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Abstract

Inspired by the recent success of LLMs, the field
of human motion understanding has increasingly
shifted toward developing large motion models.
Despite some progress, current efforts remain far
from achieving truly generalist models, primarily
due to the lack of massive high-quality data. To
address this gap, we present MotionLib, the first
million-level dataset for motion generation, which
is at least 15× larger than existing counterparts
and enriched with hierarchical text descriptions.
Using MotionLib, we train a large motion model
named Being-M0, demonstrating robust perfor-
mance across a wide range of human activities,
including unseen ones. Through systematic in-
vestigation, for the first time, we highlight the
importance of scaling both data and model size
for advancing motion generation, along with key
insights to achieve this goal. To better integrate
the motion modality, we propose Motionbook, an
innovative motion encoding approach including
(1) a compact yet lossless feature to represent
motions; (2) a novel 2D lookup-free motion tok-
enizer that preserves fine-grained motion details
while expanding codebook capacity, significantly
enhancing the representational power of motion
tokens. We believe this work lays the ground-
work for developing more versatile and power-
ful motion generation models in the future. For
further details, visit https://beingbeyond.
github.io/Being-M0/.
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A man kicks something or someone with his left leg.Someone is standing and playing the piano.

(a) Motion-X (b) HumanML3D

The right arm is not

hanging down.
The fingers are not

pointing outward.
The left arm is not bent.

The person is standing still, looking forward. Upper body: The

person's right arm hangs relaxed by their side, while the left

arm is bent at the elbow, with the hand placed on their stomach

or lower chest area. The shoulders are squared and the torso is

upright. Lower body: Both feet are planted firmly on the

ground, with legs slightly apart. The person's weight appears to

be evenly distributed between both legs.

The person is gesturing with their right hand. Upper body:

The right arm is extended forward with the hand open and

fingers pointing outward. The left arm hangs by their side.

The torso is slightly twisted to the left. Lower body: The left

leg is slightly forward with the foot flat on the ground. The

right leg is back, with the heel slightly raised, suggesting a

shift in weight to the left leg.

(c) MotionLib (d) MotionLib
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Figure 1: TOP: While existing models perform well on
small-scale datasets like Motion-X and HumanML3D, they
struggle with out-of-domain concepts on MotionLib, ex-
hibiting limited generalization. DOWN: Curves showing
the effects of scaling up large motion models. MotionLib
is the first large T2M dataset comparable in scale to visual
benchmarks like ImageNet.

1. Introduction
Motion generation is an emerging field with a wide range
of applications in video games, filmmaking, and robotics.
At the forefront of this area is text-to-motion generation
(T2M) (Ahn et al., 2018; Ahuja & Morency, 2019), which
plays a crucial role in translating natural language into hu-
man motions. State-of-the-art (SoTA) T2M models typically
rely on a combination of the motion tokenizer (e.g., vector
quantization VQ (Van Den Oord et al., 2017)), along with a
text encoder (e.g., CLIP (Radford et al., 2021)) and decoder
(e.g., GPT-2 (Radford et al., 2019)) to generate motion se-
quences from text commands. Despite the availability of
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a few high-quality datasets (Guo et al., 2022a; Lin et al.,
2024) curated in recent years, their limited size restricts
current methods to a narrow range of scenarios, creating
performance bottlenecks when addressing diverse or unseen
motions, as illustrated in Figure 1 (TOP).

Recently, the rapid advancement of large language mod-
els (LLMs) in multimodal learning has been significantly
bolstered by the availability of vast data. In contrast, the vol-
ume of motion data remains considerably smaller than that
of visual-text data, as shown in Figure 1 (DOWN). This dis-
parity primarily arises from the high costs associated with
motion data collection, which often requires specialized
wearable devices and substantial human labor for annota-
tion. Consequently, developing a SoTA large motion model
based on LLMs presents a significant challenge and remains
an unresolved issue. While some recent efforts (Jiang et al.,
2023) have explored this direction, the effectiveness of large
motion models has yet to be fully demonstrated.

In this paper, we aim to address the question: “Can scaling
the large motion model and data benefit motion genera-
tion?” To tackle this, we develop a systematic data collec-
tion pipeline to build MotionLib, the first large-scale dataset
containing over 1.2M motion sequences — at least 15×
larger than current counterparts. This initiative provides a
solid foundation for building robust, universally applicable
motion models and offers a comprehensive testbed for future
research. Using MotionLib, we conduct a comprehensive
investigation into the large motion model. For the first time,
we show the scaling law of both data and model size in mo-
tion generation, which significantly reduces joint prediction
errors while improving generalization to novel motions. In
addition, this research identifies several key factors driving
their advancement and offers valuable insights for future
model design (e.g., LoRA or full-parameter tuning).

In addition, we argue that large motion models are con-
strained by inadequate motion representations. First, most
approaches transform motion into discrete tokens via VQ,
which are then processed by autoregressive models to gener-
ate motion sequences. While these methods have achieved
impressive results, they suffer from two major drawbacks:
(1) Information Loss: The VQ process inevitably discards
critical motion details. Given a motion sequence with
D-dimensional features M = {m1,m2, ...,mT }, where
mi ∈ RD, VQ compresses it into a sequence of 1D embed-
dings of size ⌊T/α⌋ × d, where α is the temporal down-
sampling ratio and d is the codebook dimension. Unlike
images, which consist of uniform RGB pixel values, each
motion state mi encodes diverse features (e.g., joint po-
sition, velocity, foot-ground contact). Representing such
complex states with a single 1D embedding is insufficient,
leading to information loss and restricting the model’s abil-
ity to generate motion at a fine-grained, part-level resolution.

(2) Limited Codebook Size: Existing VQs rely on small
codebooks, meaning that all generated motions must be
selected from a constrained set of predefined options. As
a result, these 1D embeddings fail to capture the full di-
versity of human motion. Second, most works adopt the
H3D-format feature (Guo et al., 2022a) to represent motion,
which omits crucial information (e.g., original rotation) and
requires time-consuming methods (Bogo et al., 2016) to
recover. This inefficiency hinders real-world applications
(e.g., animation), where real-time generation is essential.

To address these issues, we propose MotionBook, a novel
motion encoding approach. Specifically, MotionBook first
chooses a more compact yet lossless feature to represent M,
which preserves motion information without compromis-
ing performance. Additionally, it introduces a new motion
quantization method, 2D-LFQ. Our 2D-LFQ reformulates
each motion sequence as a 2D image with a single channel,
represented as M ∈ RT×D×1. By expanding the motion se-
quence’s dimensionality from 1D to 2D, we enhance the en-
coder’s capacity, enabling it to capture complex motion pat-
terns while retaining more critical details after tokenization.
While increasing the codebook size is a straightforward way
to enhance expressiveness, it often leads to codebook col-
lapse, especially when training samples are limited. To miti-
gate this, we introduce a finite scalar quantization method
inspired by Mentzer et al. (2023), which enables learning
a large motion vocabulary without requiring a lookup for
corresponding tokens in the codebook for each entry. As a
result, 2D-LFQ expands the motion codebook by at least
two orders of magnitude, significantly boosting its represen-
tational capacity while maintaining efficiency.

We summarize our contributions as: (1) MotionLib — The
first million-scale motion dataset, comprising over 1.2M
motion sequences with hierarchical and detailed text anno-
tations. (2) MotionBook — An effective motion encoding
approach that combines a lossless and efficient motion fea-
ture with a lookup-free tokenizer, 2D-LFQ. Our 2D-LFQ
preserves essential motion details, expands the motion en-
coder’s capacity without token lookups, and improves the
motion tokenizer’s ability to leverage large-scale motion
data. (3) Being-M0 — A large motion model trained using
MotionLib and MotionBook. We provide key insights into
scaling both data and model size, identifying critical factors
that influence the effectiveness of large motion models.

2. Related Work
Large Language Models and Multi-Modality. Substantial
progress has been made in enhancing LLMs (Brown et al.,
2020; Raffel et al., 2020; Chowdhery et al., 2022) with
the ability to understand and respond to human commands,
through a technique known as instruction tuning (Ouyang
et al., 2022). Recent research has extended these capabili-
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ties to the multimodal domain (Ye et al., 2023; Zheng et al.,
2024; Feng et al., 2024; Mei et al., 2024), with notable work
by Liu et al. (2023), who pioneered visual instruction tuning
to create a highly adaptable assistant. In addition, Li et al.
(2023a) integrated multimodal context into instruction data
to further enhance performance. Subsequent studies (Zhang
et al., 2023c) expanded this research by scaling up instruc-
tional data and incorporating image-rich text. Notably, Dai
et al. (2023) developed InstructBLIP based on BLIP-2 (Li
et al., 2023b), which features an advanced visual feature
extraction mechanism to improve performance across vision-
language tasks. Despite these, the application of multimodal
models to human motion remains less competitive compared
to current SoTA methods, although recent initiatives are be-
ginning to explore this domain (Zhang et al., 2024d).

Motion Vector Quantization. Vector quantization (VQ)
has been successful in generating high-quality images (Van
Den Oord et al., 2017) and videos (Gupta et al., 2022; Yan
et al., 2021). VQ-VAE first converts images into discrete
representations and autoregressively models their distribu-
tion. Building on this, Lee et al. (2022) introduced residual
quantization (RQ), which encodes images into a stacked
map of discrete codes, efficiently reducing the spatial res-
olution of features. You et al. (2022) further developed
hierarchical vector quantization (HQ), employing a pyra-
mid scheme with two-level codes for image encoding. In
motion generation, most existing approaches have adopted
VQ or its variants to quantize human motions. However, the
small codebook size in traditional VQ methods limits their
ability to generalize and accurately represent the diversity
of human motions. Although increasing the codebook size
can improve representational capacity, it often leads to code-
book collapse. Recently, Mentzer et al. (2023) demonstrated
that discrete codes can be obtained via scalar quantization,
where each scalar entry is quantized to the nearest integer
through rounding. Similarly, Yu et al. (2023) introduced a
lookup-free codebook that maps videos into compact dis-
crete tokens, utilizing all codes without auxiliary losses and
expanding the codebook size.

Human Motion Generation The task of motion gener-
ation involves creating human motion based on various
inputs, such as text descriptions (Guo et al., 2022b), ac-
tion labels (Cervantes et al., 2022) or motion prefixes (Liu
et al., 2022). Among these, text-to-motion (T2M) gener-
ation has received the most attention due to the ease and
flexibility of using natural language as input. Early ap-
proaches (Fragkiadaki et al., 2015; Ghosh et al., 2017) rely
on deterministic motion modeling, which often produces av-
eraged, blurry results. To overcome this, stochastic methods
using models like GANs (Wang et al., 2020) or VAEs (Ali-
akbarian et al., 2020) have been considered. For instance,
T2M-GPT (Zhang et al., 2023a) extends the temporal VAE
to capture the probabilistic relationship between text and

motion. Recently, Guo et al. (2024) proposed integrating
residual quantization and masked modeling to improve tra-
ditional vector quantization (VQ). Lu et al. (2023) designed
HumanTomato, a hierarchical VQ-VAE to separately en-
code body and hand motions. To better align with a motion
auto-encoder, MotionCLIP (Tevet et al., 2022) incorporates
CLIP (Radford et al., 2021) as the text encoder, bringing in
more robust text priors. Additionally, Zhang et al. (2024d)
and Jiang et al. (2023) explored the development of unified
models based on LLMs that accept multimodal conditions
(e.g., vision, text, and pose), enabling the generation of
subsequent, preceding, or “in-between” motions. Despite
leveraging the power of LLMs, these large motion models
remain limited to in-domain text instructions and do not yet
perform as competitively as existing SoTA methods.

In this work, we aim to bridge the gap between large lan-
guage models and generalizable, reliable large motion mod-
els. To achieve this, We introduce MotionLib — the first
million-level motion dataset designed to support extensive
pretraining and comprehensive fair evaluation.

3. MotionLib: A Million-Level Motion Library
Data are the foundation of large motion models. With ad-
vancements in fields such as human pose detection, we are
now able to extract high-quality motion sequences from
vast amounts of online videos. Our MotionLib dataset con-
tains over one million motion clips, totaling approximately
137 million frames. Each clip is annotated with fine-grained
automatic pseudo-labels. A comparison with existing bench-
marks is presented in Table 1. Examples of this dataset are
shown in Figure 2. Our data curation pipeline involves the
following main procedural steps. For more details, please
refer to Appendix B due to limited space.

Million-Level Motion Collection. We begin by collect-
ing more than 20 million videos from publicly available
datasets (Kay et al., 2017) and online platforms such as
YouTube. To ensure motion quality, we filter out videos
that do not contain human figures. For each video, we use
a pretrained model (Xu et al., 2022) to detect 2D human
keypoints and filter out those without visible human activity.
The human’s bounding box is required to occupy a signifi-
cant portion of the frame, making human movement clearly
visible. Videos with only partially visible humans are re-
moved to maintain the quality of the extracted motion. We
adopt WHAM (Shin et al., 2024) to extract the SMPL pa-
rameters of collected videos, regressing 3D human motion
in the world instead of the camera coordinate system.

Hierarchical Motion Descriptions. Existing benchmarks
face inherent limitations in their text descriptions. Previ-
ous studies (Guo et al., 2022a) typically use a few short
sentences to describe whole-body motions, neglecting finer
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Table 1: Comparison with existing human motion datasets. More details can be found in Appendix B. In the table, B, H,
and F refer to body, hand, and face, respectively. “hier” indicates that the text captions include hierarchical descriptions
of motions, while “body” means the descriptions are not as detailed. “multi” and “single” specify whether the dataset
contains multi-person scenarios or only single-person data. As the largest motion generation dataset and benchmark to date,
MotionLib features at least 15× more motion and text data than previous datasets, along with additional modalities.

SEQ NUM TEXT NUM HOURS MOTION TEXT RGB DEPTH BBOX PERSON

KIT (Plappert et al., 2016) 5.7K 5.7K 11.2 B body % % % single
HumanML3D (Guo et al., 2022a) 29.2K 89K 28.6 B body % % % single
MotionX (Lin et al., 2024) 81.1K 142K 144.2 B,H,F body ! % % single
MotionVerse (Zhang et al., 2024a) 320k 373k - B,H,F body ! % % single

MotionLib 1.21M 2.48M 1456.4 B,H hier ! ! ! single & multi

details of individual body parts, such as the arms or legs.
This restricts the model from performing more nuanced
body comprehension and more flexible part-level motion
control (e.g., raising only the left arm). Moreover, the rich-
ness of text labels often varies across different motions. For
example, a large portion of the Motion-X dataset provides
only a single sentence, and HumanML3D contains numer-
ous similar text annotations. In contrast, MotionLib offers
hierarchical textual annotations for each video inspired by
Pi et al. (2023): (1) part-level description, where we care-
fully design a prompt format and use Gemini-1.5-pro (Reid
et al., 2024) to generate detailed captions for individual body
parts (e.g., left arm), assigning a dedicated sentence to each;
(2) body-level description, which summarizes the whole
body movement in a comprehensive paragraph containing
1–3 sentences. These hierarchical motion captions provide
far more textual content and levels of detail than previously
available. Their richness and structure are crucial for large
language models to better understand and align with the
motion modality.

Motion and Description Refinement. It is inevitable
that the million-scale motions collected from diverse web
sources initially contain noise. According to some previous
studies (Holden, 2024), the low-quality motion may damage
generation results. To enhance the quality of our collected
motion, we first estimate precise 3D keypoints with another
pre-trained model (Sárándi et al., 2023) to perform local-
global motion optimization, following Lin et al. (2024).
In addition, we train an RL-based policy πrefine based on
Luo et al. (2023) to elaborate and refine raw motions to
obey physical laws (e.g., maintaining balance) and appear
more realistic. πrefine takes raw motion sequences as input,
treating them as target poses, and generates new motion
sequences that satisfy physical laws in a simulated environ-
ment, thus eliminating issues like jittering and foot-sliding.
While effective, πrefine may struggle with drastic movements
in target poses, leading to slipping within the simulation.
For such cases, we mark them with a smaller weight during
pretraining, forcing our model to focus more on high-quality
motion. To refine the description, since our text labels are

Figure 2: Examples from MotionLib, which encompasses
a diverse range of human motions from web videos. It fea-
tures various scenes, ranging from outdoor environments to
indoor settings, and includes both clean, single-person sce-
narios as well as crowded, multi-person scenes. MotionLib
provides over 2.4M motion-text pairs in total. The whole
illustration with more examples can be seen in Figure 5.

structured into body and part levels, we condition GPT-4o
with one level of text while using the other as the target to
be refined. GPT-4o then assesses and refines the text content
of the target level, enabling the generation of more precise
and reliable descriptions.

4. Being-M0: Scaling up Large Motion Model
4.1. Overview

Inspired by the success of Large Language Models (LLMs)
in multimodal tasks, we adapt a similar approach for mo-
tion generation, treating motion as a distinct “language” to
be learned (Luo et al., 2020; Zhang et al., 2024c). Simi-
lar to previous LLM-based multimodal models, we treat
motion as a foreign language. The overall framework is
illustrated in Figure 3. Our large motion model, built
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Figure 3: Overview of our large motion model named Being-M0, which can be divided into two stages. In the first stage
(left), we pre-train a motion VQ-VAE to quantify motion sequences into tokens. In the second stage (right), we fine-tune an
autoregressive language model to predict motion tokens.

on a pre-trained LLM, functions as a generative model
that connects a motion tokenizer with the LLM backbone
Θ. The motion tokenizer encodes the features M =
{m1,m2, ...,mT } of raw motion sequence into token em-
beddings V = {v1, v2, ..., vn} ∈ Rn×d, where n denotes
the number of motion tokens and d represents the dimen-
sionality of each token. To integrate motion tokens into
the LLM backbone, we incorporate K discrete codes in
the motion codebook as additional vocabulary for the LLM.
Additionally, we introduce two special tokens, <mot> and
</mot>, to signify the start and end of motion sequences
within the input/output streams. The LLM backbone Θ
is built on a decoder-only architecture using causal trans-
formers. The model generates outputs Y = {y1, y2, ..., ym}
in an auto-regressive manner, where Y corresponds to the
generated motion sequence based on the provided motion-
text input tokens. In this work, each motion-text pair in
the MotionLib dataset is framed as an instruction-following
instance {XQ,XM}, representing a question-answer inter-
action between the user and the motion model. The entire
instructional dataset adheres to this unified format. To train
our model, we optimize the negative log-likelihood over the
predicted tokens which is defined as:

L(Θ) = −
L∑

j=1

logPΘ(yj |desc, ŷ1:j−1), (1)

where ŷ and y denote the input and target token sequences,
respectively. Θ represents the model parameters, and L is
the length of the target sequence. The input description,
desc, can be empty depending on the instruction provided.

Two-Stage Training. Similar to Liu et al. (2023), our
training process incorporates motion-text alignment and
motion instruction tuning. In the first stage, we uti-
lize the entire MotionLib dataset to enable the model to
learn fundamental motion-text correlations from diverse
data. In the second stage, to better align with real-world
human commands, we construct a set of over 250 in-
struction templates (e.g., ”Show me a demonstration of

<Caption Placeholder> through movement.”). We then
select a subset of high-quality motions from MotionLib
to formulate our instructional data. For each motion, we
randomly choose three templates, inserting the correspond-
ing text into the <Caption Placeholder>. To further en-
hance naturalness and fluency, we leverage Gemini-Pro to
refine these instructions, ensuring they align with human
expression patterns. Finally, we construct an instruction
fine-tuning dataset containing 900K instructions.

4.2. MotionBook: Towards Effective Motion Encoding

MotionBook consists of (1) a lossless feature representation
for motion sequences M, and (2) a 2D Lookup-Free Quan-
tization (2D-LFQ) motion tokenizer to compress M into a
series of discrete tokens.

Lossless Motion Feature. Conventional HumanML3D fea-
ture (H3D-Format) (Guo et al., 2022a) primarily focuses on
joint positions and derives rotations using Inverse Kinemat-
ics (IK), which discards the original rotational information
from SMPL features. Additionally, H3D-Format represents
the root’s angular velocity using a single scalar, captur-
ing only Y-axis rotation, further limiting its expressiveness.
Considering this, we adopt a feature named SMPL-D135 to
represent motion M. Each frame is encoded as m ∈ R135,
structured as follows: (1) root (9D), 6D rotation rrot ∈ R6,
2D XZ-plane velocity rvxz ∈ R2, and 1D height ry ∈ R. (2)
body joints (126D), each of 21 key body joints are repre-
sented using 6D rotation vectors jr ∈ R21×6. By directly
encoding complete joint and root rotation data (jr ∈ R21×6

and rrot ∈ R6), SMPL-D135 preserves critical motion in-
formation lost in H3D-Format while being more compact.

2D Lookup-Free Motion Quantization. Traditional mo-
tion tokenizer typically involves an encoderE, a decoderD,
a codebook C and a quantizer Q. It uses 1D embeddings
to represent motion at each timestamp, which inevitably
results in the loss of crucial information. Furthermore, this
approach limits the tokenizer’s ability to interpret part-level
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Table 2: Comparisons under different model parameters and data sizes, showing their scaling law for motion generation.

Motion-X-eval MotionLib-eval

Decoder #Inst. #Param. R@1 ↑ R@3 ↑ FID ↓ R@1 ↑ R@3 ↑ FID ↓
Real - - 0.514 0.831 0.046 0.297 0.634 0.004

GPT-2 0.02M 355M 0.213 0.426 47.319 0.058 0.152 30.612
GPT-2 0.08M 355M 0.468 0.792 0.083 0.114 0.281 22.077
GPT-2 0.5M 355M 0.463 0.793 0.121 0.161 0.354 9.157
GPT-2 1.2M 355M 0.472 0.791 0.112 0.166 0.375 6.936

LLaMA-2 0.02M 7B 0.216 0.433 47.538 0.059 0.158 29.643
LLaMA-2 0.08M 7B 0.472 0.798 0.166 0.118 0.294 21.593
LLaMA-2 0.5M 7B 0.468 0.799 0.178 0.164 0.369 9.146
LLaMA-2 1.2M 7B 0.475 0.798 0.156 0.171 0.380 6.632

LLaMA-3 0.02M 8B 0.216 0.435 47.906 0.059 0.162 29.257
LLaMA-3 0.08M 8B 0.483 0.815 0.122 0.120 0.301 21.295
LLaMA-3 0.5M 8B 0.483 0.817 0.113 0.166 0.368 8.973
LLaMA-3 1.2M 8B 0.486 0.820 0.117 0.173 0.386 6.029

LLaMA-2 0.02M 13B 0.223 0.446 47.210 0.061 0.169 29.143
LLaMA-2 0.08M 13B 0.488 0.820 0.156 0.124 0.314 21.001
LLaMA-2 0.5M 13B 0.490 0.819 0.145 0.174 0.374 8.824
LLaMA-2 1.2M 13B 0.491 0.823 0.133 0.185 0.391 6.221

motions. To tackle these, we treat the motion sequence
M = {m1,m2, ...,mT } as a single-channel image, repre-
senting each motion sequence as M ∈ RT×D×1. Each
motion feature mi is divided into P components, capturing
distinct features of motion, such as root orientation, joint
rotation, and foot contact. Our motion encoder then con-
verts M into a feature map E(M) ∈ R⌊T/α⌋×P×d, where
α denotes the temporal downsampling ratio. This approach
ensures that each body part is tokenized separately, allowing
for more granular, part-level motion encoding and decoding.

In addition, previous motion tokenizers are restricted from
capturing the full diversity of human motion due to their
small codebook sizes. A common approach to address this
limitation is to expand the vocabulary. However, excessively
enlarging the codebook can result in codebook collapse,
where only a small subset of tokens in the codebook is used,
offering minimal improvements even potentially degrading
the model’s performance. To enable effective learning with
larger codebooks suited for million-scale datasets like Mo-
tionLib, we adopt a lookup-free quantization strategy. A
more effective way is to reduce the dimensionality of code
embeddings (Mentzer et al., 2023), which limits the rep-
resentational capacity of individual tokens and encourages
more efficient learning across a larger vocabulary. Similar to
Yu et al. (2023), we reduce the embedding dimension of the
codebook to zero by replacing the codebook C ∈ RK×d

with an integer set C with |C| = K. Here, C is the Carte-
sian product of single-dimensional variables C =×d

i=1Ci,
where Ci = {−1, 1} and d is equal to log2 K. Given a
feature vector z ∈ Rd, our motion quantizer Q(·) converts
each dimension of the quantized representation into:

Q(zi) = argmincik ||zi−cik|| = −1{zi ≤ 0}+1{zi > 0},
(2)

where cij denotes the j-th value of Ci. The token index is
computed as Index(z) =

∑d
i=1 2

i−11{zi > 0}. To train
the tokenizer, we employ a standard combination of recon-
struction, perceptual, and commitment losses, along with an
entropy penalty to promote better codebook utilization (Yu
et al., 2023). Importantly, we exclude the use of GAN loss,
as it is found to negatively impact training stability.

5. Experiments
Due to space limitation, we present more details about the
metrics and model implementation in Appendix A, as well
as additional experiments in Appendix C.

5.1. Experimental Setup

Datasets. Our investigation is first conducted on Hu-
manML3D (Guo et al., 2022a) and Motion-X (Lin et al.,
2024). HumanML3D comprises 14,616 motion sequences
from the AMASS dataset (Mahmood et al., 2019), paired
with 44,970 textual descriptions. Motion-X, a more recent
dataset, includes approximately 81,000 motion sequences.
To validate our conclusions on larger-scale data, we also
carry out experiments on our MotionLib dataset with two
variants: MotionLib-0.5 and MotionLib-full. MotionLib-
0.5 contains 500K clips, while MotionLib-full encompasses
all 1.2M clips of our collected data. Following standard
practice, each dataset is split into training, validation, and
test sets in proportions of 85%, 5%, and 15%, respectively.

Evaluation. For the motion generation task, we em-
ploy the evaluation metrics following (Guo et al., 2022a):
Motion-retrieval Precision (R-Precision), Multimodal Dis-
tance (MMDist), and Frechet Inception Distance (FID). R-
Precision assesses the consistency or matching between
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generated motions and input text descriptions. MMDist
measures the average distance between generated motion
and corresponding text in feature space. FID evaluates the
realism and quality of generated motions by comparing the
distribution of generated motion features with that of real
motion features. In addition, we evaluate our motion to-
kenizer on the motion reconstruction task. Besides FID,
this task is also measured by MPJPE, which measures the
average distance between predicted and ground truth joint
positions across all joints, in millimeters.

5.2. Discussion of Scaling up Motion Generation

In this section, we investigate the impact of model size and
data scale for motion generation. For evaluating the models,
we use the same motion autoencoder architecture (Guo et al.,
2022a) retrained separately on Motion-X and MotionLib.
This model is used to evaluate the performance of motion
generation models on their respective test sets. We catego-
rize training data into four scales: 0.02M (HumanML3D
only), 0.08M (Motion-X only), 0.5M (MotionLib-0.5), and
1.2M (MotionLib-full). For fair comparison, we employ
the same motion tokenizer, maintaining consistency across
experiments to validate our conclusions.

Does increasing model size benefit motion generation?
Yes. As shown in Table 2, the experimental results demon-
strate that increasing model size leads to a stable perfor-
mance enhancement when the training data is kept con-
stant. For example, our model achieves best R@1 (0.491)
on Motion-X when using LLaMA2-13b, which is 0.016
higher than LLaMA2-7b’s 0.475. On the larger Motion-
Lib dataset, the best R@1 of LLaMA2-13b reaches 0.185,
which is 0.014 higher than LLaMA2-7b’s 0.171. This series
of results strongly validates the trend of performance gains
scaling with model capacity. Consequently, larger models
show a greater ability to capture the diverse and intricate
patterns and relationships within human motion.

Does increasing the data scale benefit motion generation?
Yes. As illustrated in Table 2, when using the same foun-
dation model, increasing the scale of training data leads to
substantial improvement on MotionLib testing set, aligning
with our expected scaling laws. When using LLaMA2-13b
as the LLM backbone for our model, training with 1.2M data
achieves an R@1 of 0.185, which is 0.011 and 0.061 higher
than performance using 0.5M data and 0.08M Motion-X,
respectively. This improvement is particularly pronounced
in the R-precision metric, emphasizing the critical role of
data scale in enhancing semantic alignment between gen-
erated motions and text prompts. It’s worth to note that
the performance of models trained on Motion-X also im-
proves, after pretraining on MotionLib. This demonstrates
that large-scale pretraining allows the model to have a better
initialization for motion-language alignment.

Table 3: Comparison with existing SoTA methods on Hu-
manML3D. Results marked with ∗ represent values repro-
duced using the official code, while unmarked results are
taken from the original papers. 1 and 2 denote different
works with the same model name. For fair comparison, ex-
periments here are conducted using HM3D-Format feature.

Decoder R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
Real - 0.511 0.797 0.002 2.974

MLD - 0.481 0.772 0.473 3.196
MotionDiffuse - 0.491 0.782 0.630 3.113
ReMoDiffuse - 0.510 0.795 0.103 2.974
Fg-T2M++ - 0.513 0.801 0.089 2.925
LMM - 0.525 0.811 0.040 2.943
T2M-GPT GPT-2 0.492 0.775 0.141 3.121
DiverseMotion GPT-2 0.510 0.802 0.072 2.941
MoMask - 0.521 0.807 0.045 2.958

MotionGPT1,∗ T5 0.409 0.667 0.162 3.992
MotionGPT1 T5 0.492 0.778 0.232 3.096
MotionGPT2,∗ LLaMA2-13B 0.367 0.654 0.571 3.981
MotionGPT2,∗ LLaMA-13B 0.363 0.633 0.592 4.029
MotionGPT2 LLaMA-13B 0.411 0.696 0.542 3.584
MotionLLM Gemma-2b 0.482 0.770 0.491 3.138
AvatarGPT LLaMA-13B 0.389 0.623 0.567 -
MotionGPT-v2 LLaMA3.1-8B 0.496 0.782 0.191 3.080

Being-M0-VQ LLaMA2-13B 0.519 0.803 0.166 2.964
Being-M0-LFQ LLaMA2-13B 0.528 0.820 0.141 2.875

Does our large motion model outperform SoTA mod-
els? Yes. We evaluate our model Being-M0 on the widely
adopted HumanML3D benchmark. We compare its per-
formance against a variety of SoTA approaches. This
includes diffusion-based methods such as MLD (Chen
et al., 2023), MotionDiffuse (Zhang et al., 2022), ReMoDif-
fuse (Zhang et al., 2023b), Fg-T2M++ (Wang et al., 2025)
and LMM (Zhang et al., 2024a). It also includes autore-
gressive models like T2M-GPT (Zhang et al., 2023a), Di-
verseMotion (Lou et al., 2023), and MoMask (Guo et al.,
2024). We also compare against LLM fine-tuning methods
like MotionGPT (Jiang et al., 2023; Zhang et al., 2024d),
MotionGPT-v2 (Wang et al., 2024), MotionLLM (Wu et al.,
2024), and AvatarGPT (Zhou et al., 2024). As shown in
Table 3, our model, which utilizes LLaMA2-13B as the
motion decoder, achieves SOTA R-Precision performance.
Existing T2M methods can be categorized intow two types:
(1) specialist models optimized on specific datasets, and (2)
LLM-based generalist models (aiming for broader instruc-
tion and task generalization via LLMs), like AvatarGPT,
MotionGPT-v2 and our Puppet. Puppet excels among gener-
alist models and remains highly competitive on R@1, R@3,
and MMDist compared to specialist models. This highlights
our model’s ability to generate motion sequences that are
better aligned with text descriptions and of higher quality.

Does large motion model excel in out-of-distribution
setup? Yes. We present the results in Table 4. This abla-
tion is essential for further validating the true generalization
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Figure 4: Comparison with different motion quantization on Motion-X (left) and MotionLib (right). We only show MPJPE
(↓) results here due to space limitation, with FID results shown in Figure 12.

Table 4: Ablation of out-of-domain evaluation on UNSEEN-
90K dataset, where #N denotes we use N subsets of Mo-
tionLib for training.

TRAIN SET R@1 ↑ R@3 ↑ FID ↓
Real 0.176 0.379 0.076

HumanML3D 0.034 0.112 82.674
MotionX 0.051 0.141 70.547

MotionLib-#11 0.098 0.218 11.930

capabilities of large motion models, as the improvements
observed in Table 2 may result from the inclusion of addi-
tional in-domain data similar to testbeds. In this setup, we
select 11 subsets from MotionLib, totaling 90K samples
(UNSEEN-90K), for evaluation. The remaining subsets
are used for training. These 11 subsets include both syn-
thetic and real-world data. They cover domains like fitness,
person-object interaction, social activities, and diverse envi-
ronments such as labs and outdoors. The training set, on the
other hand, primarily consists of Motion-X and web-derived
data. This ensures that the test set is entirely composed
of out-of-domain (OOD) samples. We compare the per-
formance of models trained on HumanML3D, Motion-X,
and Motion-#11, all utilizing the GPT-2 architecture, where
#N denotes the number of training subsets. The results on
the OOD test set clearly demonstrate that the model trained
on MotionLib significantly outperforms those trained on
HumanML3D and Motion-X, particularly in terms of R@1
and R@3 metrics. These findings strongly highlight the
superior generalization ability of large motion models when
handling unseen OOD data, especially when trained on di-
verse, large-scale datasets. This demonstrates the value of
utilizing a large amount of web-based motion data.

Does motion instruction tuning help? Yes. We compare
experiments with and without instruction tuning on Motion-
X. As shown in Table 5, instruction tuning data effectively
improves various metrics, with R@1 increased by 0.017

Table 5: Ablation results of motion instruction tuning.

TRAIN SET R@1 ↑ R@3 ↑ FID ↓
Real 0.514 0.831 0.046

Pretrain 0.471 0.788 0.103
Instruction tuning 0.488 0.821 0.093

Table 6: Ablation results of hierarchical description vs.
single-level description.

TRAIN TEXT R@1 ↑ R@3 ↑ FID ↓
Real 0.297 0.634 0.004

single-level 0.162 0.371 7.018
hierarchical 0.166 0.375 6.936

Table 7: Ablation results of different motion features. Here,
“FPS” denotes the speed to recover original motion informa-
tion (e.g., rotation).

Motion Feat R@1 ↑ R@3 ↑ FPS ↑
H3D-D263 0.514 0.831 0.41

SMPL-D130 0.517 0.851 >100
SMPL-D135 0.529 0.850 >100
SMPL-D263 0.521 0.843 >100
SMPL-D268 0.523 0.855 >100

and FID increased by 0.010. This indicates a benefit for
the model’s further language-motion alignment capability.
Instruction tuning also makes the model more user-friendly,
proving it a worthwhile optimization.

Does richer text description help? Yes. To investigate
the effectiveness of richer text descriptions, we compared
the training results using hierarchical descriptions, which
include both body-level and part-level labels, against those
using only whole-body description. As shown in Table 6,
training with hierarchical descriptions improves both R@1
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Table 8: Ablation results of different motion tokenizer trained on HumanML3D on the motion reconstruction task.

HumanML3D Motion-X MotionLib

Tokenizer #Num. #Param. FID ↓ MPJPE ↓ FID ↓ MPJPE ↓ FID ↓ MPJPE ↓
VQ-VAE 512 19.43M 0.078 69.2 0.852 106.4 5.324 123.6

H2VQ 512 - - - - 62.34 - -
RQ-VAE 512 19.43M 0.052 37.5 0.568 56.9 4.026 78.2
2D-LFQ 16384 108.35M 0.092 45.6 0.295 54.1 2.315 64.1

and R@3 by 0.004 compared to single-level descriptions.
These results indicate that hierarchical text significantly
enhances the model’s semantic understanding, leading to
improved semantic matching of generated motions.

5.3. Effectiveness of Motionbook

Motion Feature Design. We conduct an ablation study
to evaluate the impact of different motion feature design,
including H3D-Format, SMPL-D130, SMPL-D135, SMPL-
D263, and SMPL-D268 (detailed in Appendix A.3). As
shown in Table 7, retrieval performance remains consistent
across all features, with no significant differences. Similarly,
quantitative evaluations of rendered samples reveal no no-
ticeable variation among different features. This indicates
that none of the tested features provide a clear performance
advantage. However, we observe that H3D-Format discards
some original motion information, as its rotations are ob-
tained through inverse kinematics. This requires additional
time-consuming processing to restore missing details — an
issue that complicates downstream applications. Consider-
ing simplicity, computation cost, and information complete-
ness, we finally select SMPL-D135 as the motion feature.

2D-LFQ Motion Tokenization. We compare our proposed
2D-LFQ against three quantization approaches: vanilla vec-
tor quantization (VQ), residual vector quantization (RVQ),
and H2VQ (Lu et al., 2023)1, across various codebook sizes
ranging from 28 to 216. The number of parameters for
RVQ/VQ and 2D-LFQ are 19.43M and 108.35M, respec-
tively. To evaluate the generalization ability of each alter-
native, all results are trained on HumanML3D dataset. As
shown in Table 8, 2D-LFQ outperforms its counterparts
on out-of-domain and larger datasets like Motion-X and
MotionLib. In addition, 2D-LFQ continues to enhance per-
formance as the codebook size increases as illustrated in
Figure 4, while RVQ and VQ experience diminishing re-
turns or performance degradation with larger codebooks.
Our deeper analysis attributes these gains to better codebook
utilization by 2D-LFQ. Figure 11 (RIGHT) illustrates that
the utilization rates for VQ and RVQ begin to decline once
the codebook size exceeds 210, which corresponds to the
peak performance for these methods, whereas the utilization

1Only reported number is shown (MPJPE on Motion-X), since
no official code or successful re-implementation has been found.

of 2D-LFQ continues to increase with larger codebooks.

6. Conclusion
In this paper, we explore how to advance the field of large
motion model. To address the issue of data scarcity in this
domain, we introduce MotionLib, the first million-level
dataset comprising over 1.2 million motions with hierarchi-
cal texts. Building on MotionLib, we present key insights
into scaling up both data and model size for large-scale
motion training. Furthermore, we propose MotionBook, a
novel motion encoding approach designed to maximize the
benefits when trained on extensive motion data. Motion-
Book incorporates compact yet lossless features to represent
motion, and introduces a novel 2D-LFQ motion quantiza-
tion method that treats each motion sequence as a 2D image,
constructing a finite-scale codebook that eliminates the need
for token lookups. Leveraging these advancements, we train
Being-M0, a large motion model that achieves SoTA results
compared to current counterparts.

Acknowledgements
This work was supported by NSFC under Grant 62450001.
The authors would like to thank the anonymous reviewers
for their valuable comments and advice.

Impact Statement
This paper introduces MotionLib, the first million-scale
motion dataset, and a large motion model named Being-M0
trained upon it. This work significantly advances the field
of large motion models and lays a foundation for future
research. It aims to improve a model’s understanding and
generation of human motion, positively impacting areas like
gaming and robotics. In terms of ethical considerations, all
motion data comes from open-source and online videos, we
will carefully review examples before release to avoid any
potential ethical limitations such as copyright issue. We
acknowledge the positive implications of such technological
advancements but also recognize potential risks, like misuse
for misleading content. We are committed to responsible
development and will continuously monitor the broader
societal impact of this technology.

9



Scaling Large Motion Models with Million-Level Human Motions

References
Ahn, H., Ha, T., Choi, Y., Yoo, H., and Oh, S. Text2action:

Generative adversarial synthesis from language to action.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5915–5920. IEEE, 2018.

Ahuja, C. and Morency, L.-P. Language2pose: Natural lan-
guage grounded pose forecasting. In 2019 International
Conference on 3D Vision (3DV), pp. 719–728. IEEE,
2019.

Aliakbarian, S., Saleh, F. S., Salzmann, M., Petersson, L.,
and Gould, S. A stochastic conditioning scheme for
diverse human motion prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5223–5232, 2020.

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero,
J., and Black, M. J. Keep it smpl: Automatic estimation
of 3d human pose and shape from a single image. In
Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V 14, pp. 561–578. Springer, 2016.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cervantes, P., Sekikawa, Y., Sato, I., and Shinoda, K. Im-
plicit neural representations for variable length human
motion generation. In European Conference on Computer
Vision, pp. 356–372. Springer, 2022.

Chen, X., Jiang, B., Liu, W., Huang, Z., Fu, B., Chen, T., and
Yu, G. Executing your commands via motion diffusion in
latent space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18000–
18010, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chung, J., Wuu, C.-h., Yang, H.-r., Tai, Y.-W., and Tang,
C.-K. Haa500: Human-centric atomic action dataset
with curated videos. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 13465–
13474, 2021.

Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang,
W., Li, B., Fung, P., and Hoi, S. Instructblip: Towards
general-purpose vision-language models with instruction
tuning. arXiv preprint arXiv:2305.06500, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Feng, Y., Li, Y., Zhang, W., Luo, H., Yue, Z., Zheng, S.,
and Lu, Z. Videoorion: Tokenizing object dynamics in
videos. arXiv preprint arXiv:2411.16156, 2024.

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. Recur-
rent network models for human dynamics. In Proceedings
of the IEEE international conference on computer vision,
pp. 4346–4354, 2015.

Ghosh, P., Song, J., Aksan, E., and Hilliges, O. Learning
human motion models for long-term predictions. In 2017
International Conference on 3D Vision (3DV), pp. 458–
466. IEEE, 2017.

Guo, C., Zou, S., Zuo, X., Wang, S., Ji, W., Li, X., and
Cheng, L. Generating diverse and natural 3d human
motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 5152–5161, 2022a.

Guo, C., Zuo, X., Wang, S., and Cheng, L. Tm2t: Stochastic
and tokenized modeling for the reciprocal generation of
3d human motions and texts. In European Conference on
Computer Vision, pp. 580–597. Springer, 2022b.

Guo, C., Mu, Y., Javed, M. G., Wang, S., and Cheng, L.
Momask: Generative masked modeling of 3d human
motions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1900–
1910, 2024.

Gupta, A., Tian, S., Zhang, Y., Wu, J., Martı́n-Martı́n, R.,
and Fei-Fei, L. Maskvit: Masked visual pre-training for
video prediction. arXiv preprint arXiv:2206.11894, 2022.

Holden, D. https://theorangeduck.com/page/animation-
quality. In blog, 2024.

Jiang, B., Chen, X., Liu, W., Yu, J., Yu, G., and Chen,
T. Motiongpt: Human motion as a foreign language.
Advances in Neural Information Processing Systems, pp.
20067–20079, 2023.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier,
C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4015–4026, 2023.

10



Scaling Large Motion Models with Million-Level Human Motions

Lee, D., Kim, C., Kim, S., Cho, M., and Han, W.-S. Autore-
gressive image generation using residual quantization. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Li, B., Zhang, Y., Chen, L., Wang, J., Pu, F., Yang, J., Li, C.,
and Liu, Z. Mimic-it: Multi-modal in-context instruction
tuning. arXiv preprint arXiv:2306.05425, 2023a.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Boot-
strapping language-image pre-training with frozen im-
age encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023b.

Lin, J., Zeng, A., Lu, S., Cai, Y., Zhang, R., Wang, H.,
and Zhang, L. Motion-x: A large-scale 3d expressive
whole-body human motion dataset. Advances in Neural
Information Processing Systems, 36, 2024.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. arXiv preprint arXiv:2304.08485, 2023.

Liu, Z., Wu, S., Jin, S., Ji, S., Liu, Q., Lu, S., and Cheng, L.
Investigating pose representations and motion contexts
modeling for 3d motion prediction. IEEE transactions
on pattern analysis and machine intelligence, 45(1):681–
697, 2022.

Lou, Y., Zhu, L., Wang, Y., Wang, X., and Yang, Y. Di-
versemotion: Towards diverse human motion generation
via discrete diffusion. arXiv preprint arXiv:2309.01372,
2023.

Lu, S., Chen, L.-H., Zeng, A., Lin, J., Zhang, R., Zhang,
L., and Shum, H.-Y. Humantomato: Text-aligned whole-
body motion generation. In Forty-first International Con-
ference on Machine Learning, 2023.

Luo, H., Ji, L., Shi, B., Huang, H., Duan, N., Li, T., Li, J.,
Bharti, T., and Zhou, M. Univl: A unified video and lan-
guage pre-training model for multimodal understanding
and generation. arXiv preprint arXiv:2002.06353, 2020.

Luo, Z., Cao, J., Kitani, K., Xu, W., et al. Perpetual hu-
manoid control for real-time simulated avatars. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 10895–10904, 2023.

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G.,
and Black, M. J. Amass: Archive of motion capture as
surface shapes. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 5442–5451,
2019.

Mei, Y., Wang, Y., Zheng, S., and Jin, Q. Quadrupedgpt: To-
wards a versatile quadruped agent in open-ended worlds.
arXiv preprint arXiv:2406.16578, 2024.

Mentzer, F., Minnen, D., Agustsson, E., and Tschannen, M.
Finite scalar quantization: Vq-vae made simple. arXiv
preprint arXiv:2309.15505, 2023.

OpenAI. GPT-4o mini: advancing cost-efficient intelli-
gence. https://openai.com/index/gpt-4o-mini-advancing-
cost-efficient-intelligence/, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman,
A. A., Tzionas, D., and Black, M. J. Expressive body
capture: 3d hands, face, and body from a single image.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10975–10985, 2019.

Petrovich, M., Black, M. J., and Varol, G. Tmr: Text-
to-motion retrieval using contrastive 3d human motion
synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9488–9497, 2023.

Pi, H., Peng, S., Yang, M., Zhou, X., and Bao, H. Hi-
erarchical generation of human-object interactions with
diffusion probabilistic models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 15061–15073, 2023.

Plappert, M., Mandery, C., and Asfour, T. The kit motion-
language dataset. Big data, 4(4):236–252, 2016.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

11



Scaling Large Motion Models with Million-Level Human Motions

Sárándi, I., Hermans, A., and Leibe, B. Learning 3d human
pose estimation from dozens of datasets using a geometry-
aware autoencoder to bridge between skeleton formats.
In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 2956–2966, 2023.

Shin, S., Kim, J., Halilaj, E., and Black, M. J. Wham:
Reconstructing world-grounded humans with accurate 3d
motion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2070–
2080, 2024.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Taheri, O., Ghorbani, N., Black, M. J., and Tzionas, D. Grab:
A dataset of whole-body human grasping of objects. In
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part IV 16, pp. 581–600. Springer, 2020.

Tevet, G., Gordon, B., Hertz, A., Bermano, A. H., and
Cohen-Or, D. Motionclip: Exposing human motion gener-
ation to clip space. In European Conference on Computer
Vision, pp. 358–374. Springer, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Voas, J., Wang, Y., Huang, Q., and Mooney, R. What is
the best automated metric for text to motion generation?
In SIGGRAPH Asia 2023 Conference Papers, pp. 1–11,
2023.

Wang, Y., Huang, D., Zhang, Y., Ouyang, W., Jiao, J.,
Feng, X., Zhou, Y., Wan, P., Tang, S., and Xu, D.
Motiongpt-2: A general-purpose motion-language model
for motion generation and understanding. arXiv preprint
arXiv:2410.21747, 2024.

Wang, Y., Li, M., Liu, J., Leng, Z., Li, F. W., Zhang, Z., and
Liang, X. Fg-t2m++: Llms-augmented fine-grained text
driven human motion generation. International Journal
of Computer Vision, pp. 1–17, 2025.

Wang, Z., Yu, P., Zhao, Y., Zhang, R., Zhou, Y., Yuan, J.,
and Chen, C. Learning diverse stochastic human-action

generators by learning smooth latent transitions. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 12281–12288, 2020.

Wu, Q., Zhao, Y., Wang, Y., Tai, Y.-W., and Tang, C.-K.
Motionllm: Multimodal motion-language learning with
large language models. arXiv preprint arXiv:2405.17013,
2024.

Xu, Y., Zhang, J., Zhang, Q., and Tao, D. Vitpose: Simple
vision transformer baselines for human pose estimation.
Advances in Neural Information Processing Systems, 35:
38571–38584, 2022.

Yan, W., Zhang, Y., Abbeel, P., and Srinivas, A. Videogpt:
Video generation using vq-vae and transformers. arXiv
preprint arXiv:2104.10157, 2021.

Ye, Q., Xu, H., Xu, G., Ye, J., Yan, M., Zhou, Y., Wang, J.,
Hu, A., Shi, P., Shi, Y., et al. mplug-owl: Modulariza-
tion empowers large language models with multimodality.
arXiv preprint arXiv:2304.14178, 2023.

You, T., Kim, S., Kim, C., Lee, D., and Han, B. Locally hi-
erarchical auto-regressive modeling for image generation.
Advances in Neural Information Processing Systems, 35:
16360–16372, 2022.

Yu, L., Lezama, J., Gundavarapu, N. B., Versari, L., Sohn,
K., Minnen, D., Cheng, Y., Gupta, A., Gu, X., Haupt-
mann, A. G., et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint
arXiv:2310.05737, 2023.

Yuan, Y., Iqbal, U., Molchanov, P., Kitani, K., and Kautz,
J. Glamr: Global occlusion-aware human mesh recovery
with dynamic cameras. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 11038–11049, 2022.

Zhang, J., Zhang, Y., Cun, X., Zhang, Y., Zhao, H., Lu,
H., Shen, X., and Shan, Y. Generating human motion
from textual descriptions with discrete representations.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 14730–14740, 2023a.

Zhang, M., Cai, Z., Pan, L., Hong, F., Guo, X., Yang,
L., and Liu, Z. Motiondiffuse: Text-driven human mo-
tion generation with diffusion model. arXiv preprint
arXiv:2208.15001, 2022.

Zhang, M., Guo, X., Pan, L., Cai, Z., Hong, F., Li, H.,
Yang, L., and Liu, Z. Remodiffuse: Retrieval-augmented
motion diffusion model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 364–
373, 2023b.

12



Scaling Large Motion Models with Million-Level Human Motions

Zhang, M., Jin, D., Gu, C., Hong, F., Cai, Z., Huang, J.,
Zhang, C., Guo, X., Yang, L., He, Y., et al. Large motion
model for unified multi-modal motion generation. In
European Conference on Computer Vision, pp. 397–421.
Springer, 2024a.

Zhang, S., Bhatnagar, B. L., Xu, Y., Winkler, A., Kadlecek,
P., Tang, S., and Bogo, F. Rohm: Robust human mo-
tion reconstruction via diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14606–14617, 2024b.

Zhang, W., Xie, Z., Feng, Y., Li, Y., Xing, X., Zheng, S., and
Lu, Z. From pixels to tokens: Byte-pair encoding on quan-
tized visual modalities. arXiv preprint arXiv:2410.02155,
2024c.

Zhang, Y., Zhang, R., Gu, J., Zhou, Y., Lipka, N., Yang,
D., and Sun, T. Llavar: Enhanced visual instruction
tuning for text-rich image understanding. arXiv preprint
arXiv:2306.17107, 2023c.

Zhang, Y., Huang, D., Liu, B., Tang, S., Lu, Y., Chen, L.,
Bai, L., Chu, Q., Yu, N., and Ouyang, W. Motiongpt:
Finetuned llms are general-purpose motion generators. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 7368–7376, 2024d.

Zheng, S., Zhou, B., Feng, Y., Wang, Y., and Lu, Z. Unicode:
Learning a unified codebook for multimodal large lan-
guage models. arXiv preprint arXiv:2403.09072, 2024.

Zhou, Z., Wan, Y., and Wang, B. Avatargpt: All-in-one
framework for motion understanding planning generation
and beyond. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1357–
1366, 2024.

13



Scaling Large Motion Models with Million-Level Human Motions

Appendix
Roadmap. In this appendix, we first provide the additional details of evaluation, model implementation and motion feature
design in Section A. Then, we introduce additional details of our dataset MotionLib and its construction process in Section B.
Finally, we carry out a thorough experiments and responding analysis in Section C.
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A. Details of Evaluation and Implementation
A.1. Evaluation Metrics

We employ the following metrics to assess the quality and alignment of generated motions: (1) Frechet Inception Distance
(FID): This metric evaluates the overall motion quality by comparing the distributional differences between high-level
features of generated and real motions. (2) Motion-retrieval Precision (R-Precision) and Multimodal Distance (MMDist):
These metrics measure the semantic alignment between textual inputs and generated motions. R-Precision evaluates retrieval
accuracy at top-1, top-2 and top-3 levels, while MMDist quantifies the distance between matched text and motion pairs. To
validate the effectiveness of our motion tokenizer, we also perform experiments on the motion reconstruction task. This task
is measured using both Mean Per Joint Position Error (MPJPE) and FID, where MPJPE computes the average distance (in
millimeters) between predicted and ground-truth joint positions across all skeleton joints.

A.2. Implementation Details

For a fair comparison with previous works, we implement oue model Being-M0 based on two varionts of motion tokenizers:
one with a vector quantized (VQ) codebook and another with a 2D lookup-free (2D-LFQ) codebook. By default, our
Being-M0 is trained using 2D-LFQ. For the motion tokenizer, we implement the VQ codebook C ∈ R1024×512 with an
embedding dimensionality of d = 512. The resulting discrete codes are incorporated as additional vocabulary for the LLM.
As a comparison, the LFQ codebook has a size of 216 = 16384. The motion encoder E uses a temporal downsampling
rate of α = 4. We experiment with four large language model (LLM) architectures to construct our large motion model:
GPT2-medium (Radford et al., 2019), LLaMA2-7b, LLaMA2-13b (Touvron et al., 2023), and LLaMA3.1-8b (Dubey et al.,
2024). The motion tokenizer is trained with a learning rate of 1e-4 and a batch size of 256 for 300K iterations. For training
the large motion model, full parameter tuning is performed on 8×A800 GPUs with a batch size of 1024 over 100 epochs.
The learning rate is set to 2e-4 for GPT2-medium and 2e-5 for the LLaMA models.

A.3. Design of Different Motion Features

In this section, we provide a detailed introduction of diverse motion feature formats used in our experiments to highlight
their key differences:

• H3D-Format: This format is proposed by Guo et al. (2022a) and is widely used by most recent motion generation works.
H3D-Format includes relative joint positions (63 dimensions), relative 6D rotations of key joints (126 dimensions),
joint velocities (66 dimensions), and foot contact information (4 dimensions). Rotation information is derived from
position data using Inverse Kinematics (IK), which may result in the loss of original rotational details. The root node
parameters consist of 4 dimensions: 1 for r-rotation (angular velocity), 2 for xz-velocity, and 1 for y-height.

• SMPL-D130: This format uses relative 6D rotations of key joints (126 dimensions) and root node parameters (4
dimensions). The root node parameters include 1 dimension for r-rotation, 2 for xz-velocity, and 1 for y-height.

• SMPL-D263: Building on SMPL-D130, this format adds redundant position features (derived from forward kinematics
of the SMPL model) and 4 dimensions of foot contact information. The root node parameters remain the same as in
SMPL-D130.

• SMPL-D135: This format employs relative 6D rotations of key joints (126 dimensions) and 9-dimensional root node
parameters. The root node parameters include 6 dimensions for 6D root rotation, 2 for xz-velocity, and 1 for y-height.

• SMPL-D268: Extending SMPL-D135, this format incorporates redundant position features (identical to SMPL-D263)
and foot contact information. The root node parameters are consistent with those in SMPL-D135.

B. Details of Dataset — MotionLib
In this section, we provide a detailed introduction of how MotionLib, the million-level motion generation dataset, is
constructed, with more insights into its characteristics and additional data examples shown in Figure 5.

B.1. Motion Data Collection

We begin by elaborating on the process of extracting raw motion data from web videos.
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Figure 5: Illustration of examples in MotionLib, each sample is a motion sequnce extracted from an online video.

Short Boundary Detection. We observe that many segments in these videos lack human presence, necessitating the
identification and extraction of portions relevant to human motion. To achieve this, we follow a structured step-by-step
procedure: For videos shorter than 30 seconds or those with clearly defined temporal boundaries, we either use the entire
clip directly or segment it based on the provided boundaries. For videos longer than 30 seconds, we first apply a scene
detection model to divide the video into coarsely segmented parts. Each segment is then refined into shorter clips through
the following steps: (1) At the start of a segment, we identify the human with the largest bounding box as the anchor and
track their trajectory. (2) If the trajectory is interrupted, the start and end times of the interruption define a new clip boundary.
(3) The process repeats by selecting the next largest visible human in subsequent frames and tracking their trajectory. (4)
This continues until no humans remain visible in the segment. (5) Clips without visible humans are discarded. If a resulting
clip exceeds 60 seconds, we randomly divide it into sub-clips, ensuring each is shorter than one minute.

Occlusion and Blur Filtering. Occlusion and motion blur are common challenges in human-related videos. To mitigate
these issues, We first sample key frames from each clip and apply a pretrained 2D keypoint detector to extract skeleton
keypoints for each human. If a significant portion of the keypoints has confidence scores below a predefined threshold,
the motion is considered occluded and excluded from further processing. Additionally, we leverage a visual foundation
model, such as Segment Anything (Kirillov et al., 2023), to generate segmentation masks for each frame. If a large object is
detected obstructing the human, the corresponding motion data is filtered out. To address motion blur, we track the trajectory
of each human whose motion data is being extracted. For timestamps where keypoint confidence scores are low, we smooth
the trajectory using adjacent detection results, ensuring continuity and accuracy.

B.2. Motion Data Refinement

To ensure physically plausible motion data, we refine the extracted motion using an RL-based policy (Luo et al., 2023).
Before this refinement step, we enhance motion quality following the methodology of Lin et al. (2024). We begin by
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estimating 2D human keypoints and their confidence scores using the pretrained VitPose model (Xu et al., 2022), then
infer 3D keypoints via another pretrained 3D keypoint estimation model (Sárándi et al., 2023). To improve stability and
consistency, we apply temporal smoothing and enforce 3D bone length constraints during triangulation. As previously
mentioned, we fit the SMPL-X body model (Pavlakos et al., 2019) to each frame in MotionLib using the approach from Shin
et al. (2024), followed by iterative optimization to align model parameters with the estimated 2D and 3D joint positions. We
further refine global motion and camera poses using a global motion optimization technique based on Yuan et al. (2022),
ensuring consistency with the original video evidence. For motion sequences affected by noise or occlusion, we employ
RoHM (Zhang et al., 2024b) to reconstruct complete and physically plausible motions.

B.3. Motion Description Generation

In this paper, we employ Gemini-1.5-Pro (Reid et al., 2024) as a large multimodal model (LMM) to generate text labels for
motion data. For each video clip, we first crop and track the human body using the corresponding bounding boxes. The
LMMs are then tasked with analyzing the human’s physical movements and their spatial positions within the global space
to produce detailed motion descriptions. A key distinction from previous datasets is the granularity of these descriptions.
Instead of simply generating an overall description of the human’s movements, we prompt the LMMs to focus on specific
body parts by dividing the body into upper-body and lower-body sections, which enables the generation of part-specific
descriptions (referred to as “part-level” descriptions). Figure 6 illustrates the corresponding used prompt. Additionally, a
comprehensive summary of the whole body’s movements (referred to as “body-level” descriptions) is also included.

Table 9: Text quality evaluation of different datasets. We use both “text-only” and “visual-text align” to score the text
description quality. Here, the score is produced by GPT-4o.

Eval Strategy HumanML3D MotionX MotionLib

Text-only 1.386 1.703 3.837 (+2.134)
Visual-text align 3.081 2.252 3.823 (+0.742)

B.4. Motion Description Quality Assessment

To ensure the quality of text descriptions, we propose two evaluation strategies. Table 9 compares the results of our
MotionLib with HumanML3D and Motion-X.

Text-only Evaluation. We first conduct an automated evaluation of motion descriptions in MotionLib using GPT-4o-
mini (OpenAI, 2024). Unlike the Gemini model used for text generation, we employ a different LMM (GPT-4o) as the
evaluator to mitigate model bias. Each motion description is rated on a 1-to-5 scale based on the following criteria:

• 1 point (very poor): Vague, irrelevant to the motion, or contains severe grammatical errors.

• 2 points (poor): Lacks detail, specificity, or contains clear inaccuracies.

• 3 points (fair): Broadly reflects the motion but lacks depth and may have minor errors.

• 4 points (good): Accurate, detailed, and clearly conveys the motion process.

• 5 points (excellent): Precise, comprehensive, and fluent, providing in-depth motion analysis.

ollowing the same methodology, we evaluate descriptions from HumanML3D and Motion-X. As shown in Table 9,
MotionLib achieves an average score of 3.837, significantly outperforming Motion-X (1.386) and HumanML3D (1.703).
These results underscore the superior quality of MotionLib’s motion descriptions.

Visual-text Alignment Evaluation. Simply relying on text-based input to generate a score may not be ideal, as LLMs are
prone to hallucination when they lack visual guidance to contextualize the content. To address this, we pair text descriptions
with their corresponding rendered motion videos, and feed them into the GPT-4o for scoring. Here, we extract key frames
from the rendered video, concatenating them into a larger image as the input of GPT-4o, considering GPT-4o does not accept
videos as input. GPT-4o will evaluate the alignment between motion descriptions and rendered visual content, and output a
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Begin by providing a general overview of the person's current action (e.g., walking, 
sitting, interacting) within the BBOX area. Then, proceed with a detailed breakdown, 
focusing exclusively on the physical movements and positions of the person within the 
BBOX. For the upper body, describe the position and movement of the arms, hands, 
shoulders, and torso. For the lower body, detail the position and movement of the legs, 
feet, and overall balance. Ensure the description strictly covers physical actions without 
mentioning facial expressions, clothing, or environmental elements outside the BBOX.
Example:
The person is standing still, observing something in front of them.

l Upper body： Their arms hang relaxed by their sides, with the shoulders 
slightly back and the chest open. The torso is upright, with minimal movement, 
indicating a calm, neutral stance.

l Lower body： Both feet are planted firmly on the ground, shoulder-width apart. 
The knees are slightly bent, and their weight is evenly distributed between both 
legs.

The person is standing within the designated area, engaging in a conversation 
seemingly directed toward someone positioned off-camera to the left. 

**Upper Body:**

* **Arms:**  Initially held loosely at the sides, the arms transition to various 
positions throughout the interaction. At times, they rise to chest level with 
palms open, suggesting an explanatory gesture.  Occasionally, one or both arms 
extend outwards, indicating direction or emphasis. 
* **Hands:** Hand movements correspond with arm gestures. Palms face 
upwards and outwards during open-handed motions, then relax to a neutral 
position when the arms are at rest. 
* **Shoulders:** Shoulders remain relatively relaxed throughout, with subtle 
shifts in position reflecting the arm movements. They don't appear tense or 
raised, implying a generally comfortable stance.
* **Torso:** The torso largely remains stationary, facing forward, with slight 
turns coinciding with the shifting weight distribution of the lower body.

**Lower Body:**

* **Legs:**  Legs maintain a comfortable stance, slightly apart, with the 
weight appearing balanced. There's a subtle shift in weight distribution as they 
adjust their stance. 
* **Feet:** Feet remain planted on the ground, primarily shoulder-width apart. 
The positioning suggests a grounded and stable stance.  
* **Overall Balance:** The individual appears balanced and at ease throughout 
the interaction, with movements suggesting engagement in the conversation 
rather than discomfort or restlessness.

Figure 6: The Prompt template to generate part-level motion description in videos based on powerful large multimodal
models (LMMs), such as Gemini-1.5-pro and GPT-4o-mini. For each sample in MotionLib, we provide “body-level” (UP)
and “part-level” (DOWN) labels to distinguish between whole-body and partial motion descriptions.
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Figure 7: The data scale distribution of motion sequences for different subsets in MotionLib.

score following the same criteria above. As a result, our MotionLib achieves an average score of 3.823, while Motion-X and
HumanML3D score 2.252 and 3.081, respectively, again confirming the quality advantage of MotionLib’s text descriptions.

B.5. Statistic Analysis of Data and Word Distribution

Data Distribution. MotionLib comprises over 1.2 million motion sequences collected from various public datasets and web
videos. A significant portion of MotionLib is derived from open-source, human-related datasets, such as 698.5K motions
from Kinetics-700 (Kay et al., 2017) and 137.5K motions from NTU-RGBD-120 (Lin et al., 2024). Additionally, MotionLib
integrates motions from other established datasets, including BEDLAM and GTA-Human. MotionLib also includes subsets
of the Motion-X collection, covering a diverse range of categories such as Animation, Perform, Dance, AIST, Kungfu,
GRAB (Taheri et al., 2020), Music, Idea400, HAA500 (Chung et al., 2021), Game Motion, and Fitness. It is worth noting
that the Motion-X subsets constitute only a small portion of the overall MotionLib dataset (around 6.7%). Figure 7 illustrates
the scale distribution of motion sequences within the subsets of MotionLib. We also count the average frame number of each
subset, as shown in Figure 8. Given the high cost of collecting and annotating video data, we also recognize the untapped
potential of images for motion understanding. To explore this, we collected approximately 600K images and extracted
human poses, which were repeated across 64 frames and treated as motion sequences. While using static data for dynamic
motion generation remains a controversial topic, this static data is not included in the 1.2 million motion sequences
of MotionLib in the main paper and is not claimed as part of our primary contributions. Nevertheless, we conduct
experiments with this static data and hope it will inspire future research into the potential of static data for dynamic motion
understanding, as can be seen in Apppendix C.3.

Word Distribution. To further explore the annotated motion text, we compute the word cloud from the entire text corpus in
MotionLib. The word cloud of body-level and part-level descriptions can be seen in Figure 9 and Figure 10, respectively. In
Figure 9, we observe that the body-level texts primarily highlight the high-level human activities, such as standing, sitting,
and walking. In contrast, Figure 10 illustrates that part-level descriptions focus more on specific body-part movements, such
the torso, shoulders, legs, and arms. We believe that this hierarchical structure of text corpus can enhance the alignment
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Figure 8: The length distribution across different subsets in MotionLib

between LLM and motion modality, therefore improving the understanding of motion.

C. Additional Experimental Analysis
In this section, we present additional experimental analysis that could not be included in the main paper due to space
constraints.

C.1. Ablation of Large Motion Model Training

Without further notification, the following experiments are carried out on MotionLib test set. For simplicity, we employ
Vector Quantization (VQ) for motion encoding in the following ablation experiments.

C.1.1. LORA VS. FULL PARAMETER FINE-TUNING

We conduct an ablation study comparing LoRA and full parameter fine-tuning. As illustrated in Table 10, LoRA fine-tuning
struggles to achieve competitive results. We hypothesize that this limitation stems from the introduction of new motion
tokens, which require significant parameter updates for the large language model to effectively learn and interpret these
additional tokens. The restricted capacity of LoRA fine-tuning appears inadequate to meet these demands, highlighting the
challenges of adapting to such changes with limited parameter updates.

C.1.2. LEARNING FROM SCRATCH VS. FINE-TUNING

We compare the performance of fine-tuning GPT-2 against training it from scratch with random initialization on Motion-X-
eval. As demonstrated in Table 11, fine-tuned models consistently achieve superior results compared to those trained from
scratch, particularly when trained on the HumanML3D dataset and evaluated on Motion-X. The significant performance
gap underscores the importance of text pre-training, which enhances the model’s ability to comprehend text descriptions

20



Scaling Large Motion Models with Million-Level Human Motions

Figure 9: Word cloud of body-level motion descriptions in MotionLib.

Table 10: Ablation results of LoRA tuning vs. full-parameter fine-tuning.

TRAIN TYPE R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
Real 0.297 0.634 0.004 2.068

LoRA 0.157 0.354 9.287 4.832
full-param 0.166 0.375 6.936 4.484

and improves its generalization capabilities across diverse tasks. This observation also validates the effectiveness of our
hierarchical text labels. With richer textual content, full-parameter fine-tuning enables better alignment between the motion
modality and the language model, further leveraging the strengths of pre-trained motion representations.

Table 11: Ablation results of learning from scratch vs. fine-tuning.

#Inst From Scratch R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
Real - 0.514 0.831 0.046 2.438

0.02M Yes 0.042 0.116 17.932 8.957
0.02M No 0.213 0.426 47.319 7.666

0.08M Yes 0.461 0.784 0.116 2.862
0.08M No 0.468 0.792 0.083 2.798

C.1.3. WITH VS. WITHOUT DESCRIPTION MASK

We also investigate the impact of different mask strategies of input sequence on model performance on Humanml3d:
Specifically, we compare two strategies: training with and without masking input motion description. As shown in Table 12,
our results indicate that the second strategy yields better performance. This improvement over the first approach can be
attributed to the strategy’s ability to prevent catastrophic forgetting of text understanding, ensuring that the model retains its
capacity to interpret textual inputs. Additionally, it helps reduce overfitting to motion patterns in the training data, thereby
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Figure 10: Word cloud of part-level motion descriptions in MotionLib.

enhancing the model’s generalization capabilities.

Table 12: Ablation results of different mask strategy of input sequence.

Mask Strategy R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
Real 0.511 0.797 0.002 2.974

with description mask 0.388 0.650 0.680 3.919
w/o description mask 0.466 0.752 0.101 3.234

C.1.4. ENCODER-DECODER VS. DECODER-ONLY

Existing large motion models typically adopt either an encoder-decoder or an decoder-only architecture (Jiang et al., 2023).
To evaluate their performance, we carry out abaltions by training an encoder-decoder model, T2M-GPT (Zhang et al., 2023a)
on the MotionLib dataset and comparing it with a decoder-only model based on GPT-2 medium. As shown in Table 13,
despite having comparable parameter counts, T2M-GPT struggles to produce competitive results. This limitation can be
attributed to the inherent constraints of text encoding capabilities by using “CLIP+random-initialized decoder”, which
hinder the model’s ability to comprehend a broader spectrum of motion-related language. In contrast, we find that large
motion models based on decoder-only LLMs, which jointly train text tokens and motion tokens, achieve superior text-motion
semantic alignment and exhibit stronger motion generation capabilities.

Table 13: Ablation results of Encoder-Decoder vs. Decoder-only architecture.

Arch Model Name #Param. R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
- Real - 0.297 0.634 0.004 2.068

enc-dec T2M-GPT 380M 0.161 0.364 7.085 4.773
dec-only GPT-2 Medium 355M 0.166 0.375 6.936 4.484

22



Scaling Large Motion Models with Million-Level Human Motions

C.1.5. SLOW CONVERGENCE OF LARGE MOTION MODELS

To evaluate the convergence speed of large motion models, we train GPT-2, LLaMA2-7B, and LLaMA3-8B for 300 epochs
on Motion-X. The training curves, measured by R@1 performance, are illustrated in Figure 11 LEFT. We observe that all
large motion models nearly converge by 200 epochs, with larger models exhibiting faster convergence rates. Initializing
these models with pre-trained weights significantly accelerates convergence. However, compared to large multimodal
models like LLaVA (Liu et al., 2023), large motion models require more epochs to capture the intricate representations
of motion sequences. We attribute this slower convergence to the limited representation capacity of the motion tokenizer,
which currently supports only 1024 motion tokens. This limitation highlights the need to optimize the motion tokenizer and
expand its representation space. To address this, we explore the 2D-LFQ quantization method as a promising alternative.

Figure 11: LEFT: Training curves with Y-axis denoting R@1 retrieval accuracy. All these models are trained for 300 epochs
at most and are evaluated every 1000 steps; RIGHT: Ablation of codebook usage of different quantization methods

Figure 12: Comparison with different motion quantization on the Motion-X (LEFT) and MotionLib dataset (RIGHT). The
Y-axis denotes FID (↓).

C.2. Additional Experiments of Motion Quantization

C.2.1. ADDITIONAL FID RESULTS ON MOTION-X

First, we provide additional FID results on Motion-X in Figure 12. It is worth noting that while our motion quantizer
performs worse than RQ-VAE on the smaller HumanML3D dataset, it surpasses both VQ and RQ when evaluated on the
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larger Motion-X and MotionLib benchmarks, as can be seen in Table 8. This suggests that our approach offers a greater
advantage when applied to larger datasets, highlighting its improved generalization compared to previous methods.

C.2.2. ABLATION OF 2D-LFQ VS. 1D-LFQ

To validate the effectiveness of our 2D strategy for motion quantization, we compare the 2D-LFQ method with its 1D
counterpart (which is functionally equivalent to VQ except for the quantization strategy). The results, presented in Table 14,
show that 2D quantization in LFQ significantly outperforms the 1D version. This underscores the superior ability of 2D
quantization to enhance the representational capacity of the motion tokenizer.

Table 14: Ablation of 2D motion quantization vs. its 1D version.

HumanML3D Motion-X MotionLib

Tokenizer #Num. #Param. FID ↓ MPJPE ↓ FID MPJPE FID MPJPE

1D-LFQ 16384 19.43M 3.85 52.5 2.783 78.9 10.358 80.1
2D-LFQ 16384 108.35M 1.769 45.6 0.295 54.1 7.853 64.1

C.3. Discussion of Static and Synthetic Data.

Although images only capture static poses, exploring their effectiveness for motion generation remains valuable. Additionally,
synthetic data may play a significant role, as both image and synthetic data are far more accessible than dynamic videos.
With this in mind, we collect approximately 600K static human-related images and extract their corresponding human poses.
Each pose is repeated 60 times to create a 60-frame sequence. During pretraining, we introduce specific language prompts,
such as “keep the action still”, to explicitly guide the model in distinguishing between static and dynamic actions. Such
prompt-based method effectively differentiates between different motion distributions. To validate the effectiveness of
synthetic and static data, we conduct a series of ablation experiments, as shown in Table 15. We train GPT-2 medium on
three data configurations: MotionLib without synthetic data, the 1M-scale MotionLib dataset, and MotionLib augmented
with static data. The model is trained for 300 epochs with a learning rate of 2e-4 and evaluated on two benchmarks: a subset
of our collected static and synthetic data, and the MotionLib testing set. Our results indicate that incorporating both static
data and synthetic data leads to slight improvements in R-Precision. However, given the marginal gains, further exploration
is necessary to fully realize the potential of these data types. We emphasize that static data is excluded from MotionLib in
our main paper, and all experiments outside this section are conducted exclusively on dynamic motion data.

Table 15: Ablation of the effectiveness of static and synthetic data.

Static-Sync-eval MotionLib-eval

TRAIN SET R@1 ↑ R@3 ↑ FID ↓ MMDist ↓ R@1 ↑ R@3 ↑ FID ↓ MMDist ↓
Real 0.290 0.563 0.011 3.480 0.196 0.474 0.006 1.647

MotionLib with syn data 0.111 0.248 57.719 8.412 0.167 0.396 1.740 2.323
MotionLib 0.120 0.252 55.983 8.175 0.166 0.393 1.780 2.356

MotionLib + static data 0.264 0.542 0.516 4.007 0.168 0.399 1.614 2.300

C.4. Discussion of Current Evaluation Metric’s Limitation

During our experiments, we notice the evaluation metrics are not as robust as we expect. Considering this, we carry out
experiments for further analysis. Table 16 presents results using different retrieval models as evaluators. Here, we employ
the same dual-encoder architecture following Guo et al. (2022a) as the retrieval model, but trained it on two distinct
datasets: HumanML3D and Motion-X, where HumanML3D is a subset of Motion-X. Unlike robust visual models such
as CLIP (Radford et al., 2021), these retrieval models are constrained by their small parameter size and limited training
data. As shown in the table, performance using these two evaluators is much worse than our results in the main paper
using evaluator trained on MotionLib. More importantly, when using the model trained on the larger Motion-X dataset,
performance on HumanML3D decrease. This suggests that training on the broader Motion-X dataset negatively impacts
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Person falls to the ground in a 
sitting motion and then pops back 
up in a standing position.

A person squats down then jumps.

A man full-body sideways jumps to 
his left.

A woman is blowing a balloon 
while walking.

A person is building blocks and 
walking at the same time.

The person performs Lunges Of 
Crossover Reverse Lunge.

Text Prompt Generated Motion Sequences

Figure 13: Quantitative examples of motions generated by our large motion model Being-M0.

Table 16: Comparison of evaluations using different retrieval models on the HumanML3D test set.

Humanml3d-eval Motion-X-eval

Decoder #Inst. #Param. R@1 ↑ R@3 ↑ FID ↓ R@1 ↑ R@3 ↑ FID ↓
Real - - 0.511 0.797 0.002 0.496 0.821 0.038

GPT-2 0.02M 355M 0.466 0.752 0.101 0.358 0.651 0.050
GPT-2 0.08M 355M 0.462 0.744 0.208 0.362 0.656 0.754

LLaMA-2 0.02M 7B 0.497 0.778 0.214 0.378 0.671 0.122
LLaMA-2 0.08M 7B 0.474 0.758 0.452 0.376 0.673 0.518

LLaMA-3 0.02M 8B 0.500 0.783 0.173 0.380 0.675 0.094
LLaMA-3 0.08M 8B 0.499 0.786 0.264 0.393 0.696 0.591

LLaMA-2 0.02M 13B 0.519 0.803 0.166 0.395 0.695 0.105
LLaMA-2 0.08M 13B 0.504 0.790 0.393 0.400 0.700 0.637

R-Precision performance on the HumanML3D subset, even though HumanML3D is part of Motion-X. We hypothesize
the unexpected results arise from the limited generalization capability of the current evaluator. FID, a standard metric
for generation tasks, is typically computed using a pretrained evaluator. In image generation, FID relies on robust visual
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encoders, such as InceptionNet (Szegedy et al., 2015), trained on millions of images. In contrast, the evaluator used for
motion generation is a lightweight motion autoencoder with a small parameter scale (Guo et al., 2022a), trained on only
limited data (e.g., HumanML3D with 20K motions). Such small-scale training data may hinder its ability to generalize
effectively, leading to unreliable semantic alignment between text and motion, particularly for unseen motions. In fact, some
recent works (Petrovich et al., 2023; Voas et al., 2023) have begun to recognize these limitations. For instance, Petrovich
et al. (2023) proposed a simple yet effective approach for text-to-3D human motion retrieval, while Voas et al. (2023)
highlighted that existing metrics are sensitive to embedding space quality and often misalign with human perception. These
findings emphasize the need for more robust and fair evaluation metrics for large motion models. We believe addressing this
challenge is of significant value and plan to explore it further in future work.

C.5. Additional Qualitative Results

We present additional examples to visualize the human motions generated by our large motion model, Being-M0, trained on
the MotionLib dataset, as shown in Figure 13. The results demonstrate that our model can produce motion sequences that
closely align with the input texts, highlighting the effectiveness of MotionLib as a training resource.

26


	Introduction
	Related Work
	MotionLib: A Million-Level Motion Library
	Being-M0: Scaling up Large Motion Model
	Overview
	MotionBook: Towards Effective Motion Encoding

	Experiments
	Experimental Setup
	Discussion of Scaling up Motion Generation
	Effectiveness of Motionbook

	Conclusion
	Details of Evaluation and Implementation
	Evaluation Metrics
	Implementation Details
	Design of Different Motion Features

	Details of Dataset — MotionLib
	Motion Data Collection
	Motion Data Refinement
	Motion Description Generation
	Motion Description Quality Assessment
	Statistic Analysis of Data and Word Distribution

	Additional Experimental Analysis
	Ablation of Large Motion Model Training
	LoRA vs. Full Parameter Fine-tuning
	Learning from Scratch vs. Fine-tuning
	With vs. Without Description Mask
	Encoder-decoder vs. Decoder-only
	Slow convergence of large motion models

	Additional Experiments of Motion Quantization
	Additional FID Results on Motion-X
	Ablation of 2D-LFQ vs. 1D-LFQ

	Discussion of Static and Synthetic Data.
	Discussion of Current Evaluation Metric's Limitation
	Additional Qualitative Results


