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Abstract

In many sequential decision-making tasks, the agent is not able to model the full complex-
ity of the world, which consists of multitudes of relevant and irrelevant information. For
example, a person walking along a city street who tries to model all aspects of the world
would quickly be overwhelmed by a multitude of shops, cars, and people moving in and
out of view, each following their own complex and inscrutable dynamics. Is it possible to
turn the agent’s firehose of sensory information into a minimal latent state that is both
necessary and sufficient for an agent to successfully act in the world? We formulate this
question concretely, and propose the Agent Control-Endogenous State Discovery algorithm
(AC-State), which has theoretical guarantees and is practically demonstrated to discover
the minimal control-endogenous latent state which contains all of the information necessary
for controlling the agent, while fully discarding all irrelevant information. This algorithm
consists of a multi-step inverse model (predicting actions from distant observations) with an
information bottleneck. AC-State enables localization, exploration, and navigation without
reward or demonstrations. We demonstrate the discovery of the control-endogenous latent
state in three domains: localizing a robot arm with distractions (e.g., changing lighting
conditions and background), exploring a maze alongside other agents, and navigating in the
Matterport house simulator.

1 Introduction
In many real-world systems, the observation space is generated by multiple complex and sparsely interacting
subsystems. The state that is necessary for controlling an agent depends only on a small fraction of the
information in the observation space. For example, consider a world consisting of a robot arm that is
controlled by an agent with access to a high-resolution video of the robot. The agent’s observation intertwines
information that the agent controls with exogenous content such as lighting conditions or videos in the
background. We define the control-endogenous latent state as the parsimonious representation, which includes
only information that either can be controlled by the agent (such as an object on the table that can be
manipulated by the arm) or affects the agent’s control (e.g., an obstacle blocking the robot arm’s motion).
Discovering this representation while ignoring irrelevant information offers the promise of vastly improved
planning, exploration, and interpretability.

A key challenge to discovering these representations in real world applications, is that only a continual stream
of observations along with the agent’s actions are available. For example, consider discovering the control-
endogenous latent state from a video of a robot arm along with the sequence of actions taken to control the
robot. Efroni et al. (2022c) demonstrated an algorithm for discovering control-endogenous latent state that
uses open-loop planning with the agent reset to a fixed start state at the beginning of each episode, which is
impractical in most real domains. Prior works (Efroni et al., 2022a; Wang et al., 2022b) also discovered the
control-endogenous latent state by assuming access to a given factorized encoder, which is often not available
in practice.

In this work, we consider a setting where the agent acts in a world consisting of complex observations with
relevant and irrelevant information. We consider environments where observations are generated from states
that can be decoupled into control-endogenous and exogenous components. Our definition of exogenous

1



Under review as submission to TMLR

strictly refers to aspects of the world that can never interact with the agent, which may include things like
the detailed visual textures of objects or background processes that the agent cannot interact with. It is
vital to discard irrelevant parts of the observation space. Our proposed algorithm predicts the first action
that needs to be taken from any current observation to reach any future state in a certain number of steps
in the future. We establish some theoretical results showing that this captures a complete and minimal
control-endogenous state. This has many appealing properties in that we never need to learn a sequence
model or a generative model. We only need to use supervised learning to predict actions. Prior works have
considered partially observable settings to summarize agent-states (Littman et al., 1995; Kaelbling et al.,
1998), or quantify agent states based on predictions of rewards (Littman et al., 2001). We emphasize here
the salience of information for controlling the agent in fully-observed settings.

Figure 1: Overview of AC-State . The control-endogenous latent dynamics (top) can be discovered using
AC-State, without learning a model of the exogenous noise e or the observation x. This involves collecting
data under a high-coverage endogenous policy (center) while optimizing a multi-step inverse model with a
bottleneck (bottom).

How can we discover this control-endogenous latent state from raw observations and actions? We intro-
duce the Agent Control-Endogenous (AC-State) algorithm, which provably guarantees discovery of the
control-endogenous latent state by excluding all aspects of the observations that are unnecessary for control.
AC-State learns an encoder f that maps a given observation x to the corresponding control-endogenous
latent state f(x). This is accomplished by optimizing a novel objective using an expressive model class such
as deep neural networks (LeCun et al., 2015). The proposed algorithm uses a multi-step inverse model as
its objective, along with a bottleneck on the capacity of the learned representation. As we discuss later,
we use a discrete information bottleneck, based on vector quantization, which plays a key role in discarding
exogenous information.
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Algorithms PPE OSSR DBC CDL Denoised-MDP
1-Step
Inverse

AC-State
(Ours)

Exogenous Invariant State ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exogenous Invariant Learning ✓ ✓ ✗ ✗ ✗ ✓ ✓

Flexible Encoder ✓ ✗ ✓ ✗ ✓ ✓ ✓

YOLO (No Resets) Setting ✗ ✓ ✓ ✓ ✓ ✓ ✓

Reward Free ✓ ✓ ✗ ✓ ✓ ✓ ✓

Control-Endogenous Rep. ✓ ✓ ✗ ✓ ✓ ✗ ✓

Table 1: An Overview of the Properties of prior works on representation learning in RL is shown, with
a particular emphasis on robustness to exogenous information. We compare with several baselines including
PPE Efroni et al. (2022c), OSSR Efroni et al. (2022a), DBC Zhang et al. (2021a) , Denoised MDP Wang
et al. (2022a) and 1-Step Inverse Models Pathak et al. (2017). The comparison to AC-State aims to be as
generous as possible to the baselines. ✗ is used to indicate a known counterexample for a given property.

In our experiments, we demonstrate the discovery of agent control-endogenous latent states that are (nearly)
identical to their ground-truth values, while only using access to the raw observations and actions. We
measure the exactness of the correspondence between the ground truth latent state (not used for training)
and the learned latent state. The AC-State approach requires no reward signal, and many experiments
require a few thousand interactions with the environment for initial learning along with zero additional
examples to discover an appropriate policy. At the same time, successful discovery of the latent state implies
the ability to localize, explore, and plan to reach goal states from a single shared representation.

2 Prior Approaches
Deep learning architectures can be optimized for a wide range of differentiable objective functions. Our key
question is: what is an objective for provably learning a control-endogenous latent state that is compatible
with deep learning? At issue is finding parsimonious representations that are sufficient for control of a
dynamical system given observations from rich sensors (such as high-resolution videos) while discarding
irrelevant details. Approaches such as optimal state estimation (Durrant-Whyte & Bailey, 2006), system
identification (Ljung, 1998), and simultaneous localization and mapping (Cadena et al., 2016; Dissanayake
et al., 2001) achieve parsimonious state estimation for control, yet require more domain expertise and design
than is desirable. Previous learning-based approaches failed to capture the full control-endogenous latent
state or exclude all irrelevant information (Efroni et al., 2022c). Reinforcement learning approaches that
capture the latent state from rich sensors by employing autoencoders (Goodfellow et al., 2016) or contrastive
learning often capture noise components1.

Learning latent states for interactive environments is a mature research area with prolific contributions. We
discuss a few of the most important lines of research and how they fail to achieve guaranteed discovery of
the control-endogenous latent state. We categorize these contributions into broad areas based on what they
predict: rewards (or value functions), future latent states, observations, the relationship between observa-
tions, and/or actions. Table 1 provides a summarized comparison of the properties of AC-State and prior
works. In this table, algorithms that must learn the full exogenous state before learning how to discard it
are marked as having an exogenous invariant state but not exogenous invariant learning.

Limitations of Predicting Rewards: Reward-based bisimulation (Zhang et al., 2021b) can filter irrelevant
information from the latent state but is dependent on access to a reward signal. Deep reinforcement learning
based on reward optimization (Mnih et al.) often struggles with sample complexity when the reward is
sparse and fails completely when the reward is absent. An adversarial approach can also be used to learn
disentangled reward-relevant and reward-irrelevant state (Fu et al., 2021). This can successfully ignore

1Consider a divided freeway, where cars travel on opposing sides of the lane. For this situation, autoencoders or contrastive
learning objectives (commonly referred to as “self-supervised learning”) produce distinct latent states for every unique config-
uration of cars on the other side of the lane divider. For example, an autoencoder or generative model would learn to predict
the full configuration and visual details of all the cars, even those that could not interact with the agent.
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distractors but may struggle if the distractors are difficult to completely model and can only be used when
an external reward signal is available.

Limitations of Predicting Latent States: Approaches that involve predicting future latent states from
past latent states have achieved good performance, but there is no theoretical guarantee that the latent
state captures the full control-endogenous latent state (Guo et al., 2022; Schwarzer et al., 2021b; Ye et al.,
2021; Pathak et al., 2017). Deep bisimulation approaches learn state representations for control tasks with
agnosticism toward task-irrelevant details (Zhang et al., 2021a). Prior approaches have involved a model
that predicts latent states such that the pre-trained representations can solve a task (Schwarzer et al.,
2021a), yet this approach is not task-agnostic, and it is not guaranteed to recover the control-endogenous
state. An auto-encoder trained with reconstruction loss or a dynamics model (Lange et al., 2012; Wahlström
et al., 2015; Watter et al., 2015) learns low-dimensional state representations to capture information relevant
for solving a task. Although learning latent state representations has been shown to be useful for solving
tasks, there is no guarantee that such methods can fully recover the underlying control-endogenous latent
state.

Limitations of Predicting Observations: Other works have also used generative models or autoencoders
to predict future observations for learning latent representations, mostly for purposes of exploration. The idea
of predicting observations is often referred to as “intrinsic motivation” to guide the agent towards exploring
unseen regions of state space (Oudeyer & Kaplan, 2007). Other works use autoencoders to estimate future
observations in the feature space for exploration (Stadie et al., 2015), though such models can also fail in the
presence of exogenous observations. Dynamics models learn to predict distributions over future observations,
but often for the purpose of planning a sequence of actions instead of recovering latent states or for purposes
of exploration. Models which predict observations directly must also predict exogenous noise (Misra et al.,
2020). Some approaches that learn generative models in the observation space attempt to learn a further
decomposition of the dynamics into control-endogenous and exogenous latent states. While this can result
in the correct latent state, it still requires learning a full generative model over the entire latent state, not
just the control-endogenous latent state (Wang et al., 2022a;b).

Limitations of Predicting Relationships between Observations: By learning to predict relations
between two consecutive observations, prior works have attempted to learn latent state representations,
both theoretically (Misra et al., 2020) and empirically (Mazoure et al., 2020). For example, by exploiting
mutual information based objectives (information gain based on current states and actions with future
states) (Mazoure et al., 2020; Song et al., 2012), previous works have attempted to learn control-endogenous
states in the presence of exogenous noise. However, unlike AC-State, they learn latent states dependent on
exogenous noise, even though the learned representation can be useful for solving complex tasks (Mazoure
et al., 2020). Theoretically, Misra et al. (2020) uses a contrastive loss based objective to provably learn
latent state representations that can be useful for hard exploration tasks. However, contrastive loss based
representations have a counterexample where they are forced to capture exogenous noise (Efroni et al.,
2022c), whereas AC-State exploits an exogenous free rollout policy with a multi-step inverse dynamics
model to provably and experimentally recover the full control-endogenous latent state.

Limitations of Predicting Actions: AC-State aims at recovering the control-endogenous latent states
by training a multi-step inverse dynamics model in the presence of exogenous noise. While prior works
have explored similar objectives, either for exploration or for learning state representations, they are unable
to recover latent states with perfect accuracy in the presence of exogenous noise (Efroni et al., 2022c). In
Appendix B, we provide a concrete counter-example demonstrating why a one-step inverse objective fails to
learn the correct latent state. Approaches based on action prediction with one-step inverse models (Pathak
et al., 2017) are widely used in practice (Baker et al., 2022; Badia et al., 2020). However, these inverse
models can fail to capture the full control-endogenous latent dynamics (Efroni et al., 2022c; Hutter & Hansen,
2022), while combining them with an autoencoder (Bharadhwaj et al., 2022) inherits the weaknesses of that
approach.

Limitations of Empowerment-based objectives : Empowerment-based objectives focus on the idea
that an agent should try to seek out states where it is empowered by having the greatest number of possible
states that it can easily reach (Klyubin et al., 2005). For example, in a maze with two rooms, the most
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empowered state is the doorway, since it makes it easy to reach either of the rooms. Concrete instantiations
of the empowerment objective may involve training models to predict the distribution of actions from ob-
servations (either single-step or multi-step inverse models) (Mohamed & Rezende, 2015; Yu et al., 2019),
but they lack the information bottleneck term and the requirement of an exogenous-independent rollout
policy. The analysis and theory in this work focus on action prediction as a particular method for measuring
empowerment rather than as a way of guaranteeing the discovery of a minimal control-endogenous latent
state and ignoring exogenous noise.

Limitations of Causal Learning Approaches: The concept of control-endogenous latent states is closely
related to causality in the sense that it captures the content in the state space that is causally related to
actions. This perspective has been explored by Wang et al. (2022b), which used conditional independence
testing to find sets of high-level variables that are related to actions. Time series with known variables have
also been used to discover causal relationships (Mastakouri et al., 2021). A pre-trained feature extractor
for high-level variables (such as keypoints in computer vision) can also be used as the inputs for discovering
causal structure (Li et al., 2020). These methods assume access to a small set of high-level variables with
sparse causal structure. This assumption allows these methods to completely avoid the representational
learning aspect of the problem. Learning causal dynamics end-to-end using deep learning is a nascent area
of research, even when high-level variables are provided as the inputs for learning (Subramanian et al., 2022;
Scherrer et al., 2021).

Limitations of other approaches using Multi-Step Inverse Models: Here we discuss several recent
works that study the reinforcement learning problem in the presence of exogenous and irrelevant information.
Efroni et al. (2022c) formulated the Ex-BMDP model and designed a provably efficient algorithm that learns
the state representation. However, their algorithm succeeds only in the episodic setting, when the initial
control-endogenous state is initialized deterministically. This is used alongside deterministic dynamics to
use open-loop plans (i.e. plans which do not look at the actual state of the environment) to construct
the endogenous latent state. These strict assumptions make their algorithm impractical in many cases of
interest. Here we removed the deterministic assumption of the initial latent state. Indeed, as our theory
suggests, AC-State can be applied in the “you-only-live-once” (YOLO) setting when an agent has access to
a single trajectory. In Efroni et al. (2022b) and OSSR (Efroni et al., 2022a) the authors designed provable
RL algorithms that efficiently learn in the presence of exogenous noise under different assumptions about
the underlying dynamics. These works, however, focused on statistical aspects of the problem; how to scale
these approaches to complex environments and combine function approximations is currently unknown and
seems challenging. Efroni et al. (2022c) proposes a deterministic path planning based algorithm, which may
not be directly compatible with most existing deep RL frameworks. In contrast, the proposed AC-State
algorithm recovers the underlying latent states and can be directly used to construct a tabular MDP for
planning, or for pre-training representations for later use in any deep RL based downstream task.

Significance of our work: AC-State uses a simple multi-step inverse model along with a bottleneck on the
representations to learn latent states, which has not been exploited by prior works using dynamics models.
Unlike the aforementioned works, here we focus on the representation learning problem. AC-State predicts
actions based on future observations, and we show that a multi-step inverse dynamics model predicting
actions can fully recover the control-endogenous latent states with no dependence on the exogenous noise.
We emphasize that in the presence of exogenous noise, methods based on predictive future observations are
prone to predicting both the control-endogenous and exogenous parts of the state space and do not have
guarantees on recovering the latent structure. AC-State is the first practical and theoretically grounded
approach that learns the control-endogenous representation with complex function approximators such as
deep neural networks.

3 Exogenous Block MDP Setting

We consider the Exogenous Block Markov Decision Process (Ex-BMDP) setting to model systems with
control-endogenous and exogenous subsystems, as formulated in Efroni et al. (2022c). This definition as-
sumes that exogenous noise has no interaction with the control-endogenous state, which is stricter than the
exogenous MDP definition introduced by Dietterich et al. (2018).
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Notation and Assumptions: A BMDP consists of a set of observations, X ; a set of latent states, Z; a
finite set of actions, A with cardinality A; a transition function, T : Z × A → ∆(Z); an emission function
q : Z → ∆(X ); a reward function R : X × A → [0, 1]; and a start state distribution µ0 ∈ ∆(Z). We do
not consider the episodic setting, but only assume access to a single trajectory. The agent interacts with
the environment, generating an observation and action sequence, (z1, x1, a1, z2, x2, a2, · · · ) where z1 ∼ µ(·).
The latent dynamics follow zt+1 ∼ T (z′ | zt, at) and observations are generated from the latent state at
the same time step: xt ∼ q(· | zt). The agent does not observe the latent states (z1, z2, · · · ), instead
it receives only the observations (x1, x2, · · · ). The block assumption holds if the support of the emission
distributions of any two latent states are disjoint, supp(q(· | z1)) ∩ supp(q(·|z2)) = ∅ when z1 ̸= z2., where
supp(q(· | z)) = {x ∈ X | q(x | z) > 0} for any latent state z. Lastly, the agent chooses actions using a policy
π : X → ∆(A), so that at ∼ π(·|xt).

We now define the model we consider in this work, which we refer as deterministic Ex-BMDP:
Definition 3.1 (Deterministic Ex-BMDP). A deterministic Ex-BMDP is a BMDP such that the latent
state can be decoupled into two parts z = (s, e) where s ∈ S is the control-endogenous state and e ∈ Ξ is the
exogenous state. We will further assume that the control-endogenous dynamics T (s′ | s, a) are deterministic.
The exogenous dynamics Te(e′ | e) may be stochastic. For z, z′ ∈ Z, a ∈ A the transition function is decoupled
T (z′ | z, a) = T (s′ | s, a)Te(e′ | e).

The above definition implies that there exist mappings f⋆ : X → [S] and f⋆,e : X → [E] from observations to
the corresponding control-endogenous and exogenous latent states. The cardinality of the exogenous latent
state E may be arbitrarily large. Furthermore, we assume that the diameter of the control-endogenous part
of the state space is bounded. In other words, there is an optimal policy to reach any state from any other
state in a finite number of steps:
Assumption 3.2 (Bounded Diameter of Control-Endogenous State Space). The length of the shortest path
between any z1 ∈ S to any z2 ∈ S is bounded by D.

We now describe a structural result of the Ex-BMDP model, proved in Efroni et al. (2022c). We say that
π is an endogenous policy if it is not a function of the exogenous noise. Formally, for any x1 and x2, if
f⋆(x1) = f⋆(x2) then π(· | x1) = π(· | f⋆(x2)).

Let Pπ(s′ | s, t) be the probability to observe the control-endogenous latent state s = f⋆(x′), t time steps
after observing s′ = f⋆(x) and following policy π, starting with action a. Let the exogenous state be defined
similarly as e = f⋆,e(x) and e′ = f⋆,e(x′). The following result shows that, when executing an endogenous
policy, the future t time step distribution of the observation process conditioning on any x has a decoupling
property. Using this decoupling property we later prove that the control-endogenous state partition is
sufficient to minimize the loss of the AC-State objective.
Proposition 3.3 (Factorization Property under an Endogenous Policy, (Efroni et al., 2022c), Proposition 3).
Assume that x ∼ µ(x) where µ is some distribution over the observation space and that π is an endogenous
policy. Then, for any t ≥ 1 it holds that:

Pπ(x′ | x, a, t) = q(x′ | s′, e′)Pπ(s′ | s, a, t)P(e′ | e, t).

Additionally, we assume that the initial distribution at time step t = 0 is decoupled µ0(s, e) = µ0(e)µ0(e).

Justification of Assumptions: An intuitive justification for the concept of a control-endogenous latent
state comes from the design of video games. A video game typically consists of a factorized game engine
(which receives player input and updates a game state) and a graphics engine. Modern video game programs
are often dozens of gigabytes, with nearly all of the space being used to store high-resolution textures,
audio files, and other assets. A full generative model T (xt+1|xt, at) would need to use most of its capacity to
model these high-resolution assets. On the other hand, the core gameplay engine necessary for characterizing
the control-endogenous latent dynamics T (st+1 | st, at) takes up only a small fraction of the overall game
program’s size and thus may be much easier to model2. To give a concrete example, when the 1993 game

2The control-endogenous latent state and their dynamics is generally even more compact than the game state, which itself
may have exogenous noise such as unused or redundant variables.
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Link’s Awakening was remade in 2019 with similar gameplay but updated graphics, its file size increased
from 8 MB to 5.8 GB, a 725x increase in size (Michel, 2022). Successful reinforcement learning projects for
modern video games such as AlphaStar (Starcraft 2) and OpenAI Five (Dota 2) take advantage of this gap
by learning on top of internal game states rather than raw visual observations (Vinyals et al., 2019; Berner
et al., 2019). In the real world, there is no internal game state that we can extract. The control-endogenous
latent state must be learned from experience.

Additionally, we make the further assumption that the data is collected under an endogenous policy. In this
paper, we consider two kinds of policies: one is a random rollout policy, which is trivially an endogenous
policy. The other type of policy we consider is achieved by planning to reach self-defined goals. This is
achieved using a tabular-MDP constructed from counts of observed (s, a, s′) tuples, where s is the discretized
output of our learned encoder. The endogenous policy assumption in our theory may not always hold in
practice, as a learned encoder may have errors that cause it to depend on exogenous noise.

We have also assumed that the control-endogenous state space has a finite state, a bounded diameter, and
deterministic dynamics. The assumption of a finite state rules out continuous control problems and also
makes problems with combinatorial structures (such as an arm with many joints or a robot interacting with
multiple objects) infeasible. The requirement of a bounded diameter rules out environments that are unsafe
or allow for irreversible changes, such as a robot becoming permanently stuck or damaged. The assumption
of deterministic control-endogenous dynamics is not strictly required to use AC-State, but is required for a
part of the proof that requires constructing the set of states that are reachable in a certain number of steps.

Goal: Our goal is reward-free and task-independent latent state discovery. Successful discovery of the
control-endogenous latent state entails only learning a model for how to encode s such that T (st+1 | st, at),
while not learning anything about T (et+1 | et) or how to encode e. In particular, we seek to show that the
control-endogenous latent state is identifiable and can be recovered exactly in the asymptotic regime.

4 AC-State: Discovering Agent Control-Endogenous Latent States
The control-endogenous latent state should preserve information about the interaction between states and
actions while discarding irrelevant details. The proposed objective (Agent Control-Endogenous State or AC-
State) accomplishes this by generalizing one-step inverse dynamics (Pathak et al., 2017; Efroni et al., 2022c;
Hutter & Hansen, 2022; Badia et al., 2020) to multiple steps with an information bottleneck (Figure 1). This
multi-step inverse model predicts the first action taken to reach a control-endogenous latent state k steps in
the future:

LAC-State (f, x, a, t, k) = − log(P (at|f(xt), f(xt+k); k)) (1)

The multi-step inverse objective LAC-State predicts the action at from the observation just before the action at

is taken and from an observation collected k steps in the future. The action step t is sampled uniformly over
all of the T steps in which the action was taken randomly. The prediction horizon k is sampled uniformly
from 1 to a maximum horizon Kt, which may be a fixed hyperparameter or may depend on the number of
steps left in the planning horizon at step t. The multi-step inverse model predicts the distribution over the
first action to reach a state k steps in the future from a given current state. Generally, this action cannot
be predicted perfectly, but it still carries information about the relationship between the current state and
a state in the (potentially distant) future.

We optimize the parameters of an encoder model f : Rn −→ {1, . . . , Range(f)} that maps from an n-
dimensional continuous observation to a finite latent state with an output range of size Range(f), an integer
number. F is a set that represents all mappings achievable by the model. We wish to minimize Objective 1
while using an encoder with the smallest latent state as its output. Conceptually, we can define this as
finding a set of optimal solutions. The control-endogenous latent state is guaranteed to be one of the optimal
solutions for the multi-step inverse objective LAC-State, while other solutions may fail to remove irrelevant
information. The control-endogenous latent state is uniquely achievable by finding the lowest capacity f in
the set of optimal solutions to the AC-State objective:
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G = arg min
f∈F

E
t∼T

E
k∼U(1,Kt)

LAC-State (f, x, a, t, k) (2)

f̂ ∈ arg min
f∈G

Range(f). (3)

Figure 2: AC-State Successfully Removes Exogenous Noise: In our
experiments, we demonstrate an application of AC-State in a Robot Learning
Task. AC-State discovers the control-endogenous latent state in a visual
robotic setting with temporally correlated distractors: a TV, flashing lights,
and drinking bird toys (left). The reconstruction from AC-State decoder
captures the arm’s position, while ignoring all the irrelevant background
distractors (right). This latent representation captures the relevant parts of
the world without any supervision, reward signal, or hard-coded assumptions.

As a concrete strategy to achieve a min-
imal latent state, we combine two mech-
anisms that are widely used in the deep
learning literature to restrict the infor-
mation capacity in f , which introduces
an additional loss term LBottleneck(f, xt).
We first pass the hidden state at the end
of the network through a gaussian vari-
ational information bottleneck (Alemi
et al., 2017), which reduces the mutual
information between x and the represen-
tation. We then apply vector quantiza-
tion (Van Den Oord et al., 2017), which
yields a discrete latent state. While ei-
ther of these could be used on their own,
we found that adding the gaussian mu-
tual information objective eased the dis-
covery of parsimonious discrete repre-
sentations. Both of these are standard
deep architectural elements, which we use
along with their associated loss terms
(Wang, 2020; Zeghidour et al., 2021). In-
tuitively, the bottleneck is necessary to ensure that the latent contains the minimal amount of information
necessary to obtain the optimal solution to the multi-step inverse model. In the absence of a bottleneck, we
could set the encoder to be the identity function ϕ(x) = x and fail to learn a meaningful representation.

Since it avoids the need for complicated two-level optimization, we can consider using the bottleneck losses as
additional terms in the objective. While we could re-weight these loss terms to make the bottleneck weaker,
we did not find this to be necessary in practice. We optimize this approximate objective in practice:

f̂ ≈ arg min
f∈F

E
t∼T

E
k∼U(1,Kt)

[
LAC-State (f, x, a, t, k) + LBottleneck(f, xt) + LBottleneck(f, xt+k)

]
(4)

In addition to optimizing the objective and restricting capacity, the actions taken by the agent are also
important for the success of AC-State, in that they must achieve high coverage of the control-endogenous
state space and not depend on the exogenous noise. This is satisfied by a random policy or a policy that
depends on f̂(xt) and achieves high coverage. The AC-State objective enjoys provable asymptotic success
(see section 5) in discovering the control-endogenous latent state.

Intuitively, the AC-State objective encourages the latent state to keep information about the long-term effect
of actions, which requires storing all information about how the actions affect the world. At the same time,
the AC-State objective never requires predicting information about the observations themselves, so it places
no value on representing aspects of the world that are unrelated to the agent.

AC-State with Random Policy: The simpler version of AC-State uses a random policy to collect data
and fit the encoder (Algorithm 1). While this is simple to implement, a uniform random policy is always
exogenous-free by construction and asymptotically achieves high coverage. At the same time, it may not
achieve sufficient coverage with reasonable sample efficiency for some hard exploration tasks. If a single bad
action can cause an agent to lose many steps of progress, the sample complexity needed to achieve high
coverage can scale exponentially in the horizon.
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Algorithm 1 AC-State Algorithm for Latent State Discovery Using A Uniform Random Policy
1: Initialize observation trajectory x and action trajectory a. Initialize encoder fθ. Assume a control-

endogenous diameter of K and a number of samples to collect T , and a set of actions A, and a number
of training iterations N .

2: x1 ∼ U(µ(x))
3: for t = 1, 2, ..., T do
4: at ∼ U(A)
5: xt+1 ∼ P(x′|xt, at)
6: for n = 1, 2, ..., N do
7: t ∼ U(1, T ) and k ∼ U(1, K)
8: L = LAC-State (fθ, t, x, a, k) + LBottleneck(fθ, xt) + LBottleneck(fθ, xt+k)
9: Update θ to minimize L by gradient descent.

AC-State with Planning Policy: A more involved algorithm (shown in Appendix C, Algorithm 2) is able
to discover latent states in problems where exploration is difficult (such as in an environment where specific
actions need to be taken in sequence to make progress). This can be accomplished by using a planning policy
instead of a purely random policy. While any type of policy could be used in principle, we experimented with
planning in a simple count-based tabular-MDP. In this model, a monte-carlo breadth-first search (suitable for
stochastic dynamics) is used to select rarely seen reachable states as goal states. Then Dijkstra’s algorithm
is used to construct closed-loop plans to reach the desired goal state. All collected sample observations are
collected into a buffer and their representations are recomputed under the current encoder network and the
tabular-MDP is reconstructed on every 100th iteration. Only a single random action is taken on the first step
of each goal-seeking trajectory, and it is this random action that is predicted with the AC-State objective.
While the AC-State theory assumes deterministic dynamics, the tabular-MDP constructed using learned
latent states often has stochastic dynamics due to errors in the learned encoder.

Implementation Details: We provide implementation details of the AC-State algorithm, with pseudo-
code of the algorithm provided in C. The AC-State algorithm collects data with either a uniform random
rollout policy or a Dijkstra’s algorithm based planning policy, as discussed in most of our experiments. This
is because a random policy ensures that the actions are completely exogenous free, irrespective of whether
the observation consists of exogenous information. We then learn an encoder representation ϕ using the
multi-step inverse dynamics objective as in equation 1. The encoded representation is then passed through
a Vector Quantization (VQ-VAE) bottleneck such as to map the continuous representation into a set of
discrete latent codes. The AC-State representation is learnt end to end using the overall objective, including
the information bottleneck as in 4. We use the learnt discrete latents for visualizing the underlying structure
of the MDP (Figure 6, right). The corresponding continuous representation is probed (using a separately
learned decoder that predicts the ground truth state) to measure the accuracy of latent state recovery (figure
4). For each experiment, we include additional details of data collection and the evaluation metric to measure
accuracy of latent discovery.

Measuring Successful Discovery of Control-Endogenous Latent State: The result of training with
AC-State is a discrete graph where there is a node for every control-endogenous latent state with edges
representing actions leading to a state-action node from which weighted outcome edges lead back to control-
endogenous latent state nodes. We estimate the transition probabilities in this control-endogenous latent
space by using counts to estimate T (st+1|st, at). Once this control-endogenous latent state and associated
transition distribution is estimated, we can directly measure how correct and how parsimonious these dy-
namics are whenever the ground-truth control-endogenous latent state is available (which is the case in all of
our experiments). We measure an L1-error on this dynamics distribution as well as the ratio of the number
of learned latent states to the number of ground truth control-endogenous states.

5 Theoretical Analysis
We present an asymptotic analysis of AC-State showing it recovers f⋆, the control-endogenous state repre-
sentation. The mathematical model we consider is the deterministic Ex-BMDP. There, the transition model
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of the latent state decomposes into a control-endogenous latent state, which evolves deterministically, along
with a noise term–the agent-irrelevant portion of the state. The noise term may be an arbitrary tempo-
rally correlated stochastic process. If the reward does not depend on this noise, any optimal policy may be
expressed in terms of this control-endogenous latent state. In this sense, the recovered control-endogenous
latent state is sufficient for achieving optimal behavior.

The proof involves two steps. In the first step, we show that a Bayes-optimal solution to the multi-step inverse
model objective can be achieved without dependence on exogenous noise. In the second step, we show that
the minimal representation minimizing the multi-step inverse model objective is the control-endogenous
state.

5.1 High Level Intuition for Theory

Our theoretical justification first proceeds by showing that the optimal multi-step inverse model only depends
on the control-endogenous state (Section 5.2) given our assumed factorization of the latent dynamics. Thus
the control-endogenous latent state is sufficient for an optimal solution to the multi-step inverse model
objective. In some sense, this establishes that the latent state does not need to be split any more than is
necessary.

Figure 3: An illustration of the high-level idea of the proof in Section 5.3. The proof uses induction on h to
produce certificates which differentiate all pairs of distinct states. An example of one certificate using 2-step
inverse models is shown on the right side of the figure. Going from B to s1 requires the first action to move
left (red arrow), whereas going to s2 requires that the first action moves right (blue arrow).

The next part of the argument (Section 5.3 and Figure 3) attacks from the opposite direction by showing
that the multi-step inverse model forces the latent state to split any two states which are truly distinct. This
means that there is no coarser solution to the multi-step inverse model objective (since the bottleneck will
prefer the coarsest solution). The proof uses induction on the horizon length to produce certificates to split
increasingly distantly-separated states. This novel result is somewhat counter-intuitive in a few ways. One
surprising result is that it only requires the model to predict the first action taken to reach a future state,
rather than predicting the full sequence of actions. Another interesting result is that the policy following
the first action can be fairly general (needs to achieve high state coverage over the dataset) and includes a
purely random rollout policy. The optimal solution to the multi-step inverse model objective will change
depending on the choice of rollout policy, but the theory indicates that a wide variety of choices will lead to
learning the correct representation.

5.2 Bayes Optimal Solution does not depend on Exogenous Noise

Consider the generative process in which x is sampled from a distribution µ, the agent executes a policy π
for t time steps and samples x′. Denote by Pπ,µ(x, x′, t) as the joint probability, and by Pπ,µ(a | x, x′, t) as
the probability that under this generative process the action upon observing x is a. The following result,
which builds on Proposition 3.3, shows that the optimal bayes solution Pπ,µ(a | x, x′, t) is equal to Pπ,µ(a |
f⋆(x), f⋆(x′), t) for Pπ,µ(x, x′, t) > 0, where Pπ,µ(x, x′, t) > 0 is the probability to sample x .

10
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Proposition 5.1. Assume that π is an endogenous policy. Let x ∼ µ for some distribution µ. Then, the
Bayes’ optimal predictor of the action-prediction model is piece-wise constant with respect to the control-
endogenous partition: for all a ∈ A, t > 0 and x, x′ ∈ X such that Pπ,µ(x, x′, t) > 0 it holds that

Pπ,µ(a | x, x′, t) = Pπ,µ(a | f⋆(x), f⋆(x′), t).

We comment that the condition Pπ,µ(x, x′, t) > 0 is necessary since otherwise the conditional probability
Pπ,µ(a | x, x′, t) is not well defined.

The proof for this proposition is a straightforward application of bayes theorem, is given in the appendix,
and was previously presented in Efroni et al. (2022c;a).

5.3 Discovery of Full Control-Endogenous Latent State

Proposition 5.1 from the previous section shows that the multi-step action-prediction model is piecewise
constant with respect to the partition induced by the control-endogenous states f⋆ : X → [S]. In this section,
we assume that the executed policy is an endogenous policy that induces sufficient exploration. With this,
we prove that there is no coarser partition of the observation space such that the set of inverse models is
piecewise constant with respect to it.

We assume that the Markov chain induced on the control-endogenous state space by executing the policy πD
by which AC-State collects the data has a stationary distribution µD such that µD(s, a) > 0 and πD(a | s) ≥
πmin for all s ∈ S and a ∈ A. We consider the stochastic process in which an observation is sampled from a
distribution µ such that µ(s) = µD(s) for all s. Then, the agent executes the policy πD for t time steps. For
brevity, we denote the probability measure induced by this process as PD. A more detailed justification for
this assumption is given in the appendix.

We begin by defining several useful notions. We denote the set of reachable control-endogenous states from
s in h time steps as Rh(s).
Definition 5.2. (Reachable Control-endogenous States). Let the set of reachable control-endogenous states
from s ∈ S in h > 0 time steps be R(s, h) = {s′ | maxπ Pπ(s′ | s, h) = 1}.

Observe that every reachable state from s in h time steps satisfies that maxπ Pπ,µ(s′ | s0 = s, h) = 1 due to
the deterministic assumption of the control-endogenous dynamics.

Next, we define a notion of consistent partition with respect to a set of function values. Intuitively, a partition
of space X is consistent with a set of function values if the function is piece-wise constant on that partition.

Definition 5.3. (Consistent Partition with respect to G). Consider a set G = {g(a, y, y′)}y,y′∈Y,a∈A where
g : A × Y × Y → [0, 1]. We say that f : Y → [N ] is a consistent partition with respect to G if for all
y, y′

1, y′
2 ∈ Y, f(y′

1) = f(y′
2) implies that g(a, y, y′

1) = g(a, y, y′
2) for all a ∈ A.

Observe that Proposition 5.1 shows that the partition of X according to f⋆ is consistent with respect to
{PD(a | x, x′, h) | x, x′ ∈ X , h ∈ [H] s.t. PD(x, x′, h) > 0}, since, by Proposition 5.1, PD(a | x, x′, h) = PD(a |
f⋆(x), f⋆(x′), h).

Towards establishing that the coarsest abstraction according to the AC-State objective is f⋆ we make the
following definition.
Definition 5.4. (The Generalized Inverse Dynamics Set AC(s, h)). Let s ∈ S, h ∈ N. We denote by AC(s, h)
as the set of multi-step inverse models accessible from s in h time steps. Formally,

AC(s, h) = {PD(a | s′, s′′, h′) : s′ ∈ R(s, h − h′), s′′ ∈ R(s′, h′), a ∈ A, h′ ∈ [h]}. (5)

Observe that in equation equation 5 the inverse function PD(a | s′, s′′, h′) is always well defined since
PD(s′, s′′, h′) > 0. It holds that PD(s′, s′′, h′) = PD(s′)PD(s′′ | s′, h′) > 0, since PD(s′) > 0 and PD(s′′ |
s′, h′) > 0. The inequality PD(s′) > 0 holds by the assumption that the stationary distribution when following
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U has positive support on all control-endogenous states (Appendix D.3). The inequality PD(s′′ | s′, h′) > 0
holds since, by definition s′′ ∈ R(s, h′) is reachable from s′ in h′ time steps; hence, PD(s′′ | s′, h′) > 0 by the
fact that the stationary assumption (Appendix D.3) implies that the policy πD induces sufficient exploration.
Theorem 5.5. (f⋆ is the coarsest partition consistent with respect to AC-State objective). Given the
bounded diameter Assumption 3.2 and the high-coverage policy assumption (Appendix D.3) hold, it follows
that there is no coarser partition than f⋆, which is consistent with AC(s, D) for any s ∈ S.

The proof of this theorem, which uses induction on h, is provided in the appendix.

6 Experiments
Summary of Experimental Results: Our experiments explore three domains and demonstrate the unique
capabilities of AC-State: (i) AC-State learns the control-endogenous latent state of a real robot from a
high-resolution video of the robot with rich temporal background structure (a TV playing a video, flashing
lights, dipping birds, and even people) occluding the information in the observations; (ii) AC-State learns
about the controlled agent while ignoring other random agents in a multiple maze environment where there
are other functionally identical agents. We demonstrate that AC-State solves a hard maze exploration
problem. (iii) AC-State learns a control-endogenous latent state in a house navigation environment where
the observations are high-resolution images and the camera’s vertical position randomly oscillates, showing
that AC-State is invariant to exogenous viewpoint noise that radically changes the observation.

6.1 Robotic Arm Experiment
We first evaluate AC-State to recover the latent states in a real robot arm experiment consisting of ob-
servations with exogenous information in the background. We briefly describe the experiment setup and
the evaluation metric for measuring latent state recovery. We found that AC-State discovers the control-
endogenous latent state of a real robot arm while ignoring distractions.

Figure 4: A real robotic arm moves between nine different positions (left). The four actions correspond to the arm moving
forward, backward, to the left, or to the right. The quality of control-endogenous latent state dynamics learned by AC-State is
better than one-step inverse models and autoencoders, as measured by the dynamics difference error (bottom right).

Experiment Setup: We collected 6 hours of data (14,000 samples) from an AR-3 robot arm (Annin,
2022) by taking give high-level actions (move left, move right, move up, move down and stay). A picture
of the robot was taken after each completed action. We used a maximum horizon of K = 5 corresponding
to the diameter of the endogenous part of MDP, but empirically observed that larger horizons also worked
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well. The observations were mapped to a representation by using a 6-layer vision transformer (Dosovitskiy
et al., 2021) with 4-heads per-layer. The action prediction for AC-State used a simple MLP on top of these
representations and an embedding for k. Details of our experiment setup are provided in Appendix A.3. The
robot was placed among many distractions, such as a television, flashing, color-changing lights, and people
moving in the background. Some of these distractions (especially the TV) had strong temporal correlations
between adjacent time steps, as is often the case in real-life situations.

Experiment Result and Evaluation : Figure 4 shows that AC-State can discover the control-endogenous
latent state which is the ground truth position of the robot (not used during training). Qualitatively, we
measure the accuracy of latent recovery of AC-State by training a convolutional neural network to reconstruct
x from f(x) with square loss as the error metric. In other words, we learn a visualization of the latent state
to map from the latent state f(xt) to an estimate x̂t the observation xt by optimizing the mean-square error
reconstruction loss ||x̂−xt||2. We found that the robot arm’s position was correctly reconstructed, while the
distracting TV and color-changing lights appeared completely blank, as expected (Figure 2). As discussed
previously, an auto-encoder trained end-to-end with x as input captures both the control-endogenous latent
state and distractor noise. The theoretical counter-examples for autoencoders and one-step inverse models
also closely match the errors that we observe experimentally (Figure 5). Our results show that AC-State
can perfectly recover control-endogenous latent states, both qualitatively and quantitatively, in a practical
robot arm task consisting of exogenous information in the background.

Figure 5: In co-occurrence histograms measuring performance in the robotic arm environment, autoencoders
fail (left), one-step inverse models fall prey to the same counterexample in theory and in experiment (center),
and AC-State discovers a perfect control-endogenous latent state (diagonal histogram, right). Intriguingly,
the failure case of the one-step inverse model is the merging of three distant states, which are the arm being
on the center-left, center, or center-right positions. These states being merged by a one-step inverse model
is precisely what the theory predicts. On the other hand, the autoencoder merges states where the robot
arm is in similar positions because the observations are visually similar.

6.2 Mazes with Exogenous Agents and Reset Actions
In our experiments, AC-State removes exogenous noise in environments where that noise has a rich and
complex structure. We studied a multi-agent system in which a single agent is control-endogenous and
the other agents follow their own independent policies. To do this, we take a pixel-based visual gridworld
consisting of multiple mazes and agents, where the goal of AC-State is to recover only the controllable
part of the maze while ignoring observations from other agents. In our experiments, we again qualitatively
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show that AC-State can perfectly recover the underlying structure of the endogenous, controllable maze.
Additional quantitative results measuring accuracy of latent state recovery is provided in appendix A.2.

Figure 6: We study a multi-agent world where each of the nine mazes
has a separately controlled agent. Training AC-State with the actions of a
specific agent discovers its control-endogenous latent state while discarding
information about the other mazes (top). In a version of this environment
where a fixed third of the actions cause the agent’s position to reset to the
top-left corner, a random policy fails to explore (top heatmap sequence),
whereas planned exploration using AC-State reaches all parts of the maze
(bottom heatmap sequence).

Experiment Setup: In an environ-
ment with 9 agents and each agent hav-
ing c control-endogenous states, the over-
all size of the observation space is c9.
With 3,000 training samples, AC-State
is able to nearly perfectly discover the
agent’s control-endogenous latent state,
while fully ignoring the state of the 8 un-
controllable exogenous agents, with all of
the agents controlled by a random policy
(Figure 6). When using a random pol-
icy, the maximum horizon K is set to the
diameter of the MDP, whereas when us-
ing AC-State , the maximum horizon is
based on the number of steps to the goal
estimated by the planning process. Addi-
tional details on the multi-maze environ-
ment is provided in appendix A.2.

Experiment Result and Evaluation:
In the multi-maze system consisting of
exogenous observation from other agents,
we first evaluate the ability of AC-State
to recover the underlying structure of the
controllable states. Figure 6 shows that
using the AC-State objective followed by
the discretization bottleneck, we can vi-
sualize the endogenous states with a set of discrete latent codes using the quantization. Figure 6 (top-left)
shows the observation of the agent with the controllable maze (top-middle) highlighted. Figure 6 (top-right)
shows the extracted visualization with the discrete codes, qualitatively showing that endogenous-states can
be recovered to retrieve the structure of the controllable MDP. Our goal is to show that the proposed
AC-State agent can “discover" the control-endogenous latent state within the global gridworld while ignor-
ing the structural perturbations in the geometry of the other 8 gridworlds. A comparison with baselines is
shown in Table 2.

Algorithms True Endogenous States Explored Dynamics Difference Error (%)

Contrastive 20/68 92.2
Autoencoder 20/68 91.7
Forward Generative 25/68 97.1
AC-State 68/68 0.00

Table 2: Multiple-Maze Experiment Result with Baseline Comparisons, with each model having 25000
samples to explore in the environment. The baseline methods fail to ignore exogenous noise, fail to learn an
effective tabular representation, and thus fail to explore effectively.

We then show that the control-endogenous latent state is useful when it allows for exponentially more efficient
exploration than is achievable under a random policy. To exhibit this, we modified the maze problem by
giving the agent additional actions that reset to a fixed initial starting position. When a third of all actions
cause resets, the probability of acting randomly for N steps without resetting is (2/3)N . We show that a
learned exploration policy using AC-State succeeds in full exploration and learning of the control-endogenous
latent state with 25,000 samples, while a random exploration policy barely explores the first room with the
same number of samples (Figure 6).
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The counts of the discrete latent states are used to construct a simple tabular MDP where planning is done
to reach goal states using a monte carlo version of Dijkstra’s algorithm (to account for stochastic transition
dynamics). The reachable goal states are sampled proportionally to 1

count(si) , so the rarely seen states are
the most likely to be selected as goals. Experiment results demonstrate that a goal-seeking policy achieves
perfect coverage of the state space by using discovered latents for exploration, while a random policy fails to
reach more than 25% of the state space in the presence of reset actions. We demonstrate this with heatmaps
showing state visitation frequencies.

6.3 First-Person Perspective House Navigation

Figure 7: We evaluate AC-State in a house navigation environment
(top), where the agent observes high-resolution images of first-person
views and the vertical position of the camera is exogenous (center).
AC-State discovers a control-endogenous latent state that is parsimo-
nious (bottom left) and captures the position of the agent in the house
while discarding the exogenous noise (bottom right). The baselines
capture the control-endogenous latent state but fail to discard the ex-
ogenous noise.

Finally, we evaluate AC-State in a simulated
household navigation task where data is pre-
collected from different positions in the house-
hold. We compare AC-State with several base-
lines and evaluate the ability to capture the
endogenous latent state, ie, position of the
agent in the house while discarding other irrel-
evant information captured by the high resolu-
tion camera. Additional details on the matter-
port simulator, along with experiment setup
and implementation details, are provided in
appendix A.4.

Experiment Setup : In order to analyze the
performance of the proposed AC-State objec-
tive in a more realistic setting, we evaluated
it on Matterport (Chang et al., 2017), a navi-
gation environment where each observation is
a high resolution image taken from a position
in a real house. A 20,000 sample dataset col-
lected from an agent moving randomly through
the house is used to train AC-State. In addi-
tion to the high degree of visual information in
the input observations, we randomly move the
camera up or down at each step as a controlled
source of irrelevant information (exogenous
noise). AC-State removes the view noise from
the encoded representation f(x) while still cap-
turing the true control-endogenous latent state
(Figure 7), whereas other baselines capture
both the control-endogenous latent state and
the exogenous noise. The first-person house
images are mapped to representations using a
6-layer, 4-head vision transformer (Dosovitskiy
et al., 2021). The model is trained end-to-end
with the AC-State objective with maximum
horizon of K = 5 for 20 epochs using the Adam optimizer with a learning rate of 1e-4. We ran three seeds
and report mean and standard deviation. Details on the matterport simulator are provided in Appendix A.4.

Experiment Results and Evaluation : We present the results for this experiment in Figure 7. The Con-
trollable Latent State Accuracy is the viewpoint prediction accuracy for the current state. The Exogenous
Noise-Ignoring Accuracy reflects how much information about the exogenous noise is removed from the ob-
servation. We can see that the proposed AC-State model has the highest control-endogenous latent state and
exogenous noise-ignoring accuracy. Thus, it outperforms the baselines we considered at capturing control-
endogenous state while ignoring exogenous noise. We calculated state parsimony as Num. Ground Truth States

Num. Discovered States .
Therefore, a lower state parsimony denotes a high number of discovered states, which means that the model
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fails at ignoring exogenous information. The proposed model has the highest state parsimony, which shows
the effectiveness of the model in ignoring exogenous noise while only capturing control-endogenous latent
states.

7 Conclusion
AC-State reliably discovers the control-endogenous latent state across multiple domains. The vast simplifi-
cation of the control-endogenous latent state discovered by AC-State enables visualization, exact planning,
and fast exploration. The field of self-supervised reinforcement learning particularly benefits from these
approaches, with AC-State useful across a wide range of applications involving interactive agents as a self
contained module to improve sample efficiency given any task specification. As the richness of sensors and
the ubiquity of computing technologies (such as virtual reality, the internet of things, and self-driving cars)
continues to grow, the capacity to discover agent-control endogenous latent states enables new classes of
applications.

Limitations and Future Work: In this paper, we showed that AC-State can recover the control en-
dogenous latent states with perfect accuracy, and recover the underlying latent tabular MDP by completely
discarding the exogenous information. However, one limitation is that the success of AC-State depends
on the use of the discrete information bottleneck and only applicable for environments with deterministic
endogenous dynamics. An interesting extension of AC-State would be to derive an algorithm, with provable
guarantees for stochastic environments and starting states. Furthermore, it would be interesting to see how
the learnt representations from AC-State can be useful for the downstream RL task in presence of exogenous
information. Since AC-State recovers the full underlying model, it can potentially be used for reaching any
goal state in the exploration frontier, making the algorithm highly applicable for practical tasks such as
household navigation.
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A Methods and Experiments

A.1 Dynamics Difference Error Metric

For every pair of learned state and action (s, a), we have an empirical count-based distribution over next
learned states P(s′|s, a). We can also empirically estimate the distribution over ground states for each learned
state, which we can call P(g|s). We can sample over this to get an expected dynamics over the ground states
translated from the learned state dynamics. We can also look at the empirical transition distribution over
ground states. We then compute an L1-difference between these two distributions and uniformly average
over all pairs of ground state and action values and refer to this as the dynamics difference error.

In this section, we will describe our methods and experiments for validating the proposed latent state
discovery with AC-State. Three experiments, including both simulated and physical environments, are used
to test the efficacy of our proposed algorithm. The environments are carefully chosen to demonstrate the
ability of the AC-State agent to succeed at navigation and virtual manipulation tasks with varying degrees of
difficulty; on these testbeds, algorithms with similar properties in literature fail to succeed. In what follows,
we will describe the environmental setups, the function approximation scheme for the latent state, and the
results that we produced.

A.2 Mazes with Exogenous Agents and Reset Actions

We consider a global 2D maze (see Fig. 6) further divided into nine 2D maze substructures (henceforth
called gridworlds). Each gridworld is made up of 6 × 6 ground truth states, and only one of the gridworlds
contains the AC-State agent. Every gridworld other than the one containing the true agent has an agent
placed within it whose motion is governed by random actions. An ablation where we vary the maximum
number of learned codes available to the model is shown in Table 3. A table showing progress in exploration
(along with the number of learned codes being used) is shown in Table 4.

Number of Codes Ground Truth States % States Explored % Dynamics Difference Error

50 68 80.9 25.4
60 68 97.1 8.7
70 68 98.5 4.4
80 68 100 0.0

Table 3: Varying number of codes (learned states) available to the model while using AC-State on the 4-room
multiple maze task. The percentage of ground states explored after 25000 samples and how the dynamics
error varies as we increase the number of codes. AC-State typically needs more states than are actually
present to fully succeed, yet performance degrades gracefully if the number of learned states is too restricted.

A.2.1 Exploring in Presence of Reset Actions

Data Collection: We collect data under a random roll-out policy while interacting with the gridworld’s
environment. We endow the agent with the ability to “reset" its action to a fixed starting state. The goal
of this experiment is to show that, in the presence of reset actions, it is sufficiently hard for a random
rollout policy to get full coverage of the mazes. To achieve sufficient coverage, we can leverage the discovered
control-endogenous latent states to learn a goal seeking policy that can be incentivized to deterministically
reach unseen regions of the state space. The counts of the discrete latent states are used to construct a simple
tabular MDP where planning is done to reach goal states using a monte carlo version of Dijkstra’s algorithm
(to account for stochastic transition dynamics). Experimental results demonstrate that a goal-seeking policy
achieves perfect coverage of the state space by using discovered latents for exploration, while a random policy
fails to reach more than 25% of the state space in the presence of reset actions. We demonstrate this with
heatmaps showing state visitation frequencies.
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Number of Samples Ground Truth States Explored Number of Learned States Used

2000 27 36
4000 47 57
6000 55 65
8000 63 70
10000 63 72
12000 66 75
14000 66 77
16000 66 77
18000 68 79
20000 68 77

Table 4: Using the AC-State algorithm on the 4-room maze exploration task, we show how the number of
seen ground truth states and the number of learned codes change, as we increase the number of samples seen
during the exploration process.

Experiment Details: The encoder receives observations of size 80 × 720 × 3 due to the observations
from 8 other exogenous agents. The agent has an action space of 4, where actions are picked randomly
from a uniform policy. For the reset action setting, we use an additional 4 reset actions, and uniformly
picking a reset action can reset it to a deterministic starting state. The observation is encoded using the
MLP-Mixer architecture (Tolstikhin et al., 2021) with gated residual connections (Jang et al., 2017). The
model is trained using the Adam optimizer (Diederik et al., 2014) with a default learning rate of 0.0001 and
without weight decay. We use a 2-layer feed-forward network (FFN) with 512 hidden units for the encoder
network, followed by a vector quantization (VQ-VAE) bottleneck. The use of a VQ-VAE bottleneck would
discretize the representation from the multi-step inverse model by adding a codebook of discrete learnable
codes. For recovering control-endogenous latents from the maze we want to control while ignoring the other
exogenous mazes, we further use a MLP-Mixer architecture Tolstikhin et al. (2021) with gated residual
updates Jang et al. (2017). Both the inverse mode and the VQ-VAE bottlenecks are updated using an Adam
optimizer Diederik et al. (2014) with a default learning rate of 0.0001 without weight decay.

A.3 Robotic Arm under Exogenous Observations

Using a robotic arm (Annin, 2022) with 6 degrees of freedom, there are 5 possible abstract actions: forward,
reverse, left, right, and stay. The robot arm moves within 9 possible positions in a virtual 3x3 grid, with
walls between some cells. The center of each cell is equidistant from adjoining cells. The end effector is kept
at a constant height. We compute each cell’s centroid and compose a transformation from the joint space of
the robot to particular grid cells via standard inverse kinematics calculations. Two cameras are used to take
still images. One camera is facing the front of the robot, and the other camera is facing down from above the
robot. When a command is received, the robot moves from one cell center to another cell center, assuming
no wall is present. After each movement, still images (640x480) are taken from two cameras and appended
together into one image (1280x480). During training, only the forward facing, down-sampled (256x256)
image is used. Each movement takes one second. After every 500 joint space movements, we re-calibrate the
robot to the grid to avoid position drift.

We collected 6 hours (14000 data samples) of the robot arm following a uniformly random policy. There were
no episodes or state resets. In addition to the robot, there are several distracting elements in the image. A
looped video (https://www.youtube.com/watch?v=zRpazyH1WzI) plays on a large display in high resolution
(4K video) at 2x speed. Four drinking toy birds, a color-changing lamp, and flashing streamer lights are also
present. During the last half hour of image collection, the distracting elements are moved and/or removed
to simulate additional uncertainty in the environment. An illustration of the setup is in Figure 9, along with
the specific counter-example for one-step inverse models. The quantitative performance of various baselines
and AC-State on this task is shown in Table 5.
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Figure 8: For four different baseline models we show input image (left), top-down image (center), and
reconstruction of the image from the learned latent state (right). Two consecutive frames are shown for each
method. Both the one-step inverse model and AC-State successfully discard the background distractors, but
only AC-State does this while also successfully capturing the true position of the robot arm.

Additional Result : Videos of the latent state visualization for baselines and AC-State are shown in
Figure 8. In each video, the frontal view (ground truth) is shown on the left, the top-down view (ground
truth) is shown in the middle, the reconstruction of the frontal view from the latent state is shown on the
right.

Algorithms Image Reconstruction Error Ground Truth State Accuracy Dynamics Difference Error (%)

Contrastive 45.20 33.05 66.1
Autoencoder 50.56 20.82 82.2
Forward Generative 65.48 21.30 76.4
1-Step Inverse 88.70 86.75 16.6
AC-State 88.04 99.83 0.52

Table 5: Robot arm results with various baselines. We show error in reconstructing the original image
(generally higher is better as it indicates that exogenous noise is discarded from the latent state). We also
train a probe network to predict the ground truth endogenous state from the learned latent state as well as
dynamics difference error from the learned latent dynamics.
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Figure 9: The robot arm has five actions and moves within nine possible control-endogenous states (left).
The transition directions are indicated by the arrows. For example, if the robot arm is at (0,0) and selects
the down action, it moves to (0,1), but if it selects the up action, it remains at the same position. A simple
inverse model can achieve perfect accuracy even if the middle row of true control-endogenous states are
mapped to a single latent state (middle). This leads the one-step inverse model to merge them (right).

A.4 Matterport Simulator with Exogenous Observations

We evaluated AC-State on the matterport simulator introduced in Chang et al. (2017). The simulator
contains indoor houses in which an agent can navigate. The house contains a finite number of viewpoints
which the agent can navigate to. At each viewpoint, the agent has control of its viewing angle (by turning
left or right by an angle) and its elevation: in total there are 12 possible viewing angles per viewpoint and
3 possible elevations. We collect data using a random rollout policy. At each step of the rollout policy, the
agent navigates to a neighbouring viewpoint. We also randomly change the agent elevation at some of steps
of the rollout policy, in order to introduce exogenous information which the agent cannot control. We collect
a single long episode of 20,000 state-transitions. The control-endogenous latent state in this setup is the
viewpoint information while the exogenous information is the information regarding agent elevation.

Experimental Details: The model input is the panorama of the current viewpoint i.e. 12 images for the
12 possible views of each viewpoint. The AC-State model f is parameterized using a vision transformer
(ViT) Dosovitskiy et al. (2021). Each view within the panorama is fed separately into the ViT as a sequence
of patches along with a learnable token called the class (or CLS) following the procedure in Dosovitskiy
et al. (2021). To obtain the viewpoint representation, we take the representation corresponding to the CLS
token of each view and take the mean across all views. We discretize this representation using a VQ-VAE
bottleneck van den Oord et al. (2017) to obtain the final representation. We use a 6-layer transformer with
256 dimensions in the embedding. We use a feedforward network (FFN) after every attention operation in
the ViT similar to Vaswani et al. (2017). The FFN is a 2 layer MLP with a GELU activation Hendrycks
& Gimpel (2016) which first projects the input to a higher dimension D and then projects it back to the
original dimension. We set the FFN dimension D to 512. We use 4 heads in the ViT. We train the model
for 20 epochs using Adam optimizer Diederik et al. (2014) with learning rate 1e-4. The model is trained to
predict the viewpoint of the next state as the action.

Baselines We use 3 baselines for comparison - (1) Auto-Encoder, (2) Generative, and (3) Contrastive.
Auto-Encoder - In this baseline, we feed the observation as input to a ViT encoder and a ViT decoder is
trained to reconstruct the observation. Generative - In this baseline, the model is trained to predict the next
observation given the current observation and the action. The encoder and decoder both are implemented
using a ViT model. Contrastive - In this baseline, we use the simclr objective (Chen et al., 2020). We first
pass the observation through a ViT encoder. We take the representation corresponding to the CLS token
and split into two portions. We then apply the simclr objective considering the two representations from
the same observation as the positive pairs and other combinations as the negative pairs. We also tried a
temporal contrastive objective instead of simclr, but found that simclr had better performance in ignoring
exogenous noise.
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Results: We present the results for this experiment in Figure 7 (right). The Controllable Latent State
Accuracy is the viewpoint prediction accuracy for the current state. The Exogenous Noise-Ignoring Accuracy.
is calculate as 1 − E−33.33

100−33.33 , where E is elevation prediction accuracy. Thus a higher elevation prediction
accuracy leads to a lower the exogenous noise-inducing accuracy. We can see that the proposed AC-State
model has the highest control-endogenous latent state and exogenous noise-ignoring accuracy. Thus, it
outperforms the baselines we considered at capturing Control-endogenous Latent State information while
ignoring exogenous noise. We calculated state parsimony as Num. Ground Truth States

Num. Discovered States . Therefore, a lower
state parsimony denotes a high number of discovered states which means that the model fails at ignoring
exogenous information. The proposed model has the highest state parsimony which shows the effectiveness
of the model in ignoring the exogenous noise whilst only capturing control-endogenous latent state. Detailed
results with mean and standard deviation over three seeds are reported in Table 6.

Algorithms Endogenous Accuracy Exogenous Noise-Ignoring Accuracy (%)

Autoencoder 86.15 ± 1.33 40.08 ± 1.24
Contrastive 93.57 ± 1.07 10.05 ± 1.19
Forward Generative 97.25 ± 0.58 3.66 ± 1.19
AC-State (No Bottleneck) 96.94 ± 0.58 47.81 ± 2.77
AC-State 98.90 ± 0.53 91.34 ± 1.46

Table 6: Experimental Results with Matterport with mean and standard deviation over three seeds.

B Additional Discussion on Related Works

In this section, we provide a clear example of why an one-step inverse model might not be useful to ignore
exogenous noise. The idea of using a simple one step inverse dynamics models have been explored in the
past (Pathak et al., 2017; Bharadhwaj et al., 2022), yet the one step inverse model has counterexamples
establishing that it fails to capture the full control-endogenous latent state (Efroni et al., 2022c; Misra
et al., 2020; Rakelly et al., 2021; Hutter & Hansen, 2022). Intuitively, the 1-step inverse model is under-
constrained and thus may incorrectly merge distinct states which are far apart in the MDP but have a similar
local structure. As a simple example, suppose we have a cycle of states: s1, s2, s3, s4, s5, s6 where a = 0
moves earlier in the cycle and a = 1 moves later in the cycle. Suppose s1, s4 are merged into a distinct latent
state si, s2, s5 are merged into a distinct latent state sj and s3, s6 are merged into a distinct latent state
sk. The inverse-model examples are: (si, sj , 1), (sj , si, 0), (sj , sk, 1), (sk, sj , 0), (sk, si, 1), (si, sk, 0). Because
all of these examples have distinct inputs, a 1-step inverse model still has zero error despite the incorrect
merger of {s1, s4}, {s2, s5}, and {s3, s6}.

C Algorithm Details

We provide more detailed algorithm descriptions for AC-State with a planning policy (Algorithm 2). The
latter uses a findgoal function which selects a low-count state using breadth-first search along with a plan
function that finds an optimal action using Dijkstra’s algorithm.
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Algorithm 2 AC-State for Latent State Discovery using a Planning Policy
1: Initialize a replay buffer D. Initialize encoder fθ. Assume a number of samples to collect T , a set of

actions A.
2: x1 ∼ U(µ(x)), a1 ∼ U(A), tg := 1, and T = {}
3: for t = 1, 2, ..., T do
4: xt+1 ∼ P(x′|xt, at)
5: st = fθ(xt)
6: st+1 = fθ(xt+1)
7: Update tabular-MDP M with (st, at, st+1).
8: if t = tg then
9: Pick a new goal

10: ts := t
11: tg, g := findgoal(st, M)
12: at ∼ U(A)
13: Add t to T
14: else
15: at := plan(st, g, M)
16: Kt := tg − t
17: j ∼ T and k ∼ U(j, Kj)
18: L = LAC-State (fθ, j, x, a, k) + LBottleneck(fθ, xj) + LBottleneck(fθ, xj+k)
19: Update θ to minimize L by gradient descent.

D Detailed Theory and Discussion

D.1 High-Level Overview of Theory

We present an asymptotic analysis of AC-State showing it recovers the control-endogenous latent state
encoder f⋆. The mathematical model we consider is the deterministic Ex-BMDP. There, the transition
model of the latent state decomposes into a control-endogenous latent state, which evolves deterministically,
along with a noise term–the uncontrol-endogenous portion of the state. The noise term may be an arbitrary
temporally correlated stochastic process. If the reward does not depend on this noise, any optimal policy may
be expressed in terms of this control-endogenous latent state. In this sense, the recovered control-endogenous
latent state is sufficient for achieving optimal behavior.

Intuitively, the Ex-BMDP is similar to a video game, in which a “game engine” takes player actions and
keeps track of an internal game state (the control-endogenous state component), while the visuals and sound
are rendered as a function of this compact game state. A modern video game’s core state is often orders of
magnitude smaller than the overall game.

The algorithm we propose for recovering the optimal control-endogenous latent state involves (i) an action
prediction term; and (ii) a mutual information minimization term. The action prediction term forces the
learned representation f̂(x) to capture information about the dynamics of the system. At the same time,
this representation for f̂(x) (which is optimal for action-prediction) may also capture information which
is unnecessary for control. In our analysis we assume that f̂(x) has discrete values and show the control-
endogenous latent state is the unique coarsest solution.

To enable more widespread adoption in deep learning applications, we can generalize this notion of coarseness
to minimizing mutual information between x and f(x). These are related by the data-processing inequality;
coarser representation reduces mutual information with the input. Similarly, the notion of mutual information
is general as it does not require discrete representation.
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D.2 The Control-Endogenous Partition is a Bayes’ Optimal Solution

Consider the generative process in which x is sampled from a distribution µ, the agent executes a policy π
for t time steps and samples x′. Denote by Pπ,µ(x, x′, t) as the joint probability, and by Pπ,µ(a | x, x′, t) as
the probability that under this generative process the action upon observing x is a. The following proof for
Proposition 5.1, which builds on Proposition 3.3, shows that the optimal bayes solution Pπ,µ(a | x, x′, t) is
equal to Pπ,µ(a | f⋆(x), f⋆(x′), t) for Pπ,µ(x, x′, t) > 0, where Pπ,µ(x, x′, t) > 0 is the probability to sample x
.
Proposition 5.1. Assume that π is an endogenous policy. Let x ∼ µ for some distribution µ. Then, the
Bayes’ optimal predictor of the action-prediction model is piece-wise constant with respect to the control-
endogenous partition: for all a ∈ A, t > 0 and x, x′ ∈ X such that Pπ,µ(x, x′, t) > 0 it holds that

Pπ,µ(a | x, x′, t) = Pπ,µ(a | f⋆(x), f⋆(x′), t).

Proof. Assume that π is and endogenous policy. Let x ∼ µ for some distribution µ. Then, the Bayes’
optimal predictor of the action-prediction model is piece-wise constant with respect to the control-endogenous
partition: for all a ∈ A, t > 0 and x, x′ ∈ X such that Pπ,µ(x, x′, t) > 0 it holds that:

Pπ,µ(a | x, x′, t) = Pπ,µ(a | f⋆(x), f⋆(x′), t).

We comment that the condition Pπ,µ(x, x′, t) > 0 is necessary since ,otherwise, the conditional probability
Pπ,µ(a | x, x′, t) is well not defined.

Proposition 5.1 is readily proved via the factorization of the future observation distribution to control-
endogenous and exogenous parts that holds when the executed policy does not depend on the exogenous
state (Proposition 3.3).

Proof. The proof follows by applying Bayes’ theorem, Proposition equation 3.3, and eliminating terms from
the numerator and denominator.

Fix any t > 0, x, x′ ∈ X and a ∈ A such that Pπ,µ(x′, x, t) > 0. Let s = f⋆(x), s′ = f⋆(x′), e = f⋆,e(x), and
e′ = f⋆,e(x′). The following relations hold.

Pπ,µ(a | x′, x, t)
(a)= Pπ,µ(x′ | x, a, t)Pπ,µ(a | x)∑

a′ Pπ,µ(x′ | x, a′, t)
(b)= Pπ,µ(x′ | x, a, t)π(a | s)∑

a′ Pπ,µ(x′ | x, a′, t)π(a′ | s)
(c)= q(x′ | s′, e′)Pπ,µ(s′ | s, a, t)Pπ,µ(e′ | e, t)π(a | s)∑

a′ q(x′ | s′, e′)Pπ,µ(s′ | s, a′, t)Pπ,µ(e′ | e, t)π(a′ | s)

= Pπ,µ(s′ | s, a, t)π(a | s)∑
a′ Pπ,µ(s′ | s, a′, t)π(a′ | s) .

Relation (a) holds by Bayes’ theorem. Relation (b) holds by the assumption that π is endogenous. Relation
(c) holds by Proposition equation 3.3.

Thus, Pπ,µ(a | x′, x, t) = Pπ,µ(a | f⋆(x′), f⋆(x), t), and is constant upon changing the observation while fixing
the control-endogenous latent state.

D.3 Stationary Assumption

We make the following assumptions on the policy by which the data is collected.
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Assumption D.1. Let TD(s′ | s) be the Markov chain induced on the control-endogenous state space by
executing the policy πD by which AC-State collects the data.

1. The Markov chain TD has a stationary distribution µD such that µD(s, a) > 0 and πD(a | s) ≥ πmin
for all s ∈ S and a ∈ A.

2. The policy πD by which the data is collected reaches all accessible states from any states. For any
s, s′ ∈ S and any h > 0 if s′ is reachable from s then PD(s′ | s, h) > 0.

3. The policy πD does not depend on the exogenous state, and is an endogenous policy.

See Levin & Peres (2017), Chapter 1, for further discussion on the classes of Markov chains for which the
assumption on the stationary distribution hold. The second and third assumptions are satisfied for the the
random policy that simply executes random actions.

We consider the stochastic process in which an observation is sampled from a distribution µ such that
µ(s) = µD(s) for all s. Then, the agent executes the policy πD for t time steps. For brevity, we denote the
probability measure induced by this process as PD.

D.4 The Coarsest Partition is the Control-Endogenous State Partition

Proposition 5.1 from previous section shows that the multi-step action-prediction model is piece-wise constant
with respect to the partition induced by the control-endogenous states f⋆ : X → [S]. In this section, we
assume that the executed policy is an endogenous policy that induces sufficient exploration. With this, we
prove that there is no coarser partition of the observation space such that the set of inverse models are
piece-wise constant with respect to it.

We begin by defining several useful notions. We denote the set of reachable control-endogenous states from
s in h time steps as Rh(s).
Definition 5.2. (Reachable Control-endogenous States). Let the set of reachable control-endogenous states
from s ∈ S in h > 0 time steps be R(s, h) = {s′ | maxπ Pπ(s′ | s, h) = 1}.

Observe that every reachable state from s in h time steps satisfies that maxπ Pπ,µ(s′ | s0 = s, h) = 1 due to
the deterministic assumption of the control-endogenous dynamics.

Next, we define a notion of consistent partition with respect to a set of function values. Intuitively, a partition
of space X is consistent with a set of function values if the function is piece-wise constant on that partition.

Definition 5.3. (Consistent Partition with respect to G). Consider a set G = {g(a, y, y′)}y,y′∈Y,a∈A where
g : A × Y × Y → [0, 1]. We say that f : Y → [N ] is a consistent partition with respect to G if for all
y, y′

1, y′
2 ∈ Y, f(y′

1) = f(y′
2) implies that g(a, y, y′

1) = g(a, y, y′
2) for all a ∈ A.

Observe that Proposition 5.1 shows that the partition of X according to f⋆ is consistent with respect to
{PD(a | x, x′, h) | x, x′ ∈ X , h ∈ [H] s.t. PD(x, x′, h) > 0}, since, by Proposition 5.1, PD(a | x, x′, h) = PD(a |
f⋆(x), f⋆(x′), h).

Towards establishing that the coarsest abstraction according to the AC-State objective is f⋆ we make the
following definition.
Definition 5.4. (The Generalized Inverse Dynamics Set AC(s, h)). Let s ∈ S, h ∈ N. We denote by
AC(s, h) as the set of multi-step inverse models accessible from s in h time steps. Formally,

AC(s, h) = {PD(a | s′, s′′, h′) : s′ ∈ R(s, h − h′), s′′ ∈ R(s′, h′), a ∈ A, h′ ∈ [h]}. (5)

Observe that in equation equation 5 the inverse function PD(a | s′, s′′, h′) is always well defined since
PD(s′, s′′, h′) > 0. It holds that

PD(s′, s′′, h′) = PD(s′)PD(s′′ | s′, h′) > 0,
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since PD(s′) > 0 and PD(s′′ | s′, h′) > 0. The inequality PD(s′) > 0 holds by the assumption that the
stationary distribution when following U has positive support on all control-endogenous states (Assump-
tion D.1). The inequality PD(s′′ | s′, h′) > 0 holds since, by definition s′′ ∈ R(s, h′) is reachable from s′ in
h′ time steps; hence, PD(s′′ | s′, h′) > 0 by the fact that Assumption D.1 implies that the policy πD induces
sufficient exploration.
Theorem 5.5. (f⋆ is the coarsest partition consistent with respect to AC-State objective). Given the
bounded diameter Assumption 3.2 and the high-coverage policy assumption (Appendix D.3) hold, it follows
that there is no coarser partition than f⋆, which is consistent with AC(s, D) for any s ∈ S.

Assume 3.2 and D.1 holds. Then there is no coarser partition than f⋆ which is consistent with AC(s, D) for
any s ∈ S.

Proof. We will show inductively that for any h > 0 and s ∈ S there is no coarser partition than R(s, h) for
the set R(s, h) that is consistent with AC(s, h). Since the set of reachable states in h = D time steps is S–all
states are reachable from any state in D time steps–it will directly imply that there is no coarser partition
than R(s, D) = S consistent AC(s, D).

Base case, h = 1. Assume that h = 1 and fix some s ∈ S. Since the control-endogenous dynamics
is deterministic, there are A reachable states from s. Observe the inverse dynamics for any s′ ∈ R(s, 1)
satisfies that

PD(a | s, s′, 1) =
{

1 if a leads s′ from s

0 o.w.
. (6)

This can be proved by an application of Bayes’ rule:

PD(a | s, s′, 1) = PD(s′ | s = s, a, 1)πD(a | s)∑
a′ PD(s′ | s = s, a′, 1)πD(a′ | s)

= T (s′ | s, a)πD(a | s)∑
a′ T (s′ | s, a′)πD(a′ | s){

≥ πmin (s, a) leads to s′

= 0 o.w.
,

where the last relation holds by Assumption D.1. Furthermore, observe that since s′ ∈ R(s, 1), i.e., it is
reachable from s, the probability function PD(a | s, s′, 1) is well defined.

Hence, by equation equation 6, we get that for any s′
1, s′

2 ∈ R(s, 1) such that s′
1 ̸= s′

2 it holds that exists
a ∈ A such that

πmin ≥ PD(a | s, s′
1, 1) ̸= PD(a | s, s′

2, 1) = 0.

Specifically, choose a such that taking a from s leads to s′
1 and see that, by equation equation 6,

πmin ≥ PD(a | s, s′
1, 1) ̸= PD(a | s, s′

2, 1) = 0.

Lastly, by the fact that s ∈ S is an arbitrary state, the induction base case is proved for all s ∈ S.

Induction step. Assume the induction claim holds for all t ∈ [h] where h ∈ N. We now prove it holds for
t = h + 1.

Fix some s ∈ S. We prove the induction step and show that R(s, h + 1) is the coarsest partition which
is consistent AC(s, h + 1). Meaning, there exists s̃, t ∈ [h + 1], a such that P(a | s̃, s′

1, 1),P(a | s̃, s′
1, 1) ∈

AC(s̄, h + 1) and

PD(a | s̃, s′
1, t) ̸= PD(a | s̃, s′

2, t). (7)

Observe that, by Definition 5.4, it holds that,

AC(s, h + 1) = {PD(a | s, s′, h + 1)}s′∈R(s,h+1) ∪s̄∈R(s,1) AC(s̄, h).
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Meaning, the set AC(s, h + 1) can be written as the union of (1) the set {PD(a | s, s′, h + 1)}s′∈R(s,h+1), and
(2) the union of the sets AC(s̄, h) for all s̄ which is reachable from s in a single time step.

By the induction hypothesis, the coarsest partition which is consistent with AC(s̄, h) is ∪h
h′=1R(s̄, h′). We

only need to prove, that for any s̄1, s̄2 ∈ R(s, h + 1) such that s̄1 ̸= s̄2 exists some a ∈ A, h′ ∈ [h] and
sh′ ∈ R(s, h + 1) such that

PD(a | sh′ , s̄1, h′) ̸= PD(a | sh′ , s̄2, h′),

this will imply that the set of reachable states in h + 1 time states is also the coarsest partition which is
consistent with AC(s, h + 1).

Fix s̄1, s̄2 ∈ R(s, h + 1) such that s̄1 ̸= s̄2 we show that exists a certificate in AC(s, h + 1) that differentiate
between the two by considering three cases.

1. Case 1: Both s̄1 and s̄2 are reachable from all s′ ∈ R(s, 1). In this case, for all s′ ∈ R(s, 1) it
holds that s̄1, s̄2 ∈ R(s′, h). By the induction hypothesis, s̄1 and s̄2 cannot be merged while being
consistent with AC(s′, h).

2. Case 2: Exists s′ ∈ R(s, 1) such s̄1 is reachable from s′ in h time steps and s̄2 is not. Let a be the
action that leads to s′ from state s. In that case, it holds by the third assumption of Assumption D.1
that

PD(a | s, s̄1, h + 1) (a)= PD(s̄1 | s, a, h + 1)πD(a | s)∑
a′ PD(s̄1 | s, a′, h + 1)πD(a′ | s)

(b)= PD(s̄1 | s′, h)πD(a | s)∑
a′ PD(s̄1 | s, a′, h + 1)πD(a′ | s)

(c)
≥ πmin

PD(s̄1 | s′, h)∑
a′ PD(s̄1 | s, a′, h + 1)

(d)
> 0. (8)

Relation (a) holds by Bayes’ rule. Relation (b) holds by the fact that (s, a) determinstically leads
to s′. Relation (c) and (d) holds by Assumption D.1.
Observe that PD(a | s, s̄2, h + 1) = 0 since s̄2 is not reachable upon taking action a from state s, by
the assumption. Combining this fact with equation equation 8 implies that

0 < PD(a | s, s̄1, h + 1) ̸= PD(a | s, s̄2, h + 1) = 0.

Hence, exists a certificate that differentiates between s̄1 and s̄2. Observe that since s̄2 ∈ R(s, h + 1),
i.e., it is reachable from s, it holds that PD(a | s, s̄2, h + 1) = 0, i.e., it is well defined.

3. Case 3: Exists s′ ∈ R(s, 1) such s̄2 is reachable from s′ in h time steps and s̄1 is not. Symmetric
to case 2.

This establishes the result we needed to show in equation equation 7 and, hence, the induction and result
hold.

E Discussion: What does Control-Endogenous Latent State Capture? Does it
ignore Task-Relevant and Reward-Relevant Information?

The control-endogenous latent state is defined by having factorized dynamics that depend on actions, while
the exogenous dynamics do not depend on actions. If we refer to the control-endogenous state as s and the
exogenous state as e, we can write the factorized dynamics as: P(s′|s, a)P(e′|e). In particular, we want to
find the smallest s such that the latent dynamics follow this factorization.
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Causal Dynamics Learning (Wang et al., 2022b) provided some definitions that are helpful for building
intuitions about the semantics of the control-endogenous state. In their work, they decompose a factorized
state into controllable factors, action-relevant factors, and action-irrelevant factors. They define controllable
factors as any causal descendants of actions or other controllable factors. They define action-relevant factors
as causal parents of controllable factors or other action-relevant factors. All other factors are defined as
action-irrelevant. While AC-State learns a general encoder instead of relying on a given factorization, the
special case of known factors can be used to build intuition.

An example is given in Wang et al. (2022b) involving six known factors: z1, z2, z3, z4, z5, z6. The dynamics are
factorized as: P(z′

1|z1, a)P(z′
2|z1, z2, z3)P(z′

3|z3, z4)P(z′
4|z4)P(z′

5|z5, z6)P(z′
6|z6). We can assign these factors to

either the control-endogenous state or exogenous state. The smallest way to define the control-endogenous
state is: s = (z1, z2, z3, z4), while the exogenous state is set to e = (z5, z6). Intriguingly, the control-
endogenous state includes many factors which are not controllable.

As a simple example, we can imagine a robotic arm that is allowed to interact with two blocks (one red and
one blue). What is the control-endogenous latent state for this environment? It clearly includes the robotic
arm itself, as it can be manipulated using the actions. Likewise, the physical properties of the blocks (their
position and weight) will be included in the control-endogenous latent state.

The color of the blocks is not part of the control-endogenous latent state. What if our task is to retrieve the
red block? In general, the control-endogenous latent state will not be sufficient for solving the task. If task
completion has a causal effect on the rest of the control-endogenous state, then the task relevant information
is control-endogenous. As a concrete example, if the agent were forced to redo the task of retrieving the
red block until successful, then the color of the blocks would become control-endogenous. Intuitively, in the
most natural and realistic environments, rewards and task completion will have a causal effect on the rest of
the control-endogenous state. On the other hand, if the episodes are terminated immediately after a reward
is received, it would be useful to add reward prediction as an auxiliary task for learning the representation.

E.1 AC-State Captures the Position of a Block that is Movable by the Agent

We also ran experiments to verify that AC-State performs correctly in an environment with an agent and
a movable block. According to theory, both the agent and the movable block should be captured by the
representation. If we write the agent’s position as sA and the block’s position as sB , the ground truth
dynamics are P(s′

A, s′
B |sA, sB , a) = P(s′

A|sA, a)P(s′
B |sA, sB , a). Note the asymmetry: the agent affects the

block but the block does not affect the agent. We tested two variants of this setup where the agent either
pulls or pushes the block. In the pull environment, the block is pulled alongside the agent unless it moves
to the outer edge of the environment, in which case the agent drops the block. In the push environment,
the agent moves the block if it moves into it, and the agent/block wraps around to the other side of the
grid (like a torus) if it moves off the edge. These setups are designed so that the block cannot be stuck in a
corner of the grid.

AC-State was trained on 500k samples in each environment with a uniformly random rollout policy. Prob-
ing revealed that both sA and sB were perfectly captured by the encoded representation. Planning was
performed using Dijkstra’s algorithm and example rollouts are included in the supplementary material as
pull_examples.txt and push_examples.txt.
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