence fSAM(xh) = f(x⋆). Thus, xh is a (global) minimizer of fSAM.

Importantly, the existence of a hallucinated minimizer also holds when x⋆ is a local minimizer,
provided that f has a locally Lipschitz gradient. See Appendix A.2 for details.

The proof of Theorem 2.1 reveals the conditions under which a hallucinated minimizer is likely to
arise. Figure 2 illustrates the core idea: given a minimizer x⋆, xh satisfies x⋆ = xh + ρ ∇f(xh)

∥∇f(xh)∥ .
This means that at xh, the gradient points directly toward x⋆. However, near a minimizer, the gradi-
ent typically points outward, making it difficult to identify such xh in its immediate neighborhood.
To resolve this, Theorem 2.1 requires the presence of a nearby maximizer, which allows the gradient
to align in the desired direction and thus necessitates nonconvexity of the objective.

The proof also shows that the perturbation radius ρ must exceed the distance between minimizer and
the maximizer, since xh is the farthest point from x⋆ on the superlevel set Cε. Because xh ∈ Cε, a
hallucinated minimizer is located near the maximizer. This implies that hallucinated minimizers are
typically associated with high loss values.

Taken together, these observations suggest that hallucinated minimizers generally arise in nonconvex
objectives containing both local maximizers and minimizers, and that they tend to occur near a local
maximizer within a high-loss region.

4
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2.2 EXISTENCE OF HALLUCINATED MINIMIZERS FOR NEURAL NETWORKS

Theorem 2.1 assumes that the local maximizer is isolated. We now relax this assumption, since in
neural networks, maximizers (like minimizers) often occur as sets.

To this end, we leverage the real-analyticity of neural networks, an assumption that holds when
training on a finite dataset (empirical loss) with real-analytic activation functions. We note that all
commonly used activation functions are real-analytic, except for ReLU. Technically, real-analyticity
affords us the Łojasiewicz inequality, which we use to rule out certain pathological cases.

Notably, our result does not rely on restrictive but common structural assumptions on the loss func-
tion, such as global smoothness or a quadratic form.

Definition. Let f : Rd → R be a continuous function. A nonempty connected set X• ⊆ Rd is
a local maximizer set of f if there exists δ > 0 such that X• is the maximizer set over its δ-
neighborhood. In other words,

X• = argmax
y∈Nδ(X•)

f(y).

Furthermore, we denote by f(X•) the common function value of f on X•.

Figure 3: Illustration of a local maximizer set. The dotted unit circle is a local maximizer set of a
real-analytic function and is not a singleton.

Theorem 2.2. Let f : Rd → R be real-analytic. Assume f has a global minimizer (not necessarily
unique) and a bounded local maximizer set. Then, a hallucinated minimizer exists for some ρ > 0.

The proof of Theorem 2.2, fully presented in Appendix A.4, is analogous to that of Theorem 2.1,
except that the isolatedness assumption is replaced by the real-analyticity assumption. A key tech-
nical point is to rule out the possibility that critical points accumulate densely around X•. This is
achieved using the Łojasiewicz inequality:

Lemma 2.3 (Łojasiewicz (1963)). If f : Rd → R is real-analytic, then for every p ∈ Rd, there exist
an open neighborhood U of p, a constant C > 0, and an exponent q ∈ (0, 1) such that

|f(p)− f(x)|q ≤ C∥∇f(x)∥ for all x ∈ U.

Most modern neural networks are real-analytic. The real-analyticity assumption on f is prac-
tical in the context of deep learning. In particular, consider the empirical loss function

f(θ) =

N∑
i=1

ℓ(hθ(Xi), Yi),

5
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where θ ∈ Rd denotes the neural network parameters. If the dataset is finite (N < ∞), ℓ(·, ·)
is real-analytic in its first argument (as is the case for most commonly used losses, such as cross-
entropy), and hθ is a neural network built from real-analytic activation functions (e.g., tanh, ELU,
GELU, SiLU, swish), then f(θ) is real-analytic. More concretely, hθ may be a finite composition of
linear layers, convolution, attention, residual connections, layer normalization, batch normalization,
real-analytic activation functions, the softmax function, average pooling, and dropout. However, hθ

cannot incorporate ReLU, leaky ReLU, or max-pooling, since these operations are non-smooth and
therefore non-analytic.

Further discussion and details are provided in Appendix A.3.

3 GEOMETRIC AND DYNAMICAL PROPERTIES OF HALLUCINATED MINIMIZERS

In this section, we establish a finer geometric property of hallucinated minimizers as well as a
dynamical property of the SAM iterates. Recall that we use the notation u(x) = ∇f(x)/∥∇f(x)∥.

3.1 THE SET OF HALLUCINATED MINIMIZERS CAN HAVE MANIFOLD STRUCTURES

The following theorem establishes that when the set of true minimizers has an m-dimensional mani-
fold structure, the set of hallucinated minimizers inherits the same geometric structure. In particular,
this result explains why, in Figure 1, the set of SAM minimizers appears as a curve.
Theorem 3.1. Suppose f : Rd → R satisfies the assumptions of Theorem 2.2. Assume M ⊆
argminf , where M ⊆ Rd is a nonempty smooth m-dimensional manifold. Let xh be a hallu-
cinated minimizer with a corresponding ρ > 0 as constructed in the proof of Theorem 2.2. If
I + ρ∇u(xh) ∈ Rd×d is nonsingular, then the set of hallucinated minimizers contains a smooth
manifold of dimension m.

We defer the proof to Appendix B.1.

3.2 HALLUCINATED MINIMIZERS ARE ATTRACTORS

We have established the existence of hallucinated minimizers, but does SAM actually converge to
them? Recall that the SAM iteration is given by

xk+1 = xk − ηk∇f(xk + ρ u(xk)) , k = 0, 1, 2, . . . ,

where ηk > 0 denotes the step size.

The answer is yes—hallucinated minimizers can indeed be attractors of the SAM dynamics. Thus,
the concern about hallucinated minimizers in neural network training is not merely hypothetical. In
Section 4, we provide empirical evidence that SAM can converge to hallucinated minimizers. In this
subsection, we theoretically establish local convergence to hallucinated minimizers.
Theorem 3.2. Suppose f : Rd → R is real-analytic, and let H ⊂ Rd be a bounded, connected set
of hallucinated minimizers of f for a fixed perturbation radius ρ > 0. Assume there exists δ > 0
such that the δ-neighborhood of H contains no minimizers of fSAM other than those already in H .
Assume further that every xh ∈ H satisfies

1 + ρλmin(Sym(∇u(xh))) > 0, where Sym(∇u(xh)) =
1

2
(∇u(xh) +∇u(xh)

⊤).

If the initialization x0 is chosen sufficiently close to H , then there exists a sufficiently small fixed
step size ηk = η > 0 such that the SAM iterates converge to H , in the sense that d(xk, H) → 0.

We defer the proof to Appendix B.2.

4 EMPIRICAL ANALYSES IN DEEP LEARNING

In this section, we empirically validate our theory by analyzing hallucinated minimizers in deep
learning. We show that SAM trajectories can, in practice, converge to hallucinated minimizers.
We further demonstrate that a simple switching strategy can effectively prevent this convergence,
providing a practical safeguard for SAM against this failure mode.

6
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(a) Original loss f around xh (b) SAM loss fSAM around xh (c) SAM iterates converge back to the
hallucinated minimizer set.

Figure 4: Visualizations of f and fSAM around the hallucinated minimizer xh. Plots (a) and (b)
are taken on a 2-dimensional plane defined by xh and two random directions. These show that
xh is indeed a minimizer of fSAM but not a stationary point of f . Plot (c) depicts fSAM on the
2-dimensional plane containing xh, x0, and xN , where x0 is a small perturbation of xh and xN is
obtained after N = 1000 SAM steps from x0. The pink horizontal line segment indicates the set of
hallucinated minimizers, showing that the SAM trajectory converges back to this set.

4.1 SAM CAN CONVERGE TO HALLUCINATED MINIMIZERS

We first present an example in which SAM converges to a non-minimizer and confirm that the
point is a hallucinated minimizer. We then examine how frequently such convergence occurs across
diverse experimental settings.

Do we really converge to hallucinated minimizers? We begin with a simple neural network
setting and provide an example where SAM converges to a hallucinated minimizer. Specifically,
we train a two-layer neural network with Tanh activations on MNIST (LeCun et al., 1998) us-
ing full-batch updates, yielding a smooth objective. The experimental setup is described in Ap-
pendix C. With a perturbation radius ρ = 1.8, we train for over 20 million steps and observe
that the trajectory converges to a single point xh. At this point, the SAM gradient nearly van-
ishes (∥∇f(xh + ρ u(xh))∥ = 4.8 × 10−9), while the original gradient remains relatively large
(∥∇f(xh)∥ = 0.0627). Thus, xh is a stationary point of fSAM but not of f , showing that SAM can
converge to a hallucinated stationary point.

To verify that xh is indeed a hallucinated minimizer, we visualize the loss landscape around it, as
shown in Figure 4. Following the method of Li et al. (2018), we define the plane

x(α, β) = xh + αu+ βv,

where u, v ∈ Rd are orthogonal vectors of equal norm. In Figure 4a, xh is clearly not a minimizer of
f , whereas in Figure 4b, on the same plane, it appears as a minimizer of fSAM. This demonstrates
that SAM can converge to a hallucinated minimizer in neural networks.

To investigate the geometry around xh in more detail, we add a small random perturbation to xh,
yielding a nearby point x0 with ∥x0 − xh∥ = 0.1. Starting from x0, we run N = 1000 additional
SAM steps to reach xN . Figure 4c shows the SAM objective on the plane spanned by xh, x0,
xN . The SAM trajectory (blue) is projected onto this plane, while the SAM minimizers (pink) are
computed within a tolerance of 10−9. We observe that hallucinated minimizers form a connected
set, consistent with prior work on connected minimizers in neural networks (Garipov et al., 2018)
and with Theorem 3.1, which guarantees that this structure is preserved.

How common are hallucinated minimizers? Next, we investigate convergence to hallucinated
minimizers across multiple experiments, showing that this phenomenon can occur frequently in deep
learning. Figure 5 presents SAM training outcomes in the same full-batch setting as before, with 80
distinct seeds and 100,000 iterations for perturbation radii ρ = 1.0, 1.3, 1.6, 1.9. The top row shows
SAM-only results, while the bottom row corresponds to the switching strategy discussed later. In
this subsection, however, we focus on the SAM-only setting.

7
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ρ = 1.0 ρ = 1.3 ρ = 1.6 ρ = 1.9

(a) SAM-only

(b) GD → SAM switching

Figure 5: Training loss and test accuracy for SAM on MNIST with a 2-layer network using full-batch
gradients. The top row shows the results from SAM-only training, while the bottom row shows
the results from the switching strategy as described in Section 4.2. Final average test accuracies
are 96.77%, 90.85%, 67.88%, and 13.36% for SAM-only training, compared to 97.77%, 97.73%,
97.69%, and 97.62% for the switching strategy. These results demonstrate that the switching strategy
improves test accuracy and stabilizes outcomes across perturbation radii.

The experiments reveal that convergence to hallucinated minimizers depends on the perturbation
radius ρ. At ρ = 1.0, training consistently converges to zero loss, indicating convergence to a
true minimizer of the original loss. At ρ = 1.3 and 1.6, some trajectories stabilize at nonzero-loss
points. At ρ = 1.9, most trajectories converge to such nonzero-loss points, indicating that SAM
predominantly reaches hallucinated minimizers.

These findings provide strong evidence that hallucinated minimizers are not rare anomalies but oc-
cur consistently in deep learning when the perturbation radius ρ is large. This observation aligns
with Theorem 2.1, whose proof requires the perturbation radius ρ to exceed the distance between a
minimizer and a maximizer. At the same time, even for the same ρ, trajectories may converge either
to a hallucinated minimizer or to a true minimizer, consistent with Theorem 3.2, which depends on
the initialization’s proximity to a hallucinated minimizer.

In the stochastic case, we train ResNet-18 (He et al., 2016) on CIFAR-100 (Krizhevsky, 2009) with
mini-batch updates, following the FSAM implementation of Li et al. (2024). We observe a similar
trend: larger perturbation radii lead to unstable training. Further details of the experimental settings
and results are provided in Appendix C.

4.2 SWITCHING STRATEGY FOR AVOIDING HALLUCINATED MINIMIZERS

One obvious approach to avoiding hallucinated minimizers is to use a small perturbation radius
ρ > 0. Indeed, hallucinated minimizers do not arise when ρ = 0 (i.e., when SAM is not applied).
However, the perturbation itself is the key mechanism that regularizes against sharpness, making it
desirable to use a moderately large value of ρ.

In this subsection, we introduce a simple yet effective heuristic for avoiding hallucinated minimizers,
which we call switching. The idea is to use plain gradient descent for the first 10% of training
iterations and then switch to SAM.

As shown in Figure 5b, the switching strategy consistently drives the training loss to zero across all
tested perturbation radii, including large values of ρ for which standard SAM fails to converge to the
true minima. Figure 6 further demonstrates the improved test accuracy achieved under the switching
strategy. Not only does switching yield higher test accuracy, but it also reduces sensitivity to the

8
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Figure 6: Final test accuracy for SAM-only and the switching strategy on CIFAR-100 with ResNet-
18 using stochastic gradients. Each curve shows the mean (bold) and standard deviation (shaded
area) over 5 seeds, evaluated at perturbation radii ρ = 0.1, 0.2, . . . , 0.8. Both methods achieve peak
accuracy at ρ = 0.3, with 77.05% for SAM-only and 77.49% for the switching strategy.

choice of ρ. This is a notable advantage, since the perturbation radius ρ is a difficult hyperparameter
to tune in SAM.

The effectiveness of switching can be understood within our theoretical framework. The proof of
Theorem 2.1 suggests that hallucinated minimizers tend to arise “near” local maximizers, and hence
are more likely to occur in high-loss regions. This further implies that during the early stages of
training, when loss values are large, SAM is particularly at risk of entering a basin of attraction
of hallucinated minimizers. By first applying gradient descent to escape from high-loss regions
before switching to SAM, this risk is mitigated. Consequently, our simple remedy ensures that
SAM remains stable even for large perturbation radii.

A related mechanism was studied by Zhou et al. (2025), who applied SAM only in the later stages of
training to improve generalization. In contrast, our results show that the switching strategy specifi-
cally prevents convergence to hallucinated minimizers, providing a complementary explanation for
its effectiveness.

5 CONCLUSION

In this work, we identify a previously unrecognized failure mode of SAM: its tendency to converge
to hallucinated minimizers. Our theoretical analysis establishes the existence of such minimizers
under practical assumptions, and our empirical results validate the theory by demonstrating that
SAM can indeed converge to them. To address this, we present a simple switching strategy that
effectively avoids hallucinated minimizers.

Although our theoretical and empirical findings are consistent, gaps remain between the theoretical
characterizations and broader empirical findings. These gaps open several interesting avenues for
follow-up work.

One direction is to extend our theoretical analysis to the setting where SAM employs stochastic
gradients rather than full-batch gradients. While our experiments suggest that hallucinated minimiz-
ers also arise in the stochastic case, a more rigorous theoretical understanding is desirable. Another
direction is to analyze, from a theoretical standpoint, how likely it is for SAM to converge to halluci-
nated minimizers. Our experiments show that convergence to such minimizers is common, whereas
our current theory only guarantees convergence within a local neighborhood of these points. Yet
another direction is to extend the analysis to other variants of SAM. Our current results rely on the
normalization of the ascent direction, which renders the magnitude of ∇f(x) irrelevant in construct-
ing hallucinated minimizers. For SAM variants that incorporate gradient magnitude in the ascent
step, a modified analysis would be necessary.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure reproducibility. Complete proofs of all theorems,
together with detailed assumptions, are provided in Appendix A and Appendix B. Experimen-
tal setups, including datasets and hyperparameters, are described in Appendices C and D. The
implementation of our main experiments is provided in the supplementary materials and is also
available through an anonymous repository at https://anonymous.4open.science/r/
SAM-can-hallucinate-minimizers-4B82.
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A OMITTED DETAILS FOR SECTION 2

We begin by showing that the hallucinated minimizers cannot exist when the loss function is convex.
For ease of exposition, throughout the appendices we use the following notation: for x ∈ Rd, let

x+ := x+ ρ
∇f(x)

∥∇f(x)∥
.

Proposition A.1. If the function f : Rd → R is convex, then there is no point x ∈ Rd such that
∇f

(
x+ ρ ∇f(x)

∥∇f(x)∥

)
= 0.

Proof. Suppose ∇f(x) ̸= 0 and ∇f(x+) = 0. Since f is convex, x+ must be a global minimizer.
However, convexity also implies

f(x+) ≥ f(x) +

〈
∇f(x), ρ

∇f(x)

∥∇f(x)∥

〉
= f(x) + ρ∥∇f(x)∥ > f(x),

which contradicts the optimality of x+.

A.1 FULL PROOF OF THEOREM 2.1

We now provide the full proof of the existence theorem.
Theorem 2.1. Let f : Rd → R be continuously differentiable. Assume f has a global minimizer
(not necessarily unique) and an isolated local maximizer. Then, a hallucinated minimizer exists for
some ρ > 0.

Proof. Let x• be a local maximizer with f(x•) = M , and let C ⊆ U be a compact ball centered
at x• such that f(x) < f(x•) for all x ∈ C. The strict inequality follows from x• being an
isolated critical point. Define m := max∂C f(x) < M and consider the preimage f−1([M−ε,M ])
where 0 < ε < M − m. Let Cε denote the connected component of this preimage containing
x• ∈ f−1([M − ε,M ]).

By Lemma A.2, Cε ⊆ int C, and hence Cε is compact. Moreover, by Lemma A.3, the function
value on the boundary satisfies f(x) = M − ε for all x ∈ ∂Cε.

Consider the squared distance function g(x) = ∥x− x⋆∥2, and let

xh ∈ argmaxCε
g(x), xh ̸= x⋆, and ρ := ∥xh − x⋆∥.

Then, xh must be on the boundary of Cε, and thus f(xh) = M − ε. Furthermore, since x• ̸= xh

is the only critical point of f in Cε, the gradient at xh does not vanish. Consequently, there exists
an open neighborhood V of xh such that Σ := {x ∈ V : f(x) = M − ε} is an embedded
C1 hypersurface near xh. By shrinking V if necessary, we may assume V ∩ ∂Cε = Σ. Thus,
maximizing g(x) over Cε is locally equivalent to maximizing g(x) over the hypersurface Σ. By the
method of Lagrange multipliers, we obtain

∇g(xh) = λ∇f(xh).

That is, there exists λ > 0 such that

2(x⋆ − xh) = λ∇f(xh)

by Lemma A.4. Taking norms of both sides yields λ = 2ρ
∥∇f(xh)∥ . Therefore,

x⋆ = xh + ρ
∇f(xh)

∥∇f(xh)∥
,

which implies that xh is a hallucinated minimizer.

We now prove the three lemmas used in the proof of Theorem 2.1.
Lemma A.2. The set Cε from Theorem 2.1 is contained in intC. Hence, it is compact.
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Proof. Suppose x ∈ Cε. If x ∈ ∂C, then f(x) ≥ M − ε > m, contradicting the definition of m as
the maximum value of f on ∂C.

If instead x ∈ extC = Rd \ C, then intC and Rd \ C are two nonempty disjoint open sets
that separate Cε, contradicting the fact that Cε is connected. Therefore, x must lie in intC, and
Cε ⊆ intC.

The following lemma shows that every point on ∂Cε in Theorem 2.1 lies on the same level set.

Lemma A.3. Any point x ∈ ∂Cε from Theorem 2.1 satisfies f(x) = M − ε.

Proof. Take x ∈ ∂Cε. If f(x) > M − ε, continuity of f implies that there exists r > 0 such that
f(y) > M − ε for all y in an open ball centered at x with radius r. This contradicts the fact that x
is a boundary point of Cε.

If f(x) < M − ε, this directly contradicts the fact that x ∈ f−1([M − ε,M ]). Therefore, f(x) =
M − ε.

The next lemma establishes that λ > 0 in Theorem 2.1.

Lemma A.4. In the proof of Theorem 2.1, the vectors x⋆ − xh and ∇f(xh) point in the same
direction. Equivalently, λ > 0.

Proof. Let V be an open neighborhood of xh. By possibly shrinking V , we may assume the local
superlevel set {x ∈ V : f(x) ≥ M − ε} is contained in Cε. Then, xh is a maximizer of g over the
feasible region {x ∈ V : f(x) ≥ M − ε}.

Consider any feasible direction d ∈ Rd with ⟨∇f(xh), d⟩ ≥ 0. Let γ : (−ε, ε) → Rd be a smooth
curve such that γ(0) = xh, γ′(0) = d, and γ(t) ∈ V . Then, f(γ(t)) ≥ M − ε for sufficiently small
t > 0. Moreover,

d

dt
f(γ(t))

∣∣∣∣∣
t=0

= ⟨∇f(xh), d⟩ ≥ 0,

so γ(t) remains in the feasible set for small t > 0. Since xh maximizes g, it follows that

lim
t↓0

d

dt
g(γ(t)) = lim

t↓0

d

dt
∥γ(t)− x⋆∥2 = lim

t↓0
2⟨γ(t)− x⋆, γ

′(t)⟩ = 2⟨xh − x⋆, d⟩ ≤ 0.

Taking the feasible direction d = ∇f(xh) yields

2⟨xh − x⋆,∇f(xh)⟩ = −2λ∥∇f(xh)∥2 ≤ 0.

Since λ ̸= 0, this inequality implies λ > 0.

A.2 EXTENDING THEOREM 2.1 TO LOCAL MINIMIZERS

We now extend Theorem 2.1 by relaxing the assumption that x⋆ is a global minimizer. In fact, a
hallucinated minimizer can still exist when x⋆ is only a local minimizer. To show this, we first
establish the following lemma.

Lemma A.5. Suppose ∥∇f(x) −∇f(y)∥ ≤ L∥x − y∥ for some L > 0, and that ∇f(x) ̸= 0 and
∇f(y) ̸= 0. Then, we have

∥y + ρ u(y)− x− ρ u(x)∥ ≤
(
1 +

2ρL

∥∇f(x)∥

)
∥y − x∥.
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Proof. It follows from the triangle inequality that

∥y + ρ u(y)− x− ρ u(x)∥

≤ ∥y − x∥+ ρ
∥∥∥ ∇f(y)

∥∇f(y)∥
− ∇f(x)

∥∇f(x)∥

∥∥∥
≤ ∥y − x∥+ ρ

∥∥∥ ∇f(y)

∥∇f(y)∥
− ∇f(y)

∥∇f(x)∥

∥∥∥+ ρ
∥∥∥ ∇f(y)

∥∇f(x)∥
− ∇f(x)

∥∇f(x)∥

∥∥∥
≤ ∥y − x∥+ ρ

∥∇f(x)−∇f(y)∥
∥∇f(x)∥

+ ρ
∥∇f(y)−∇f(x)∥

∥∇f(x)∥

≤ ∥y − x∥
(
1 +

2ρL

∥∇f(x)∥

)
.

Finally, we obtain the following corollary.
Corollary A.6. Suppose f has a locally Lipschitz gradient. Then, Theorem 2.1 remains valid even
when x⋆ is a local minimizer of f .

Proof. Recall the last equation of the proof of Theorem 2.1:

x⋆ = xh + ρ
∇f(xh)

∥∇f(xh)∥
.

Consider an open ball centered at xh with radius r chosen sufficiently small so that ∇f does not
vanish on the ball. Let L > 0 be such that ∥∇f(xh)−∇f(y)∥ ≤ L∥xh − y∥ for any y ∈ Br(xh).
Since x⋆ is a local minimizer, there exists δ > 0 such that

f(y) ≥ f(x⋆) ∀y with ∥y − x⋆∥ ≤ δ.

Now consider an open ball centered at xh with radius

r⋆ := min
{ δ

1 + 2ρL
∥∇f(xh)∥

, r
}
.

Then, for any y ∈ Br⋆(xh), we have

∥x⋆ − y − ρ u(y)∥ = ∥xh + ρ u(xh)− y − ρ u(y)∥ ≤ ∥xh − y∥
(
1 +

2ρL

∥∇f(xh)∥

)
≤ δ,

where the first inequality follows from Lemma A.5. Hence,

f(y + ρ u(y)) ≥ f(x⋆).

This implies fSAM(y) ≥ fSAM(xh), so xh is a local minimizer of fSAM, and therefore a halluci-
nated minimizer.

A.3 MOST MODERN NEURAL NETWORKS ARE REAL-ANALYTIC: FURTHER DISCUSSION

We now formalize the claim that the neural network θ 7→ hθ(X) is real-analytic in its parameters θ.
By standard arguments, the following two lemmas establish that the final loss function

f(θ) =

N∑
i=1

ℓ(hθ(Xi), Yi)

is real-analytic under the assumptions on hθ stated in Section 2.
Lemma A.7. If hθ : Rd → Rh is a neural network with real-analytic activation functions, then hθ

is real-analytic as a function of θ.

Proof. Fix input data x and let z denote the hidden states, which depend on x and θ. Then, z, hence
the entire network hθ, is a finite composition of the following real-analytic mappings:
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• (Layer normalization) z 7→ γ⊙ z−µL(z)√
σL(z)+ε

+β, where µL(z) and σL(z) are the per-sample

mean and variance;

• (Batch normalization) z 7→ γ⊙ z−µB(z)√
σB(z)+ε

+β, where µB(z) and σB(z) are the per-channel

mean and variance;

• (Activation) z 7→ σ(z), where σ is a real-analytic activation function;

• (Softmax) z 7→ µ(z), where µ is the softmax function;

• (Average pooling) z 7→ Az, where A is a linear averaging operator;

• (Residual connection) z 7→ z + Fθ(z), where F is real-analytic in θ;

• (Convolution layer) (z,Wi, bi) 7→ Wi ∗ z + bi, where ∗ denotes the discrete convolution
operator;

• (Dropout) z 7→ m⊙ z, where m is a masking operator;

• (Linear layer) (z,Ai, bi) 7→ Aiz + bi; and

• (Attention layer) (z,WQ,WK ,WV ) 7→ µ
(

QK⊤
√
dattn

)
V , where Q = zWQ, K = zWK ,

V = zWV , and dattn is the size of the attention matrix Q,K.

Since the composition of real-analytic functions is real-analytic, it follows that hθ is real-analytic.

Finally, the next lemma establishes that f is real-analytic. This follows directly from the fact that
the composition of real-analytic functions is real-analytic; hence the proof is omitted.

Lemma A.8. Let hθ be a (finite) neural network constructed with linear layers, attention, con-
volution, layer normalization, and real-analytic activation functions (all commonly used activation
functions except ReLU are real-analytic). Then, for a real-analytic loss function ℓ,

f(θ) :=
1

N

N∑
i=1

ℓ(hθ(Xi), Yi)

is real-analytic as a function of θ.

A.4 FULL PROOF OF THEOREM 2.2

The following lemma shows that, under the real-analyticity assumption, critical points cannot accu-
mulate around the local maximizer set X . The argument relies on the Łojasiewicz inequality.

Lemma A.9. Suppose f : Rd → R is real-analytic and X is a bounded local maximizer set of f
with some δ > 0. Then, there exists ε > 0 with the following property: if x is a critical point in the
δ-neighborhood of X with f(x) ≥ f(X)− ε, then x ∈ X .

Proof. Define the closed δ-neighborhood of X by Nδ(X) := {y : d(y,X) ≤ δ}. Since X is a
bounded connected set, Nδ(X) is compact and connected. Let S denote the set of critical points in
Nδ(X) that are not in X:

S = {s ∈ Nδ(X) : ∇f(s) = 0} \X.

If S = ∅, then the theorem holds for any ε > 0, and we are done. Assume instead that S ̸= ∅. For
each point x ∈ X , Lemma 2.3 guarantees the existence of an open neighborhood Ux, a constant
Cx > 0, and an exponent qx ∈ (0, 1) such that

|f(x)− f(y)|qx = |f(X)− f(y)|qx ≤ Cx∥∇f(y)∥, y ∈ Ux.

If y ∈ S, then
|f(X)− f(y)|qx ≤ Cx∥∇f(y)∥ = 0.
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This implies f(y) = f(X), which is a contradiction. Hence, S ⊆ C := Nδ(X) \
⋃

x∈X Ux. (Note
that C ̸= ∅ since S ̸= ∅). Since C is compact, define

0 < ε⋆ := f(X)−max
y∈C

f(y).

Then, any ε ∈ (0, ε⋆) satisfies the theorem.

Finally, we use Lemma A.9 to complete the proof of Theorem 2.2.
Theorem 2.2. Let f : Rd → R be real-analytic. Assume f has a global minimizer (not necessarily
unique) and a bounded local maximizer set. Then, a hallucinated minimizer exists for some ρ > 0.

Proof. Define the closed δ-neighborhood of a local maximizer set X as Nδ(X) := {y : d(y,X) ≤
δ}. Since X is a bounded connected set, Nδ(X) is compact and connected. By Lemma A.9, there
exists ε1 > 0 such that any critical point in Nδ(X) with function value at least f(X)− ε1 must lie
in X . Next, choose ε2 > 0 such that 0 < ε2 < f(X)−max∂Nδ(X) f(x).

Let ε := min{ε1, ε2}, and consider the preimage f−1([f(X) − ε, f(X)]). Define Cε as the con-
nected component of this preimage that contains X .

By the same reasoning as in Lemma A.2, Cε ⊆ int Nδ(X), and hence Cε is compact. Moreover,
by Lemma A.3, every point x ∈ ∂Cε satisfies f(x) = f(X)− ε.

Now define g(x) = ∥x− x⋆∥2 and let

xh ∈ argmaxCε
g(x), xh ̸= x⋆, ρ := ∥xh − x⋆∥.

Since the only critical points in Cε are those in X , we have ∇f(xh) ̸= 0. Thus, there exists
an open neighborhood V of xh such that Σ := {x ∈ V : f(x) = f(X) − ε} is an embedded
smooth hypersurface near xh. By possibly shrinking V , we may assume V ∩ ∂Cε = Σ. Therefore,
maximizing g(x) over Cε is locally equivalent to maximizing g(x) over the hypersurface Σ.

Then, by the method of Lagrange multipliers, we obtain

∇g(xh) = λ∇f(xh),

which implies that there exists λ > 0 such that

2(x⋆ − xh) = λ∇f(xh).

The positivity of λ follows from the same reasoning as in Lemma A.4. Taking norms of both sides
yields λ = 2ρ

∥∇f(xh)∥ . Therefore,

x⋆ = xh + ρ
∇f(xh)

∥∇f(xh)∥
,

which shows that xh is a hallucinated minimizer.

B OMITTED DETAILS FOR SECTION 3

B.1 PROOF OF THEOREM 3.1

In this subsection, we prove Theorem 3.1. The argument relies on the implicit function theorem,
which we state below.
Theorem B.1 (Implicit function theorem, Lee (2013)). Let U ⊆ Rd × Rd be an open set, and let
(x, y) denote the coordinates on U . Suppose Φ : U → Rd is a smooth function, (a, b) ∈ U , and
c = Φ(a, b). If the d× d matrix (

∂Φi

∂yj
(a, b)

)
is invertible, then there exist neighborhoods V0 ⊆ Rd of a and W0 ⊆ Rd of b, together with a
smooth function F : V0 → W0, such that Φ−1(c) ∩ (V0 ×W0) is the graph of F . In other words,
Φ(x, y) = c for (x, y) ∈ V0 ×W0 if and only if y = F (x).
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Now we prove Theorem 3.1.
Theorem 3.1. Suppose f : Rd → R satisfies the assumptions of Theorem 2.2. Assume M ⊆
argminf , where M ⊆ Rd is a nonempty smooth m-dimensional manifold. Let xh be a hallu-
cinated minimizer with a corresponding ρ > 0 as constructed in the proof of Theorem 2.2. If
I + ρ∇u(xh) ∈ Rd×d is nonsingular, then the set of hallucinated minimizers contains a smooth
manifold of dimension m.

Proof. Let xh be a hallucinated minimizer of f constructed in the proof of Theorem 2.2. Then, it
satisfies

x⋆ = xh + ρ
∇f(xh)

∥∇f(xh)∥
= xh + ρu(xh)

for some perturbation radius ρ > 0. Let V be an open neighborhood of xh on which the gradient
never vanishes. Such a neighborhood exists because ∥∇f(xh)∥ > 0 and ∇f is continuous. Define
F : Rd × V → Rd by

F (x, y) = y + ρ u(y)− x.

Clearly, F (x⋆, xh) = 0, and by assumption, dF
dy (x⋆, xh) = I + ρ∇u(xh) is invertible. By the

implicit function theorem, there exist open neighborhoods U0 ⊆ Rd of x⋆ and V0 ⊆ V of xh,
together with a smooth map G : U0 → V0, such that G(x⋆) = xh and

F (x,G(x)) = 0 ∀x ∈ U0.

This also implies that G is also a local diffeomorphism at x⋆, since the differential is invertible at
x⋆:

−I +
dF

dy

∣∣∣∣
y=xh

dG

dx

∣∣∣∣
x=x⋆

= 0 ⇐⇒ dG

dx

∣∣∣∣
x=x⋆

=

(
dF

dy

) ∣∣∣∣−1

y=xh

.

In particular, there exists an open U ⊆ U0 around x⋆ such that G|U : U → G(U) is a diffeomor-
phism. Since U ∩ M is an m-dimensional manifold (without boundary), the image G(U ∩ M)
under the diffeomorphism is also an m-dimensional manifold.

Finally, note that any y ∈ G(U ∩M) satisfies

x = y + ρ
∇f(y)

∥∇f(y)∥
,

where x = G−1(y) ∈ M∩U and hence x ∈ argmin f . Thus, G(U ∩M) forms an m-dimensional
manifold of hallucinated minimizers.

B.2 PROOF OF THEOREM 3.2 AND FURTHER DISCUSSION

In this subsection, we prove Theorem 3.2 and then discuss the special case of isolated hallucinated
minimizers.
Theorem 3.2. Suppose f : Rd → R is real-analytic, and let H ⊂ Rd be a bounded, connected set
of hallucinated minimizers of f for a fixed perturbation radius ρ > 0. Assume there exists δ > 0
such that the δ-neighborhood of H contains no minimizers of fSAM other than those already in H .
Assume further that every xh ∈ H satisfies

1 + ρλmin(Sym(∇u(xh))) > 0, where Sym(∇u(xh)) =
1

2
(∇u(xh) +∇u(xh)

⊤).

If the initialization x0 is chosen sufficiently close to H , then there exists a sufficiently small fixed
step size ηk = η > 0 such that the SAM iterates converge to H , in the sense that d(xk, H) → 0.

Proof. First, we claim that the set H is closed (hence compact) by construction. Indeed, if xh ∈ H̄ ,
then the corresponding function value must equal fSAM(H) = min fSAM. By our assumption on
H , this implies xh ∈ H . Hence H = H̄ .

Let Nδ(H) denote the closed δ-neighborhood of H from the theorem assumption. Since 1 +
ρλmin(Sym(∇u(xh))) > 0 and ∥∇f(xh)∥ > 0 for all xh ∈ H , there exists an open neighbor-
hood W of H such that 1 + ρλmin(Sym(∇u(x))) > 0 and ∥∇f(x)∥ > 0 for any x ∈ W . By
shrinking Nδ(H) if necessary, we may assume Nδ(H) ⊆ W and fSAM is real-analytic on Nδ(H).
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Applying an argument analogous to Lemma A.9, with local maximizers replaced by minimizers, we
obtain ε⋆ > 0 such that if x is a critical point in Nδ(H) with fSAM(x) ≤ fSAM(H) + ε⋆, then
x ∈ H .

Now consider the closed neighborhood Nδ/2(H), and set

m := min
x∈∂Nδ/2(H)

fSAM(x) > f⋆,

where f⋆ = fSAM(H). The strict inequality follows from the construction of Nδ(H). Choose ε > 0
such that

0 < ε < m− fSAM(H) = m− f⋆ and 0 < ε < ε⋆.

Let Cε be the connected component of the sublevel set

(fSAM)−1((−∞, f⋆ + ε]) = (fSAM)−1([f⋆, f⋆ + ε])

that contains H . Then, Cε is compact and contains no other critical points of fSAM besides those in
H . The proof of Cε being bounded (hence compact) by Nδ/2(H) is analogous to Lemma A.2.

Define

Cρ := {x : d(x,Cε) ≤ ρ}.

Then, Cρ is also compact. Set

M := max
x∈Cρ

∥∇f(x)∥ > 0, L := max
x∈Nδ(H)

∥∇2f(x)∥ > 0,

and

γ := min
x∈Nδ(H)

(1 + ρλmin(Sym(∇u(x))) > 0.

Consider the SAM update with fixed ρ > 0 and constant step size ηk = η chosen such that

0 < η < min
{ δ

2M
,
2γ

L

}
,

and initialization at x0 ∈ Cε. We show by induction that the SAM iterates {xk} remain in Cε. The
base case x0 ∈ Cε is true by assumption. Suppose xk ∈ Cε. Then, by definition of the SAM update,
x+
k ∈ Cρ and xk+1 = xk − η∇f(x+

k ). We claim xk+1 ∈ Nδ(H), since

d(xk+1, H) = inf
xh∈H

∥xk+1 − xh∥

≤ inf
xh∈H

∥xk − xh∥+ ∥xk+1 − xk∥

≤ δ

2
+ η∥∇f(x+

k )∥

≤ δ

2
+

δ

2M
·M

≤ δ.

By L–smoothness of fSAM on Nδ(H),

fSAM(xk+1) ≤ fSAM(xk) + ⟨∇fSAM(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

= fSAM(xk)− η⟨∇fSAM(xk),∇f(x+
k )⟩+

Lη2

2
∥∇f(x+

k )∥
2.

Since

∇fSAM(x) = (I + ρ∇u(x))∇f(x+),
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we obtain

fSAM(xk+1) ≤ fSAM(xk)− η⟨∇fSAM(xk),∇f(x+
k )⟩+

Lη2

2
∥∇f(x+

k )∥
2

= fSAM(xk)− ηρ⟨∇u(xk)∇f(x+
k ),∇f(x+

k )⟩ − η∥∇f(x+
k )∥

2 +
Lη2

2
∥∇f(x+

k )∥
2

≤ fSAM(xk)− ηρλmin(Sym(∇u(xk)))∥∇f(x+
k )∥

2 − η∥∇f(x+
k )∥

2 +
Lη2

2
∥∇f(x+

k )∥
2

≤ fSAM(xk)− η

(
1 + ρλmin(Sym(∇u(xk)))−

Lη

2

)
∥∇f(x+

k )∥
2

≤ fSAM(xk)− η

(
γ − Lη

2

)
∥∇f(x+

k )∥
2

< fSAM(xk),

where the last inequality follows from 0 < η < 2γ
L . Moreover, since the descent property

fSAM(xk+1) < fSAM(xk) holds when η is replace by ηt for t ∈ [0, 1], the line segment from xk

to xk+1 lies within the sublevel set (fSAM)−1([f⋆, f⋆ + ε]). Thus, because xk ∈ Cε, we conclude
xk+1 ∈ Cε by the connectedness of Cε. This completes the induction.

Finally, since fSAM (xk) is decreasing and bounded below, we have η
(
γ − Lη

2

)
∥∇f(x+

k )∥ → 0.

Hence, ∇f(x+
k ) → 0. If x∞ is a limit point of {xk}k=0,1,..., then ∇f(x+

∞) = 0. By construction of
Cε, this implies x∞ ∈ H . Therefore, d(xk, H) → 0.

To discuss point convergence to isolated hallucinated minimizers, we now turn to the case where the
manifold M in Theorem 3.1 reduces to a single isolated point, i.e., 0-dimensional. In this case, we
can show that the corresponding hallucinated minimizer is also isolated. This can be viewed as the
special case where H in Theorem 3.2 is a singleton.
Lemma B.2. Let x⋆ be a minimizer of a C1 function f : Rd → R satisfying the assumptions of
Theorem 2.1. Suppose x⋆ is an isolated minimizer; that is, there exists an open neighborhood of x⋆

in which it is the unique critical point and the unique minimizer. Let xh be a hallucinated minimizer
of f constructed in the proof of Theorem 2.1 with ρ > 0. If I + ρ∇u(xh) is invertible, then there
exists an open neighborhood W of xh such that

• ∇f never vanishes on W , and thus fSAM is well-defined on W ;

• no point other than xh satisfies ∇f(x+) = 0 in W ; and

• xh is the unique hallucinated minimizer in W .

Such a point xh is called an isolated hallucinated minimizer.

Proof. Since xh is a hallucinated minimizer of f constructed in the proof of Theorem 2.1, it satisfies

x⋆ = xh + ρ
∇f(xh)

∥∇f(xh)∥
= xh + ρu(xh)

for some perturbation radius ρ > 0. Let U0 and V0 be open neighborhoods of x⋆ and xh, respec-
tively, as constructed in the proof of Theorem 3.1. Also, let U1 be an open neighborhood of x⋆ that
contains no other minimizers, by assumption. Define W := G(U0 ∩ U1), where G is the C1 map-
ping constructed in the proof of Theorem 3.1. We claim that W is the desired open neighborhood of
xh.

First, W is open since G is a local diffeomorphism at x⋆. Moreover, fSAM is well-defined on W by
the construction of V0. Suppose y ∈ W satisfies ∇f(y+) = 0. Then, since

x = y + ρ
∇f(y)

∥∇f(y)∥
for the unique x = G−1(y) ∈ U1, it follows that ∇f(y+) = ∇f(x) = 0, contradicting the fact
that x is an isolated minimizer. Similarly, if y is a hallucinated minimizer, then the uniqueness of
x = G−1(y) implies x = x⋆, and hence y = xh. This proves the claim.
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(a) Original loss f (b) SAM loss fSAM

Figure 7: Visualizations of the hallucinated minimizer xh: (a) original loss f along the line between
xh and x+

h ; (b) SAM loss fSAM over the plane defined by xh, xN , and x′
N .

Then, as a corollary of Theorem 3.2 and the previous lemma, we obtain the following point conver-
gence result.

Corollary B.3. Assume f satisfies the assumptions in Theorem 2.1 and, in addition, f ∈ C2. Let
xh be an isolated hallucinated minimizer of f for a fixed perturbation radius ρ > 0, constructed in
the proof of Theorem 2.1. Suppose

1 + ρλmin(Sym(∇u(xh))) > 0.

Then, the SAM iterates, when initialized sufficiently close to xh, converge to xh for sufficiently small
fixed stepsize ηk = η.

The real-analytic property of f is used to apply the Łojasiewicz inequality in order to construct a
neighborhood where critical points do not accumulate. However, since Lemma B.2 guarantees the
existence of isolated hallucinated minimizers without this assumption, the real-analytic condition is
not required here. Hence, the C2 assumption on f is sufficient to ensure the existence of constants
L and γ as in the proof of Theorem 3.2.

C EXPERIMENTAL DETAILS FOR SAM IN DEEP LEARNING

C.1 SAM WITH FULL-BATCH GRADIENTS

In Section 4.1, we train a neural network using SAM with full-batch gradients. Specifically, the
model is a two-layer network with 128 hidden units and Tanh activations, trained on the MNIST
dataset (LeCun et al., 1998). The classification task uses cross-entropy loss. Training is implemented
in PyTorch (Paszke et al., 2019) with a learning rate of 0.01, momentum 0.9, and no weight decay.
We run 20 million updates with perturbation radius ρ = 1.8 to obtain the convergence point xh,
whose loss landscape is shown in Figure 4. In this subsection, we provide additional visualizations
to further examine the local properties of xh.

Figure 7(a) presents a one-dimensional view along the line connecting xh and x+
h = xh+ρ ∇f(xh)

∥∇f(xh)∥ ,
parameterized as x(α) = (1 − α)xh + αx+

h . The plot shows that xh is not a minimizer of the
original objective and that the surrounding loss landscape differs substantially from that around
x+
h . This demonstrates that the phenomenon of SAM converging to a hallucinated minimizer is

fundamentally distinct from the case in which a saddle point becomes an attractor, which requires
the surrounding quadratic structure to hold (Compagnoni et al., 2023).
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(a) Final train loss (b) Final test accuracy

Figure 8: Comparison of SAM-only and the switching strategy across different perturbation radii
ρ. Results are obtained using SAM with full-batch gradients over 80 seeds. Bold lines indicate the
mean, and shaded areas represent the standard deviation.

Figure 7(b) extends Figure 4(c) with an additional visualization of the SAM loss. We initialize x0 by
adding a small random perturbation of magnitude 0.1 to xh, and then perform N = 1000 SAM steps,
yielding the same xN reported in Figure 4(c). Applying an independent perturbation followed by the
same procedure gives x′

N . We then consider the plane spanned by xh, xN , and x′
N , parameterized

as x(α, β) = xh + αu + βv with u = xN − xh and v chosen orthogonal to u. On this plane, the
visualization shows that the hallucinated minimizers are not confined to a one-dimensional curve
but instead extend into a two-dimensional surface-like structure.

In the experiments reported in Figure 5, we investigate SAM with full-batch gradients by vary-
ing both the perturbation radius and the random seeds. Under the same experimental setting,
Figure 8 shows the final training loss and test accuracy at the last step for perturbation radii
ρ = 1.0, 1.1, . . . , 2.0, evaluated across 80 seeds. The results demonstrate that the performance of
SAM is highly sensitive to the perturbation radius, whereas the switching strategy maintains stable
performance even for larger values of ρ.

C.2 SAM WITH STOCHASTIC GRADIENTS

We examine whether the phenomena observed with full-batch SAM also arise in the stochastic set-
ting, as shown in Figure 6. ResNet-18 is trained on CIFAR-100 with standard data augmentations,
including random cropping with padding, horizontal flipping, and Cutout (DeVries & Taylor, 2017).
The mini-batch size is 64, the learning rate 0.01, momentum 0.9, and weight decay 10−4. Training
proceeds for 200 epochs with cosine-annealed learning rates (Loshchilov & Hutter, 2016), follow-
ing the practical implementation of FSAM (Li et al., 2024). The switching strategy applies plain
stochastic gradient descent for the first 10% of epochs before switching to stochastic SAM.

Under the same setting, Figure 9 reports the CIFAR-100 results, comparing SAM-only with the
switching strategy. Experiments are conducted for perturbation radii ρ = 0.1, 0.4, 0.7, 1.0 across 16
random seeds. Each curve shows training loss and test accuracy over epochs, with bold lines denot-
ing the mean across seeds and shaded regions indicating the standard deviation. The results show
that, as in the full-batch case, SAM performance degrades with larger perturbation radii, whereas
the switching strategy remains stable and robust across all settings.

D TWO-DIMENSIONAL SYNTHETIC FUNCTION FOR VISUALIZATION

To visualize how the SAM perturbation radius ρ affects the objective, we introduce the following
two-dimensional synthetic function (originally illustrated in Figure 1):

f(x, y) = 0.8 exp

(
−x2 + y2

(2.5)2

)
·WX(x)− exp

(
−(x+ 1.55 cos(y/1.5))2

)
·WY (y) + 1,
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ρ = 0.1 ρ = 0.4 ρ = 0.7 ρ = 1.0

(a) SAM-only

(b) SGD → SAM

Figure 9: Training loss and test accuracy curves for SAM with stochastic gradients on CIFAR-100
using ResNet-18. The top row shows SAM-only training, while the bottom row applies a switching
strategy that runs stochastic gradient descent for the first 10% of epochs before switching to SAM.
Columns correspond to perturbation radii ρ ∈ {0.1, 0.4, 0.7, 1.0}. Final average test accuracies are
74.29%, 76.36%, 69.64%, and 61.58% for SAM-only, compared to 74.48%, 77.22%, 73.35%, and
67.93% for the switching strategy.

where

WX(x) =


0, x ≤ −1,

0.5 (1− cos(π(x+ 1))) , −1 < x < 0,

1, x ≥ 0,

WY (y) =


1, |y| ≤ 0.6,

0.5
(
1 + cos

(
π · |y|−0.6

5.0

))
, 0.6 < |y| < 5.6,

0, |y| ≥ 5.6.

The function f(x, y) is continuously differentiable, since all its components are smoothly joined. It
is designed so that its minimizer set forms a curve. In fact, the global minimizer set of f is exactly{

(x, y) ∈ R2
∣∣ x = −1.55 cos

(
y
1.5

)
, |y| ≤ 0.6

}
.

Figure 1 shows the original function f , the SAM objective fSAM, and its gradient ∇f(x+ρ ∇f(x)
∥∇f(x)∥ )

at perturbation radius ρ = 2.8. To further examine the effect of the perturbation radius, Figures 10
and 11 illustrate how the SAM objective fSAM and its gradient ∇f(x+ρ ∇f(x)

∥∇f(x)∥ ) evolve as ρ varies
over the range 0, 0.5, . . . , 3.5. In this setting, the SAM minimizers are defined as the regions where
fSAM attains its minimum values; in practice, they appear either as isolated points or as continuous
curve-like structures.

An analysis of the SAM minimizers as a function of the perturbation radius ρ reveals two distinct
regimes. For small ρ, the minimizers approach the critical points of f . Although fSAM is not
defined at a critical point, higher-resolution numerical experiments show convergence arbitrarily
close to such points. At ρ = 0, fSAM coincides with f , and the minimizers exactly match those
of f . For ρ = 0.5, the minimizers remain on the original minimizer set, whereas for ρ = 1.0 and
ρ = 1.5, they shift toward the maximizers of f . The corresponding gradient fields indicate that
these critical points act as attractors of the SAM dynamics, consistent with the theoretical analysis
of Compagnoni et al. (2023).

In contrast, for larger perturbation radii, the SAM minimizers form a curve on the right-hand side,
starting near the maximizer and drifting outward as ρ increases. This behavior is consistent with
the proof of Theorem 2.1, which shows that hallucinated minimizers emerge for a sufficiently large
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(a) ρ = 0.0 (b) ρ = 0.5 (c) ρ = 1.0 (d) ρ = 1.5

(e) ρ = 2.0 (f) ρ = 2.5 (g) ρ = 3.0 (h) ρ = 3.5

Figure 10: SAM objective fSAM(x) under different perturbation radii ρ. The corresponding SAM
minimizers are shown in pink.

(a) ρ = 0.0 (b) ρ = 0.5 (c) ρ = 1.0 (d) ρ = 1.5

(e) ρ = 2.0 (f) ρ = 2.5 (g) ρ = 3.0 (h) ρ = 3.5

Figure 11: SAM gradient field ∇f(x+ρ ∇f(x)
∥∇f(x)∥ ) for different perturbation radii ρ. The correspond-

ing SAM minimizers are shown in pink.

perturbation radius ρ. Theorem 3.1 further establishes that these minimizers preserve the dimen-
sionality of the original minimizer manifold. Meanwhile, the SAM gradient field shows that these
minimizers act as attractors within their neighborhood, and the conditions of Theorem 3.2 are indeed
satisfied. Taken together, these observations show that our theory offers a full theoretical explanation
of the empirical phenomena of hallucinated minimizers in this example.
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