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ABSTRACT

Disentanglement is a difficult property to enforce in neural representations. This
might be due, in part, to a formalization of the disentanglement problem that fo-
cuses too heavily on separating relevant factors of variation of the data in single
isolated dimensions of the neural representation. We argue that such a definition
might be too restrictive and not necessarily beneficial in terms of downstream
tasks. In this work, we present an alternative view over learning (weakly) disen-
tangled representations, which leverages concepts from relational learning. We
identify the regions of the latent space that correspond to specific instances of
generative factors, and we learn the relationships among these regions in order
to perform controlled changes to the latent codes. We also introduce a compound
generative model that implements such a weak disentanglement approach. Our ex-
periments shows that the learned representations can separate the relevant factors
of variation in the data, while preserving the information needed for effectively
generating high quality data samples.

1 INTRODUCTION

While trying to find a way to reproduce aspects of natural intelligence into artificial systems, re-
searchers proposed the notion of meta-priors, first introduced by Bengio et al. (2013) and then
further refined and expanded in Tschannen et al. (2018). A meta-prior is a generic assumption about
the world that is expected to hold true for all possible tasks that an artificial agent might encounter in
the future, thus providing a way to structure the learned representations in a useful way for possible
downstream tasks. In the latest years, meta-priors have helped the representations learned by neu-
ral networks to reach levels of expressivity that were unthinkable just a few decades ago. Modern
distributed representations can, for instance, disentangle factors of variations of the data, encode
hierarchical features at different levels of abstractions, express the natural clustering organization of
the data, and incorporate various types of supervised information (Tschannen et al., 2018).

Despite these achievements, finding a way for reliably enforcing different kinds of meta-prior is
still an open research question. In particular, one of the most difficult meta-prior to impose on the
learned representations is disentanglement. One of the challenges that arises when dealing with the
disentanglement problem, is that a formal definition of what constitute a disentangled representation
is still a matter of debate (Do & Tran, 2019). Many works just assume that a disentangled rep-
resentation is a representation in which each latent dimension is responsible for encoding a single
generative factor of the data. We argue that this intuitive definition can be too strict in general, as
it is possible for distinct factors of variations to manifest themselves in the data only in an entan-
gled way. Sometimes, only a subset of all the possible factors of variations is worth disentangling,
while the others can be left entangled. Moreover, it has been shown that the imposition of this form
of disentanglement on the learned representations can actually damage the overall performance on
downstream tasks, instead of providing a clear benefit (Locatello et al., 2019a).

For these reasons, in this work we wish to introduce a different approach on disentanglement and
disentangled representations, which we call weak disentanglement. A weakly disentangled rep-
resentation is a representation where the generative factors are not encoded into specific separate
dimensions. The information about the original values of generative factors is instead encoded into
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different regions of the latent space, with each region identifying a specific combination of factors.
Given a weakly disentangled representation, it is therefore possible to recover the original generative
factors by checking in which region of the latent space that representation ends up.

In particular, we propose a new generative neural model for the learning of weakly disentangled
representations. The main components of this model are the Abstraction Autoencoder (AbsAE) and
the Relational Learner (ReL). The AbsAE is an adversarial autoencoder (Makhzani et al., 2015)
augmented with an adaptive prior distribution that is able to identify the regions of the latent space
containing the relevant instances of generative factors, using only a minimal amount of supervised
information. During training, the ReL learns how to navigate such structured latent space, moving
the input representations into new regions of the same latent space according to a set of predefined
relations. These modules, together, are able to learn representations that, while still being entangled
from a “classic” point of view, allow for being easily manipulated in order to induce controlled
changes on the chosen factors of variations. In the rest of this paper, we will show that this form
of weak disentanglement can obtain representations that preserves all the relevant information for
reconstructing the original data, while at the same time allowing for the manipulation of one or more
factors of variations in a compositional way.

2 RELATED WORKS

After the inital introduction of the concept of meta-priors (Bengio et al., 2013; Tschannen et al.,
2018), many works explored different ways to enforce meta-priors on the representations learned
by autoencoders. It is possible to identify approximately three main approaches: i) Using regular-
ization constraints on the encoder’s posterior distribution qφ(z|x), ii) Using architectural constraints
on either the encoder qφ(z|x) or the decoder pθ(x|z) (or both) and iii) Choosing flexible prior dis-
tributions p(z). Many works combine these approaches in order to force specific properties on the
learned representations.

Focusing on disentanglement, the early methods are mainly concerned on re-weighting the second
term of the ELBO, such as the β-VAE (Higgins et al., 2016), and the β-VAE-2 (Burgess et al.,
2017). The main shortcoming of this approach is that disentanglement is achieved at the expense
of reconstruction accuracy, hampering the performance on subsequent downstream tasks. Another
line of works builds upon the ELBO decomposition provided by Hoffman & Johnson (2016) to
separately penalize different terms, such as FactorVAE (Kim & Mnih, 2017), β-TCVAE (Chen
et al., 2018), InfoVAE (Zhao et al., 2019) and DIP-VAE I & II (Kumar et al., 2017). They all apply
several weighting factors on different parts of the ELBO in order to emphasize specific properties
on the latent representations. For example, (Kim & Mnih, 2017) and (Chen et al., 2018) try to
achieve disentanglement by encouraging the total correlation between the latent dimensions to be as
low as possible. Other works such as HSIC-VAE (Lopez et al., 2018) and HFVAE (Esmaeili et al.,
2019) try to enforce independence between groups of latent variables. While being able to isolate
simple generative factor to some degree, in general such models struggles to achieve a reasonable
disentanglement when the factor of variation cannot be identified by straightforward mathematical
notions such as statistical independence (which is often the case with real-world data).

An interesting line of works tries to leverage different degrees of supervised information in order to
achieve disentanglement (Louizos et al., 2015; Kulkarni et al., 2015; Lample et al., 2017; Locatello
et al., 2019b; Gabbay et al., 2021). For example, Locatello et al. (2019b) relies on complete supervi-
sion of a small subset of training data. Gabbay et al. (2021) further relaxs these constraints by requir-
ing only partial annotations on a subset of generative factors. However, the lack of a rich-structure
in the latent space makes it impossible to associate a confidence level to the models’ predictions.
Some works in the field of concept learning also try to build a structured latent space distribution in
order to isolate relevant high-level concepts associated with the data samples (Rostami et al., 2020)
(Koh et al., 2020). In particular, Rostami et al. (2020) use an additional classification network on the
latent space in order to cluster together representations associated to the same concept in a continual
learning setting. Hosoya (2018) the authors strongly disentangle the latent space into group-common
“content” variables and instance-specific “transformation” variables. These approaches are suitable
for identifying the different values of a single relevant generative factor (i.e. the concept, or the data
group), but cannot be applied when more than one factor needs to be disentangled from the data.
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(a) (AbsAE): the encoder and the decoder are trained
to learn the mapping between the data space and the
latent space. The latent codes are forced to follow the
prior distribution p(z).

(b) (ReL): The relation learner is trained in the latent
space. The encoder and the decoder are the same as
AbsAE.

Figure 1: Overall proposed architecture, composed of the Abstraction Autoencoder (AbsAE) and
the Relational Learner (ReL).

Finally, there exists a few works that focus on leveraging relational information among data sam-
ples. Locatello et al. (2020) uses pairs of images where the value of a random subset of generative
factors is different. On the other hand, Chen & Batmanghelich (2020) uses weak supervision be-
tween a pair of images consisting in a similarity score about a factor to be disentangled. Bai et al.
(2021) strongly disentangle representation of sequential data into “static” factors, that are constant
along all the duration of the sequence, and “dynamic” factors, that vary across the timesteps. These
approaches, while powerful in principle, typically require the training data to be structured in very
specific ways in order to be able to make use of the supervised information available. This can limit
their application to a wide variety of tasks.

3 WEAK DISENTANGLEMENT OF LATENT REPRESENTATIONS

The section introduces our approach implementing the weak disentanglement meta-prior. A
schematic view of the model’s architecture is shown in Figure 1. The model loss is trained using the
following objective:

L(x, θ, φ, λ, ψ, f) = LAE(x, θ, φ) + βLDISC(z, φ, λ) + γLREL(z, ψ, f), (1)

where θ, φ, λ and ψ are the parameters of the encoder, decoder, discriminator and relational learner
respectively, x is a data sample and z is its corresponding latent representation, f is the particular
relation that we would like to learn. The hyperparameters β and γ are used to adjust the importance
of the different terms. The first two terms of Eq.1 correspond to the auto-encoding part of the model,
while the last term is the relational part. The AbsAE’s task is to learn a mapping from the data space
to an abstract latent space, and vice-versa. The latent space is encouraged to follow a specific meta-
prior distribution p(z), an adaptive gaussian mixture (GM) distribution built ad-hoc for the task.
This distribution is able to clusters different instances of the same generative factors into a similar
region of the latent space. At the same time, the ReL is trained to learn relations between such
regions of the latent space, exploiting the prior distribution p(z) learned by the AbsAE. We alternate
a training iteration of the AbsAE with a training iteration of the ReL in order to gradually learn both
the relevant combinations of generative factors and the relations between them. In the rest of this
section, we provide a detailed description of each of the modules.

3.1 ABSTRACTION AUTOENCODER

The AbsAE, depicted in Figure 1a, is composed of two sub-networks: the encoder qφ(z|x) and
decoder pθ(x|z), parameterized by φ and θ, respectively. The mapping between data space and
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latent space is learned by optimizing the following maximum likelihood objective:

max
θ,φ

LAE(x, θ, φ) + βLDISC(z, φ) = (2)

= Eqφ(z|x) [log pθ(x|z)]− βD (qφ(z)||p(z)) , (3)

where D is an arbitrary divergence (such as the Kullback-Leibler divergence) and β is an hyperpa-
rameter controlling the amount of desired regularization. The first term of Eq.3 encourages the latent
codes z to be an informative representation of the corresponding original input x, while the second
term encourages z to follow a desired prior distribution p(z). Since this second term is generally not
computable for an arbitrary choice of qφ(z) and p(z)(Mescheder et al., 2017), we estimate it using
an additional discriminator network dψ(z), parameterized by λ. Thus, the second term of Eq. 3 is
optimized in an adversarial way via the following objective

min
φ

max
λ

LDISC(z, φ, λ) = (4)

= Eqφ(z)[log dλ(z)] + Ep(z)[log(1− dλ(z))]. (5)

The flexibility introduced by the adversarial estimation of the divergence D allows us to chose any
distribution p(z) that best fits our needs. Since our goal is to identify and disentangle the different
combinations of generative factors that appear in the data, we choose the prior distribution p(z) to
be a a gaussian mixture (GM)

p(z) =
1

N

N∑
i=1

pi(z) =
1

N

N∑
i=1

N (µi,Σ
2
i ), (6)

where N is the number of the distinct factor combinations in the data. The mean µi and the co-
variance Σ2

i of each prior component are estimated empirically from a small subset of supervised
samples, containing ancillary information that describes properties of the data that are relevant for
the relations we wish to learn (for practical examples of generative factor values see Section 4.1):

y = {(yg1 , yg2 , ..., ygK )}Nyi , (7)

where gi is the i-th generative factor, ygi is the label associated to gi,K is the total number of factors
andNy is the number of labelled data. We leverage the fact that the auto-encoding training procedure
of AbsAE tends to naturally organize the latent space in an efficient way, with similar samples (i.e.
samples for which the generative factors have the same value) that ends up to be encoded in the
same region of the latent space. The labelled samples are a way to identify the relevant regions of
interest, and the prior distribution p(z) helps into shaping those regions into a GM distribution that
is easy to model and manipulate in a meaningful way. This setting grants a high flexibility on what
the relevant factors can be. For example, it is possible to specify only a subset of such factors of
variations, so that the remaining factors will be treated as nuisances.

3.2 RELATIONAL LEARNER

The AbsAE is trained so that the encoder qφ(z|x) and the decoder pθ(x|z) provide a mapping be-
tween the raw data samples and the corresponding generative factors. This can be exploited by the
ReL in order to efficiently learn relations between those factors. The ReL model (Figure 1b) is com-
posed of the relational learner sub-network rψ(z|z1, .., zN ) that, in the case of a binary relation, is
trained according to the following objective:

max
ψ

LREL(z, i, j, ψ, f) = pf(i,j) (z) (8)

where z ∼ rψ(z|zi, zj), zi and zj representing encoded data samples belonging, respectively, to the
i-th and the j-th gaussian of p(z). The function f : N × N → N is any function with domain and
range in [1, N ] that characterizes the specific relation to be learned. Note the the number of argu-
ments of LREL actually depends on the arity of the desired relation. For example, when considering
images of natural numbers, assuming that a relevant factor of variation is the number identity, the
sum relation can be learned by setting f(i, j) = i + j. Note that thus the prior distribution p(z) is
used to guide the learning process of the ReL, encouraging the model to encode the result into the
desired component of the GM. This training can be done without the need of using additional data,
as new samples can be drawn directly from the corresponding components of p(z). Having the ReL
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to operate in a structured latent space yields several advantages. First, in the latent space, a relation
between generative factors is directly translated into a relation between components of p(z). This
means that the ReL can easily identify values of the generative factors of a data sample x just by
checking which component of p(z) is the most active for encoding x. Additionally, since p(z) is
known, it is always possible to associate a probability threshold α to each input sample and each
model prediction. This is useful in several ways. For input samples, it allows to identify potentially
adversarial samples that are too far-away from the empirical data distribution (i.e. samples that ends
up getting encoded into very low-probability regions of the latent space). For model’s predictions,
it provides additional useful information about the confidence level of the predictions.

4 EXPERIMENTS

We designed a set of experiments in order to inspect the following questions: 1) How well the
AbsAE is capable of correctly clustering the values of generative factors in the latent space? 2) How
well the ReL is capable of manipulating the latent representation in order to implement the desired
relations? 3) How much the learned representations can be considered disentangled? In the rest
of this section we describe accurately describe the experimental setting. First, we give a detailed
account of the preprocessing procedures that is common to all the experiments, Then, we describe
the crucial design choices made to implement the specific experiments1.

4.1 DATASETS AND PREPROCESSING

We consider three datasets: the newly introduced Hand-Written Formulas (HWF) dataset (Li et al.,
2020), and the well-known dSprites (Higgins et al., 2016) and Shapes3D (Kim & Mnih, 2017)
datasets. The HWF dataset contains images of hand-written math formulas, consisting of the ten
digits and three basic math operators. The dSprites dataset contains images of various 2-dimensional
shapes, in different positions, scales and orientations. The Shapes3D dataset contains images of
various 3-dimensional shapes in different colors combinations of (floor, shape, background) and
rotations. In the case of HWF, the only relevant generative factor considered is the digit/operator
identity, for a total of 13 values (10 digits plus the sum, subtraction and multiplication operators),
while everything else is considered a nuisance. For dSprites, we keep 3 values for the horizontal
position (left, center, right), 3 values for the vertical position (up, center, down), and 3 values for
the shape (ellipse, square, heart). The scale and orientation are nuisances factors. Finally, for
Shapes3D, we keep 10 values for object color, 4 values for shape (cude, sphere, cylinder, ellipsoid)
and 3 values for scale (small, medium, big), while considering floor color, background color and
orientation nuisance factors. Thus, we end up having 13 factor combinations for HWF, 27 for
dSprites and 120 for Shapes3D. Each of these combinations is represented as a single gaussian of the
prior distribution p(z). Regarding relations, on the HWF dataset we consider the sum, subtraction
and multiplication binary relations. For dSprites, we consider 5 relations: move left, move right,
move up, move down and change shape. In Shapes3D, 5 relations are considered as well: + hue,
- hue, change shape, + scale, - scale.

In the case of HWF, the relations are chosen in order to reflect our intuitive understanding of the
corresponding math operators. In dSprites and Shapes3D, on the other hand, the chosen relation have
the effect of changing the value of a single factor of variation, while leaving the others unchanged.
No restriction is imposed on the nuisance factors, that are able to vary freely when applying relations
on the latent codes. We also perform data augmentation, corrupting the data samples by adding either
bernoullian or gaussian noise to the original images. We split each dataset in training, validation and
test set. The validation set is used to select the best values of the hyperparameters of the models,
while the test set is used to compute the final results. The validation set is created by taking 10% of
the available training set. Similarly, the test set is created from 20% of the total available data.

4.2 TRAINING SETTINGS

The encoder and decoder modules of AbsAE are implemented as a multilayer CNN architecture.
Complete details about the chosen architecture are reported in Appendix A. The hyperparameter

1The source code of the project is included in the supplementary files, and will be publicly released upon
acceptance.
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Figure 2: Accuracy and accepted ratio of the AbsAE for different α thresholds and different amounts
of supervision. The results are computed over the HWF, dSprites and Shapes3D datasets. τ is the
amount of supervision, measured in number of samples.

have been tuned using trial and error, selecting the combination yielding the best performance on
the validation set. All the networks used in the experiments are deterministic, i.e. qφ(z|x) and
pθ(x|z) are Dirac’s delta functions. The discriminator and the relational networks are implemented
as a 3-layer MLP with 1024 units each. The hidden neurons use hyperbolic tangent non-linearities,
while the output neurons use the sigmoid. In the experiments, we set the number of latent factors
Nz = 8 for HWF and dSprites, Nz = 16 for Shapes3D. All tasks use a batch size of 1024 for the
AbsAE’s training and 128 for the ReL’s training. We use the Adam optimizer with learning rate of
10−4 for HWF and dSprites, 10−5 for Shapes3D.

Initially, the training starts in a warmup phase, were only the AbsAE is active. In this phase we
set p(z) ∼ Uniform(−1, 1), to encourage the latent codes to spread evenly across the latent space.
During this phase only the AbsAE is trained. After 1000 epochs (5000 for Shapes3D), the full
training phase begins: the prior distribution is changed to the GM prior p(z) ∼ 1

N

∑N
i=0N (µi,Σi)

described in Section 3.1. In this phase we also start the training of the ReL: the first step is to
construct a training sample with the following structure:

(zin1
, ..., zinR , zrel, zout) (9)

where zin1 , ..., zinR are the input latent codes of the relation, R is the arity of the chosen rela-
tion, zout is the target latent code, and zrel is a code that identifies the relation. zrel can either
be a symbolic code (such a categorical variable) or a latent code representing the specific rela-
tion. Therefore, a training sample for the HWF dataset can be (z2, z3, z+, z5), where z2 and z3
are sampled from the prior’s components corresponding to the digits “2” and “3”, z+ is sam-
pled from the “+” component, and z5 is sampled from the “5” component. On the other hand,
when training the move up relation on the dSprites dataset, a possible training sample will have the
form (z(center,center,square), zmove up, z(center,up,square)), where z(center,center,square) is obtained by
sampling from the prior component corresponding to the factor combination {x position=center,
y position=center, shape=square}, z(center,up,square)) is sampled from the gaussian corresponding
to {x position=center, y position=up, shape=square}, and zmove up is a categorical variable that
identifies the move up relation. Unlike HWF, the dSprites dataset does not contain a way to identify
the relations directly in the data, hence the need for an additional categorical variable for encoding
relations.

Thus, the ReL learns how to perform changes to the latent codes from the starting region of the latent
space to another one, according to the specific relation. Note that the training of the ReL can be done
without the need of additional data, as the training samples can be constructed by directly sampling
from p(z). The elements of the training tuple are then concatenated together and sent in input to
the ReL. We alternate a training iteration of the AbsAE with a training iteration of the ReL in order
to learn both objectives at the same time. Training is carried on for 5000 more epochs (10000 for
Shapes3D), for a total of 6000 epochs (15000).
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Figure 3: Accuracy and accepted ratio of the ReL for different α thresholds and different relational
depths. The results are computed over the HWF, dSprites and Shapes3D datasets.

4.3 STRUCTURE OF THE LATENT SPACE

The first set of experiments is meant to assess the capability of the prior distribution p(z) to effec-
tively identify and cluster the relevant regions of the latent space that identify a particular combi-
nation of generative factors. In Figure 2 are reported the clustering accuracy and the accepted ratio
of the AbsAE on the test set of HWF, dSprites and shapes3D datasets. The results are obtained by
first encoding a test sample x to get its latent representation z. The classification is then performed
by selecting the prior component that is more likely to have generated z. We report the results for
different values of α, that is, we compute the accuracy only on the test samples that reach a certain
probability threshold α for at least one component of p(z). If a sample does not reach the desired
probability for any component, it is rejected, and the classification is not performed. We also report
the ratio of test samples that the model does not reject (i.e. the acceptance ratio) for each α thresh-
old. A high accepted ratio means that a high proportion of the test samples has a high probability
under the prior.

The results in Figure 2 show that the clustering accuracy increases as α gets higher. For the HWF
dataset, the model reaches over 90% accuracy for each α thresholds. In the dSprites dataset, it
takes longer to exceed 90% accuracy, but the acceptance ratio stays very high for each α thresholds,
meaning that the model is quite confident in its classifications. Shapes3D is, perhaps unsurprisingly,
the most challenging dataset. Nevertheless, the AbsAE is still able to reach 90% clustering accuracy
for α ≥ 0.7, while keeping an acceptance ratio of over 75%. We compare our results on the HWF
dataset with the work of Li et al. (2020). Despite the more challenging setting (as the AbsAE is
a generative model, our representations needs to also keep all the information needed for a good
reconstruction the original data, whereas Li et al. (2020) are only concerned with symbol classifica-
tion) our model yields better results, obtaining higher accuracies for any values of α. In Appendix
B we include some generated images for the different datasets, while in Appendix C we report the
data used to construct Figure 2.

4.4 MANIPULATION OF LATENT CODES

The second set of experiments has the goal to test how well the ReL is capable of manipulating the
learned latent representations in order to implement the desired relations. The relation accuracy of
the model is computed by first sampling a latent code zin (or two, in the case of the binary relations
of HWF) from the prior p(z). After that, we choose a random relation zrel among the one that
are available for that dataset and we feed both the zins and zrel in input to the ReL. If the depth
parameter is more than 1, we repeat this process accordingly, using the output of the ReL at the
current step as input for the next step. The final output of the ReL zout is then classified by selecting
the component of the GM prior with the highest probability of having generated zout. Results are
reported in Figure 3. We take into consideration different α thresholds and different depths of the
relations.
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Figure 4: Samples of relations learned by the ReL on different datasets (additional samples are
available in Appendix B).

Table 1: Disentanglement scores of latent representations on different datasets.

dSprites Shapes3D
DCI MIG SAP DCI MIG SAP

β-VAE 0.4566 0.602 0.67 0.153 0.270 0.131
FactorVAE 0.8942 0.98 0.61 0.371 0.370 0.402

(Locatello et al., 2019b) 0.533 0.01 0.01 0.48 0.05 0.08
(Gabbay et al., 2021) 0.8366 0.14 0.57 1.0 0.3 1.0

Ours 0.9543 0.994 0.7728 0.6921 0.6897 0.5007

The results shows that the performance of the ReL are only marginally affected by the specific
α thresholds. There is a general tendency for the accuracy to increase, and the accepted ratio to
decrease, as α get higher, but this mainly happens on the more challenging Shapes3D dataset. In
the case of HWF and dSprites datasets, the accuracy stays at around 99% and the accepted ratio is
above 95% for different values of α and different depths. This is a sign that the ReL can reliably
learn the desired relations with high accuracy. The performance do not seem to be much affected
by depth parameter, meaning that the ReL is able to applying in cascade more than one relation
to the same latent code without losing accuracy. Therefore, the learned relations can be combined
compositionally in order to perform complex transformations of the initial latent representation.
In Figure 4 we report qualitative samples obtained from the ReL on different datasets (additional
samples are available in Appendix B). In Appendix C we report the data used to construct Figure 3.

4.5 DISENTANGLEMENT OF LEARNED REPRESENTATIONS

Lastly, we wish to investigate how much the representations learned by our model can be considered
disentangled by the “classic” standards, while still keeping all the information needed to reconstruct
the original data sample. We trained a β-VAE (Higgins et al., 2016) and FactorVAE (Kim & Mnih,
2017) on both the dSprites and Shapes3D datasets for comparison (the HWF dataset is not used, as
disentanglement can only be measured when there are two or more relevant factors of variation in the
data). In order to ensure comparability of results, we use the same encoder-decoder architectures as
the one described in Appendix A. We also keep the same learning rates and train for the same number
of epochs as the one described in 4.2. We then repeats the experiments for different values of β (note
that, in FactorVAE, we consider β to be the hyperparameter controlling only the total correlation
term of the loss function). The ideal model would score highly in the various metric, while keeping
the reconstruction error as low as possible for different values of β. Hence, the better models are
the ones ending up in the upper-left region of the plots. In Figure 5 we plot the scores of popular
disentangled metrics: SAP score (Kumar et al., 2017), MIG score Chen et al. (2018), and DCI score
(Eastwood & Williams, 2018) against the reconstruction accuracy of our model on the dSprites and
Shapes3D datasets (in the case of DCI, we report the average of disentanglement, completeness and
informativeness scores). Since the above metrics assume to receive an input representations that
follows the classic notion of disentanglement (i.e. where each individual dimension is responsible
for encoding a single factor of variation), we transform each latent codes into its corresponding
generative factors before computing the metrics for our model. This step can be done efficiently, as
all the information about the factor of variations can be inferred just by classifying the latent code
as described in Section 3.2.
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Figure 5: Disentanglement/reconstruction trade-off of the models on the considered datasets. The
disentanglement metric (y-axis) is plotted against the reconstruction error (x-axis).

The results of Figure 5 shows that our model’s representations offer the best tradeoff between re-
construction and disentanglement. Our representation overall is not losing much reconstruction
information as β is increased. On the other hand, the β-VAE’s disentanglement scores can only
be improved at the expense of reconstruction error, which begin to increase quickly as β becomes
larger. FactorVAE’s representation ends up in between, still not able to reach the same disentan-
glement/reconstruction tradeoff as our model. Finally, in Table 1 we directly compare the disentan-
glement performance of our model against the recent works of Locatello et al. (2019b) and Gabbay
et al. (2021), as well as the β-VAE and FactorVAE baseline models. The results show that our
model is able to reach superior disentanglement performance on the dSprites dataset, while still
being competitive with the other state-of-the-art models on Shapes3D. Overall, it seems that our
disentanglement disentanglement approach is able to identify and encode the relevant factors of
variation without affecting the reconstruction power of learned representations.

5 CONCLUSION

We proposed the weak disentanglement meta-prior, a method for implementing disentanglement
of latent representations of generative models by leveraging additional relational information. We
presented a new generative model that implements our approach, divided into an auto-encoding part
(AbsAE) and a relational learning part (ReL). We tested our approach on three different datasets of
increasing complexity. The experiments shows that the AbsAE is able to identify and isolate the
relevant regions of the latent space with high accuracy. The ReL is able to correctly manipulate the
latent representations, even when applying multiple relations in sequence on the same representation.
Finally, the learned representations yields better disentanglement scores when tested against similar
models that rely on the “classic” notion of disentanglement, while preserving the information needed
to achieve a good reconstruction of the original data sample, showing that our approach can be a
viable option for disentanglement. The imposed structure of the latent space makes the model robust
to potentially adversarial sample, as well as providing additional information about the confidence
of individual predictions. In the future, we plan to further refine the structure of latent space learned
by the AbsAE. It could be useful to encode the generative factors of the data in different latent
spaces to encourage modularity of learned representations and to prevent the number of gaussian
component of p(z) to become too large when the number of values of generative factors increases.
Another research direction is in finding a more expressive prior distribution p(z). We also plan to
enhance the ReL’s overall architecture, possibly employing a graph neural network (Bacciu et al.,
2020) to learn more expressive relations over the data.
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REPRODUCIBILITY STATEMENT

The theoretical description of the model is given in Section 3. In Sections 4.1 and 4.2 are accurately
reported the data preprocessing and training procedures. We include references to all datasets used
in this paper. The individual experiments are described in detail in Sections 4.3, 4.4 and 4.5. Ap-
pendix A reports additional information about the architecture of the model’s components. The full
source code of the project is included in the supplementary files, and will be publicly released upon
acceptance.

REFERENCES

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to deep
learning for graphs. Neural Networks, 129:203 – 221, 2020. ISSN 0893-6080. doi: https://doi.
org/10.1016/j.neunet.2020.06.006. URL http://www.sciencedirect.com/science/
article/pii/S0893608020302197.

Junwen Bai, Weiran Wang, and Carla Gomes. Contrastively disentangled sequential variational
autoencoder. NeurIPS2021, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae. 2017 NIPS Workshop on Learn-
ing Disentangled Representations, 2017.

Junxiang Chen and Kayhan Batmanghelich. Weakly supervised disentanglement by pairwise simi-
larities. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3495–
3502, 2020.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disen-
tanglement in variational autoencoders. In Advances in Neural Information Processing Systems,
pp. 2610–2620, 2018.

Kien Do and Truyen Tran. Theory and evaluation metrics for learning disentangled representations.
arXiv preprint arXiv:1908.09961, 2019.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disen-
tangled representations. In International Conference on Learning Representations, 2018.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, Narayanaswamy Siddharth, Brooks Paige,
Dana H Brooks, Jennifer Dy, and Jan-Willem Meent. Structured disentangled representations. In
The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2525–2534, 2019.

Aviv Gabbay, Niv Cohen, and Yedid Hoshen. An image is worth more than a thousand words:
Towards disentanglement in the wild. arXiv preprint arXiv:2106.15610, 2021.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR2016, 2016.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the varia-
tional evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS,
volume 1, pp. 2, 2016.

10

http://www.sciencedirect.com/science/article/pii/S0893608020302197
http://www.sciencedirect.com/science/article/pii/S0893608020302197


Under review as a conference paper at ICLR 2022

Haruo Hosoya. Group-based learning of disentangled representations with generalizability for novel
contents. IJCAI2019, 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. Learning Disentangled Representa-
tions 2017 NIPS Workshop, 2017.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. In Advances in neural information processing systems, pp. 2539–2547,
2015.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentan-
gled latent concepts from unlabeled observations. ICLR 2018, 2017.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and
Marc’Aurelio Ranzato. Fader networks: Manipulating images by sliding attributes. In Advances
in neural information processing systems, pp. 5967–5976, 2017.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In International Conference on Machine Learning, pp. 5884–5894. PMLR, 2020.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4114–4124. PMLR,
2019a.

Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf,
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A ARCHITECTURAL DETAILS

Due to the different image size and number of channels, each convolutional architecture is slightly
adapted to each dataset. HWF uses 45x45 black and white images, dSprites 64x64 black and white
images, Shapes3D 64x64 RGB images. For each dataset, the discriminator and the ReL modules are
implemented as MLP with 3 tanh layers of 1024 neurons each. We report the detailed architectures
of the encoders in Table 2 and of decoders in Table 3.

Table 2: Architectures of the encoder modules of the AbsAE, for the different datasets.

Dataset Encoder

HWF Conv2D(in channels=1, out channels=32, kernel size=(5, 5), stride=2, padding=0)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Conv2D(in channels=32, out channels=32, kernel size=(5, 5), stride=2, padding=0)

Batchnorm(n channels=32)
LeakyReLU(α=0.1)

Conv2D(in channels=32, out channels=32, kernel size=(3, 3), stride=2, padding=0)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Flatten()

Linear(n neurons=1024)
LeakyReLU(α=0.1)
Linear(n neurons=8)

dSprites Conv2D(in channels=1, out channels=32, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Conv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=32)
LeakyReLU(α=0.1)

Conv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Conv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=32)
LeakyReLU(α=0.1)

Flatten()
Linear(n neurons=1024)

LeakyReLU(α=0.1)
Linear(n neurons=8)

Shapes3D Conv2D(in channels=3, out channels=64, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=64)

LeakyReLU(α=0.1)
Conv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=64)
LeakyReLU(α=0.1)

Conv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=64)

LeakyReLU(α=0.1)
Conv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=64)
LeakyReLU(α=0.1)

Flatten()
Linear(n neurons=1024)

LeakyReLU(α=0.1)
Linear(n neurons=16)
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Table 3: Architectures of the decoder modules of the AbsAE, for the different datasets.

Dataset Decoder

HWF Linear(n neurons=1024)
LeakyReLU(α=0.1)

Linear(n neurons=32*4*4)
Reshape(32, 4, 4)

Deconv2D(in channels=32, out channels=32, kernel size=(3, 3), stride=2, padding=0)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Deconv2D(in channels=32, out channels=32, kernel size=(5, 5), stride=2, padding=0)

Batchnorm(n channels=32)
LeakyReLU(α=0.1)

Deconv2D(in channels=32, out channels=32, kernel size=(5, 5), stride=2, padding=0)

dSprites Linear(n neurons=1024)
LeakyReLU(α=0.1)

Linear(n neurons=32*6*6)
Reshape(32, 6, 6)

Deconv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Deconv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=32)
LeakyReLU(α=0.1)

Deconv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=32)

LeakyReLU(α=0.1)
Deconv2D(in channels=32, out channels=32, kernel size=(4, 4), stride=2, padding=1)

Shapes3D Linear(n neurons=1024)
LeakyReLU(α=0.1)

Linear(n neurons=64*6*6)
Reshape(64, 6, 6)

Deconv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=64)

LeakyReLU(α=0.1)
Deconv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)

Batchnorm(n channels=64)
LeakyReLU(α=0.1)

Deconv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)
Batchnorm(n channels=64)

LeakyReLU(α=0.1)
Deconv2D(in channels=64, out channels=64, kernel size=(4, 4), stride=2, padding=1)
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B QUALITATIVE SAMPLES

In this appendix we provide a set of qualitative samples generated from our models. In Figure 6,
Figure 7 and Figure 8 are reported some generated images for the HWF, dSprites and Shapes3D
datasets, respectively. The images have been generated by decoding the means of the gaussians
that composed the prior distribution p(z). Each image therefore shows a particular combination of
values of generative factors that has been identified and isolated by the AbsAE. In Figure 9, Figure
11 and Figure 12 are reported some manipulations performed by the ReL on the different datasets.
In Figure 10 we show some relational samples obtained by modifying the ReL network in various
ways. It is possible to see that the ReL is able to change only the selected generative factor without
affecting the others, possibly letting all other nuisance factors change freely (e.g. the rotation of
dSprites samples, or the floor color of Shapes3D samples).

Figure 6: Samples generated from the HWF dataset, obtained by decoding the means of the 13
gaussians that compose the prior p(z). In HWF there is only a generative factor, that is, the identity
of the digit/math operator (13 total values).

Figure 7: Samples generated from the dSprites dataset, obtained by decoding the means of the 27
gaussians that compose the prior p(z). The dSprites dataset is the combination of three generative
factors: shape (3 values), x position (3 values), y position (3 values).
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Figure 8: Samples generated from the Shapes3D dataset, obtained by decoding the means of the 120
gaussians that compose the prior p(z). The Shapes3D dataset is the combination of three generative
factors: object hue (10 values), object scale (3 values), object shape (4 values). The remaining
factors are considered nuisances.
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Figure 9: Examples of latent codes manipulation by the ReL on the HWF dataset. The samples
have been obtained by feeding in input to the ReL the concatenation of the encoded inputs, and
then decoding the corresponding output (please note that all the math relations are to be intended as
module 10).
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Figure 10: Examples of latent codes manipulation by the ReL on the HWF dataset. Here we show
two different variations of the ReL. On the left hand side, the ReL is modified to output the sign of
the results. On the right hand side, the ReL is modified to output 2-digits results.

Figure 11: Examples of latent codes manipulation by the ReL on the dSprites dataset. The samples
have been obtained by feeding in input to the ReL an encoded image, selecting a relation (repre-
sented as a categorical variable), and decoding the corresponding output.
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Figure 12: Examples of latent codes manipulation by the ReL on the Shapes3D dataset. The sam-
ples have been obtained by feeding in input to the ReL an encoded image, selecting a relation
(represented as a categorical variable), and decoding the corresponding output.
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C ADDITIONAL TABLES

This appendix contains the data tables used to produce Figure 2 and Figure 3. Table 4 reports accu-
racy and accepted ratio of the AbsAE for different α thresholds and different amounts of supervised
samples. Table 5 reports accuracy and accepted ratio of the ReL for different α thresholds and
different relational depths.

Table 4: Latent space classification accuracy of the AbsAE on the HWF, dSprites and Shapes3D
datasets. ACC denotes the accuracy, AR the accepted ratio. τ is the supervision amount, measured
in number of samples.

HWF dSprites Shapes3D
α τ ACC AR ACC AR ACC AR

Li et al. (2020) – 0.997 1.0 – – – –

AbsAE, α=0.0 10 0.917 1.0 0.548 1.0 0.115 1.0
20 0.977 1.0 0.554 1.0 0.272 1.0
30 0.982 1.0 0.590 1.0 0.370 1.0

AbsAE, α=0.1 10 0.954 0.995 0.592 1.0 0.220 0.749
20 0.992 0.918 0.631 0.999 0.478 0.811
30 0.987 0.995 0.642 1.0 0.553 0.873

AbsAE, α=0.3 10 0.978 0.988 0.676 0.991 0.617 0.752
20 0.990 0.982 0.700 0.993 0.713 0.780
30 1.0 0.985 0.728 0.993 0.779 0.802

AbsAE, α=0.5 10 0.983 0.973 0.865 0.988 0.699 0.753
20 0.993 0.974 0.882 0.990 0.853 0.714
30 0.998 0.982 0.891 0.989 0.890 0.781

AbsAE, α=0.7 10 0.982 0.970 0.948 0.994 0.821 0.673
20 0.995 0.971 0.937 0.989 0.881 0.738
30 0.994 0.986 0.966 0.993 0.902 0.759

AbsAE, α=0.9 10 0.993 0.957 0.921 0.981 0.854 0.646
20 0.999 0.953 0.956 0.987 0.893 0.758
30 0.999 0.951 0.976 0.985 0.910 0.711
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Table 5: Relational accuracy of the ReL on the HWF, dSprites and Shapes3D datasets. ACC denotes
the accuracy, AR the accepted ratio.

HWF dSprites Shapes3D
α Depth ACC AR ACC AR ACC AR

Li et al. (2020) 1 0.985 1.0 – – – –

ReL, α=0.0 1 0.9966 1.0 0.9896 1.0 0.7521 1.0
5 0.9939 1.0 0.9898 1.0 0.7378 1.0
10 0.9909 1.0 0.9894 1.0 0.7210 1.0

ReL, α=0.1 1 0.9971 0.9984 0.9986 0.9998 0.7774 0.9702
5 0.9930 0.9994 0.9932 1.0 0.7845 0.9638
10 0.9913 0.9993 0.9891 0.9993 0.7519 0.9793

ReL, α=0.3 1 0.9985 0.9989 0.9993 0.9987 0.8342 0.9361
5 0.9949 0.9992 0.9992 0.9893 0.8062 0.9250
10 0.9909 0.9985 0.9987 0.9881 0.7933 0.9078

ReL, α=0.5 1 0.9980 0.9989 1.0 0.9832 0.8518 0.9011
5 0.9945 0.9993 0.9997 0.9711 0.8728 0.9034
10 0.9909 0.9993 0.9995 0.9695 0.8877 0.8843

ReL, α=0.7 1 0.9980 0.9988 0.9999 0.9730 0.8902 0.8392
5 0.9962 0.9990 0.9998 0.9543 0.8726 0.7531
10 0.9912 0.9987 0.9998 0.9623 0.8699 0.7111

ReL, α=0.9 1 0.9979 0.9990 1.0 0.9566 0.9102 0.7734
5 0.9938 0.9987 1.0 0.9523 0.8830 0.6517
10 0.9892 0.9984 1.0 0.9419 0.8627 0.6333
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