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Figure 1: Our proposal.

ABSTRACT

The training of neural networks is usually monitored with a validation (holdout)
set to estimate the generalization of the model. This is done instead of measuring
intrinsic properties of the model to determine whether it is learning appropriately.
In this work, we suggest studying the training of neural networks with Algebraic
Topology, specifically Persistent Homology (PH). Using simplicial complex repre-
sentations of neural networks, we study the PH diagram distance evolution on the
neural network learning process with different architectures and several datasets.
Results show that the PH diagram distance between consecutive neural network
states correlates with the validation accuracy, implying that the generalization error
of a neural network could be intrinsically estimated without any holdout set.

1 INTRODUCTION

Generalization is what makes a machine learning model useful; the uncertainty of its behaviour with
unseen data is what makes it potentially dangerous. Thus, understanding the generalization error of a
model can be considered one of the holy grails of the entire machine learning field.

Machine learning practitioners typically monitor some metrics of the model to estimate its generaliza-
tion error and stop the training even before the numerical convergence to prevent the overfitting of
the model. Usually, the error measure or the metric relevant to the task is computed for a holdout
set, the validation set. Since these data have not been directly used for updating the parameters, it
is assumed that the performance of the model on the validation set can be used as a proxy of the
generalization error, provided it is representative of the data that will be used in inference. One
can, though, potentially overfit to this holdout set if is repeatedly used for guiding a hyperparameter
search.

Instead of relying on an external set, though, the question of whether it could be possible to estimate
the generalization error with some intrinsic property of the model is highly relevant, and it has been

1



Under review as a conference paper at ICLR 2022

barely explored in the literature. On the other hand, Algebraic Topology has recently been gaining
momentum as a mathematical tool for studying graphs, machine learning algorithms, and data.

In this work, we have the goal of, once having characterized neural networks as weighted, acyclic
graphs, represented as Algebraic Topology objects (following previous works), computing distances
between consecutive neural network states. More specifically, we can calculate the Persistent
Homology (PH) diagram distances between a give state (i.e., when having a specific weights during
the training process) and the next one (i.e., after having updated the weights in a training step), as
depicted in Figure 1. We observe that during the training procedure of neural networks we can measure
this distance in each learning step, and show that there exists a high correlation with the corresponding
validation accuracy of the model. We do so in a diverse set of deep learning benchmarks and model
hyperparameters. This shines light on the question of whether the generalization error could be
estimated from intrinsic properties of the model, and opens the path towards a better theoretical
understanding of the dynamics of the training of neural networks.

In summary, our contributions are as follows:

• Based on principles of Algebraic Topology, we propose measuring the distances (Silhouette
and Heat) between the PH persistence diagrams obtained from a given state of a neural
network during the training procedure and the one in the immediately previous weights
update.

• We empirically show that the evolution of these measures during training correlate with
the accuracy in the validation set. We do so in diverse benchmarks (MNIST, CIFAR10,
CIFAR100, Reuters text classification), and models (MLPs in MNIST and Reuters, MLPs
and CNNs in CIFAR100 and CIFAR100).

• We thus provide empirical proof of the fact that valuable information related to the learning
process of neural networks can be obtained from PH distances between persistence diagrams
(we will call this process homological convergence). In particular, we show that homologi-
cal convergence is related to learning process and the generalization properties of neural
networks.

• In practice, we provide a new tool for monitoring the training of neural networks, and open
the path to estimating their generalization error without a validation set.

The remainder of this article is as follows. In Section 2 we describe the theoretical background of our
proposal in terms of Algebraic Topology, while in Section 3 we go through the related work. Then, in
Section 4 we formalize our method. Finally, in sections 6 and 7 we present and discuss our empirical
results, respectively.

2 BACKGROUND

In this section we introduce the mathematical foundations of this paper. A detailed mathematical
description is included in the Supplementary Material.

A simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional
counterparts, named simplex (K). In particular, a simplicial complex must comply with two properties:
1. Every face of a simplex is also in the simplicial complex (of lower dimension). 2. The non-empty
intersection of any two simplices contained on a simplicial complex is a face of both. 0,1,2,3-simplex
and non simplex examples are shown in Figure 2.

(a) 0,1,2,3-simplex (b) Non-simplex

Figure 2: Simplex and non-simplex examples.

We can associate to an undirected graph, G = (V,E), a simplicial complex where all the vertices
of G are the 0-simplex of the simplicial complex and the complete subgraphs with i vertices, in G
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Figure 4: Boundary function sample.

corresponds to a (i−1)-simplex. This type of construction is usually called a complex clique on the
graph G, and is denoted by Cl(G). Figure 3 shows a graph clique complex Cl(G) example.

Figure 3: Graph clique complex Cl(G) example.

The boundary function is defined as a map, from
an i-simplex to an (i− 1)-simplex, as the sum
of its (i− 1)-dimensional faces. A boundary
function sample is shown in Figure 4.

In algebraic topology, a k-chain is a combination
of k-simplices (sometimes symbolized as a lin-
ear combination of simplices that compose the
chain). The boundary of a k-chain is a (k−1)-
chain. It is the linear and signed combination of
chain element boundary simplices. The space of
i-chains is denoted by Ci(K).

There are two special cases of chains that will
be useful to define homology group:

• Closed chain or i-cycle: i-chain with empty boundary. An i-chain c is an i-cycle if and only
if ∂ic = 0, i.e. c ∈ ker(∂i). This subspace of Ci(K) is denoted as Zi(K).

• Exact chain or i-boundary: An i-chain c is an i-boundary if there exists an (i+ 1)-chain
d such that c = ∂i+1(d), i.e. c ∈ im(∂ i+1). This subspace of Ci(K), the set of all such
i-boundaries forms, is denoted by Bi(K).

Now, if we consider i-cycles not bounding an (i+1)-simplicial complex, this is the definition of an
i-th homology group of the simplicial complex K. The precise definition is the quotient group of
Bi(K) module Zi(K) (i.e. Bi(K)/Zi(K), see Supplementary Material). The number of non equivalent
i-cycles (Figure 5) is the dimension of the homology group Hi(K), also named Betti numbers.

Figure 5: The two blue dashed cycles are homo-
logically equivalent, the pink isn’t.

We can create a nested family of simplicial com-
plexes, Kε , where at each step t, Kεt is embedded
in the simplicial complex Kεt+1 . We call this set
a simplicial complex filtration.

For each filtration simplicial complex, we can
calculate the homology groups. Then, we can
look at the birth, that is, when a homology class
appears, and death, the time when the homology
class disappears. The PH treats the birth and the
death of these homological features in Kε for
different ε values. The lifespan of each homo-
logical feature can be represented as an interval
(birth,death), of the homological class. Given
a filtration, this collection of intervals is named
a Persistence Diagram (PD) Carlsson (2009).

It is possible to compare two PDs using specific
distances (Wasserstein and Bottleneck). To efficiently perform this operation, due to the size of these
diagrams, it is sometimes necessary to simplify them by means of a discretization process (such as
Weighted Silhouette and Heat vectorizations).
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3 RELATED WORK

Algebraic Topology and Machine Learning The use of Algebraic Topology in the fields of data
science and machine learning has been gaining momentum in recent years (see Carlsson (2009)).
Specifically in the case of neural networks, some works have applied topology for improving the
training procedure of the models Hofer et al. (2020); Clough et al. (2020), or pruning the model
afterwards Watanabe & Yamana (2020b). Other works have focused on analyzing the capacity of
neural networks Guss & Salakhutdinov (2018a); Rieck et al. (2019b); Konuk & Smith (2019) or the
complexity of input data Konuk & Smith (2019). Furthermore, recent works have provided topological
analysis of the decision boundaries of classifiers based on PH and Betti numbers Ramamurthy et al.
(2019); Naitzat et al. (2020).

Graph and topological representations of neural networks Gebhart et al. (2019) suggest a
method for computing the PH over the graphical activation neural networks, while Watanabe &
Yamana (2020a) propose representing neural networks via simplicial complexes based on Taylor
decomposition, from which one can compute the PH. Chowdhury et al. (2019) show that directed
homology can be used to represent MLPs. Anonymous (2021) concurrently show neural networks,
when represented as directed, acyclic graphs, can be associated to an Algebraic Topology object,
specifically to a directed flag complex. By computing the PH diagram, one can effectively characterize
neural networks, and even compute distances between two given neural networks, which can be used
to measure their similarity. This is unlike other works Corneanu et al. (2019); Guss & Salakhutdinov
(2018b) approximating neural networks representations with regard to the input space. Relevant to
our work, in Rieck et al. (2019b) authors propose a complexity measure of neural networks based on
persistent homology. However, we will see that their representation does not fulfill our requirements
in Section 4.

Estimating the generalization and studying the learning process We are, though, specifically
interested in the use of PH for analyzing the learning process, especially with the goal of estimating
generalization. In this regard, the literature is perhaps more limited. Jiang et al. (2019) work on
understanding what drives generalization in deep networks from a Bayesian of view. Neyshabur et al.
(2017) study the generalization gap prediction from the training data and network parameters using a
margin distribution, which are the distances of training points to the decision boundary. In Li et al.
(2020), authors propose an alternative to cross-validation for model selection based on training once
on the whole train set, without any data split, deriving a validation set with data augmentation.

Corneanu et al. (2020) try to estimate the performance gap between training and testing using PH
measures. They claim. However, one can observe some caveats. The first one is that their regression
fitted to predict the test error has a considerably high error, making it not usable in practice. The
second caveat is that for fitting the regression one needs at least part of the sequestered testing set.

In this work, motivated by the interest of having a better understanding of whether it would be
possible to estimate the generalization of neural networks without a holdout set, we suggest using the
topological characterization and distances concurrently proposed in Anonymous (2021) but, crucially,
measured between consecutive weight updates. We will show that the evolution of this distance
is similar to the one of the validation accuracy. Unlike Li et al. (2020), we do not use any data at
all. Unlike Corneanu et al. (2020), we do not build a statistical or machine learning model (linear
regression) for predicting the testing error. Instead, we propose a new measure, and we empirically
show that it highly correlates with the validation accuracy. Note that in this work we do not work
with any input data and activations, but with the parameters of the neural network themselves. The
code and outputs are fully available in the Supplementary Material under a MIT License.

4 APPROACH

Representation For representing neural networks as graphs, we follow the approach proposed
concurrently in Anonymous (2021). We associate to the neural network, at each learning state
(defined by its weights), a weighted directed graph that is analyzed as an abstract simplicial complex.
It is important to note that abstract simplicial complex are used in opposition to geometric simplicial
complex (e.g. Vietoris-Rips complex).
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For every training state, neural network connections are considered as directed and weighted edges
between neurons, represented by graph nodes. Biases are considered as new edges that join to isolate
vertices. In this representation, activation functions are lost. Bias information could also have been
ignored because, as we will see, it is not very informative in terms of homology, but we decided to
preserve it.

Negative edge weights are represented with reverse edges with the same weight absolute value. We
discard the use of the absolute value of weights as neural networks are not invariant to weight sign
transformations. This representation is consistent with the fact that every neuron can be replaced by a
neuron from which two edges with opposite weights emerge and converge again on another neuron
with opposite weights. From an homological point of view, this would be represented as a closed
cycle. Weights are normalized following the Equation 1. ζ is an smoothing parameter that we set to
1e-6. This smoothing parameter is necessary as we want to avoid normalized weights of edges to be
0 (in our representation 0 implies a lack of connection):

max(1− |w|
max(|W |)

,ζ ) (1)

Unlike Rieck et al. (2019b) we do not represent the neural network as a multipartite graph with
a persistent homology filtration that contains at most 1-simplices (edges), which only capturrd
zero-dimensional topological information, i.e. connectivity information. We do not believe the
strong assumption that the NNs encode the learned information layer pairwise exclusively since there
are trivial global transformations of a NN that are not captured by analyzing pairs of layers, more
specifically 1. Superfluous cycle insertions: for instance, add two neurons and connect their input
to a single neuron in a lower layer and their two outputs to a single output neuron in an upper layer
with opposite weights; 2. Identity layer insertions: insert an intermediate identity layer with neurons
and trivially connect to the next layer; and 3. Non-planar neural networks analysis: the analysis of
neural networks that use multiple connections between non-consecutive layers require higher order
topological analysis.

Algebraic Topology object For each weighted directed graph associated with the state of a neural
network, we link a directed flag complex to it. The topological properties of this directed flag complex
are studied using homology groups Hn. We calculate the homology groups up to degree 3 (H0-H3).

For each state, we use a family of simplicial complexes, Kε , for a range of values of ε ∈ R. The
simplicial complex at step εt is embedded in the complex at εt+1, for εt ≤ εt+1, i.e. Kε ⊆ Kεt+1 . ε

is used as a filter that establish the minimum weight of the graph representation edges included on
the simplicial complex. This collection of contained simplicial complex (associated to a directed
weighted graph), called filtration, Kεmin ⊆ . . .⊆Kεt ⊆Kεt+1 ⊆ . . .⊆Kεmax , where t ∈ [0,1] and εmin = 0,
εmax = 1 (remember that edge weights are normalized).

The sequence of homology groups is calculated by varying the ε parameter to obtain the persistence
homology diagram. In our case, persistent homology calculations are performed on Z2. In other
words, once the corresponding filter has been applied to the weight of the edges, all connected edges
are considered equally.

Distances between persistence diagrams of consecutive states In this paper, we are interested in
comparing PDs between different simplicial complex associated to each training state of the neural
network. There are two distances traditionally used to compare PDs, Bottleneck distance (the length
of the longest edge) and Wasserstein distance (using the sum of all edges lengths, instead of the
maximum). Their stability with respect to perturbations on PDs has been object of different studies
Chazal et al. (2012); Cohen-Steiner et al. (2005). As shown in comparative studies such as in ?,
different distances and different ways of vectorizing persistence diagrams have results with different
levels of stability and quality.

In order to make computations feasible and obviate noisy intervals, we filter the PDs by limiting
the minimum PD interval size. We do so by setting a minimum threshold η = 0.01. Intervals with
a lifespan under this value are not considered (spurious homological features). Additionally, for
computing distances, we need to remove infinity values. As we are only interested in the deaths until
the maximum weight value, we replace all the infinity values by 1.0.
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In our case, neural networks have millions of persistence intervals per PD, while Wasserstein distance
calculations are computationally hard for large PDs. To make it computationally feasible, we will
use a vectorized version of PDs, also called PD discretization. This vectorized version summaries
have been proposed and used on recent literature Adams et al. (2017); Berry et al. (2020); Bubenik
(2015); Lawson et al. (2019); Rieck et al. (2019a). For persistence diagram distance calculation, we
use weighted Silhouette and Heat vectorizations, using the Giotto-TDA library Tauzin et al. (2020).

5 EXPERIMENTS

Data We validate our method in several heterogeneous (vision, natural language), well-known
datasets, namely 1. MNIST LeCun & Cortes (2010), 2. CIFAR-10, 3. CIFAR-100 Krizhevsky (2009),
and 4. the Reuters dataset Thoma (2017) (multi-class and multi-label document classification dataset).

Models We experiment with two neural architectures,1. MLPs and 2. CNNs. In the latter case, we
use the convolutional layers as a pre-trained model with frozen weights, and we learn an MLP on top
of it. The reason we do so is that our method is based in a representation that, at least in the basic
form, does not allow capturing information from convolutional layers. Thus, we need a single (same
weights) feature extractor, to abstract away distances related to the CNN layers and focus on the MLP.

Conducted experiments We define the base MLP architecture as {Input, Linear(512),
Dropout(0.2), Linear(512), Dropout(0.2), Output}. In the case of CNNs, the
pre-trained model is defined as 3 convolutional blocks with kernel size 3 (starting with 32 channels),
interleaved with max pooling (its linear layers are thrown away after the pre-training). On top of the
pre-trained CNN, we also define the same base MLP architecture.

Then, for each dataset and model (MLP and CNN), we experiment with varying (while keeping the
rest fixed to the base architecture) 1. Layer size (number of units per layer): 4, 16, 32, 128, 256;
2. Number of labels (the other classes are removed): 2, 4, 6, 8, 10; 3. Learning rate: 1e-e05, 0.0001,
0.001, 0.01, 0.1; 4. Dropout: 0.0, 0.2, 0.4, 0.5, 0.8; and 5. Input order: 5 random reordering of the
input samples. As a control experiment, for each analyzed problem we run the same configuration
with 5 different input orders. If the measured distances are, indeed, related with the learning process
of neural networks, these variations should not have any noticeable effect. We run each configuration
5 times with different random seeds (and, thus, weight initializations1) to see if the results are
consistent across runs. All models are trained with the RMSProp optimizer with a batch size of 256.

Distances and validation accuracy computation Note that homological distances are obtained at
the end of each batch, while validation metrics are only computed on each epoch. We consider the
validation curve to be our baseline, and therefore we compare our method to it. The methodology is
summarized as follows:

1. In each training step (i.e., batch) we extract the weights from the MLP current state and use
them to build an abstract simplicial complex from the associated weighted directed graph.

2. We calculate the homological persistence diagram of the simplicial complex.
3. We then calculate the distance between consecutive persistence diagrams (we will call this

sequence homological convergence). We use two different distances, Heat and Silhouette.
4. We compare the homological convergence with the evolution of the validation results on

neural network learning process.

All experiments were executed in a machine with 2 NVIDIA V100 of 32GB, 2 Intel(R) Xeon(R)
Platinum 8176 CPU @ 2.10GHz, and of 1.5TB RAM, for a total of around 7 days. We note that our
method is considerably demanding in terms of both compute and memory.

6 RESULTS

In this section, we highlight the main results, omitting Silhouette (since the results were clearer with
Heat). See the Supplementary Material for all the plots and correlations, including Silhouette.

1The pre-trained convolutional weights are always identical, though.

6



Under review as a conference paper at ICLR 2022

We study the relation between the evolution of the PH diagram distances with the one of the validation
score with the cumulative values of the distance between homologous persistence diagrams because
this value seems much more stable. The information of the distance between the persistence diagrams
has been normalized to visualize clearly the type of evolution of each curve on the same scale.
Some of the non-normalized plots can be found in the Supplementary Material. Figure 6 shows the
cumulative and non-cumulative homology the MNIST experiment with layer size.
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Figure 6: Heat distance and validation accuracy curves on MNIST with layer size. Normalized.

For each experiment (e.g., layer size in MNIST), we plot both the evolution of the PH diagram
distance and the validation score (accuracy). The plotted values are the corresponding means of
the 5 repetitions with different seeds. In addition, we compute the Pearson correlation for these
values. Plots show on the x-axis each training step (for each batch) of the evolution in the training
state of the neural network. On the y-axis, two scales are shown that apply to the distance curves
between accumulated persistence diagrams (solid lines), scale on the right side, and the neural
network validation (dotted lines), numerical scale on the left side. For each sub-experiment (for
example, different values of layer size) a different color was used.

The general result is that the evolution of the homological convergence of the MLPs seems to be
very similar to the one of the validation score. This is generally consistent across experiments (see
the Supplementary Material). Table 1 shows the mean (and standard deviations) of the Pearson
correlations for all datasets. All means are above 0.8, implying that there is strong correlation.
Intuitively, this is also observed in the plots, although once the distances are normalized it is not as
clear to visualize. Interestingly, we find that the very few exceptions in which the correlation is low
corresponds to extreme values (very small number of neurons per layer, very high learning rate, very
high dropout), in which the neural network doesn’t end up learning properly.

In CNNs, the correlations are lower (but still usually above 0.8 in experiments such as the one of
increasing the number of layers). Recall that we froze a convolutional feature extractor since our
method only supports MLPs. We believe these lower correlations occur because an important part of
the learning process happened in the convolutional layers (in the pre-training), not captured.

Another finding is that the method obtains consistent results across runs, meaning that it is capturing
information related to important properties of the networks themselves instead of random artifacts.
When varying the studied hyperparameters, we observe that the curves for each configuration are
indeed, different. Remarkably, in the control experiments, this is not the case; results show that the
homological convergence during the learning of the same problem with the same model but with
different input order is very similar. The alteration of the order of the input doesn’t have any effect in
the homological convergence. The results of two of these experiments are shown in Figure 7.

In addition, we observe that when the neural network learns the given problem, homological conver-
gence occurs. For example, when the layer size is modified, the capacity of the neural network to
learn the problem changes (Figure 6). When it can’t learn the problem, because the network does not
have sufficient capacity (the layer size is too small, 4 units), the homology does not seem to converge.
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(b) CIFAR-100 CNN

Figure 7: Learning evolution on input order experiments (control experiments). Normalized.

Heat distance Silhouette distance

Dataset Means mean Deviations mean Means mean Deviations mean

MNIST 0.8910 0.0424 0.8910 0.0424
Reuters 0.6220 0.0700 0.6220 0.0700
CIFAR-10 MLP 0.8233 0.0649 0.8233 0.0649
CIFAR-10 CNN 0.4241 0.1915 0.4241 0.1915
CIFAR-100 MLP 0.8420 0.0566 0.8420 0.0566
CIFAR-100 CNN 0.6130 0.0800 0.6130 0.0800

Table 1: Correlation (c. with 20 points) of validation values with topological difference (cumulative).

Regarding the learning rate, the results are coherent with the intuition that it is a fundamental
parameter that controls how much to change the model in response to the estimated error during the
learning process. A too small learning rate may result in a long training process that could be stalled,
while a too large value may fall in a fast suboptimal solution or an unstable training process. Using
homological convergence we find similar behaviour, as can be seen in Figure 9.

Finally, we note that even if the two convergences (validation and homological convergence) are
correlated, they are not the same process. This is especially visible in the learning rate experiments.
For instance, in Figure 9, homological convergence is reached before the stabilization of the validation
accuracy. Presumably, they are not capturing the exact same information; we believe that the
difference is due to the fact that the validation accuracy depends on the specifics of the data sampled
in the validation subset, while the homological convergence is independent of the validation data.

7 DISCUSSION

We posed the question whether homological convergence (in terms of distances between PH diagrams
in consecutive neural network states) is related to the learning process of neural networks. We have
seen that, indeed, it is the case, with strong empirical results backing our claim. This finding has a
remarkable implication. If homological convergence evolution mirrors the validation accuracy curve,
one could ignore the validation set to monitor the training. This opens the path towards estimating the
generalization of neural networks without the need of any holdout set. Researchers have wondered
for a long time whether generalization could be predicted from intrinsic properties of the model or
training data alone, and in fact other works have claimed to do so. Although we do not provide any
predictive model, we show that our proposed measures strongly correlate with validation accuracy.
We do so by not using any data at all; we just look at the neural network itself. Our contribution
aims pushing towards a better understanding of the learning process of neural networks, not targeting
any specific direct application. However, we note that it can be effectively used for monitoring the
training of neural networks in terms of convergence expected generalization, as we have extensively
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(b) CIFAR-10 MLP

Figure 8: Learning evolution when dropout parameter is changed. Normalized.
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Figure 9: Learning evolution when modifying the learning rate parameter. Not normalized.

shown in the experiments. Apart from when there is no access to a validation set, this is relevant
because depending on a validation set has the risk of overfitting to it. Having an intrinsic measure
should be more robust to random noise in a specific data sample.

The main limitation of our method is its computational scalability. This lack of scalability has
prevented us from validating our method on bigger models and datasets. However, we note that our
approach computes the exact PD distances, that is, we do not simplify the graph representation of
the neural networks (we keep every single neuron and connections) and we do not approximate any
computation. This leaves room for finding efficient approximations, opening a new research line.

Finally, we note that instead of computing correlations, serving as a basic quantitative study, it would
be interesting to perform a time-series analysis to gain more insights on how the two curves vary
together. Moreover, it would have been interesting to investigate how to build a predictive model of
the validation accuracy from the PH distances, but it is was of the scope of this work.

8 CONCLUSIONS & FUTURE WORK

In this work, we have provided an empirical proof of the fact that homological convergence is related
to the learning process and generalization properties of neural networks. Furthermore, we have
shown that it can be used to monitor the training of a neural network (and potentially estimating its
generalization) without a validation set. As future work, we suggest generalizing our representation
to other neural architectures and scaling up the experiments to larger models and datasets, for which
finding efficient approximations of our method will be crucial.
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