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Abstract
Diffusion-based re-ranking methods are effective
in modeling the data manifolds through similarity
propagation in affinity graphs. However, positive
signals tend to diminish over several steps away
from the source, reducing discriminative power
beyond local regions. To address this issue, we in-
troduce the Locality Preserving Markovian Tran-
sition (LPMT) framework, which employs a long-
term thermodynamic transition process with mul-
tiple states for accurate manifold distance mea-
surement. The proposed LPMT first integrates
diffusion processes across separate graphs using
Bidirectional Collaborative Diffusion (BCD) to
establish strong similarity relationships. After-
wards, Locality State Embedding (LSE) encodes
each instance into a distribution for enhanced lo-
cal consistency. These distributions are intercon-
nected via the Thermodynamic Markovian Tran-
sition (TMT) process, enabling efficient global re-
trieval while maintaining local effectiveness. Ex-
perimental results across diverse tasks confirm the
effectiveness of LPMT for instance retrieval.

1. Introduction
Instance retrieval aims to identify images visually similar to
a given query image on a large scale. Typically, the global
image features are obtained through the aggregation of local
descriptors (Jégou et al., 2012; Noh et al., 2017) or lever-
aging deep neural networks (Cao et al., 2020; Yang et al.,
2021; Lee et al., 2022; 2023). After that, a ranking of images
can be generated by computing the similarity or distance
between these features. However, the feature extraction pro-
cess inevitably loses some important information, and the
capability of models often limits the expressiveness of the
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Figure 1. Illustration of Locality Preserving Markovian Transition.
Each instance is embedded as a distribution within the manifold,
with its characteristics shaped by the intrinsic local neighborhood
structure. Distant distributions are bridged via multiple intermedi-
ate states, where each transition is confined to a local region and
governed by the master equation. The minimum transition cost
then serves as an effective distance measure for improved retrieval.

features. Consequently, refining the initial ranking results
can improve the overall retrieval performance, referred to as
re-ranking. A prominent approach is the Query Expansion
(QE) (Chum et al., 2007; Shao et al., 2023), which uses high-
confidence samples from the top-ranked results to generate a
more robust query feature for secondary retrieval. However,
these methods fail to effectively capture the latent manifold
structure within the data space, limiting the performance.

Recently, diffusion-based methods (Iscen et al., 2017; 2018;
Prokopchik et al., 2022; Bai et al., 2019a;c; Luo et al., 2024;
Yang et al., 2019; Zhang et al., 2023) have been utilized
to investigate the manifold structure of data for re-ranking,
a process also known as manifold ranking. These meth-
ods begin with the initial retrieval results and construct a
k-nearest neighbor graph (Zhou et al., 2003; Donoser &
Bischof, 2013) to model the intrinsic data manifold. Once
the graph is created, similarity information is iteratively
propagated along the edges, allowing for the considera-
tion of higher-order relationships between instances. The
resulting manifold-aware similarity matrix demonstrates
improved retrieval performance as the process converges.
However, existing methods often rely heavily on graph con-
struction strategies, e.g., errors can propagate throughout
the graph if the adjacency relationships are incorrect, while
missing connections between high-confidence nodes can
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disrupt the flow of positive information. As a result, valu-
able information may diminish over multiple diffusion steps
for instances outside the local region, leading to a loss of
discriminative power. Therefore, improving the reliability
of knowledge transmission in long-distance nodes is critical
for effective manifold ranking.

The adverse effects of inaccurate propagation in diffusion-
based methods can be substantially attenuated by modeling
each instance as a probability distribution within the data
manifold for distance measurement, while the importance of
reliable neighborhoods can be emphasized at the same time.
Additionally, building on the foundation of previous stud-
ies (Evans et al., 1993; Barato & Seifert, 2015; Ito, 2018;
Van Vu & Saito, 2023), a long-term thermodynamic Marko-
vian transition process consisting of multiple states can
be utilized to quantify manifold distances. This approach
effectively reduces information decay during the propaga-
tion across distributions. As demonstrated in Figure 1, two
distant distributions are bridged through a series of interme-
diate states, each representing a probability distribution of
an instance. By restricting each transition to a local region,
the method ensures that information remains coherent and
locally relevant throughout the process. The Markovian
transition process governing each stage that connects two
consecutive states is defined by the master equation (Seifert,
2012), which offers a more precise representation of the
manifold structure than traditional metrics, such as total
variation. This multi-state thermodynamic process creates
a transition flow within the manifold, wherein the minimal
cost effectively serves as a distance metric.

In this paper, we introduce a novel approach called Locality
Preserving Markovian Transition (LPMT), which consists
of Bidirectional Collaborative Diffusion (BCD), Locality
State Embedding (LSE), and Thermodynamic Markovian
Transition (TMT). The Bidirectional Collaborative Diffu-
sion mechanism extends the reference adjacency graph into
a graph set by systematically adding and removing some
connections. This integration allows for a robust similarity
matrix to be constructed through the joint optimization of
combination weights and the equivalent objectives of the dif-
fusion process, as highlighted in previous work (Luo et al.,
2024). Subsequently, Locality State Embedding assigns a
probability distribution to each instance within the mani-
fold space, utilizing information from neighboring instances
to enhance local consistency. Finally, the Thermodynamic
Markovian Transition establishes a multi-state process on
the manifold, wherein distant distributions navigate through
several intermediate states within their respective regions.
This approach elucidates the underlying manifold structure
by capturing the minimum transition cost while preserv-
ing local characteristics. To compute the final distance, a
weighted combination of this cost and the Euclidean dis-
tance is employed, enabling efficient global retrieval.

Experimental results on various instance retrieval tasks vali-
date the effectiveness of the proposed Locality Preserving
Markovian Transition. Specifically, LPMT achieves mAP
scores of 84.7%/67.8% on ROxf and 93.0%/84.1% on RPar
under medium and hard protocols, respectively, demonstrat-
ing its superior performance.

2. Related Work
Instance Retrieval. The objective of instance retrieval is
to identify images in a database that resemble the content
of a query instance. With the rapid advancement of deep
learning, global features extracted by deep neural networks
(Radenović et al., 2019; Cao et al., 2020; Yang et al., 2021;
Lee et al., 2022; 2023) have gradually replaced local de-
scriptors (Lowe, 2004; Jégou et al., 2012; Noh et al., 2017).
Despite their effectiveness, the retrieval performance can be
further refined through a post-process known as re-ranking.

Re-ranking. Specifically, re-ranking can be broadly divided
into Query Expansion, Diffusion-based Methods, Context-
based Methods, and Learning-based Methods.

Query expansion. The higher relevance maintained by the
top-ranked images leads to the development of Query Ex-
pansion (QE), which integrates neighboring features to
build a more effective query. While AQE (Chum et al.,
2007) simply averages the features of top returned images,
AQEwD (Gordo et al., 2017), DQE (Arandjelović & Zisser-
man, 2012), αQE (Radenović et al., 2019), and SG (Shao
et al., 2023) apply diminishing aggregation weights to the
subsequent ones, leading to enhanced retrieval performance.

Diffusion-based Methods. Leveraging the intrinsic mani-
fold structure of data, diffusion-based methods serve as a
powerful technique for re-ranking. After the theory has orig-
inally been developed (Zhou et al., 2003; Yang et al., 2009;
Donoser & Bischof, 2013), it has been successfully intro-
duced to the field of instance retrieval (Iscen et al., 2017;
2018; Yang et al., 2019). To further capture the underly-
ing relationships, researchers (Zhou et al., 2012; Bai et al.,
2019a;c; Yang et al., 2013; Zhang et al., 2015) seek to aggre-
gate higher-order information by propagating messages on a
hypergraph or integrating information from distinct graphs.
Additionally, EGT (Chang et al., 2019) and CAS (Luo et al.,
2024) adjust the diffusion strategy to address the problem of
unreliable connections, resulting in improved effectiveness.

Context-based Methods. Given that the contextual informa-
tion contained by nearest neighbors can lead to notable im-
provements in retrieval performance. Pioneer works (Jégou
et al., 2007; Shen et al., 2012; Sarfraz et al., 2018) adjust
the distance measure by using the ranking or similarity rela-
tionships in the neighborhood, while recent approaches (Bai
& Bai, 2016; Zhong et al., 2017; Zhang et al., 2020; Yu
et al., 2023; Liao et al., 2023; Kim et al., 2022) encode each
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Figure 2. Comparison of ranking results based on (a) Euclidean
distance and (b) manifold-aware distance in the feature space.

instance into a manifold-aware space to perform re-ranking,
where similar images exhibit higher contextual consistency.

Learning-based Methods. Recently, deep learning methods
have also been introduced to assist with re-ranking. For
example, Gordo et al. (2020) and Ouyang et al. (2021) lever-
age the robust encoding power of self-attention mechanisms
to learn weight relationships for aggregating representative
descriptors. Meanwhile, Liu et al. (2019) and Shen et al.
(2021) seek to perform information propagation via optimiz-
ing graph neural network (Gasteiger et al., 2018), allowing
the ranking result to capture the intrinsic manifold structure.

Large Pre-trained Models for Information Retrieval. In-
formation retrieval in both visual and textual modalities has
undergone a fundamental shift with the emergence of large
pre-trained models, often referred to as foundation models.

VLMs for Image Retrieval. Trained on colossal web-scale
image-text datasets, Vision-Language Models (VLMs) (Rad-
ford et al., 2021; Jia et al., 2021; Yao et al., 2022; Li et al.,
2022; 2023; Liu et al., 2023) serve as foundational back-
bones for diverse vision and language tasks. These models
provide semantically rich and discriminative features for
both modalities, aligned within a shared semantic space, en-
abling sophisticated cross-modal retrieval. However, unlike
precise instance-level retrieval, VLMs inherently prioritize
broad conceptual understanding, often yielding initial re-
sults that are semantically relevant but lack fine-grained in-
stance discrimination (e.g., a query for “Eiffel Tower” may
retrieve a range of related images without accurately dis-
tinguishing between highly similar photographic instances).
Nevertheless, the latent manifold structure present in the
feature space of semantically similar samples offers a com-
pelling basis for subsequent re-ranking methods aimed at
refining retrieval precision.

LLMs for Textual Retrieval. Moving beyond lexical statis-
tics, Large Language Models (LLMs) (Thakur et al., 2021;
Devlin et al., 2019) empower deep semantic understanding
of both queries and documents. Through the encoding of
queries and documents into a high-dimensional embedding
space, LLMs are broadly applied within dense information
retrieval paradigms. Building on these retrieval capabilities,

LLMs are further integrated into Retrieval-Augmented Gen-
eration (RAG) systems (Chen et al., 2024; Borgeaud et al.,
2022; Asai et al., 2024), enabling the extraction of relevant
content from external knowledge bases to produce coherent
and factually accurate responses. Given the modern empha-
sis on logical reasoning and deeper understanding in textual
retrieval (Su et al., 2025), leveraging powerful LLMs (Xiao
et al., 2023) to dynamically re-evaluate query-document
similarity for re-ranking yields superior quality, surpassing
approaches solely based on semantic feature embeddings.

3. Preliminary
Given a query image, instance retrieval aims to sort the
gallery image set in ascending order, where images at the
front are more similar to the query. Formally, define the
whole image set containing query and gallery images as
X = {x1, x2, . . . , xn}. A d-dimensional image feature for
each image in X can be extracted with a pretrained model
to measure the pairwise distance. Denote the image feature
corresponds to xi as f i, the Euclidean distance between xi

and xj in the feature space can be calculated by:

d(i, j) = ∥f i − f j∥2. (1)

The distance between the query xi and images in X com-
puted by Eq. (1) can be directly used for ranking the gallery
set concerning xi. However, the retrieval result based on Eu-
clidean distance always reflects a sub-optimal performance.

Drawing from the prior knowledge that similar images are
distributed along a low-dimensional manifold induced by
the whole image set X . Prioritizing images that simultane-
ously exhibit higher proximity in Euclidean and manifold
spaces can improve retrieval results. To achieve this, a gen-
eral approach is to model the underlying manifold structure
with a k-nearest neighbor graph G = {V, E}, each vertex
vi in V = {v1, v2, . . . , vn} represents the corresponding
position of xi within the data manifold, while E = V × V
denotes the edges weighted by:

W ij = 1
N
ij exp (−d2(i, j)/σ2), (2)

where 1N is an indicator matrix to represent the k-nearest
neighbors, i.e., 1N

ij = 1, if j ∈ N (i, k), otherwise 1N
ij = 0.

To exploit the underlying manifold geometry encoded in the
adjacency matrix W , diffusion-based methods (Iscen et al.,
2017; Bai et al., 2019a; Luo et al., 2024) spread information
along neighboring edges within the graph in an unsuper-
vised manner, producing a similarity matrix that captures
the manifold relationships for re-ranking. A comprehensive
visual explanation of manifold ranking is shown in Fig. 2.
Nevertheless, the diffusion process is susceptible to interfer-
ence from inaccuracies in the adjacency graph construction
and struggles to maintain discriminative power beyond the
local region, thereby limiting the overall performance.
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4. Locality Preserving Markovian Transition
To overcome the limitations that traditional diffusion models
are sensitive to graph construction and struggle to generalize
across varying data distributions, we propose Bidirectional
Collaborative Diffusion (BCD) to integrate diffusion pro-
cesses on multi-level affinity graphs automatically. To fur-
ther enhance global discriminative power without compro-
mising local effectiveness, we introduce the Locality State
Embedding (LSE) strategy, which represents each instance
as a local consistent distribution within the underlying man-
ifold. Afterwards, Thermodynamic Markovian Transition
(TMT) is proposed to perform a constrained time evolution
transition process within the local regions at each stage. The
minimal cost of multi-step transitions can effectively cap-
ture the intrinsic manifold structure, providing a powerful
distance metric for instance retrieval. In the following, we
give a detailed description of each proposed component.

4.1. Bidirectional Collaborative Diffusion

Given a reference adjacency matrix W , we can generate an
extended set {W 1,W 2, . . . ,Wm} by adding and remov-
ing some connections. Their contribution to the total dif-
fusion process is denoted by {βv}mv=1 = {β1, β2, . . . , βm},
which can be dynamically adjusted. As shown in Fig. 3,
BCD seeks to automatically perform diffusion and integra-
tion to produce a robust result. The smoothed similarity F
and weights β are jointly optimized follow by:

min
β,F

m∑
v=1

βvH
v +

1

2
λ∥β∥22

s.t. 0 ≤ βv ≤ 1,

m∑
v=1

βv = 1,

(3)

where Hv denotes the objective value of Bidirectional Simi-
larity Diffusion (Bai et al., 2019a;c; Luo et al., 2024) process
with respect to W v , followed as:

Hv =
1

4

n∑
k=1

n∑
i,j=1

W v
ij

( F ki√
Dv

ii

− F kj√
Dv

jj

)2
+W v

ij

( F ik√
Dv

ii

− F jk√
Dv

jj

)2
+ µ∥F −E∥2F .

(4)

As for each adjacency matrix W v in Eq. (4), Dv is the
diagonal matrix with its i-th diagonal element equal to the
summation of the i-th row in W v . The regularization term is
weighted by µ > 0, where the matrix E is positive and semi-
definite and is used to avoid F from being extremely smooth.
For a given triplet of vertices vk, vi and vj in graph G, the
smoothed similarities F ki and F kj are regularized by the
affinity weight W ij . Meanwhile, the bidirectional strategy
also takes the reverse pair F ik and F jk into consideration,
ensuring the symmetric of the target matrix F .

Adjacency MatricesAffinity Graphs
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Figure 3. An illustration of the proposed Bidirectional Collabora-
tive Diffusion (BCD) algorithm with three scales, where different
connection strategies are employed to accommodate diverse data
distributions. BCD automatically performs diffusion and integra-
tion to generate a robust similarity matrix.

The optimization problem in Eq. (3), which simultaneously
depends on β and F , is inherently complex and imprac-
tical for a direct solution. To resolve this, we propose a
numerical method that decomposes the target function into
two sub-problems: Optimize F with Fixed β and Optimize
β with Fixed F . This allows for a systematic iterative ap-
proximation of the optimal result through the fixed-point
scheme.

Optimize F with Fixed β. Assuming that {βv}mv=1 are fixed,
such that they can be directly omitted during the optimiza-
tion process of F . Incorporating the definition of Hv into
the objective yields the following formulation:

min
F

1

4

m∑
v=1

n∑
k=1

n∑
i,j=1

βvW
v
ij

( F ki√
Dv

ii

− F kj√
Dv

jj

)2
+βvW

v
ij

( F ik√
Dv

ii

− F jk√
Dv

jj

)2
+ µ∥F −E∥2F .

(5)

This formulation is still hard to deal with, refer to the deriva-
tion in Appendix A.1, we transform it into a vectorized
formulation to facilitate the solution as follows,

J =
m∑

v=1

βvvec(F )⊤(I− S̄v)vec(F ) + µ∥vec(F −E)∥22, (6)

where I ∈ Rn2×n2

is an identity matrix, and S̄v is the
mean Kronecker product form of normalized matrix Sv,
calculated by S̄v = (I ⊗ Sv + Sv ⊗ I)/2, in which the
corresponding normalized matrix to W v is denoted as Sv =
(Dv)−1/2W v(Dv)−1/2. Additionally, vec(·) denotes the
vectorization operator, with its inverse function as vec−1(·).

The Hessian matrix of J in Eq. (6) is proved to be positive-
definite in Appendix A.1, such that the optimal solution is
achieved when the first order is equal to zero, that is:

∇vec(F )J =
m∑

v=1

βv(2I− S̄v)vec(F ) + 2µ(vec(F −E)). (7)
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By substituting the hyper-parameter βv with αv = βv

µ+1 and
introduce α = 1

µ+1 , the simplified closed form solution F ∗

can be expressed as:

F ∗ = (1− α)vec−1
(
(I−

m∑
v=1

αvS̄v)−1vec(E)
)
. (8)

Directly solving the inverse of a matrix with n2 × n2 di-
mensions is still computationally infeasible. To address
this problem, we adopt the iterative approach to gradually
approach the optimal solution, followed by1:

F (t+1) =
1

2

m∑
v=1

αv

(
F (t)(Sv)⊤ + SvF (t)

)
+ (1− α)E. (9)

Inspired by Iscen et al. (2017), the rate of convergence can
be further enhanced using the conjugate gradient method,
requiring fewer iterations as shown in Algorithm 2.

Optimize β with Fixed F . In the situation when F is fixed,
we can directly compute the objective value for each Hv

with Eq. (4), and we only need to optimize β by solving:

min
β

m∑
v=1

βvH
v +

1

2
λ∥β∥22

s.t. 0 ≤ βv ≤ 1,

m∑
v=1

βv = 1.

(10)

Deriving an analytical solution for this Lasso-form optimiza-
tion problem is still challenging due to inequality constraints.
Therefore, a general approach involves iteratively updating
each βv through coordinate descent. However, in this case,
we propose a more efficient strategy that allows updating all
β values simultaneously, explicitly eliminating the need for
iteration. As demonstrated in Appendix A.2, we can estab-
lish an equivalent condition that identifies the valid index
set where the inequality constraints are slack, as follows:

I =
{
v|Hv < (

∑
v′∈I

Hv′
+ λ)/|I|, v = 1, 2, . . . ,m

}
, (11)

while other {βv}v/∈I can be proved to be 0. All the {βv}v∈I
will not violate the inequality constraint 0 ≤ βv ≤ 1, such
that it can be ignored for a simpler formulation. By intro-
ducing a Lagrangian multiplier η, the Lagrangian function
L(β, η) corresponds to the primal optimization problem in
Eq. (10) without inequality constraints is formulated as:

L(β, η) =
∑
v∈I

βvH
v +

1

2
λ∥β∥22 + η(1−

∑
v∈I

βv). (12)

The optimal result can then be obtained by solving the KKT
conditions, with the optimal weight set {β∗

v}mv=1 given by:

β∗
v =


∑

v′∈I Hv′ − |I|Hv + λ

λ|I|
, v ∈ I,

0, v ∈ {1, 2, . . . ,m}/I.
(13)

1For a comprehensive derivation, refer to Appendix A.

Algorithm 1 Bidirectional Collaborative Diffusion
Input: extended adjacency matrices set {W v}mv=1, hyper-

parameters λ, µ, max number of iterations maxiter.
Output: adaptive smoothed similarity matrix F .

1: initialize t = 0, {βv}mv=1 = 1/m and F (0) = E
2: repeat
3: update F with fixed β following Eq. (9)
4: compute {Hv}mv=1 following Eq. (4)
5: set {βv}mv=1 with 0
6: filter the valid index set I following Eq. (11)
7: update {βv}v∈I with fixed F following Eq. (13)
8: t← t+ 1
9: until convergence or t = maxiter

Overall Optimization. As shown in the Algorithm 1, the
overall optimization problem for Bidirectional Collaborative
Diffusion can be solved by recursively optimizing F and β
until convergence. The resulting F ∗ can effectively capture
the underlying manifold structure and is less sensitive to the
construction strategy of the affinity graph.

4.2. Locality State Embedding

The obtained smooth similarity matrix F ∗ demonstrates
significant improvements in accurately capturing neighbor-
hood relationships, especially in local regions. To preserve
local reliability and facilitate further exploration of potential
manifold structure information, the proposed Locality State
Embedding (LSE) leverages this similarity matrix to map
each instance into the manifold space with an n-dimensional
distribution, where each dimension is coupled with a node
in graph G. To effectively mitigate the negative impact of
noise within neighborhoods, we employ the k-reciprocal
strategy to determine local regions for weight assignment,
which can be formally expressed as:

R(i, k) =
{
j|(j ∈ N (i, k)) ∧ (i ∈ N (j, k))

}
. (14)

To avoid ambiguity, we use k1 to represent the size of the
local region. For each instance, only the indices belonging
to the local region are preserved and assigned the weights
by utilizing the corresponding row of F ∗ followed by an l1
regularization, resulting in a sparse matrix P̂ followed by:

P̂ ij = F ∗
ij/

∑
j∈R(i,k1)

F ∗
ij , if j ∈ R(i, k1), (15)

where P̂ = [p̂1, . . . , p̂n]
⊤, and each p̂i represents a state

distribution for xi. In a sense, alongside the BCD process
described in Section 4.1, the mapping process driven by LSE
serves as a kernel function that transforms a d-dimensional
feature into an n-dimensional manifold-aware state distribu-
tion. Given that the close neighbors have high confidence in
belonging to the same category, such that the probability dis-
tributions within the local neighborhoodN (i, k2) (k2 < k1)
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Table 1. Evaluation of the performance on ROxf, RPar, ROxf+1M, RPar+1M. Using R-GeM (Radenović et al., 2019) as the baseline.

Method
Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R-GeM (Radenović et al., 2019) 67.3 49.5 80.6 57.4 44.2 25.7 61.5 29.8

AQE (Chum et al., 2007) 72.3 56.7 82.7 61.7 48.9 30.0 65.0 35.9
αQE (Radenović et al., 2019) 69.7 53.1 86.5 65.3 44.8 26.5 71.0 40.2
DQE (Arandjelović & Zisserman, 2012) 70.3 56.7 85.9 66.9 45.9 30.8 69.9 43.2
AQEwD (Gordo et al., 2017) 72.2 56.6 83.2 62.5 48.8 29.8 65.8 36.6
LAttQE (Gordo et al., 2020) 73.4 58.3 86.3 67.3 49.6 31.0 70.6 42.4

ADBA+AQE 72.9 52.4 84.3 59.6 53.5 25.9 68.1 30.4
αDBA+αQE 71.2 55.1 87.5 68.4 50.4 31.7 73.7 45.9
DDBA+DQE 69.2 52.6 85.4 66.6 50.2 29.2 70.1 42.4
ADBAwD+AQEwD 74.1 56.2 84.5 61.5 54.5 31.1 68.6 33.7
LAttDBA+LAttQE 74.0 60.0 87.8 70.5 54.1 36.3 74.1 48.3

DFS (Iscen et al., 2017) 72.9 59.4 89.7 74.0 50.1 34.9 80.4 56.9
RDP (Bai et al., 2019a) 75.2 55.0 89.7 70.0 58.8 33.9 77.9 48.0
EIR (Yang et al., 2019) 74.9 61.6 89.7 73.7 52.1 36.9 79.8 56.1
EGT (Chang et al., 2019) 74.7 60.1 87.9 72.6 51.1 36.2 76.6 51.3
CAS (Luo et al., 2024) 80.7 61.6 91.0 75.5 64.8 39.1 80.7 59.7

GSS (Liu et al., 2019) 78.0 61.5 88.9 71.8 60.9 38.4 76.5 50.1
SSR (Shen et al., 2021) 74.2 54.6 82.5 60.0 53.2 29.3 65.6 35.0
CSA (Ouyang et al., 2021) 78.2 61.5 88.2 71.6 59.1 38.2 75.3 51.0
STML (Kim et al., 2022) 74.1 53.5 85.4 68.0 57.1 27.5 70.0 42.9
ConAff (Yu et al., 2023) 74.5 53.9 88.0 61.4 56.4 30.3 73.9 33.6

LPMT 84.7 64.8 93.0 76.1 67.8 41.4 84.1 60.1

can be aggregated to strengthen the local consistency. Ad-
ditionally, if the neighbor satisfies the reciprocal condition,
we can emphasize its importance using a parameter κ. In
this case, the final neighbor-aware probability distribution
pi for each xi is given by:

pi =
∑

j∈N (i,k2)

(κ1R
ij + 1)p̂j/(κ|R(i, k2)|+ k2), (16)

where the element 1R
ij = 1 if j ∈ R(i, k2), and otherwise

1
R
ij = 0. The resulting probability state distributions for

each instance in X can be organized as {pi}ni=1 ∈ Rn.

4.3. Thermodynamic Markovian Transition

Despite the ability of the obtained probability distributions
to preserve local effectiveness, traditional distance metrics
such as total variation fail to effectively discriminate in-
stances outside the local region. To address this issue, we
formulate a stochastic thermodynamic process to perform
a Markovian transition flow over the graph, where the time
evolution cost can serve as a distance for instance retrieval.
For the two distributions pi,pj characterizing instances
xi, xj , we present a time-dependent probability distribution
qt on the graph from q0 = pi to qτ = pj in a time interval
[0, τ ] to represent the transition flow. With t representing the

continuous time variable, this dynamics evolving over the
graph G = {V, E} represents a Markov process governed by
the Langevin equations, with the corresponding discretized
master equation (Seifert, 2012) expressed as:

q̇t = T tqt, (17)

where q̇t represents the derivative with respect to time. Ad-
ditionally, T t denotes the transition rate matrix, with its di-
agonal components satisfying T t[r, r] = −

∑
s̸=r T t[s, r].

Since pi and pj may not reside within the same local region,
we additionally require the long-term transition qt to follow
a path linking pi and pj . This path comprises multiple tem-
perate states, ensuring that each state is reachable from its
predecessor only within the local region. Formally, given the
set of distributions {pi}ni=1, the strategy π systematically
selects a sequence of temperate states {pik

}Kk=0 that satisfy
local constraints. The resulting path can be expressed as
{pi0 ,pi1 , . . . ,piK} = π({pi}ni=1). Each stage of qt spans
a time interval of τ/K with q kτ

K
= pik

. Consequently,
for two given distributions pi and pj , the minimum cost of
Markovian transition flow is defined by optimizing overall
potential paths π and transition rate matrices T t as follows:

d′(i, j) = min
π,T t

K−1∑
k=0

∫ (k+1)τ
K

kτ
K

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt, (18)
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Table 2. Evaluation of the retrieval performances based on global
image features extracted by DOLG (Yang et al., 2021).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

DOLG 93.4 95.2 81.2 90.1 62.6 79.2

AQE 96.0 95.6 83.5 90.5 67.5 80.0
αQE 96.7 95.7 83.9 91.4 67.6 81.7
SG 97.7 95.7 85.1 91.7 70.3 82.9

STML 97.6 95.4 86.0 91.5 70.8 82.3
AQEwD 97.5 95.6 84.7 91.2 68.7 81.1

DFS 87.3 93.6 76.1 90.8 53.5 82.4
RDP 95.7 95.0 87.2 93.0 72.0 84.8
CAS 96.8 95.7 89.5 93.6 76.7 86.7
GSS 98.0 95.3 86.9 90.6 72.9 81.2

ConAff 95.1 93.0 84.6 91.3 66.7 79.9

LPMT 99.7 95.9 91.4 95.3 78.2 89.8

Table 3. Evaluation of the retrieval performances based on global
image features extracted by CVNet (Lee et al., 2022).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

CVNet 94.3 93.9 81.0 88.8 62.1 76.5

AQE 94.7 94.4 82.1 90.2 64.4 78.8
αQE 95.8 94.8 95.8 90.9 63.5 80.4
SG 99.0 95.0 86.1 90.6 69.3 80.5

STML 98.5 94.9 86.2 90.8 69.3 80.5
AQEwD 96.2 94.9 84.0 90.8 66.4 80.0

DFS 83.5 93.5 70.8 89.8 47.4 79.6
RDP 96.9 94.5 87.8 92.4 71.5 83.3
CAS 97.6 95.0 87.6 92.8 72.7 84.8
GSS 99.0 94.0 87.6 87.1 70.4 76.9

ConAff 98.3 92.4 87.5 90.2 70.3 77.7

LPMT 99.5 95.9 90.2 94.5 75.2 88.0

Table 4. Evaluation of unsupervised content-based image retrieval.

Method
CUB200 Indoor Caltech101

mAP R@1 mAP R@1 mAP R@1

Baseline 27.9 55.8 51.8 79.0 77.9 92.3

AQE 35.9 54.3 62.5 78.1 85.5 91.8
αQE 35.9 54.8 62.4 79.1 85.7 92.5

STML 34.1 58.4 58.6 80.5 83.2 93.4
AQEwD 36.4 55.2 62.4 79.6 86.8 92.8

DFS 34.1 56.0 59.3 79.2 83.4 92.6
RDP 39.6 59.3 63.9 80.9 85.9 93.1
CAS 41.9 58.7 60.9 79.0 86.8 93.3

ConAff 40.7 57.3 64.2 79.4 86.8 93.0

LPMT 42.1 59.7 64.9 81.0 87.3 93.6

where J(r, s, t) denotes the transition current from vr to vs
with the cost d(r, s) in Eq. (1) at time t, obtained by:

J(r, s, t) = T t[r, s]qt[s]− T t[s, r]qt[r]. (19)

Note that at each stage, the master equation Eq. (17) of the
time derivative of the flow should be satisfied. Furthermore,
to facilitate a finer analysis of the transition cost, an addi-
tional power term can be applied to the distance in Eq. (18),
yielding better empirical performance. Theoretically, as
shown in Appendix B, in the case of microscopically re-
versible dynamics, the minimum flow cost is fundamentally
related to the entropy production during the transition. More-
over, the time variation problem is still hard to be directly
solved; therefore, under the assumption that each transition
only takes place in local regions, the Wasserstein distance
W1 can serve as a valid equivalency, followed by:

d′(i, j) = min
π

K−1∑
k=0

W1(pik
,pik+1

). (20)

To maintain the important information in Euclidean space
and enhance robustness, the final distance d∗(i, j) is ob-
tained by introducing a balance weight θ to integrate d′(i, j)
and d(i, j), as follows:

d∗(i, j) = θd(i, j) + (1− θ)d′(i, j). (21)

5. Experiment
5.1. Experiment Setup

Datasets. To demonstrate the effectiveness of the proposed
Locality Preserving Markovian Transition (LPMT) method,
we conduct experiments on the revised (Radenović et al.,
2018) Oxford5k (ROxf) (Philbin et al., 2007) and Paris6k
(RPar) (Philbin et al., 2008) datasets, respectively. To fur-
ther evaluate performance at scale, an extra collection of
one million distractor images is incorporated, forming the
large-scale ROxf+1M and RPar+1M datasets. Additionally,
following the split strategy of Hu et al. (2020), we perform
unsupervised content-based image retrieval on datasets like
CUB200 (Wah et al., 2011), Indoor (Quattoni & Torralba,
2009), and Caltech101 (Fei-Fei et al., 2004) to identify im-
ages belonging to the same classes.

Evaluation Metrics. As the primary evaluation metric, we
adopt the mean Average Precision (mAP) to assess the re-
trieval performance. For classical instance retrieval tasks,
the image database is further divided into Easy (E), Medium
(M), and Hard (H) categories based on difficulty levels.
Given that the positive samples are limited in unsupervised
content-based retrieval tasks, Recall@1 (R@1) is also re-
ported to quantify the accuracy of the first retrieved image.

Implementation Details. We employ the advanced deep
retrieval models, including R-GeM (Radenović et al., 2019),
MAC/R-MAC (Tolias et al., 2016), DELG (Cao et al., 2020),
DOLG (Yang et al., 2021), CVNet (Lee et al., 2022), and
SENet (Lee et al., 2023), to extract global image features for
instance retrieval. The Euclidean distance between features
is the baseline measure, while refined retrieval performance
is evaluated using various re-ranking methods. For unsu-
pervised retrieval tasks aimed at identifying similar classes,
we follow Hu et al. (2020) by extracting image features
using the same pretrained backbone and applying the same
pooling strategy to evaluate retrieval performance.
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Figure 4. Ablations of BCD. (a) Performance comparison with
BSD. (b) Convergence analysis of BCD towards the target matrix.

5.2. Main Results

Comparison of Instance Retrieval. As summarized in Ta-
ble 1, we evaluate our proposed LPMT against a wide
range of re-ranking approaches, including query expansion
methods (AQE, αQE, DQE, AQEwD) w/ and w/o database
augmentation (DBA), diffusion-based methods (DFS, RDP,
EIR, EGT, CAS), context-based methods (STML, ConAff),
and learning-based methods (GSS, SSR, CSA, LAttQE),
based on the global image features extracted by R-GeM.
Notably, under the medium and hard evaluation protocols on
ROxf, LPMT improves mAP by 4.0% and 3.0% compared
to the top-performing CAS, respectively. Additional results
in Table 2 and Table 3 further show that LPMT consis-
tently delivers superior performance across various retrieval
models and settings. Even with high initial performance,
our method can still bring further improvements, e.g., from
93.4%/81.2%/62.6% to 99.7%/91.4%/78.2% on ROxf with
DOLG. More comparison results based on MAC/R-MAC,
DELG, and SENet are shown in Appendix C; the significant
improvement in performance highlights its effectiveness and
robustness.

Comparison of Unsupervised Content-based Image Re-
trieval. Compared with classical instance retrieval tasks
on landmark datasets, the primary challenge of this task is
to find images from datasets with smaller inter-class and
larger intra-class variances. Accurately identifying similar
contextual neighbors is also essential for self-supervised
and unsupervised learning. As shown in Table 4, LPMT
achieves the mAP of 42.1%/64.9%/87.3% on CUB200, In-
door, and Caltech101, respectively, proving its effectiveness
and potential for diverse machine learning applications.

5.3. Ablation Study

Effectiveness of Bidirectional Collaborative Diffusion. Bidi-
rectional Collaborative Diffusion (BCD) is proposed to au-
tomatically integrate the diffusion processes on graphs con-
structed with different strategies. For a referenced nearest
neighbor graph parameterized by k, we extend it into a
graph set by scaling k with factors [1/

√
2, 1,
√
2] (rounded

to the nearest integer) to adjust edge connectivity levels. The
ablation study in Fig. 4(a) reveals that BCD delivers consis-
tent improvements over Bidirectional Similarity Diffusion,

Table 5. Ablations of LSE.

Method
ROxf(M) ROxf(H)

R-GeM DOLG CVNet R-GeM DOLG CVNet

Baseline 67.3 81.2 81.0 44.2 62.6 62.1

Cosine+k-nn 75.8 86.1 86.4 54.9 70.4 69.5
Gaussian+k-nn 78.2 88.8 88.7 58.9 75.5 73.7
BSD+k-nn 81.6 90.4 89.5 63.0 76.9 74.9
BCD+k-nn 84.2 91.3 90.1 66.1 78.1 75.2

Cosine+k-recip 80.6 87.0 87.5 61.3 73.7 70.1
Gaussian+k-recip 81.9 89.5 88.8 63.1 75.8 73.1
BSD+k-recip 83.6 90.3 89.5 65.2 77.2 73.8
BCD+k-recip 84.7 91.4 90.2 67.8 78.2 75.2

Table 6. Ablations of TMT.

Method
ROxf(M) ROxf(H)

R-GeM DOLG CVNet R-GeM DOLG CVNet

Baseline 67.3 81.2 81.0 44.2 62.6 62.1

Cosine 78.0 86.9 85.3 60.0 72.7 69.3
Euclidean 78.5 87.3 85.6 60.7 73.2 69.5
Jaccard 78.8 87.4 85.9 60.5 74.1 70.6
Total Variation 79.5 87.8 86.4 61.7 74.5 71.1

TMT 84.7 91.4 90.2 67.8 78.2 75.2

particularly under challenging scenarios. For example, per-
formance improves from 83.6% to 84.7% in ROxf(M) and
65.2% to 67.8% in ROxf(H) when k = 10. These improve-
ments underscore the effectiveness of BCD in mitigating
the negative impact of inappropriate connections by synthe-
sizing information from different graphs. Furthermore, in
our implementation of BCD, we perform the updating strat-
egy of Eq. (9) for three iterations, followed by a refreshing
of the weight set β in each cycle. As shown in Fig. 4(b),
the residue norm of the target similarity matrix decreases
rapidly within a few iterations, demonstrating its efficiency.

Effectiveness of Locality State Embedding. As depicted in
Section 4.2, the proposed LSE aims to encode each instance
into a manifold-aware distribution using the obtained BCD
similarity matrix and k-reciprocal strategy. To validate its
effectiveness, we conduct experiments to test various com-
binations of Cosine (Bai & Bai, 2016), Gaussian kernel,
BSD (Luo et al., 2024), and our BCD similarity, along with
the embedding strategies based on k-nn and k-reciprcal.
Table 5 reveals that LSE (BCD+k-recip) consistently outper-
forms other methods across diverse deep retrieval models,
particularly under the hard protocol. Notably, with the same
k-reciprocal strategy, LSE surpasses Cosine, Gaussian, and
BSD by 6.5%/4.7%/2.6% on R-GeM ROxf(H), highlighting
its superiority in exploiting manifold information.

Effectiveness of Thermodynamic Markovian Transition. As
discussed in Section 4.3, the minimum transition flow cost
between distinct distributions is an effective distance mea-
sure for instance retrieval. To verify this, we benchmark
it against common metrics such as Cosine, Euclidean, Jac-
card, and Total Variation distance, with results detailed in
Table 6. Under the ROxf(M) and ROxf(H) protocols, LPMT
achieves superior performance, surpassing other metrics by
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Figure 5. Sensitivity analysis of hyper-parameters based on image
features extracted by R-GeM. (a) Effect of k1. (b) Effect of k2. (c)
Effect of κ. (d) Effect of θ. (e) Effect of µ. (f) Effect of σ.

6.7%/6.2%/5.9%/5.2% and 7.8%/7.1%/7.2%/6.1% based
on R-GeM. This suggests that the time evolution process
can effectively capture the underlying manifold structure,
benefiting the overall global retrieval performance.

Time Complexity Analysis. LPMT consists of three core
components: BCD, LSE, and TMT, with the computational
cost primarily driven by BCD and TMT. Specifically, BCD
optimizes for the robust similarity matrix via a two-step
iterative approach following Algorithm 1, which has a time
complexity ofO(n3). As for TMT, we introduce an entropy
regularization term in Appendix B, resulting in a fixed-point
iterative solution with O(n3) complexity. Consequently,
the overall complexity of LPMT is O(n3). To improve ef-
ficiency in practical scenarios, we re-rank only the top-k
images, reducing the complexity to O(k3), and the execu-
tion time remains under 3 seconds when k = 5000.

Effect of k1 and k2. The hyper-parameters k1 and k2 intro-
duced in LSE determine the size of the local region and the
number of confident neighborhoods. As shown in Fig. 5(a),
retrieval performance peaks at k1 = 60, suggesting that
selecting a moderate region size is crucial to incorporate
sufficient informative instances. Similarly, Fig. 5(b) shows
that k2 = 7 yields optimal performance, highlighting the im-
portance of balancing neighborhood size and the proportion
of correct samples for improved representation.

Sensitivity of Hyper-parameters. In Eq. (16), the reciprocal
neighbors enhance the LSE distribution, controlled by a
hyper-parameter κ. As illustrated in Fig. 5(c), performance
increases with κ and reaches its maximum at κ = 2. Mean-
while, the hyper-parameter θ serves as a balancing weight

to fuse the original Euclidean distance with the thermody-
namic transition flow cost. Fig. 5(d) reveals that θ = 0.5
yields the optimal result, demonstrating that incorporating
the original distance enhances the retrieval robustness. Ad-
ditional analyses of hyper-parameters such as µ and σ are
provided in Fig. 5(e) and (f), confirming the robustness of
our approach towards their variations.

6. Conclusion
To address the problem of decaying positive information
and the influence of disconnections during the diffusion pro-
cess, we propose a novel Locality Preserving Markovian
Transition (LPMT) framework for instance retrieval. LPMT
embeds each instance into a probability distribution within
the data manifold and then derives a long-term stochastic
thermodynamic transition process to transport the distribu-
tions along the graph, with each stage constrained within a
local region. The minimum transition flow cost can main-
tain the local effectiveness while capturing the underlying
manifold structure, serving as an effective distance measure.
Extensive evaluations on several benchmarks validate the
consistently superior performance of LPMT, indicating its
effectiveness for instance retrieval and potential to adapt to
various unsupervised machine learning models.
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A. Bidirectional Collaborative Diffusion
Given a reference affinity graph with its adjacency matrix denoted by W , we can extend it into a graph set with the
corresponding adjacency matrices {W v}mv=1 by adding and removing some connections. Inspired by prior work (Zhou
et al., 2012; Bai et al., 2019a;b;c), we aim to integrate the Bidirectional Similarity Diffusion (Luo et al., 2024) process
across these individual graphs to automatically generate a robust similarity matrix. Such that the resulting matrix can not
only effectively capture the underlying manifold structure, but also mitigate the negative impact caused by suboptimal
graph construction strategies. To this end, we associate each adjacency matrix W v with a learnable aggregation weight βv ,
collectively forming the weight set {βv}mv=1. Additionally, we impose a normalization constraint such that the summation
of βv equal to 1, i.e.,

∑m
v=1 βv = 1. Under this framework, our proposed Bidirectional Collaborative Diffusion can then be

formally expressed as:

min
F ,β

m∑
v=1

βvH
v +

1

2
λ∥β∥22

s.t. 0 ≤ βv ≤ 1,

m∑
v=1

βv = 1,

(A.1)

where Hv denotes the Bidirectional Similarity Diffusion process (Luo et al., 2024) with its objective function follows as:

Hv =
1

4

n∑
k=1

n∑
i,j=1

W v
ij

( F ki√
Dv

ii

− F kj√
Dv

jj

)2
+W v

ij

( F ik√
Dv

ii

− F jk√
Dv

jj

)2
+ µ∥F −E∥2F . (A.2)

For each adjacency matrix W v, Dv is the corresponding diagonal matrix with its i-th diagonal element equal to the
summation of the i-th row in W v. The regularization term is weighted by a positive constant µ > 0, and E is a positive
semi-definite matrix introduced to prevent F from being extremely smooth. Given that the regularization term is shared
across all Hv , we can factor it out to derive an equivalent optimization problem, thereby simplifying the subsequent analysis:

min
F ,β

m∑
v=1

βvH̃
v + µ∥F −E∥2F +

1

2
λ∥β∥22

s.t. 0 ≤ βv ≤ 1,

m∑
v=1

βv = 1,

(A.3)

where

H̃v =
1

4

n∑
k=1

n∑
i,j=1

W v
ij

( F ki√
Dv

ii

− F kj√
Dv

jj

)2
+W v

ij

( F ik√
Dv

ii

− F jk√
Dv

jj

)2
. (A.4)

The above optimization problem involves both β and F , making it inherently complex and impractical to solve directly.
To resolve this, we propose a numerical approach that decomposes the objective function into two subproblems, allowing
for a systematic iterative approximation of the optimal result by recursively optimizing F and β. In the following, we first
describe the update of F with fixed β in Section A.1, followed by the update of β with fixed F in Section A.2. Finally, in
Section A.3, we introduce a fixed-point iteration scheme to progressively approach the optimal solution.

A.1. Optimize F with Fixed β

In the case when {βv}mv=1 are fixed, such that the constraint of ∥β∥22 can be omitted when finding the optimal value of F ,
bring Eq. (A.4) into the target function, the optimization problem can be rewritten into:

min
F

1

4

m∑
v=1

n∑
k=1

n∑
i,j=1

βv
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W v

ij
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jj
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jj

)2)
+ µ∥F −E∥2F . (A.5)
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The matrix-based formulation is still difficult to deal with. In the following, we will first reformulate it into a vectorized
form to simplify the derivation of the closed-form solution, and then demonstrate that the optimal solution can be iteratively
approximated with reduced computational cost.

Vectorized Formulation. To facilitate the vectorized transformation, we first introduce an identity matrix I into Eq. (A.4),
such that H̃v can be rewritten into:

H̃v =
1

4

n∑
k,l=1

n∑
i,j=1

(
W ijIkl

( F ki√
Dii

− F lj√
Djj

)2
+ IklW ij

( F ik√
Dii

− F jl√
Djj

)2)
. (A.6)

Afterwards, we introduce the vectorization operator vec(·), which can stack the columns in a matrix one after another
to formulate a single column vector, and the Kronecker product ⊗, which combines two matrices to produce a new
one. By taking advantage of these two transformations, we proceed to define the Kronecker product Wv(1) = W v ⊗ I ,
Dv(1) = Dv ⊗ I for the former part, and Wv(2) = I ⊗W v , Dv(2) = I ⊗Dv for the latter part. The corresponding items
between the original and Kronecker formation are associated with the newly defined corner markers p ≡ n(i − 1) + k,
q ≡ n(j − 1) + l, r ≡ n(k − 1) + i, and s ≡ n(l − 1) + j. In addition, define the normalized matrix of W v as
Sv = (Dv)−1/2W v(Dv)−1/2, Sv(1) = Sv ⊗ I and Sv(2) = I ⊗ Sv . The following facts can be easily established:

1. vec(F )p = F ki and vec(F )q = F lj ; vec(F )r = F ik and vec(F )s = F jl.

2. Wv(1)
pq = W v

ijIkl, Dv(1)
pp = Dv

ii and Dv(1)
qq = Dv

jj ; Wv(2)
rs = IklW ij , Dv(2)

rr = Dv
ii and Dv(2)

ss = Dv
jj .

3.
∑n2

q=1 W
v(1)
pq = Dv(1)

pp and
∑n2

p=1 W
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pq = Dv(1)

qq ;
∑n2

s=1 W
v(2)
rs = Dv(2)

rr and
∑n2

r=1 W
v(2)
rs = Dv(2)

ss .

4. Sv(1) = (Dv(1))−1/2Wv(1)(Dv(1))−1/2 and Sv(2) = (Dv(2))−1/2Wv(2)(Dv(2))−1/2.

By substituting the above transformations into Eq. (A.6), the representation of H̃v can be equivalently reformulated in the
Kronecker product form as follows:

H̃v =
1

4

n2∑
p,q=1

Wv(1)
pq
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pp
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)2
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2
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)
vec(F )

=vec(F )⊤
(
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2
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2
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)
vec(F ).

(A.7)

Basically, the Frobenius norm of F −E within the regularization term is equivalent to the L2-norm of vec(F −E), combine
the Kronecker matrix based H̃v and the regularization term together, the objective function Eq. (A.5) can be rewritten into:

min
F

m∑
v=1

βvH
v = min

F

m∑
v=1

βvvec(F )⊤
(
I− 1

2
Sv(1) − 1

2
Sv(2)

)
vec(F ) + µ∥vec(F −E)∥22. (A.8)

Lemma A.1. Let A ∈ Rn×n, the spectral radius of A is denoted as ρ(A) = max{|λ|, λ ∈ σ(A)}, where σ(A) is the
spectrum of A that represents the set of all the eigenvalues. Let ∥ · ∥ be a matrix norm on Rn×n, given a square matrix
A ∈ Rn×n, λ is an arbitrary eigenvalue of A, then we have |λ| ≤ ρ(A) ≤ ∥A∥.
Lemma A.2. Let A ∈ Rm×m, B ∈ Rn×n, denote {λi,xi}mi=1 and {µi,yi}ni=1 as the eigen-pairs of A and B respectively.
The set of mn eigen-pairs of A⊗B is given by:

{λiµj ,xi ⊗ yj}i=1,...,m, j=1,...n.

Closed-form Solution. Suppose the objective function in Eq. (A.8) that needs to be minimized is J . To prove that J is
convex, it is equivalent to show that its Hessian matrix is positive. To get started, we first consider the matrix (Dv)−1W v ,
whose induced l∞-norm is equal to 1, i.e., ∥(Dv)−1W v∥∞ = 1, since the i-th diagonal element in matrix Dv equal
to the summation of the corresponding i-th row in matrix W v. Lemma A.1 gives that ρ((Dv)−1W v) ≤ 1. As for the
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matrix Sv = (Dv)−1/2W v(Dv)−1/2 we are concerned about, since we can rewrite it as (Dv)1/2(Dv)−1W v(Dv)−1/2,
thus it is similar to (Dv)−1W v, i.e., Sv ∼ (Dv)−1W v. This implies that the two matrices share the same eigenvalues,
such that ρ(Sv) ≤ 1. By applying Lemma A.2, we can conclude that both the spectral radius of the Kronecker product
Sv(1) = Sv ⊗ I and Sv(2) = I ⊗ Sv is no larger than 1, i.e., ρ(Sv(1)) ≤ 1, ρ(Sv(2)) ≤ 1.

The Hessian matrix of Eq. (A.8) can be obtained as 2(µ+1)I−
∑m

v=1 βv(S̄v(1) + S̄v(2)), where 2S̄v(1) = Sv(1) + (Sv(1))⊤
and 2S̄v(2) = Sv(2) + (Sv(2))⊤. Given that µ > 0,

∑m
v=1 βv = 1, and each ρ(Sv) ≤ 1, such that the eigenvalues are greater

than 0, indicating that the Hessian matrix is positive-definite and the objective function J is convex. Consequently, we can
take the partial derivative of vec(F ) to obtain the optimal result of Eq. (A.8), followed by:

∇vec(F )J =

M∑
v=1

βv(2I− S̄v(1) − S̄v(2))vec(F ) + 2µ(vec(F −E)). (A.9)

The optimal solution F ∗ is found by setting the above partial derivative to zero, yielding:

vec(F ∗) =
2µ

µ+ 1

(
2I−

m∑
v=1

βv

µ+ 1
S̄v(1) −

m∑
v=1

βv

µ+ 1
S̄v(2)

)−1

vec(E). (A.10)

To get a simpler representation, we substitute αv with βv

µ+1 , S̄v with (S̄v(1) + S̄v(2))/2, and denote α =
∑m

v=1 αv , resulting
in the closed-form solution of the optimal F ∗ when {βv}mv=1 are fixed, which can be expressed as:

F ∗ = (1− α)vec−1
(
(I−

m∑
v=1

αvS̄v)−1vec(E)
)
. (A.11)

Lemma A.3. Let A ∈ Rm×n, X ∈ Rn×p and B ∈ Rp×q respectively, then

vec(AXB) = (B⊤ ⊗A)vec(X).

Lemma A.4. Let A ∈ Rn×n, then limk→∞ Ak = 0 if and only if ρ(A) < 1.

Lemma A.5. Given a matrix A ∈ Rn×n and ρ(A) < 1, the Neumann series I +A+A2 + · · · converges to (I −A)−1.

Iterative Solution. Utilizing the relationship given by Lemma A.3, we could put all the matrices in Eq. (A.9) into the vec(·)
operator. Additionally, setting the derivative to 0, we can obtain the following equivalent relationship:

2F −
m∑

v=1

βvF S̄
v −

m∑
v=1

βvS̄
v
F + 2µ(F −E) = 0. (A.12)

By making some small changes to the above formula, the optimum result F ∗ is actually the solution to the following
Lyapunov equation:

(I −
m∑

v=1

αvS̄
v
)F + F (I −

m∑
v=1

αvS̄
v
) = 2(1− α)E. (A.13)

Directly solving this equation incurs a significantly high time complexity, but we can approximate the optimal solution at a
lower cost in an iterative manner. Inspired by (Zhou et al., 2003; Iscen et al., 2017; Bai et al., 2017a; Luo et al., 2024), we
can develop an iterative function to infinitely approach the optimal result as follows:

F (t+1) =
1

2

m∑
v=1

αv

(
F (t)(S̄

v
)⊤ + S̄

v
F (t)

)
+ (1− α)E, (A.14)

where Sv = (Dv)−1/2W v(Dv)−1/2, and S̄
v
= (Sv + (Sv)⊤)/2. By applying Lemma A.3, we can add a vec(·) operator

on both left-hand and right-hand sides, reformulating the iteration process as:

vec(F (t+1)) =
1

2

m∑
v=1

αv(S̄
v ⊗ I + I ⊗ S̄

v
)vec(F (t)) + (1− α)vec(E)

=

m∑
v=1

αvS̄vvec(F (t)) + (1− α)vec(E).

(A.15)
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Algorithm 2 Effective Solution of Eq. (A.13)

Input: Adjacency matrix set {W v}mv=1, initial estimation of similarity matrix F (0), normalized Kronecker matrix {S̄v}mv=1,
identity matrix I ∈ Rn2×n2

, max number of iterations maxiter, hyper-parameter µ, λ, iteration tolerance δ.
Output: F ∗ = vec−1(f∗).

1: substitute
∑m

v=1 αvS̄
v with S̄, and

∑m
v=1 αvS̄v with S̄

2: initialize P (0) and R(0) with 2(1− α)E − (I − S̄)F (0) − F (0)(I − αS̄)

3: denote f t = vec(F (t)), rt = vec(R(t)), pt = vec(P (t))
4: repeat

5: compute αt =
r⊤t rt

2p⊤
t (I− αS̄)pt

6: refresh f t+1 = f t + αtpt

7: update rt+1 = rt − 2αt(I− αS̄)pt

8: compute βt =
r⊤
t+1rt+1

r⊤
t rt

9: refresh pt+1 = rt+1 + βtpt

10: t← t+ 1
11: until t = maxiter or ∥rt+1∥ < δ

Assume the iteration starts with an initial value F (0), which can be chosen as either the diagonal matrix I or the regularization
matrix E. Through iteratively applying the update rule, we derive an expression in which F (t+1) is explicitly formulated in
terms of F (0), the normalized matrix S̄, and the regularization matrix E without any direct dependence on the immediate
previous value F (t), following:

vec(F (t)) =

m∑
v=1

(αvS̄v)tvec(F (0)) + (1−
m∑

v=1

αv)

t−1∑
i=0

(

m∑
v=1

αvS̄v)ivec(E). (A.16)

Since we have already proved that the spectral radius of S̄v is no larger than 1, by taking advantage of Lemma A.4 and A.5,
we can easily demonstrate that the following two expressions hold true:

lim
t→∞

m∑
v=1

(αvS̄v)t = 0, (A.17)

lim
t→∞

t−1∑
i=0

(

m∑
v=1

αvS̄v)i = (I−
m∑

v=1

αvS̄v)−1. (A.18)

Therefore, the iterative sequence of vec(F (t)) asymptotically approaches a stable solution, converging to:

vec(F ∗) = (1− α)(I−
m∑

v=1

αvS̄v)−1vec(E). (A.19)

By performing the inverse operator vec−1(·) on both side, the optimal result for Eq. (A.5) can be derived, which yields:

F ∗ = (1− α)vec−1
(
(I−

m∑
v=1

αvS̄v)−1vec(E)
)
. (A.20)

The above expression is identical to Eq. (A.11), which implies that the time complexity of solving the Lyapunov equation in
Eq. (A.13) can be receded to O(n3), where n denotes the dimension of the matrix. Inspired by Iscen et al. (2017; 2018);
Luo et al. (2024), the convergence rate can be further accelerated with the conjugate gradient method. In other words, the
solution to the equation can be estimated with fewer iterations following Algorithm 2. Specifically, starting from an initial
estimation F (0), the iteration in the Bidirectional Collaborative Diffusion process will cease when the maximum count
maxiter is reached or the norm of the residue is less than a predefined tolerance δ.
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A.2. Optimize β with fixed F

When F is fixed, the objective value of Hv for each adjacency matrix W v in Eq. (A.2) can be directly computed. As a
result, the optimization of β reduces to solving the following problem:

min
β

m∑
v=1

βvH
v +

1

2
λ∥β∥22

s.t. 0 ≤ βv ≤ 1,

m∑
v=1

βv = 1.

(A.21)

Specifically, the objective function in Eq. (A.21) takes the form of a Lasso optimization problem, which can be solved by
utilizing the coordinate descent method following (Bai et al., 2017b; 2019c), as demonstrated below:{

β∗
i =

λ(βi+βj)+(Hj−Hi)
2λ ,

β∗
j = βi + βj − β∗

i .
(A.22)

During the updating procedure, both βi and βj should not violate the inequality constraint 0 ≤ βv ≤ 1. To achieve this, we
explicitly set β∗

i to be zero if λ(βi+βj)+(Hj−Hi) < 0, and truncate it be βi+βj if λ(βi+βj)+(Hj−Hi) > 2λ(βi+βj).
However, this strategy requires multiple iterations since only a pair of elements in {βv}mv=1 can be updated together. To
address this issue, we propose a more efficient solution that allows updating all the βv simultaneously, explicitly eliminating
the need for iteration. By taking advantage of the coordinate descent method, we can filter out the valid elements that are not
governed by the boundary constraints, formally denoting the valid index set as I . Consequently, the inequality constraints of
0 ≤ βv ≤ 1 are slack to the weight set {βv}v∈I and the optimization problem can be directly solved. By introducing a
Lagrangian multiplier η, the Lagrangian function L(β, η) can be formally defined as:

L(β, η) =
∑
v∈I

βvH
v +

1

2
λ∥β∥22 + η(1−

∑
v∈I

βv). (A.23)

The corresponding Karush-Kuhn-Tucker (KKT) conditions can then be formulated as:
∇βv
L(β, η) = ∂L(β, η)

∂βv
= Hv + λβv − η = 0, v ∈ I,

∇ηL(β, η) =
∂L(β, η)

∂η
= 1−

∑
v∈I

βv = 0.
(A.24)

Note that we have already taken the equation constraint
∑

v∈I βv = 1 into consideration when deriving the representation
of ∇βv

L(β, η). The optimal result can be obtained by solving the |I|+ 1 equations. By summing up all the ∇βv
L(β, η)

along v within I, the Lagrangian multiplier η can be obtained as:

η =

∑
v′∈I Hv′

+ λ

|I|
. (A.25)

Therefore, by taking η back into the KKT conditions, we can obtain the optimal solution of βv , following:

β∗
v =

∑
v′∈I Hv′ − |I|Hv + λ

λ|I|
, v ∈ I. (A.26)

Since all the weight βv should satisfy the inequality constraint 0 ≤ βv ≤ 1, the above relationships provide an effective
strategy to determine the valid index set I, i.e., the corresponding Hv in I should satisfy Hv ≤ (

∑
v′∈I Hv′

+ λ)/|I|.
Therefore, we can develop a formalize definition of the valid index set, as follows:

I =
{
v|Hv < (

∑
v′∈I

Hv′
+ λ)/|I|, v = 1, 2, . . . ,m

}
. (A.27)

In practical implementation, we first sort all Hv in descending order and then sequentially remove the indices that fail
to satisfy the constraint of Eq. (A.27), leading to the valid set I. The optimal result can be obtained in a single round of
iteration, with the resulting weight set {β∗

v}mv=1 given by:

β∗
v =


∑

v′∈I Hv′ − |I|Hv + λ

λ|I|
, v ∈ I,

0, v ∈ {1, 2, . . . ,m}/I.
(A.28)
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A.3. Overall Optimization

The overall optimization problem for Bidirectional Collaborative Diffusion can be solved by recursively optimizing F
and β until convergence following Section A.1 and Section A.2, respectively. Additionally, by leveraging the conjugate
gradient method, the iterative update of F achieves a faster convergence rate, as outlined in Algorithm 2. The resulting F ∗

effectively captures the underlying manifold structure while automatically reducing the adverse effects of inappropriate
connections. As a result, it exhibits lower sensitivity to the affinity graph construction strategy and ensures a more robust
similarity representation.

B. Thermodynamic Markovian Transition
Discrete Wasserstein Distance Given two discrete probability mass distributions pstart,pend ∈ Rn, a transport problem
can be formulated from pstart moving towards pend. Define C ∈ Rn×n as the cost matrix, where C[i, j] ≥ 0 represents the
cost required to transport a unit from the i-th position pstart[i] to the j-th position pend[j] (also denoted as edge (i, j)). The
matrix Q ∈ Rn×n quantifies the transport strategy, where Q[i, j] indicates the amount being transported from pstart[i] to
pend[j], subject to the following requirements:

pstart[i] =

n∑
j=1

Q[i, j],

pend[j] =

n∑
i=1

Q[i, j].

(B.1)

The Wasserstein distance is defined as the smallest cost required to transport one distribution to another, considering all
possible transportation matrices:

W1(pstart,pend) := min
Q

∑
i,j

Q[i, j]C[i, j]. (B.2)

Indeed, the transport matrix Q∗ that yields the optimal solution in Eq. (B.2) represents the optimal transport between the
two distributions, under the cost defined by C.

Definition of Thermodynamic Markovian Transition Cost Each instance xi in the set χ is assigned a probability
distribution pi ∈ Rn on χ. For two distinct distributions pi and pj , we have defined their distance by introducing a
thermodynamic Markovian transition between them. We first pick a path

{
pi0 ,pi1 , . . . ,piK

}
= π ({pi}ni=1) with each

succeeding distribution pik+1
lying within the local region of pik

. Then, a time-dependent transition flow qt is present to go
through the temporary states in the path π, satisfying the discretized master equation of flow dynamics. More specifically,
given pi,pj and a path π, we define the flow qt to satisfy the following conditions:

(Flow Dynamics) q̇t = T tqt, for t ∈ [0, τ ], a.e.,

(Temperate States) q kτ
K

= pik
, for k = 0, 1, . . . ,K,

(Boundary Conditions) q0 = pi0 = pi, qτ = piK = pj ,

(B.3)

where T t is a transition rate matrix satisfying the following condition:

T t[r, r] = −
∑
s̸=r

T t[s, r], for r = 1, 2, . . . , n. (B.4)

The entire transition cost C(qt) for the flow qt at time t is determined by summing the transition costs across all graph
edges, and it can be divided into K stages:

C(qt) =

∫ τ

0

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt =
K−1∑
k=0

∫ (k+1)τ
K

kτ
K

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt, (B.5)

where J(r, s, t) is the transition current from the r-th position to the s-th position at time t,

J(r, s, t) = T t[r, s]qt[s]− T t[s, r]qt[r], (B.6)
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and the Euclidean distance in feature space d(r, s) serves as the cost of this current. The distance between pi and qi is
defined by taking the minimum of C(qt) over all feasible path π and transition matrix T t:

d′(i, j) := min
π,T t

C(qt). (B.7)

We have the following equivalency between d′(i, j) and L1-Wasserstein distanceW1:

d′(i, j) = min
π

K−1∑
k=0

W1(pik
,pik+1

). (B.8)

B.1. Entropy Production

In this section, we will discuss the relationship between our flow transition cost and the entropy production of stochastic
thermodynamics. Briefly, the probability current J(r, s, t) bridges this relationship, inspired by the previous physically
based analysis (Van Vu & Saito, 2023; Seifert, 2012; Barato & Seifert, 2015; Ito, 2018).

The entropy production ∆S during the process consists of two components, the changes in the entropy of the system and the
environment,

∆S = ∆Ssys +∆Senv. (B.9)

The system entropy, characterized by the Shannon entropy, can be expressed as

Ssys(qt) = −
n∑

r=1

qt[r] log qt[r] = Ssys(q0) +

∫ τ

0

−
n∑

r=1

q̇t[r](log qt[r] + 1)dt. (B.10)

And the change of the system entropy is

∆Ssys = Ssys(qτ )− Ssys(q0) =

∫ τ

0

−
n∑

r=1

q̇t[r](log qt[r] + 1)dt = −
∫ τ

0

n∑
r,s=1

T t[r, s]qt[s](log qt[r] + 1)dt. (B.11)

By substrituting Tt[r, r] using Eq. (B.4), the system entropy change can be further simplified:

∆Ssys = −
∫ τ

0

n∑
r,s=1
r ̸=s

(T t[r, s]qt[s]− T t[s, r]qt[r])(log qt[r] + 1)dt

= −
∫ τ

0

n∑
r,s=1
r<s

(T t[r, s]qt[s]− T t[s, r]qt[r])

(
log

qt[r]

qt[s]

)
dt.

(B.12)

To compute the system entropy production, we should consider how the transition contributes to the entropy change in the
environment. According to Van Vu & Saito (2023), we can assume the transition rates T t to further satisfy the local detailed
balance condition, in the case of microscopically reversible dynamics:

log
T t[r, s]

T t[s, r]
= St[r, s], and T t[r, s] > 0 if and only if T t[s, r] > 0, (B.13)

where St[r, s] denotes the environmental entropy change due to the transition from the r-th position to the s-th position.
The total environment entropy change is obtained by multiplying St[r, s] and the amount transferred from position r to s,

∆Senv =

∫ τ

0

n∑
r,s=1
r ̸=s

T t[r, s]qt[s] · St[r, s]dt

=

∫ τ

0

n∑
r,s=1
r<s

(T t[r, s]qt[s]− T t[s, r]qt[r]) · St[r, s]dt.

(B.14)
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Consequently, the entropy production can be obtained:

∆S = ∆Ssys +∆Senv =

∫ τ

0

n∑
r,s=1
r<s

|J(r, s, t)| ·
∣∣∣∣log Tt[r, s]qt[s]

Tt[s, r]qt[r]

∣∣∣∣ dt. (B.15)

Compare the expression of the entropy production Eq. (B.15) and the transition cost Eq. (B.5). Both take the form of
a weighted summation over the flow current J(r, s, t). For entropy production, the weighting factor corresponds to the
so-called thermodynamic force on the edge (r, s). In contrast, for our transition cost, we replace this factor with the transport
cost associated with the edge (r, s).

B.2. Proof of Eq. (B.8)

For a given path π, it suffices to demonstrate that at each step of the transition flow within the local region, the transition
cost matches the Wasserstein distance:

min
T t

∫ tk+1

tk

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt =W1(pik
,pik+1

), (B.16)

where we define tk = kτ/K for simplicity. It is important to note that the optimization is only concerned with the values
of T t within the interval [tk, tk+1]. Inspired by the physically based results in Van Vu & Saito (2023), we establish this
equivalence by proving LHS≥RHS and LHS≤RHS.

Proof of LHS≥RHS The integral on the left in Eq. (B.16) can be expressed using Riemann sums. We partition the
time interval [tk, tk+1] into M equal segments. Defining ∆t = (tk+1 − tk)/M , the expression for the sub-interval
[tk +m∆t, tk + (m+ 1)∆t] in the Riemann sum becomes:

n∑
r,s=1
r<s

|J(r, s, tk +m∆t)| d(r, s)∆t, m = 0, 1, . . . ,M − 1. (B.17)

Consider Eq. (B.17) in the context of transportation. It outlines the movement of an amount |J(r, s, tk +m∆t)|∆t along
the edge (r, s), incurring a cost of C[r, s] = C[s, r] = d(r, s). Additionally, if the transition current J is positive, this
mass moves from position r to position s. Conversely, if J is negative, the direction is from s to r. Consequently, we can
construct a matrix Q to represent the transported quantity during the interval [tk, tk+1], defined as follows:

Q[r, s] =

M−1∑
m=0

[J(r, s, tk +m∆t)]+ ∆t,

Q[s, r] =
M−1∑
m=0

[J(r, s, tk +m∆t)]− ∆t,

(B.18)

where [x]+ = x if x is positive, and vanishes if x is negative, while [x]− = |x| − [x]+ captures the negative component.

The Riemann sum SM can thus be expressed using Q and C, in connection with the definition ofW1:

SM =

M−1∑
m=0

n∑
r,s=1
r<s

|J(r, s, tk +m∆t)| d(r, s)∆t =

n∑
r,s=1

Q[r, s]C[r, s] ≥ W1(pik
,pik+1

) = RHS. (B.19)

As M →∞ and ∆t→ 0, the Riemann sum SM approaches the integral on the left-hand side of Eq. (B.16), resulting in
LHS≥RHS.

Proof of LHS≤RHS Given a matrix Q that optimally determines the transportation amount, solvingW1(pik
,pik+1

), our
task is to formulate a valid T t for the flow qt over the interval [tk, tk+1] to also attain this value. According to the definition,
every element Q[r, s] indicates the total amount moved from the r-th to the s-th position. We can break down the optimal
transport plan into a series of M ′ vertex-to-vertex transfers, each occurring over a time span of ∆t′ = (tk+1 − tk)/M

′.
Specifically, the transport within [tk, tk+1] can be described as follows:
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• Within [tk, tk +∆t′], transport q0 from r0 to s0;

• Within [tk +∆t′, tk + 2∆t′], transport q1 from r1 to s1;

• ...

• Within [tk + (M ′ − 1)∆t′, tk +M ′∆t′], transport qM ′ from rM ′−1 to sM ′−1;

For each step 0 ≤ m ≤M ′ − 1, the transported quantity qm > 0 must not exceed the available mass at position rk. The
optimal Wasserstein distance can be expressed in terms of qm and the pairs (rm, sm) by summing them up:

W1(pik
,pik+1

) =

M ′−1∑
m=0

qmd(rm, sm). (B.20)

We can now define a transition flow qt for t ∈ [tk, tk+1] using the decomposition approach: initialize at qtk
= pik

. During
the m-th sub-interval [tk +m∆t′, tk + (m+ 1)∆t′], the flow evolves linearly,

qt[rm] = qtk+m∆t′ [rm]− t− tk −m∆t′

∆t′
qm,

qt[sm] = qtk+m∆t′ [sm] +
t− tk −m∆t′

∆t′
qm,

qt[r] = qtk+m∆t′ [r], for r ̸= rm, sm.

(B.21)

The corresponding time-derivative is q̇t, where all channels are zeros except at rm and rs,

q̇t[rm] = −qm/∆t′, q̇t[sm] = qm/∆t′. (B.22)

Hence, we can obtain the transition matrix T t derived from qt, where most entries are zero except for four specific channels:
[rm, rm], [rm, sm], [sm, sm], and [sm, rm]. These channels comply with the following equations, dictated by the discrete
master equations:

T t[rm, rm] = −T t[sm, rm],

T t[sm, sm] = −T t[rm, sm],

q̇t[rm] = T t[rm, rm]qt[rm] + T t[rm, sm]qt[sm],

q̇t[sm] = T t[sm, rm]qt[rm] + T t[sm, sm]qt[sm].

(B.23)

Through straightforward calculations, it is found that any T t[rm, sm] and T t[sm, rm] satisfying the following condition:

T t[rm, sm]qt[sm]− T t[sm, rm]qt[rm] = −qm/∆t′ (B.24)

constitutes the solution. By introducing a parameter θ > 0, we can guarantee the existence,

T t[rm, sm] =
θqm

qt[sm]∆t′
, T t[sm, rm] =

(θ + 1)qm
qt[rm]∆t′

. (B.25)

Now that the transition matrix T t is determined. We can compute the transition cost in the interval [tk, tk+1] by decomposing
the integral into the M ′ stages:

∫ tk+1

tk

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt =
M ′−1∑
m=0

∫ tk+(m+1)∆t′

tk+m∆t′

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt. (B.26)

At each stage, the current J(r, s, t) vanishes unless it is the current on the edge (rm, sm). Hence, we can simplify the
integral as: ∫ tk+(m+1)∆t′

tk+m∆t′

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt =
∫ tk+(m+1)∆t′

tk+m∆t′
|J(rm, sm, t)| d(rm, sm)dt. (B.27)
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Substitute the results in Eq. (B.24) into the definition of J to obtain that

|J(rm, sm, t)| = |T t[rm, sm]qt[sm]− T t[sm, rm]qt[rm]| = qm/∆t′. (B.28)

This results in the simplification of transition cost as:

∫ tk+1

tk

n∑
r,s=1
r<s

|J(r, s, t)| d(r, s)dt =
M ′−1∑
m=0

∫ tk+(m+1)∆t′

tk+m∆t′

qm
∆t′
· d(rm, sm)dt =

M ′−1∑
m=0

qmd(rm, sm). (B.29)

Compare the result with Eq. (B.20), we have construct a transition flow qt that definitely achieves the Wasserstein distance
W1(pik

,pik+1
). Consequently, we have proved that LHS≤RHS in Eq. (B.16).

B.3. Iterative solution forW1

At this point, the complicated task of resolving the thermodynamic energy in Eq. (B.7) has been reformulated into the
optimal transport problem in Eq. (B.8). To efficiently solve this optimal transport problem and determineW1, we incorporate
an additional entropy regularization term. Given that the two distributions involved are pstart and pend, this regularization is
introduced as follows:

W1,ε(pstart,pend) := min
Q

n∑
i,j=1

Q[i, j]C[i, j]− εH(Q), (B.30)

where the conditions in Eq. (B.1) are also required. Following (Cuturi, 2013; Cuturi & Doucet, 2014), the following entropy
regularization term is incorporated,

−H(Q) =

n∑
i,j=1

Q[i, j] logQ[i, j]−Q[i, j]. (B.31)

We can obtain with the Lagrange function L(Q,f , g):

L(Q,f , g) =

n∑
i,j=1

Q[i, j]C[i, j]− εH(Q)−
n∑

i=1

f [i]

 n∑
j=1

Q[i, j]− pstart[i]

− n∑
j=1

g[j]

(
n∑

i=1

Q[i, j]− pend[j]

)
,

(B.32)
where f and g are Lagrangian multipliers. By taking the derivative with respect to Q, we obtain the first-order condition

L(Q,f , g)

∂Q[i, j]
= C[i, j] + ε logQ[i, j]− f [i]− g[i] = 0, (B.33)

and the solution
Q = diag(ef/ε) · e−C/ε · diag(eg/ε). (B.34)

Here, the operation diag(·) takes the input vector to a diagonal matrix. The expression for Q can be determined using a
fixed-point iteration method as outlined below:

(1) Begin by initializing u(0) and v(0) as n-dimensional vectors where each element is set to 1. Define K = e−C/ε such
that K[i, j] = e−C[i,j]/ε.

(2) In each iteration, perform the following computations:

u(t+1) = pstart ⊘
(
K · v(t)

)
,

v(t+1) = pend ⊘
(
K⊤ · u(t+1)

)
,

(B.35)

and continue until convergence, which results in the pair (u∗,v∗). The Wasserstein distanceW1,ε can be then derived after
the optimal matrix Q = diag(u∗) ·K · diag(v∗) is determined. Such that the overall time complexity is O(n3).
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C. Experiments
C.1. Visualization

Euclidean

LPMT

Euclidean

LPMT

Euclidean

LPMT

Euclidean

LPMT

Figure 6. This figure showcases the quantitative evaluation of our proposed LPMT in comparison with retrieval results based on Euclidean
distance. The region of interest in the query image is highlighted by an orange bounding box on the left. On the right, we visualize
the retrieval performance of LPMT against Euclidean distance by displaying the top 10 ranked images for both approaches. Correct
matches (true positives) are enclosed in green bounding boxes, whereas incorrect ones (false matches) are marked in red, demonstrating
the effectiveness of LPMT as an accurate and reliable distance metric for instance retrieval.

(a) original features (b) Locality State Embedding

Figure 7. (a) The t-SNE visualization of the original image features directly extracted by the deep retrieval model. (b) The t-SNE
visualization of the distributions produced by the Locality State Embedding (LSE) strategy using cosine similarity weights. Compared to
the original image features, LSE helps mitigate the influence of outliers and leads to improved clustering and retrieval performance.
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C.2. Extended Results

Table 7. Evaluation of the retrieval performances based on global
image features extracted by MAC (Tolias et al., 2016).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

MAC 47.2 69.7 34.6 55.7 14.3 32.6

AQE 54.4 80.9 40.6 67.0 17.1 45.2
αQE 50.3 77.8 37.1 64.4 16.3 43.0
SG 46.1 75.9 36.1 60.4 16.6 38.8

STML 61.4 86.8 46.7 76.9 22.3 59.5
AQEwD 52.8 79.6 39.7 65.0 17.3 42.9

DFS 54.6 83.8 40.6 74.0 18.8 58.1
RDP 59.0 85.2 45.3 76.3 21.4 58.9
CAS 68.6 90.1 52.9 82.3 30.4 68.1
GSS 60.0 87.5 45.4 76.7 22.8 59.7

ConAff 65.5 88.7 50.1 79.3 25.6 62.4

LPMT 71.0 91.2 53.6 83.5 31.2 69.3

Table 8. Evaluation of the retrieval performances based on global
image features extracted by R-MAC (Tolias et al., 2016).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

R-MAC 61.2 79.3 40.2 63.8 10.1 38.2

AQE 69.4 85.7 47.8 71.1 15.9 47.9
αQE 64.9 84.7 42.8 70.8 11.4 47.8
SG 60.1 84.9 42.7 68.4 16.5 45.4

STML 71.8 88.7 53.2 78.2 23.4 58.8
AQEwD 70.5 85.9 48.7 70.7 15.3 46.9

DFS 70.0 87.5 51.8 78.8 20.3 63.5
RDP 73.7 88.8 54.3 79.6 22.2 61.3
CAS 82.6 90.0 62.5 82.5 34.1 67.4
GSS 75.0 89.9 54.7 78.5 24.4 60.5

ConAff 77.6 88.0 56.4 80.0 27.5 61.3

LPMT 83.9 90.6 62.9 83.3 36.0 68.7

Table 9. Evaluation of the retrieval performances based on global
image features extracted by DELG (Cao et al., 2020).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

DELG 91.0 95.1 77.4 88.2 57.5 75.2

AQE 96.1 95.1 82.6 90.2 61.3 79.5
αQE 94.5 96.0 81.5 90.7 63.9 80.8
SG 95.5 95.7 83.3 90.0 66.9 79.6

STML 93.3 95.1 80.3 88.2 62.1 75.3
AQEwD 96.0 96.4 83.3 90.9 66.0 80.7

DFS 87.5 93.4 74.1 88.6 48.1 77.9
RDP 94.4 95.0 84.7 91.6 66.3 81.8
CAS 97.6 94.7 87.0 91.6 72.1 82.6
GSS 97.3 95.7 84.7 90.9 66.4 81.6

ConAff 95.5 92.4 84.2 89.4 66.7 76.3

LPMT 99.2 96.4 88.6 94.0 73.7 87.1

Table 10. Evaluation of the retrieval performances based on global
image features extracted by SENet (Lee et al., 2023).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

SENet 94.4 94.7 81.9 90.0 63.0 78.1

AQE 95.1 95.8 82.9 92.3 65.2 82.9
αQE 96.0 95.8 84.1 92.6 67.7 84.0
SG 96.5 96.2 85.5 92.1 70.3 83.1

STML 95.7 95.1 84.1 89.9 67.1 77.9
AQEwD 95.4 96.4 84.5 92.7 68.1 83.9

DFS 82.0 93.9 72.1 90.4 53.1 81.1
RDP 94.2 94.8 86.8 93.0 72.5 84.8
CAS 94.9 94.8 87.3 93.6 74.0 86.4
GSS 96.4 95.9 86.5 91.0 71.6 82.8

ConAff 96.1 93.2 87.7 92.1 74.0 81.5

LPMT 96.5 96.5 89.2 95.0 76.9 88.8
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