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ABSTRACT

Log-Gaussian Cox Processes (LGCP) have been widely used for modeling spatial
point patterns. However, fitting LGCP is computationally challenging due to a
nested structure involving Poisson process and latent Gaussian random field. To
address these issues, we first approximate the intractable LGCP likelihood based
on the Voronoi tessellation method. Then, using variational Gaussian approxi-
mation, we transform the problem of fitting LGCP into maximizing the evidence
lower bound which admits an explicit expression. We design a novel coordinate
ascent maximization algorithm which updates the parameter blocks by Newton
method and fixed-point method, respectively. To further enhance the computa-
tional efficiency, we adopt a nearest neighbor Gaussian process as the prior for the
latent Gaussian random field, and the cost of inverting large covariance matrices is
greatly reduced via the Woodbury formula. Theoretically, we prove the existence
and uniqueness of the optimal solution to the strongly concave objective function,
and the convergence of the proposed algorithm is established. Numerical results
demonstrate the computational and inferential benefits of our method in modeling
log-intensity surface over competing methods.

1 INTRODUCTION

Consider a spatial point pattern Y consisting of a set of observations at locations D = {s;}¥, in
a bounded region 2 C R?. Log-Gaussian Cox processes (LGCP, Mgller et al.| (1998)) is a popular
point process for modeling the point pattern. Our goal is to infer the LGCP intensity surface A(s)
at any location s given the observed point pattern Y, where A(s) denotes the expected number of
points per unit area at s. In LGCP model, the log-intensity surface consists of a linear predictor and
a latent Gaussian random field,

log A(s) = X(s)B+ Z(s), Z(s) ~GP(0,Ke(s,s')), ey

where X(s) is a spatial covariate, (3 is the spatial regression coefficient, and Ky is the covariance
kernel for the Gaussian random field Z(s). Conditional on a realization of the intensity surface A(s),
the point pattern 'Y follow an inhomogeneous Poisson process. This doubly stochastic, hierarchi-
cal construction provides the LGCP with greater flexibility than standard inhomogeneous Poisson
models (I1lian et al., [2008; |Dovers et al., | 2023)).

The likelihood of LGCP with intensity values Ap = [A(s1), ..., A(sn)] at observed sites D is

p(Y [Ap) = exp { /Q A(s) dS} f[l A(si), 2)

The specific derivation details of the likelihood function can be found in|Daley & Vere-Jones|(2007).
Due to the hierarchical stochastic structure and the existence of the integral term in the likelihood,
the problem of fitting LGCP is quite challenging (Murray et al.,|2006; |Simpson et al., 2016).

Related work Many methods have been developed for fitting LGCP. Initially, approaches based
on Markov Chain Monte Carlo (MCMC) posterior sampling were explored (Mgller et al.l [1998;
Taylor et al.l 2013} |Shirota & Gelfand, [2017; Teng et al., 2017). However, while such MCMC-
based methods offer theoretical guarantees of asymptotic accuracy, in practice, they are burdened by
substantial computational cost and challenging convergence assessment (Taylor & Digglel 2014).
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Various fast approximate algorithms have been developed with computational efficiency. |Teng et al.
(2017) proposed a variational Bayes mean-field method to approximate the target posterior. [Dovers
et al.[(2023)) combined variational inference with low-rank matrix representations of fixed-rank krig-
ing (Cressie & Johannesson, [2008; Zammit-Mangion & Cressie| |2021), yielding substantial speed-
ups but limited capacity for modeling local structures (Stein, 2008). Beside the above variational
methods, Integrated Nested Laplace Approximation (INLA) introduced by Rue et al.| (2009) has be-
come another leading approach to fitting LGCP (Lindgren & Rue, [2015; |Simpson et al.| 20165 Rue
et al.,2017;Bachl et al.,|2019; |[Fuglstad et al.,|2019; [Flagg & Hoegh, [2023)). In particular, |Lindgren
et al.| (2011)) enhanced INLA’s efficiency by representing the latent Gaussian field as a Gaussian
Markov random field. While INLA excels in both accuracy and speed, it focuses on marginal infer-
ence and does not directly yield joint posterior distributions (Taylor & Digglel [2014)).

In the machine learning literature, many works have focused on efficiently fitting Gaussian pro-
cesses. Sparse Gaussian processes and their variants are well studied, such as inducing points
(Quinonero-Candela & Rasmussen, [2005; Banerjee et al., [2008) and nearest neighbor GP (NNGP)
(Datta et al., 2016)). Variational frameworks for these sparse models were subsequently developed
by (Titsias,2009; [Hensman et al.,[2013;[van der Wilk et al.l[2020; [Wu et al.| [2022). Leveraging these
advancements, |Lloyd et al.| (2015) and [Shirota & Banerjee| (2019) addressed Cox processes where
the intensity surface is connected with Gaussian random field via squared and probit link functions,
respectively. However, none of the existing works apply to the popular LGCP model which uses the
exponential link function.

Our approach In this paper, we formulate the problem of fitting LGCP within the Bayesian frame-
work. Based on the observed point pattern, we aim to model the posterior A(s) | Y of the current
log-intensity at any s.

We take a variational approach to modeling the target posterior. First, we approximate the integral
term in the LGCP likelihood using a Voronoi tessellation approach. This method not only replaces
the original intractable likelihood with an explicit surrogate likelihood, but also incorporates the
points of interest as integration nodes. Next, we use variational Gaussian approximation (Challis
& Barber, 2013 [Wainwright et al., [2008)) to obtain the optimal Gaussian approximation to the tar-
get posterior by maximizing the evidence lower bound (ELBO). The original problem of posterior
distribution inference is thus transformed into an optimization problem with an explicit objective
function. Moreover, we prove that the ELBO is strongly concave, and establish the existence and
uniqueness of its maximizer.

To solve this optimization problem, we design a novel coordinate ascent maximization algorithm.
At each iteration, we update the variational Gaussian mean and the spatial regression coefficient
by the Newton method, and update the variational Gaussian covariance matrix by the fixed-point
method. To achieve computational efficiency, we approximate the Gaussian random field prior with
a nearest-neighbor Gaussian process (NNGP, (Datta et al., 2016))) which induces sparse precision
matrix. Additionally, we effectively apply the Woodbury formula to reduce the cost of inverting
large matrices. Finally, we establish the convergence of the proposed algorithm with fixed or varying
marginal variance hyperparameter and verify the results in numerical experiments.

The rest of the paper is organized as follows. Section [2]introduces the variational method of fitting
LGCP, details the Voronoi tessellation based likelihood approximation, constructs the closed-form
ELBO, and examines its theoretical properties. Section [3] presents our VoGCAM algorithm for
solving the optimization problem and establishes its convergence. Section ] reports numerical ex-
periments that validate our algorithm’s convergence and benchmark our method against existing
approaches. All the technical proofs and experimental settings are collected in the Appendix.

2 VARIATIONAL INFERENCE FOR FITTING LGCP

2.1 LIKELIHOOD APPROXIMATION: A VORONOI TESSELLATION APPROACH

First, we approximate the integral term in LGCP likelihood by numerical integration

/Q A(s)ds ~ Y " wiexp{X(5:)B + Z(8)} , 3)
i=1
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where Z = {8;}]_, represents n pre-selected deterministic integration points in €2, and {w;}._, are
the corresponding weights, satisfying >, w; = |©|. Plugging (3) into the likelihood (Z)) leads to

p(Y | Ap, A7) Nexp{ Zwlexp s$;))B+ Z(s +Z s))B+ Z(s ))} "
= exp {—w exp (Xﬁ + AZ) +15 (X8 + AZ)} ,

where the matrices )Ninxm and X x., contain the covariate values at the integration points and

the observed points, respectively, with their elements defined as )Niij = X, (s;) and X;; =
X (s;). The (n + N)-dimensional vector Z is the realization of Z(s) on Z U D, denoted as

Z=1[Z(s1),.-,Z(Sn), Z(s1),.- -, Z(SN)]T. The selection matrices Anx(7,+N) and Ay (n4nN)
are defined as A = [I,,, 0] and A = [0, Ix], respectively; 1 is a vector of ones of length N.

Figure 1: Voronoi tessellation on the observation region. The red solid points denote the target
locations S and the complete set of solid points constitutes the integration locations Z for numerical
quadrature. Each integration weight is given by the area of the Voronoi cell around its corresponding
integration point, and the gray lines mark the edges of the associated Delaunay triangulation.

In this study, we adopt a Voronoi-tessellation approach to determine the integration points and their
corresponding weights (Simpson et al.l 2016)). First, we perform Delaunay triangulation on the ob-
servation area using the positions in the target location set S as the initial triangle vertices. Next,
based on the constructed Delaunay triangulation, we can obtain the Voronoi tessellation that is geo-
metrically dual to it. Finally, we can obtain the integration point set Z and the corresponding weight
set {w;};_, as described in Figure[l]

Compared with conventional methods, such as dividing the entire observation domain into a series
of uniform grid cells (Teng et al.l 2017} |[Dovers et al., [2023)), the Voronoi tessellation offers several
advantages. First, it allows for flexible control over the density of the partitioned domain by ad-
justing the minimum edge length of the Delaunay triangulation. Second, it ensures that information
from S \ D is incorporated into the likelihood function. Third, this approximation method enjoys
theoretical guarantee. Simpson et al.| (2016) demonstrated that this LGCP likelihood approxima-
tion converges to the true likelihood, and further showed that the resulting posterior distribution
converges to the true posterior under the Hellinger distance metric. Therefore, substituting the ap-
proximated likelihood for the original is reasonable for our subsequent analysis.

2.2 THE CLOSED-FORM ELBO AND THEORETICAL PROPERTIES

We begin by treating 3 as a fixed but unknown parameter and then focus on inferring the posterior
the latent field realization Zs = [Z(s1),...,Z (sp)}T at the target sites S. Rather than considering
Zs only, we infer the full latent vector Z which combines the values at the integration points Z,
the observed points D, and the target locations S. The posterior p(Z | Y) offers comprehensive
knowledge over the domain besides Zs. Under the Gaussian field prior p(Z) = N (Z | 0,Kg),
all the variability in the log-intensity comes from Z(s), and the approximated likelihood (4] can be
denoted as p(Y | Z).

Next, we approximate the true posterior p(Z | Y) by a distribution ¢* chosen from a tractable vari-
ational family Q to minimize the Kullback-Leibler divergence KL (¢(Z)|[p(Z | Y)). The standard
variational inference shows that minimizing the KL divergence is equivalent to maximizing ELBO

p(Z)p (Y |Z)

dZ. 5
q(Z) ©)

Y= 7)1
q argr;leag/q( ) log
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We choose Q to be Gaussian such that ¢(Z) = N(Z | p, X) with the variational parameters p and
3. Substituting the Gaussian prior p(Z) = N (Z | 0,Kp) and the approximated LGCP likelihood
p(Y | Z) into the ELBO (3], we obtain an objective function E (3, u, 3) with an explicit form in
terms of the unknown parameters 3, u, and 3,

EB,u,X)=—w'exp {fiﬁ + Au + %diag (KZKT) } +15 (XB+ Ap)

1
—-p'Ky'p ©)

2
1 e 1 1 n+ N
_itr(Ko E)+§log|2|—§log|Kg|+ 5

where diag(-) is an operator that extracts the diagonal elements of a matrix to form a vector. The
derivation of E (3, p, X) is provided in Appendix [A]

We provide an interpretation from the frequentist perspective for F(3, u, X). The first line in (6)
is a goodness-of-fit term, resembling the approximated LGCP log-likelihood (@) only differing by
%diag(AEAT). The second line penalizes deviation of g from O via a Kgl—weighted squared
norm, while the third line penalizes 3 for deviating from Ky via a KL divergence measure; see
Lemmafor detail. Consequently, maximizing E (3, i, ¥) is equivalent to maximizing a penalized
likelihood, thereby avoiding overfitting.

The following two results establish the key theoretical properties. Denote by S; the collection of
positive definite matrices of dimension p.

Theorem 1. For any prior covariance matrix Ko € S;f N » the objective function E (B, p,X) is
strictly jointly concave with respect to (3, p, X).

The proof of Theorem [1| can be directly obtained from the expression of E (3, p, X) in (@), com-
bined with the fact that both — exp {-} and log | - | are operations that preserve strong concavity.

Based on the strict concavity established by Theorem|I] we prove that the maximizer of the objective
function E (8, u, X) uniquely exists. Its proof is in Appendix [B]
Theorem 2. The optimization problem

max E(B pX) @)
BER™ ,ueR™ N Zes

admits a unique solution, denoted by (3*, u*, X*).

3 EFFICIENT ALGORITHM FOR OPTIMIZING THE ELBO

3.1 APPROXIMATE PRIOR BY NNGP

In each iteration of our algorithm, evaluating the ELBO E(3, u, 3) requires operations on the
(n+ N)-dimensional prior covariance Kg, which incur O((n+ N)?) time and O((n+ IN)?) storage
cost. To alleviate this burden, we approximate the Gaussian process Z(s) by a NNGP, in which each
full conditional distributions is replaced by one conditioned on a small set of nearest neighbors. The
resulting finite-dimensional prior has a sparse precision matrix, yielding the approximate prior

p(Z)~p(Z)=N (Z]0,0°T"). ®)
where o2 is the marginal variance and T is a sparse precision matrix parameterized by hyperpa-
rameters including range and smoothness. Further details on constructing I' are provided in Ap-

pendix [C.1]
3.2 COORDINATE ASCENT MAXIMIZATION ALGORITHM

Substituting the NNGP approximate covariance matrix o2I'~! into the ELBO expression () yields
the current objective function, which is given by

- ~ 1 S
Eo (B, 1, %) = —w ' exp {Xﬁ +Ap+ Sdiag (AEAT)} 11 (X8 + Ap)

&)
) )
o T o 1 1 91; . M+ N
——u ' T'uy — —tr ('Y —log |X]| — =1 T _—
5k T 5 r( )+20g\ \ 2og|a | + 5

4
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We first consider the case where the hyperparameters 6 defining 02 and T' are fixed. Then, the
optimization problem is given by
max Eo (B,p,X). (10)
BER™, ueRM N zeST,

Since the parameters (3, p, and X are coupled in the objective function, we employ block coordinate
ascent method: at each iteration, we update 3 (with p, 3 fixed) and p (with 3, X fixed) via Newton
method, then update 32 (with 3, p fixed) via a fixed-point method.

Newton method for updating 3 and p. The gradients of the objective function Eg (3, 1, X)
with respect to 3 and p are given by

~ ~ ~ 1 o~
Vgl = X1y -XT [w o exp {Xﬁ +Ap+ idiag (AEAT) H ,

11
T AT % A L. ASAT —2 (an
V.E=AT1y - AT |woexp Xﬁ+Au+§d1ag(A2A ) i
The Hessian matrices of Eg (3, p, X) with respect to 3 and p are given by
~ ~ ~ 1 -~ ~
VE = —X Diag {w o exp {Xﬁ + Ap+ Sdiag (AEAT) H X,
(12)

T S ~ 1. TR ~ _
VZE = —A " Diag {w o exp {X,B +Ap+ idlag (AEAT) }] A —o7°T.
Here, x oy denotes the Hadamard product of vectors x and y. The operator Diag(-) acts on a vector,
constructing a diagonal matrix with the elements of that vector on its main diagonal.

Given initial values By and g, we update 3 and p using Newton method. The updating rules at the
k-th iteration are given by

Bri1 =Bk — (V3EL) 'VaEr, i1 = p — (Vi Er) 'VuEr. (13)

The major computational cost of Newton method lies in solving the linear systems involving the
Hessians. Since the negative Hessians are positive definite, these systems can be solved efficiently
using the conjugate gradient method in practice.

Fixed-point method for updating 3. For the matrix variable ¥, using Newton method for up-
dates would involve solving a large-scale linear system. Instead, we design a fixed-point iteration
method. Since the objective function Fg (3, pt, X) is strongly concave with respect to X, finding
the optimal 32* is equivalent to solving the equation Vx F = 0:

~ ~ ~ 1 -~ - ~
—A "Diag {w o exp {Xﬁ +Ap+ idiag (AZAT> H A-oT+X ' =0 (14)

See Lemma[2]in Appendix [C.2]for its derivation.

Based on (T4), we construct a fixed-point method to update . Specifically, given an initial value
3, the updating rule at the k-th iteration is given by

Sip1 = (Di+07°T) (15)

where D), = AT Diag |:W o exp {5(,8 + Ap+ Ldiag (KE;CKT) A. The sequence {Zi}eso
generated by (I5) converges. Its proof is in Theorem[]in Appendix

Matrix inversion with the Woodbury formula. In each iteration, the dominant cost arises from
inverting the (n 4+ N)-dimensional matrix (Dj, 4+ o~2T") “lin (T3), which scales as O((n + N)3).
To reduce the complexity, we employ the Woodbury formula after decomposing the precision matrix
into a diagonal plus low-rank form,

T ~ Ty + LLT, (16)
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where Tgjaq is chosen so that I' — T'gjag remains positive definite, and L x4, xr (With 7 <1 + N)
derives from its Cholesky factor. It is necessary to retain the diagonal component. By its definition
(13), Dy, is an (n + N)-dimensional diagonal matrix whose last N diagonal elements are zero. The

diagonal I g,¢ ensures that Dy, in is invertible such that the Woodbury formula is applicable.

With the approximation of I" in (I6)), the fixed-point iteration is

-1

~ —1
Sk & (Dy+ 0 g + 0 °LLT) " 2 (D +072LLT) (17)

where D g = Dg+ O'_QI‘diag is an invertible diagonal matrix. It follows from the Woodbury formula
that
~ ~ - -1
Sii =D =0 Dy 'L (L +07°LTD;'L)  LTD; (18)
The complexity for each update becomes O ((n+ N)?r + (n+ N)r? +r®). It is significantly
more efficient than the cost of the direct matrix inversion O ((n +N )3)

Algorithm and its convergence guarantee. When all hyperparameters 6 are fixed, the process of
solving the optimization problem (I0) is detailed in Algorithm T}

Algorithm 1: VoGCAM with fixed hyperparameters

Input: Covariate matrices X, X; Selection matrices A, A;
Dual mesh weights w; Fixed hyperparameters 6;
NNGP approximate precision matrix I'.
Approximate T by

Initialize Bo + Bo; Bo + pos 5\30 «— X
while Fy (ﬁk, i, > k) not converged and k < k,,4, do:
Update 3j, and fij, by Newton method (T3]

Update 3, by fixed-point method (13)
return 3*, i*, &*

The convergence analysis of Algorithm|T}is provided in Appendix[C.4]

3.3 HYPERPARAMETER CONFIGURATION

Prior to running the algorithm, we first need to fix all hyperparameters defining the precision matrix
T (e.g. the Matérn range and smoothness) using strategies such as K-fold cross-validation (Fin-
ley et al., |2019) or empirical estimation methods based on the spatial properties (Lindgren et al.,
2011). The practical procedure for determining the aforementioned hyperparameters is detailed in

Appendix [E| Then, we turn to estimation of the marginal variance o2.

The new ELBO that contains ¢ To incorporate hierarchical modeling of the marginal variance
o2, we augment the ELBO in (3)) by including the prior p(c? | o), which yields

Z.Y | 02)p(0? | oy
E(ﬁvﬂaEQU):/q(Z)logp( Y| q()zl;( | ao)
= Eo (B,1.3) +logp (0” | ) (19)

where a, collects the hyperparameters of the prior on o2, In particular, we place an inverse- Gamma
prior, p (02 | ag) =1G (02 | a, b) with shape a and scale b. Next, combining Eg (3, 1, X) in )
and the inverse-Gamma prior for o2, we write (T9) as

dz

~ ~ 1 .
E(B,pu,3;0) =—w' exp {Xﬁ +Ap+ idiag (AEAT) } +14 (X8 + Ap)

-2 -2 1 N 20
—UTMTFM—UTtr(FZ) 210g|2|—710g\021‘ 1|+n—; 20)

+(a+1)logo™2 +bo2 +bloga — logT (a).
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Algorithm 2: VoGCAM

Input: Covariate matrices X, X; Selection matrices A, A;
Dual mesh weights w; Fixed hyperparameters 6 except for o;
NNGP approximate precision matrix I'.

Approximate I" by (I6)

Initialize 3o < Bo; fio + po; To — o ; 50 « 00
while FE (ﬁk, i, ) K 8k> not converged and k < k4, do:

Update ,@k, [y and ) k by algorithm
Update 6, by fixed-point method (21)

return 3*, p*, X*, o*

Fixed-pointed method for updating 0. To maximize E (3, p, X; o), we partition the parameters
into two blocks, (3, i, X) and o, and then alternately update the two blocks. Specifically, in the
k-th iteration, we first fix o at its current value, o,. Next, as described in Section[3.2] we can find the
optimal values that maximize Eg, (8, p, X), denoted as (8%, , pu, , 2%, ). Then, fixing (3, u, =)
at these optimal values, we update o by solving OF (8%, , pk, , % ;0) /0(c) = 0. This yields a
fixed-point iteration update

21
n+ N+ 2a+2 @D

pl Tpo, +tr(TX,,) — 20
Ok+1 =
We have obtained the complete algorithm summarized in Algorithm [2] The following theorem
guarantees the convergence of the update for o. Its proof is provided in Appendix

Theorem 3. For any initial value oo > 0, the sequence {0y}~ generated by 1) converges
monotonically to some o, > 0.

4 EXPERIMENTS

Our method is termed as VOGCAM, short for Variational Voronoi Gaussian Coordinate Ascent
Maximization. In the subsequent simulation and real data, our method will be compared with
INLA (Simpson et al., 20165 [Fuglstad et al., 2019) (implemented using the INLA package) and
VIFRK (Dovers et al.,|2023) (implemented using the scampr package), which are already the two
best-performing methods for fitting LGCP in spatial statistics.

Simulation. We first generate a set of point patterns simulated by LGCP on the bounded region
= [0,10] x [0, 10], as shown in Figure (a). Based on the current point pattern, we consider two
types of cases in the following experiments. The first type is the conventional scenario that we can
observe all point patterns, as shown in Figure 2] (b), which we denote as the “full case”. The second
type is the scenario that considers the sampling effort, as shown in Figure[2](c) (Simpson et al., 2016;
Flagg & Hoegh, 2023)). We suppose that all points within the red border and some points outside the
border cannot be observed, and we denote this as the "hole case”. More details on the experiment
settings and the convergence verification of the VoGCAM algorithm are presented in Appendix [E]

We evaluate VOGCAM against INLA and VIFRK (Dovers et al., 2023) under two scenarios, ~full
case” and “hole case”. To capture posterior information throughout €2, we take the target set S to
be the integration points Z defined by the Voronoi tessellation. The comparison results are shown in

Figure

We then evaluated each method’s performance in both the ”full case” and "hole case” by computing
the log-likelihood at the observed locations set D and the predictive likelihood at the target locations
set S. To assess computational efficiency, we also recorded the runtime required for model fitting.
The results are presented in Table[T]

In the left panel of Figure 3] all the three methods recover the LGCP intensity surface accurately in
the “full case” according to their posterior mean fits. However, under the more challenging “hole
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(b)

Point pattern and log-intensity surface Full case Hole case

Figure 2: (a) represents a set of point patterns (black solid dots) generated by LGCP simulation on 2
and its corresponding LGCP log-intensity surface; (b) and (c) represent the distribution of observed
points and the Voronoi tessellation on the observation area under the “full case” and "hole case”
respectively. The blue solid dots are the observed points, and the green dots represent the points in
the original point pattern that were not observed.

1.0
4 = B
0.
2
o 2 a . s 0 0 2 4 5 s 0

VoGCAM
VoGCAM

)

INLA

INLA

VIFRK
VIFRK

0.0

Full case Hole case

FL]II ca;e H(;Ie ca;e '
Figure 3: Comparison of the posterior mean surface (left figure) and posterior standard error surface
(right figure) of the log-intensity fitted by the three methods based on the observation points in the
two scenarios of “full case” and “hole case”.

case” where a substantial portion of the observations is missing, only our approach succeeds in
tracking the true LGCP intensity closely, while the performance of INLA and VIFRK deteriorates
markedly. Comparison of posterior standard errors in the right panel of Figure [3]reconciles the same
conclusion via uncertainty quantification.

Real Data. We further use two real-world datasets to validate the efficiency of the proposed
method. The first neuronal dataset consists of 583 training data and 29127 testing data. It was
originally analyzed by |Aglietti et al.| (2019) where detailed experiment setting can be found. In the
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Table 1: Comparison of the observed log-likelihood function (obs loglik) at the observation point
D, the predicted log-likelihood function (pred loglik) at the prediction point S, and the seconds of
time consumption for three different methods in the two scenarios of “full case” and “hole case”.

Full case Hole case
Method
obs loglik pred loglik  time obs loglik  pred loglik  time
VoGCAM  5423.12 2505.15 6.51 2739.40  1958.95 5.73
INLA 5533.71 2338.11 10.32 2717.11 749.41 9.55
VIFRK 5534.91 2361.77 0.20 2709.50 904.28 0.11

second real-data application, we analyzed spatially resolved transcriptomics data generated by the
Xenium platform (10x Genomics), which provides subcellular resolution expression measurements
of hundreds of genes directly in tissue sections. We focused on the breast cancer SIR1 sample re-
leased by 10x Genomics and cropped a region containing approximately 5,000 cells. In our point
process formulation, the response was the expression of the epithelial marker KRT15, while two
covariates captured local microenvironmental context: the average abundance of DCIS_1 cells and
the average abundance of Myoepi_ KRT15% cells in the neighborhood of each spatial point. Our
method estimated the spatially varying log-intensity surface of KRT15 expression and quantified its
dependence on these local covariates, to extract interpretable gene—microenvironment associations
from high-resolution spatial transcriptomics data.

Table 2: Comparison of the observed log-likelihood (obs loglik), predicted log-likelihood (pred
loglik), and computation time for different methods on two real-world datasets.

Method Neuronal data Transcriptomics data

obs loglik  pred loglik  time obs loglik  pred loglik  time

VoGCAM —3699.77 —38231.83 9.51 36404.93  16430.17  12.17
VIFRK —2106.14 —82399.21 2.06 43955.61 6147.24 0.13

We applied our proposed VoOGCAM and competing methods, including INLA and VIFRK, to the
datasets. Table [2] presents the results of observed and predicted likelhoods, and computing time.
Since the number of prediction points in real data is much larger than that of training points, INLA
encountered severe numerical ill-conditioning problems during training, leading to training failure.
When comparing our method with VIFRK, we find that VoGCAM performs better than VIFRK in
terms of predicted likelihood while its observed likelihood metric is inferior. As expected, VIFRK
excels in computing time due to its focus on global feature. In addition, according to the experimen-
tal results shown in Table 3 of |Aglietti et al.| (2019), the predicted loglikelihood obtained by their
proposed STVB method is —84550 with a running time of 193.07 seconds. In summary, since the
primary goal in this work is the prediction task for LGCP intensity function at unobserved spatial lo-
cations, the proposed VOGCAM is a computationally efficient method for modeling complex spatial
point pattern data.

5 DISCUSSION

In this paper, we propose the VoOGCAM method to efficiently fit the LGCP. By using the variational
Gaussian approximation, we transform the challenging LGCP inference problem into an optimiza-
tion problem. Moreover, we propose a novel and efficient coordinate ascent maximization algorithm
to solve this optimization problem with theoretical guarantee. Numerical experiments also validate
the effectiveness of our algorithm. Finally, we also discuss some limitations of our method, see

Appendix [F}



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided a comprehensive set of resources. All
code necessary to replicate the experiments and generate the results presented in this paper is sub-
mitted as supplementary materials. The datasets used are either publicly available or simulated, with
clear descriptions of their sources and generating processes. For theoretical results, our appendix
contains all necessary proofs and a clear explanation of any assumptions made.
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A DERIVATION OF THE EXPLICIT EXPRESSION OF ELBO

First, we derive the explicit expression of E (3, , ) in[6] Based on the definition of ELBO in
we have:

BB, 2) = [ a(2)10g " 2E a7

q(Z)
- / 4(Z)logp (Y | Z) AZ + / 4(Z)logp (Z) dZ - / 4(2)logq (Z) AZ
— B logp (Y | Z)] + Ey(z llogp (Z)] — Eyz llog ¢ ()] 22)

Next, we will calculate the explicit expressions of the three parts in (22)) separately. For the derivation
of the first part, we use the conclusion of the moment—generating function in the calculation. The
specific details are as follows:

Eyz) logp (v | Z)] =Enzjps) |—W ' exp (Xﬁ + Az) 117 (X8 + AZ)}
Z exp (A Z)

= —w' exp X,@) Zexp (AT,U,—i— ZA, EAT) +15 (XB+Ap)

+15 (XB+Ap)

-
=—w'exp (Xﬁ> ENn(z|p,=)
(

S ~ 1
= —w' exp {Xﬁ + Ap+ 5 diag (AzAT)} +14 (XB+Ap).
(23)
where the vector -&1 represents the ¢-th row of the matrix A.

For the derivation of the second part, we perform the Cholesky decomposition on the matrix 3 to
get Y = LLT. Thus, Z can be expressed as Z = pu + Lx, where x ~ N (0, 1,1 ). Therefore, we
can obtain:

Eq(Z) [logp (Z)] = EN(Z|;,L,2) [logN (Z | O7K9)}

1 1 _
=Enezin®) (—2 log |[Ke| — izTKe 1Z>

1 1 _
= — 5 108 [Ko| = ZEn(xiox, ) (1 +Lx) Kq' (1 +Lx)|

1 | 1 Ty Tye—1 (24)
= —5 log [Ko| = 51 'Ky 1t = SBn(xjo 1, ) (¥ LKy 'Lx)

1 1 _ 1 _
= —§1og\K9| — 2;FK,,1N -t (LTK,'L)

1 L o1 1 -1
:—glog\Kg|—2u K, ,u—gtr(Kg ).
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Eyz) [logp (Z)] = En(zju,x) [log N (Z | p, 3)]

1 1 T e
11 1 T s -1
=~ log |3] — §EN(x|0,I,,L+N) [(H +Lx—p) 7 (p+Lx—p)
1 1 _
= 75 IOg |2| — 5EN(X|0,17L+N) (XTLTZ 1LX) (25)
1 1
=-3 log |X| — itr (LTZAL)
1 1 -1
1 n+ N
=——log|X| — .
5 log|Z| - —

Substituting (23, (24) and 23) into (22)), we can obtain the explicit expression of ELBO as shown
in the equation (6).

Next, in the following Lemma, we prove that the third line in the explicit expression of F (3, pt, X2)
in (6) is equivalent to the KL divergence between two Gaussian distributions with the same mean
but different covariance matrices.

Lemma 1. The expression for the KL divergence between two Gaussian distributions with the same
mean f(x) = N (x | fims £) and fo(x) = N (x | . Ko) is

1 n+ N
—log |Kg| — .
3 los Kl - —

1 1
D (3, Ko) = ;tr (Ky'=) - 5 log =] + (26)

Proof. According to the definition of KL divergence, we can obtain

D (X, Kg) = /f(x)log]‘é)(();))dx

— [ £01087 (x) dx [ £ (x)log fo ) dx
— o ll0g f (x)] — E) llog fo ()]

=ENx|u,. ) [log N (x| ttm; B)] — EN(x|pm, =) [log N (x | ptrm, Ko)] (27)
Based on the derivation of (23), we can get

1
EN(x|p.m,E) [1OgN(X | “n%z)] = _§1Og ‘E‘

1

- § (l"’m - I'l’m)—r K(;l (“m - /J/m) - 5 (28)

|3

1
EN(xlpum,2) [l0g N (x| i, Ko)] = —3 log [Ko|
1 T 1 _
- 5 (/1' - /1'7n) Kol (“’ - /J/m) - itr (Kelz) . (29)
Substituting the expressions and into completes the proof. O

B THE EXISTENCE AND UNIQUENESS OF THE OPTIMAL SOLUTION OF ELBO

Here, we prove Theorem 2]

To ensure the existence of the maximum value, we need to prove that E (3, s, ) is coercive on the
convex set R™ x R™ x S;r - that is, to prove that when any one of the parameters in (3, u, %)
approaches the boundary of its domain or infinity, the value of the function F (3, u, ) — —oo.
Next, we discuss the three cases corresponding to the three parameters respectively.

For p, the expression of the term related to g in the function E (3, p, ) is

- 1
Ey(p) = —w' exp (Au) +1yAp— -

S Ko n
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When ||p||2 — o0, for the quadratic term, since the covariance matrix Kg is positive definite, the
quadratic term approaches —oo. Because the decay rate of the quadratic term is faster than that
of the linear term, the sum of the quadratic term and the linear term must approach —oo. For the

exponential term —w | exp (Xu) , if one component in :&u approaches —oo, the exponential term

approaches 0; if one component in Ku approaches +o0, the exponential term approaches —oo.
Therefore, in summary, when ||pt||2 — oo, the value of the function F; () approaches —oo.

For X, the expression of the term related to X in the function E (3, p, ) is
1 ~ 1 1
Ea(E) = —w T exp {2diag (AzAT)} — 5t (K5 %) + 5 log |3,

When 3 approaches the boundary of S:[ N that is, 3 becomes singular, which is equivalent to at
least one eigenvalue of X satisfying \;(X) — 0. In this case, since log |Z| = Y log \;(X) —
—00, and both the exponential term and the linear term are negative, the value of the function Eo(3X)
approaches —oo; When 32 approaches “infinity”, for example, when the maximum eigenvalue satis-
fies Amax(2) — 00, the linear term f%tr (K(; 12) approaches —oo. Because the decay rate of the
linear term is faster than the growth rate of the logarithmic term, and the exponential term is always
negative, the value of the function F5(X) approaches —oo.

For 3, the expression of the term related to 3 in the function F (3, p, X) is
Ey(B) = —w exp (X8) + 1% (XA).

When || 3|2 — oo, for the exponential term, since X is the value of the covariate at 7 integration

points, in practice, a positive value of one component of iﬂ can definitely be found. At this time,
the exponential term approaches —oo. Because the decay rate of the exponential term is faster than
that of the linear term, when ||3||2 — oo, the value of the function E3(3) approaches —oo.

In conclusion, we have proved that the function E (3, u, ) is a coercive function on the convex set,
which is equivalent to proving that £ (3, p, 3) has a maximum value on the convex set. According
to the fact that E' (3, p, X2) is strongly concave obtained in Theorem the maximum point is unique
at this time.

C DERIVATION DETAILS AND THEORETICAL PROPERTY OF THE
COORDINATE ASCENT MAXIMIZATION ALGORITHM

C.1 DERIVATION OF I BASED ON NNGP

For the convenience, we abbreviate the Z = [Z(31),...,2Z(5,), Z(s1),..., Z(sy)]" as Z =
(Z1,. . Zny N]T. Next, we can express the joint distribution of Z as
n+N
p(Z) = p(Z1) H p(Zi| Zri-1).
=2

In NNGP, we let the realization of Z(s) at any s; € ZUD be conditional on, at most, the realizations
at a pre-specified number of nearest neighbor locations to s; in ZUD, and this set is denoted as Pa]s;].
Then, the approximate joint distribution can be expressed as

n+N

p(Z) =p(Z1) [ »(Zi | Zoags,)) -

i=2
Datta et al.| (2016) proved that p(Z) is the joint density of a multivariate Gaussian distribution with
a sparse precision matrix, which satisfies

o T=I-A)'D'I-A), p(Z)=N(Z|0,5°T).

where I is the (n + N )-dimensional identity matrix. The matrix A describes the neighbor informa-
tion of all n + N locations. The i-th row (¢ > 1) of A has non-zero entries at the positions indexed
by Pa[s;], and these non-zero entries are calculated as follows

A (i, Pa[s;]) = Ko (s;, Pafs;]) (Kg (Pa[s,], Pa[s])) " .
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The matrix D is a diagonal matrix, and its ¢-th diagonal element describes the variance information
at s;, which satisfies

D(i,i) = Kg(si,s;) — Kg (s;, Pa[s;]) (Ko (Pafs;], Pafs;])) " Ko (Pafs;],s;) .
Finley et al.|(2019) discussed methods for efficiently constructing A and D. On this basis, [Zhang

et al.|(2019) implemented the above construction in practice based on rStan in R.

C.2 THE DERIVATION DETAILS OF THE EXPRESSION OF Vs FE

Lemma 2. The gradient of the objective function Eg (3, p, X2) with respect to X is

1 ~ ~ ~ 1 ~  ~ ~
VsFE = 3 [—ATDiag |:W o exp {X,B +Ap+ §diag (AEAT) }} A—-o7T + E_l} .

Proof. Define the matrix function (%) = X3+ Ap+ diag (KZFAT), where the i-th component
of g(X) satisfies
~ ~ 1 - ~ ~ 1 /o~
6:() = (XB+Au) + [ding (AXAT)] = (XB+Au) +; (AZAT)
K3 K3 3 22
Given that the expansion of the elements of the quadratic form matrix can be expressed as
(AE:&T) = ik :&ij Ejk.&ik, thus the partial derivative of g;(3) with respect to the matrix

elements can be obtained as

g (KZAT)ZE 0 (AEKT)N L+ %
> P S
Writing it in matrix form is equivalent to
9gi(X2) _ 1

= _ATA,
ox 27
where A; represents the ¢-th row vector of the matrix A.

Based on the chain rule, the gradient of the first term with respect to the matrix X can be derived as
follows

O T e lo(E) — - S 0 >
(T expol )}):;w@em{gﬂ )

N
_ A , dgi(%)
= - ; wi exp {g:(2)} =55

= —éwi exp { ()Niﬁ + ANL + % (:&EA'T)“} ) %AIAI

= _% iwi exp { (X,@ + Au)l + % (AE:&T)”} AZTAZ
i=1

>

1~ o L ~
—5ATDiag [w o exp {Xﬁ +Apt diag (AzAT) H A.

For the gradients of the second and third terms with respect to the matrix X, according to the fol-
lowing properties
9 ;0 T
—u('¥) =T —log|X| = (2
ST =TT, log|s| = (57T,
and since both T and X are symmetric, thus T =T, (2~ 1)T = -1

By organizing the gradient results of the three parts with respect to the matrix X, the result of
Lemmal[2]can be obtained. O
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C.3 THE CONVERGENCE ANALYSIS OF FIXED-POINT METHOD FOR UPDATING X

In this paragraph, we first prove in Theorem | that the sequence {3, }>o obtained based on the
fixed-point method converges.

Theorem 4. The sequence {3y}, -, obtained by iteration based on the fixed-point method is con-
vergent. B

Proof. According to the iterative relationship of the fixed-point method (I3), for any & = 1,2, ...,
we have 3, =< o2I'!, which is equivalent to |||z < ||[?T'~!||o. Therefore, the sequence
of matrix variables {X} is bounded in the spectral norm. Since every bounded sequence has a
convergent subsequence, there exists a subsequence {E(n) }n>0 such that it converges to the limit

3., in the sense of the 2-norm. ]

Furthermore, we give the specific form of the above convergent subsequence in Lemma [3]and The-
orem

For any positive definite matrices C,D &€ S;[ |~ assume that C < D, if the mapping 7" satisfies
T(C) = T(D), then the mapping 7" is said to be anti-monotonic.

Lemma 3. The mapping F corresponding to the fixed-point method (13)) is given by
~ - ~ 1 -~ - -1
F(X%) = {ATDiag {w o exp {X,@ +Ap+ idiag (AEAT) H A+ 0_2F] . (30)

Then, the mapping F' is anti-monotonic.

Proof. The following proof refers to (Arridge et al.| 2018, Appendix A.). Given two positive def-
inite matrices X, and X, assume that 3; < 3. Then, each component value of the vector

diag(;&El;&T) is less than the value of the corresponding position of the vector diag(AEQKT),
denoted as diag(AX;AT) < diag(AX,A ). At this time, we can obtain

T(S1) - T() = T(20) {(T(S2) " = (T(20)) (%) = 0.

Therefore, the lemma is proved. O

Next, we construct two convergent subsequences of the maximization sequence {3y}, -, obtained
by the fixed-point method (I3)).

Theorem 5. Given any initial iteration value X, the maximization sequence {Xy}, . has two
convergent subsequences {3y} .~ and {X2x41} 1~

Proof. The following proof refers to (Arridge et al.,[2018, Appendix A.). According to the expres-
sion of the fixed - point method (I3), for any k& > 0, we have

0 =3 XX,

so the maximization sequence {3y}, is always bounded. Based on the iterative relation of the
fixed - point method (T3)) and the conclusion of the anti - monotonicity of F obtained from Lemmal[3]
if 3; = 3;, then ;1 < X,1; similarly, if 3; < 3;, then ;1 = X,,. Therefore, in the sense
of the 2 - norm, the sequence {¥;}, . is a decreasing sequence, and the sequence {2141},
is an increasing sequence. Since a monotonic and bounded sequence must converge, {Zok >0 and
{Zok+1},50 are two convergent subsequences of the maximization sequence {£4}, . and both

are the limits of the fixed-point mapping F2. O
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C.4 THE CONVERGENCE ANALYSIS OF ALGORITHMII]

For the maximizing sequence {8 }r>0 and {f }r>0 obtained by the Newton method iteration.
From the expression of the Hessian matrices (12), it is easy to see that fV%E and fViE are strictly
positive definite. Consequently, the Newton method for these updates is guaranteed to converge to
the unique optimum of each subproblem (Kelley, 1995). For the maximizing sequence {3 }r>0
obtained by the fixed - point method, Theorem ] guarantees the convergence of the sequence.

Finally, according to the convergence criterion of the coordinate ascent method given in (Bertsekas,
1997, proposition 2.7.1), if for each coordinate direction, there exists a unique point that maximizes
the objective function in the current coordinate direction, then the coordinate sequence obtained
by the coordinate ascent method is convergent. In the current context, based on the joint strong
concavity of F (3, u, X) with respect to (3, u, ) obtained from Theorem and the convergence
of the coordinate sequences obtained by the Newton method and the fixed - point method in their
respective directions, the sequences {8y}~ {1k }r>0 > {2k} > Obtained by Algorithm (1| are
convergent.

D ANALYSIS OF THE CONVERGENCE OF THE HYPERPARAMETER
MONOTONIC CONVERGENCE ALGORITHM

To analyze the convergence of Algorithm [2] that is, to prove Theorem [3| we first need to introduce
the following lemmas.

For convenience, when o is fixed, we denote the optimal parameter values obtained based on Al-
gorithm [I| as B,, p, and X,. During the iterative process, since only the hyperparameter o in
Eo (8, p, X) changes, we will denote Fyg (83, pt, X) as E, (3, p, ) in the following.

Next, we further decompose the function Eg (3, i, X) as follows:

N
; log o2,

By (B, %) =g (B, D) + 0 2h (11, 5) + —

where
~ ~ 1 S
9(B,1,5) = —w T exp {Xﬁ + Ap+ Sdiag (AzAT) }
T 1 1 -1
+1y(XB+Ap) + 510g|2| — §log|I‘ l,

1 1
h(p,3)=—op Tp—Str(I3).

Next, we introduce the following lemma.

Lemma 4. The function h (@, X, ) is monotonically decreasing with respect to o.

Proof. The proof of this lemma refers to (Arridge et al., 2018, Lemma 5.3). Given any two positive
numbers o1 and o9, according to Theorem [1] and Theorem [2| we can find the optimal values of the
parameters (3, pu, X2) for the currently fixed 0. When o is fixed to o1 and o5 respectively, we denote
the optimal values of the parameters as (8o, , o, s 2o, ) and (Boy, oy, 2oy ) Tespectively. Thus,
we can obtain

EUl (1601711’0172171) 2 EUl (ﬂd27“02a202)7
E0'2 (/60'2711'1727 202) 2 EO’Q (ﬁﬂ]vl‘l’Ula 20'1) °

Adding the left - hand sides and right - hand sides of the above two inequalities respectively, and
then continuing to simplify, we can get

(01_2 - 0—2_2) (h (“’0’13 2671) - h(H’Uw 202)) 2 0

Therefore, it can be proved that h (u,, 3, ) is monotonically increasing with respect to o=2. It
should be noted that since ¢ > 0, this conclusion is equivalent to being monotonically decreasing
with respect to o. O
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Based on the conclusion of Lemma E], we will prove Theorem E} which refers to (Arridge et al.|
2018, Theorem 5.1).

Based on the expression for updating ¢ given in for any k£ > 1, we can obtain

_h (I"I’G'k,u EO'k) + h (IJ‘G'k,_l7 Eo'k,_l)
n+ N+ 2a+2

2 2
Ok+1 — O =

At this point, the magnitude relationship between o7, and o} depends only on the magnitude

relationship between the function values & (@, , X0, ) and h (@o,_,, X0, _, ). Based on Lemma
if 07 > op_y, then h(pto,, Xo,) < h(pho,_,, X0, _,), which means 07, > of. Similarly, if
O',% < J,%_l, then O']% 41 < U,%. Therefore, the magnitude relationship between J]% 41 and a,% always
remains the same as that between o7 and o7_,, indicating that the sequence {07} is monotonic.
In addition, since —h(p,X) > 0, and according to the boundedness of the parameters given in
Theorem [2| the sequence {07 };>o is bounded. Since a monotonic and bounded sequence must
converge, there exists a 02 such that limy_, 1o 07 = 02. Since oy, > 0, this is equivalent to

limg_y oo O = O

E NUMERICAL EXPERIMENTS DETAILS

In this section, we provide supplementary explanations for the simulation settings and the parameter
settings related to the algorithm in Section |4 All numerical simulations and comparative experi-
ments of different methods were completed on a Windows 11 laptop equipped with an Intel Core
17-10750H processor (2.60 GHz, 12 threads) and 16 GB of memory. Moreover, all the code was
implemented in R language.

LGCP point pattern simulation settings Based on the rL.GCP () function in the spatstat
package Baddeley & Turner|(2005)), we simulated a set of point patterns following LGCP within the
square observation region {2 = [0, 10] x [0, 10], and the expression of its intensity function is

log A(s) = Bo + X (s)B1 + Z(s),

where X (s) is defined as a one - dimensional covariate with the expression X (s) = cos (s1 — 2.5) —
sin (s2 — 3.5); the parameters 3y and (; represent the intercept and the coefficient of the covariate
respectively; For the last term Z(s), we choose a Gaussian random field with mean O and a kernel
function from the Matérn class. The expression of the Matérn kernel at s; and s, satisfies

2

KG(Sa S/) =

= iy (s =5 Ky Gells =5 (1)

where ||s — §’|| is the Euclidean distance between s and s’, o2 is the marginal variance, x > 0 is
the scale parameter, and v > 0 is the smoothness parameter, K, (+) is the modified Bessel function
of the second kind. We set the intercept and covariate coefficient to (8y, 51) = (2.5, 0.8), and the
hyperparameters of the Matérn random field to 8 = (02, k,v) = (0.22,0.3,1).

According to the above method, we generated the LGCP log-intensity surface as shown in Fig-
ure [2{a) on © and the observed points consisting of N = 2289 point patterns. In "full case”, we
retain all the observed points; in "hole case”, we consider the issue of sampling effort, that is, in
the original point pattern, some points cannot be observed. For the selection of these unobserv-
able points, we divide it into two strategies. First, we specify that the area inside the red box is
the unobservable area; second, on this basis, we randomly discard 20% of the remaining observed
points as the unrecorded observed points. At this time, the number of remaining observed points is
N = 1219. The "hole case” setting is designed to evaluate the model’s ability to capture both the
global and local characteristics of the LGCP intensity function.

Parameter initialization settings in the VoOGCAM algorithm In our method, we should first
select Z(s) as the Matérn field defined in which is widely used in spatial statistics to model
random fields Stein| (1999). Next, we discuss the selection of hyperparameters v and x.Empirically,
the smoothness parameter v is often difficult to estimate well due to multi-modality issues in spatial
statistics (Finley et al.l 2019). Therefore, v is typically set to common values such as 0.5 or 1.5.
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In our setting, we initialize it as v = 0.5. For estimating x, we adopt the empirical estimation
method proposed by |Lindgren et al|(2011) by set k = /8v/p, where p is the range parameter. In
practice, p can be set to the maximum Euclidean distance between any two points within the current
observation domain. Thus, by determining the values of v and p, we can determine . In our setting,
we choose p = 10+/2, which is corresponding to x = 0.2.

For more detailed parameter settings, please refer to the supplement file.

Verification of Algorithmic Convergence. Under the data pattern as shown in Figure 2 (b), we
verify the convergence of the VoGCAM algorithm [2] by selecting two different sets of initial pa-
rameter values. Figure [ illustrates the evolution of the target parameters and the ELBO across
iterations for two different initializations. At iteration k, we quantify parameter updates by the Eu-
clidean norms ||§3||2 and ||0g||2, and by the Frobenius norm ||§X%||g. The corresponding ELBO
value is F (B, pr, Xk; 0k ). In both experiments, all parameter sequences and the ELBO converge.
Although the hyperparameter oy, typically approaches its limit more slowly than others, its varia-
tion have minimal impact on the ELBO. Hence, once the ELBO values stabilize, we consider the
algorithm to be converged.
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Figure 4: Case (a) and case (b) show the relative error of the target parameters changing with the
number of iterations under two different sets of initial values. The relative error ||dx|| at the k-th
step is defined as ||x;4+1 — Xk||. The rightmost figure shows the ELBO changing with the number
of iterations under the initial values corresponding to case (a) and case (b).

F LIMITATIONS

This paper introduces a method for fitting LGCP, which can be readily extended to more general
Cox processes to model a wider range of point-pattern types. In the standard LGCP framework, all
spatial heterogeneity is governed by a single intensity function, yielding a single-structure point pro-
cess. In contrast, many real-world phenomena require multi-structure point processes that combine
several spatiotemporal random components. For instance, when examining the spatial distributions
of multiple tree species in a forest, each species may follow its own point process. To accommodate
such complexities, the intensity function must be generalized to capture common multi-structure
mechanisms, including hybridization, sparsification, and superposition. Performing variational in-
ference in this multi-structure setting poses significant challenges, as the resulting objective func-
tions generally lack closed-form expressions. Addressing these challenges will therefore require the
development of novel modeling frameworks and inference techniques.

G LLM USAGE

The authors used large language models (LLMs), specifically Gemini 2.5 and ChatGPT-5, as writing
assistants to improve the clarity, grammar, and fluency of the English prose. The use of these tools
was limited to refining existing content and did not involve generating core ideas, analytical insights,
or experimental results. All content presented in this paper is the sole intellectual creation of the
human authors, who take full responsibility for its accuracy and originality.
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