
Understanding Simplicity Bias towards Compositional
Mappings via Learning Dynamics

Yi Ren
University of British Columbia
renyi.joshua@gmail.com

Danica J. Sutherland
University of British Columbia & Amii

dsuth@cs.ubc.ca

Abstract

Obtaining compositional mappings is important for the model to generalize well
compositionally. To better understand when and how to encourage the model to
learn such mappings, we study their uniqueness through different perspectives.
Specifically, we first show that the compositional mappings are the simplest bijec-
tions through the lens of coding length (i.e., an upper bound of their Kolmogorov
complexity). This property explains why models having such mappings can gener-
alize well. We further show that the simplicity bias is usually an intrinsic property
of neural network training via gradient descent. That partially explains why some
models spontaneously generalize well when they are trained appropriately.

1 Introduction

There is a general belief that having more compositional representations is the key to improving
compositional generalization [14]. Although there are many specifically designed algorithms (e.g.,
[19]) and network structures (e.g., [13, 24]) with this goal, methods to reliably obtain such represen-
tations in a variety of settings remain elusive. On the other hand, it has been repeatedly shown that
compositional generalization ability can spontaneously emerge from standard supervised learning
tasks [e.g. 18] or under repeated self-distillation training [e.g. 22]. In a recent position paper, Huh et al.
[10] argued based on a variety of previous results that deep networks naturally adhere to Occam’s
razor, implicitly favoring simple solutions that fit the data.

To help understand the relationships between compositional mappings and the network’s inherent
bias, we first argue that compositional mappings are generally the simplest bijections to learn.
Specifically, assuming the data-generating process is compositional, compositional mappings are
the simplest (i.e. lowest-complexity). Next, we demonstrate experimentally that neural networks
naturally favor simpler mappings through the process of gradient descent. This simplicity bias
can be intuitively explained by the mutual influence of learning different samples, building on
prior analyses [6, 23]. Although our experiments and discussions are restricted to a simplified
setting (i.e., toyish input signals and only two factors), and in practice, some combinations of
features are harder to learn [17], we believe the framework of this paper can help pave the way
toward analyzing why some networks naturally achieve great compositional generalization ability
under suitable learning tasks, and hopefully, help inspire more effective algorithms to exploit this
simplicity bias for more effective generalization. The code for all experiments can be found in
https://github.com/Joshua-Ren/simplicity_bias_learning_dynamics.

2 Compositional Mappings are the Simplest Bijections

In this section, we first specify that the mapping from the ground-truth characters of the input signal
to the learned representation is the key to analyzing the compositional generalization problem. We

NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward.

https://github.com/Joshua-Ren/simplicity_bias_learning_dynamics

(a). Data generating assumption

𝐙

𝐗 𝒚

ℎ𝜃(𝐱)

𝑔𝜙(𝐳)
 𝐲

ℒ Y, Y

𝑴:𝐆 → 𝐙

G1, … , GL

G1

G2 Train split Test split

(b). Data split for comp-gen problems

00 01

10 11

S z1, z2
z1: blue 0
z1: red 1
z2: box 0
z2: circle 1

(c). Compositional mapping

00 01

10 11

S: blue box 00
S: red box 10
S: blue circle 11
S: red circle 01

(d). Holistic mapping

Figure 1: The compositional generalization problem (a, b) and two types of bijections (c, d).

then describe the uniqueness of compositional mappings by analyzing their Kolmogorov complexity.
In short, we show that compositional mappings are simpler than non-compositional bijections.

We start with a typical compositional generalization problem, where the input signal x and label(s) ȳ
are determined by several ground-truth generating factors G ≜ [G1, . . . , GL] ∈ G, as in Figure 1-(a).
All Gi are discrete variables with V possible values.1 In this problem, the model only learns from
data samples generated from a subset of all possible G and tries to generalize to unseen G. Consider
a colored-dSprite [16] example provided in Figure 1-(b), where G1 and G2 are the shape and color of
the objects. With the provided train/test split, the model must first learn the concepts of “red” and
“box” separately, and then compositionally combine them to make a correct prediction on the “red
box” in the test set. Suppose the model uses a deep neural network hθ : X → Z to extract features
from the input signals, where the representation space Z is also an L× V discrete space. Assuming
each x has a unique G, we can then define the mapping between ground-truth factors and the extracted
representations as M : G → Z . In order to generalize well, a good mapping M should satisfy:

• M should be a bijection, otherwise, two x with different G will be mapped to the same z,
which makes it impossible for the task head to separate these two x from their z;

• M should ensure different zi consistently encode different Gj in a non-overlapping way, so
the model can generalize appropriately to novel combinations.

To get a clearer picture of this second requirement, we consider a “Toy256” example, where G1 =
{blue,red}, G2 = {box,circle}, and z = {00, 01, 10, 11}. There are 44 = 256 possible
mappings for M , of which 4! = 24 are bijections. Among all these bijections, only 2!× 22 = 8 are
compositional. To get such a mapping, we should first assign color and shape to different zi, and
then separately assign 0 or 1 to represent different values for each attribute. Following Ren et al. [22],
we call those non-compositional bijections “holistic mappings”. As demonstrated in Figure 1-(c, d),
compositional mappings can be decomposed into some shared rules while holistic mappings cannot,
as illustrated by corresponding CFGs (context-free grammars) at the top of the figure.

Since the compositional mappings are generated in a systematic way, intuitively they are simpler
and can be described with less effort. We can use group theory to define the simplicity of a bijection
more formally. When generating a compositional mapping, we first select zi for each Gj in a
non-overlapping way. Such a process can be represented by an element in a symmetry group SL. We
then build an injection from the paired Gj to zi, by which each possible value of the j-th attribute
is encoded by different “words” in zi. In short, assuming both G and z are L× V grid spaces, any
compositional mapping can be described by an element in the group SL

V ⋊ SV ∈ SV L , where ⋊ is
the semidirect product in group theory.

This implies why a compositional mapping has a lower Kolmogorov complexity upper bound2 than an
arbitrary non-compositional one among all bijections. From the definition of the symmetry group, we
know each element in SV L can be represented by a permutation matrix of size V L. As there is only
one “1” in each row and column of a permutation matrix, any permutation matrix can be uniquely
represented by a permuted sequence of length V L. Specifically, assume we have a sequence of
natural numbers {1, 2, ..., V L}, each permuted sequence Perm({1, 2, ..., V L}) represents a distinct

1Continuous Gi can be quantized to fit our analysis; factors with fewer than V values can randomly assign
features or pad zeros.

2While it is not possible to lower-bound the Kolmogorov complexity of any particular mapping without
fixing the underlying Turing machine, a counting argument shows that most non-compositional bijections must
have higher complexity. The complexity we described here is actually the K(f) discussed in [4], which plays an
important role of defining the representational compositionality.

2

permutation matrix, and hence represents a distinct bijection from G to z. In other words, we can
encode one bijection from G to z using a sequence of length V L, i.e., Perm({1, 2, ..., V L}), and
bound the corresponding Kolmogorov complexity (in bits) as

K(bijection) ≤ V L · log2 V L = V L · L · log2 V, (1)
As an arbitrary bijection from G to z doesn’t have any extra information to improve the coding
efficiency, Equation (1) provides an upper bound of the minimal Kolmogorov complexity.

On the contrary, as each compositional mapping can be represented by an element in SL
V ⋊ SL, we

can encode the mappings more efficiently. Specifically, we need to first use L sequences with length
V , i.e., Perm({1, 2, ..., V }), to represent the assignment of “words” for each zi. After that, we need
one sequence of length L, i.e., Perm({1, 2, ..., L}) to encode the assignment between zi and Gj .
Ignoring the necessary separators for these L + 1 sub-sequences, the corresponding Kolmogorov
complexity is then bounded as

K(comp) ≤ V · log2 V + L · log2 L. (2)

To compare the Kolmogorov complexity of different mappings, we can define a ratio as γ ≜ K(bijection)
K(comp) .

Obviously, when L ≤ V , γ ≥ V L−1·L
2 , which is larger than 1 as long as L, V ≥ 2. When L > V ,

γ ≥ V L log2 V
2 log2 L , which is also larger than 1 when L, V ≥ 2.

Note that there might be some partially compositional mappings. For example, we can have a
mapping with zi≤10 sharing the reused rules while other zi>10 doesn’t. Then this type of mapping
can be represented by an element in S10

V ⋊ S10 ⋊ SV L−10 . As a mapping in this subset shares 10
common rules, its Kolmogorov complexity is between K(bijection) and K(comp). Intuitively, for all
bijections, smaller K(·) means higher compositionality.

3 Simpler Mappings are Learned Faster

The analysis above links the concepts of compositionally, simplicity, and Kolmogorov complexity
under an idealized setting, which also aligns well with many related works. For example, Huh
et al. [10] claim that simplicity bias is the key for the models in different modalities converging
to a shared representation space that is similar to the ground truth. Goldblum et al. [5] also link
Kolmogorov complexity to PAC-Bayes generalization bounds. This supports the idea that having
more compositional mappings greatly benefits the model’s generalization ability. This section further
demonstrates that a neural network naturally favors such simpler mappings. We will first verify this
claim by experiments under manual settings, and then provide a detailed explanation of why such a
tendency exists using learning dynamics.

Specifically, we claim that simpler mappings are learned faster by a neural network trained using
GD. To verify this, we consider a multi-label classification problem and create 256 different datasets
(each only contains 4 examples) for each M in our “Toy256” setting. For example, the dataset for
the mapping in Figure 1-(c) should be {(blue box, 00), (blue circle, 01), (red box, 10), (red
circle, 11)}, where the label “01” means ȳ1 = 0 and ȳ2 = 1. We then randomly initialize a neural
network as our hθ and concatenate two Sigmoid functions as our gϕ. With the same initialization
and all hyper-parameters, we train the network to convergence for each dataset. We also consider
different input signals (images and dense random vectors), network structures (MLP and ResNet),
loss functions (cross-entropy and mean square error), and optimizers (standard SGD and Adam).
Please refer to Appendix C for more details.

Figure 2-(a) shows the training curves of 256 runs in our default setting. Since the only difference
among these runs is the dataset generated by different mappings, it is safe to conclude that the
difference in their learning speed is caused by the inherent bias of the model’s learning behavior on
this problem. From this figure, we see compositional mappings are learned faster than holistic ones.
However, some mappings are learned even faster, which makes sense because those non-bijection
mappings contain degenerate components, i.e., two or more objects are mapped to the same z, which
means they are simpler. That also explains why the four degenerate mappings, which map all four
objects to the same z, are learned fastest among all 256 mappings.

To further verify this, we quantify the learning speed using the concept of “convergence time,” i.e., the
area under the learning curve. A smaller convergence time means the mapping is learned faster. This

3

(a). Learning speed of 256 mappings (b). Learning speed and MDL (c). Explaining the simplicity bias using learning dynamics

, 00
, 01
, 10

, 11

P y1 = 0 ⋅ P y2 = 0 ⋅ P y1 = 0 ⋅ P y2 = 1 ⋅ P y1 = 1 ⋅ P y2 = 0 ⋅ P y1 = 1 ⋅ P y2 = 1P M =

, 00
, 11
, 10
, 01

P y1 = 0 ⋅ P y2 = 0 ⋅ P y1 = 1 ⋅ P y2 = 1 ⋅ P y1 = 1 ⋅ P y2 = 0 ⋅ P y1 = 0 ⋅ P y2 = 1P M =

C
o

m
p

o
si

ti
o

n
al

H
o

lis
ti

c

Figure 2: The evidence and explanations of the claim that simpler mappings are learned faster.
The blue arrows in the last panel mean when learning the given example, the model increases its
confidence in the corresponding prediction. The increase of the darker arrows is stronger than that
of lighter ones because the confidence changes for the lighter ones are indirectly caused by the
“elasticity” of the neural network [7]. For holistic mapping, the yellow arrows pointing down mean
the corresponding confidence decreases after learning the example.

metric is similar to the C-score of Jiang et al. [11], which describes a training example’s difficulty.
Also, if the model is trained with cross-entropy loss and all examples only appear once, this metric is
the compression rate for the entire dataset [20]. These works also hint that learning speed is deeply
related to compression, simplicity, and generalization ability.

Another quantity we want to explicitly calculate is bounds on each mapping’s Kolmogorov complexity.
Since the mapping space studied in our Toy256 setting is simple enough, we can first create the
CFGs for each mapping and then convert them to a piece of description sequence using the method
provided by Kirby et al. [12]. After that, we can use Huffman coding [3] and calculate the coding
length in bits for each mapping. Please refer to Appendix B for more details. In short, a smaller
coding length means the mapping is simpler. It is clear in Figure 2-(b) that compositional mappings
are the simplest bijections. Note that all the non-bijection mappings contain degenerate components,
hence are simpler than bijections. The figure also clearly demonstrates that the learning speed is
strongly correlated to the coding length (with ρ > 0.65 and p < 10−30), matching our hypothesis
well. This trend is consistent across various settings, as demonstrated in Appendix D.

The results above bridge the simplicity bias to the model’s learning behavior, where the latter can be
further explained using learning dynamics [21, 23]. Remember our model generates probabilistic
predictions on both y1 and y2 using Sigmoid functions. Then, we can directly write down the
predicted probability of each mapping as a product of eight terms, as in the top line of Figure 2-
(c). In this figure, we demonstrate how the model’s confidence of different M is updated when
learning specific training samples. For example, in the first row of the compositional mapping in
the figure, the model learns (blue box, 00). Then the corresponding P (y1 = 0 | blue box) and
P (y2 = 0 | blue box) are significantly improved, since they are directly updated by learning this
example. Furthermore, as the neural network has local elasticity [7], the model’s predictions on
those “similar” (measured using Hamming distance) input examples would also be indirectly updated
(represented by the small arrows in the figure). As a result, the model’s confidence on blue circle
and red box, which share one attribute with the learned blue box, are influenced more by this
update. Furthermore, since a compositional mapping always utilizes consistent values to represent
the same attribute (e.g., z1 = 0 always encodes the blue color), all the direct and indirect updates
align well with the compositional mapping. That is why the training loss of such mappings decreases
faster. On the contrary, for a holistic mapping, we observe several contradictions between the direct
and indirect updates: learning it requires the model to use more updates to counteract those negative
indirect influences. That explains why compositional mappings are usually learned faster than holistic
ones by a neural network.

4 Conlusion

This paper first shows that compositional mappings are the simplest bijections in terms of Kolmogorov
complexity or coding length. Then, using experiments and analysis from the learning dynamics
perspective, the paper claims that the simplicity bias (in terms of coding length) is inherent in neural
network training for typical architectures using gradient descent. Although the settings in the paper
are simple, the theoretical formulation and analysis have the potential to be extended to more practical
problems.

4

References
[1] Jacob Andreas. “Measuring Compositionality in Representation Learning.” International

Conference on Learning Representations. 2019.
[2] Henry Brighton and Simon Kirby. “Understanding linguistic evolution by visualizing the

emergence of topographic mappings.” Artificial life 12.2 (2006), pages 229–242.
[3] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2022.
[4] Eric Elmoznino, Thomas Jiralerspong, Yoshua Bengio, and Guillaume Lajoie. “A Complexity-

Based Theory of Compositionality.” arXiv preprint arXiv:2410.14817 (2024).
[5] Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The No Free Lunch

Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning.
2023. arXiv: 2304.05366 [cs.LG].

[6] Shangmin Guo, Yi Ren, Stefano V Albrecht, and Kenny Smith. “lpNTK: Better Generalisation
with Less Data via Sample Interaction During Learning.” The Twelfth International Conference
on Learning Representations. 2024.

[7] Hangfeng He and Weijie Su. “The Local Elasticity of Neural Networks.” International Confer-
ence on Learning Representations. 2020.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition.” Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pages 770–778.

[9] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. 2018. arXiv:
1812.02230 [cs.LG].

[10] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. “The platonic representation
hypothesis.” International Conference on Machine Learning (2024).

[11] Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. “Characterizing Structural
Regularities of Labeled Data in Overparameterized Models.” International Conference on
Machine Learning. PMLR. 2021, pages 5034–5044.

[12] Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. “Compression and com-
munication in the cultural evolution of linguistic structure.” Cognition 141 (2015), pages 87–
102.

[13] Yen-Ling Kuo, Boris Katz, and Andrei Barbu. “Compositional networks enable systematic
generalization for grounded language understanding.” arXiv preprint arXiv:2008.02742 (2020).

[14] Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
“Towards understanding grokking: An effective theory of representation learning.” Advances
in Neural Information Processing Systems 35 (2022), pages 34651–34663.

[15] David JC MacKay. Information theory, inference and learning algorithms. Cambridge univer-
sity press, 2003.

[16] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dSprites: Disentangle-
ment testing Sprites dataset. https://github.com/deepmind/dsprites-dataset/. 2017.

[17] Milton Montero, Jeffrey Bowers, Rui Ponte Costa, Casimir Ludwig, and Gaurav Malhotra.
“Lost in Latent Space: Examining failures of disentangled models at combinatorial generalisa-
tion.” Advances in Neural Information Processing Systems 35 (2022), pages 10136–10149.

[18] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
“Grokking: Generalization beyond overfitting on small algorithmic datasets.” arXiv preprint
arXiv:2201.02177 (2022).

[19] Linlu Qiu, Peter Shaw, Panupong Pasupat, Paweł Krzysztof Nowak, Tal Linzen, Fei Sha, and
Kristina Toutanova. “Improving compositional generalization with latent structure and data
augmentation.” arXiv preprint arXiv:2112.07610 (2021).

[20] Jack Rae. Compression for AGI. 2023. URL: https://www.youtube.com/watch?v=
dO4TPJkeaaU.

[21] Yi Ren, Shangmin Guo, Wonho Bae, and Danica J. Sutherland. “How to prepare your task
head for finetuning.” The Eleventh International Conference on Learning Representations.
2023.

5

https://arxiv.org/abs/2304.05366
https://arxiv.org/abs/1812.02230
https://www.youtube.com/watch?v=dO4TPJkeaaU
https://www.youtube.com/watch?v=dO4TPJkeaaU

[22] Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Cohen, and Simon Kirby. “Compositional
languages emerge in a neural iterated learning model.” International Conference on Learning
Representations. 2020.

[23] Yi Ren, Shangmin Guo, and Danica J. Sutherland. “Better Supervisory Signals by Observing
Learning Paths.” International Conference on Learning Representations. 2022.

[24] Yi Ren, Samuel Lavoie, Michael Galkin, Danica J Sutherland, and Aaron C Courville. “Im-
proving compositional generalization using iterated learning and simplicial embeddings.”
Advances in Neural Information Processing Systems 36 (2024).

[25] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. “Under-
standing deep learning (still) requires rethinking generalization.” Communications of the ACM
64.3 (2021), pages 107–115.

6

A Compositional Representation and Platonic Representation Hypothesis

This appendix tries to uncover the implicit relationship between compositional representation learning
(usually studied in a manually toyish setting) and the Platonic representation hypothesis (proposed in
[10], experimentally verified on many SOTA large vision and language models). Specifically, we
focus on the following three aspects: 1.) the underlying assumption of the existence of G; 2.) the
measuring metrics; 3.) the converging pressures. Our analysis hints that more advanced compositional
generalization ability could also be achieved if we design appropriate learning systems following the
fundamental principles demonstrated in Huh et al. [10].

A.1 The Underlying Assumption of the Ground-truth Generating Mechanism

The main claim of Huh et al. [10] is that there exists a unique ground-truth idealized world (i.e., the G
in our paper), from which, all observations in different modalities are its projections. A deep learning
system, which learns from these projections and then generalizes to related tasks, are trying to uncover
such ground truth. As the models in different modalities become stronger, their representations (i.e.,
z ∈ Z in our paper) are more aligned, because they all tend to converge to the ground truth G.

In our paper, we also assume the existence of G and consider both input signal x and labels ȳ
are determined by it. By treating the mapping from G → Y as a special projection for a specific
modality, our Figure 1-(a) becomes the upper part of the Figure 1 in [10]. The goal of a compositional
representation learning task is to recover a good representation space that is similar to the ground
truth, and hence generalize well to unseen combinations of attributes. This also aligns with the claim
that “models generalize better on different modalities align better to the ground-truth” in [10].

A.2 Measuring Metrics: Kernel Alignment, Disentanglement, and Topological Similarity

To mathematically describe the representation’s convergence, Huh et al. [10] use three steps to define
a metric called Kernel Alignment to measure the similarity between two representation spaces.

1. A representation, which maps the input signal to a dense representation space, is a function
f : X → Rn. Note that our hθ(x) plays a similar role;

2. A kernel, K : X × X → R, characterize the similarity between two elements in X .
In a dense representation case, the inner product is usually applied, i.e., K(xi, xj) =
⟨f(xi), f(xj)⟩,K ∈ K. Our paper consider Hamming distance, because our G and z are all
categorical variables;

3. A kernel-alignment metric m : K ×K → R, measures the similarity between two kernels.

For the third-level measurement, Huh et al. [10] use Centered Kernel Distance (CKA), a kernel-
alignment metric throughout their paper. Actually, many related works in compositional generalization
also have similar measurements, e.g., the topological similarity proposed in [2]:

Topsim(G, z) ≜ Corr
(
dG(G

(i),G(j)), dz(z
(i), z(j))

)
, (3)

This definition also follows three steps: z are representations generated by feeding x to hθ, dG and dz
are distance measurements (or kernel in the second step above) for space G and Z , and Corr(·, ·) is the
Spearman’s correlation measuring the relationship between the output of two functions (kernels). In
short, higher topological similarity means similar objects in G are mapped to similar positions in Z .
If we consider G as another modality of the projected ground truth, the topological similarity is just a
special kernel-alignment metric used in [10]. Also, some other measurements of compositionality
like TRE (Tree Reconstruction Error, [1]), representation disentanglement [9], etc., also follow
this principle generally. In summary, since the main measurement of the Platonic representation
hypothesis and the compositional representation learning are essentially identical, we can draw more
parallels between these two seemingly distinct fields in the future.

A.3 The Converging Pressures

Section 3 of [10] proposes three pressures that lead the model’s representations to converge to the
ground truth. We could also find some counterparts in the field of compositional representation

7

learning. The first one is task generality, which means requiring the model to solve more tasks using
the same representations leads to better convergence to the ground truth. We can also draw a similar
conclusion from the experiments in [24], in which the authors show that the quantity and diversity of
the learning tasks play an important role in achieving good systematic representations.

The second pressure is the model’s capacity. Because bigger models are more likely to converge
to a shared representation than smaller ones [10]. This partially aligns with our “unambiguous”
requirement on the mapping M : G → Z discussed in Section 2. This requires the model to be
capable enough to have perfect training accuracy, otherwise, important information about the task
labels would be lost. However, Zhang et al. [25] demonstrates that achieving perfect training accuracy
(even if the label is purely random noise) is not a hard task for a deep neural network, while the
optimal mapping can be even simpler than the noisy-label dataset. As a result, it might be more useful
to consider the influence of the model’s capacity from a dynamical perspective (e.g., optimization),
which is usually neglected when studying the relationship between generalization and model capacity.

The last pressure, i.e., the simplicity bias, is the one we discussed most in our paper. We showed
that such simplicity can be understood as the lower bound of Kolmogorov complexity, which also
measures how compressible the mapping is. Requiring simpler mappings also aligns well with
Occam’s Razor, which might be an important direction for our future exploration. The explanation
of learning dynamics is a good starting point for combining this model-agnostic measurement (i.e.,
Kolmogorov complexity) with the model’s inherent bias. Actually, Figure 1 of Zhang et al. [25]
shows that under the same setting, the model learns the random noise labels slower than the ground
truth labels. This phenomenon could also be explained by the interactions between training examples
used in this paper. Since the random noisy-label dataset would have two semantically similar x with
very different labels, the direct and indirect updates would have more contradictions, similar to the
holistic updating case in Figure 2.

B Coding Length and Topological Similarity for the Mappings in Toy256

S: AB
A: b 0
A: r 1
B: x 0
B: c 1

S: bx 00
S: rx 10
S: bc 11
S: rc 01

S: {bx,rc,rx} 00
S: bc 11

S: {bx,rx,bc,rc} 01

④: Sbx,rx,bc,rc01

③: Sbx,rc,rx00;Sbc11

①: Sbx00;Srx10;Sbc11;Src01

②: SAB;Ab0;Ar1;Bx0;Bc1

① Holistic ② Compositional

③ Other ④ Degenerate

(a). The CFG of different mappings (b). The coding for these mappings

Figure 3: Four typical mappings studied in this paper and their coding strings.

The main target of this paper is to show that the simplicity bias is inherent in neural network
training. Inspired by many related works on compositional generalization, we believe the Kolmogorov
complexity is a perfect measurement for the simplicity of a mapping. However, it is well known
that Kolmogorov complexity is usually hard to calculate and people typically use the minimum
description length (MDL) under specific constraints as its approximation [15].

To experimentally show the correlation between learning speed and simplicity, we use the coding
method provided in Kirby et al. [12] to calculate the coding length for all 256 mappings. Note that
such a coding mechanism might not be optimal (i.e., its length is not the MDL). Hence we only call
this measurement coding length (CL) throughout the paper.

The calculation of CL involves three steps. First, we convert all mappings using a compressed CFG,
as illustrated in Figure 3-(a). As all the attributes studied here are categorical variables, we use b,
x, r, c to represent blue, box, red, circle, respectively. Then, we delete all the redundant
characters and generate the unique coding sequence for each CFG, as in Figure 3-(b). The special
characters “S” and “;” denote the starting and ending of one piece of rule and “,” is used to separate
different objects sharing the same message. Finally, the coding length in bits of a mapping M is

8

calculated using

CL(M) = −
|Seq(M)|∑

i=1

log2 p(si); p(si) =
Cnt(si)

|Seq(M)|
(4)

where Seq(M) converts the mapping to a coding sequence and p(si) is the probability of the i-th
character in this code squence. For example, for the degenerate sequence [Sbx,rx,bc,rc01],
p(s1) = p(s7) =

Cnt(b)
|Seq(M)| =

2
14 .

Furthermore, we also verify the correlation between the learning speed and topological similarity
defined in Equation (3). Generally, the Topsim for perfect compositional mappings equals one.
Note that the Topsim of pure degenerate mappings that maps every object to the same z is not well
defined in Equation (3), because the Spearman’s correlation is calculated by rs =

Cov(R[z],R[G])
σR[z]σR[G]

. In
a degenerate mapping, the six pair-wise distances of all four possible z are all zeros, which means
R[z] = [0,0,0,0,0,0]. Hence the corresponding rs becomes 0

0 . However, following the definition
of topological similarity that high Topsim mappings tend to assign similar z to x with similar G, we
just define the Topsim of those degenerate mappings as one.

C Experimental Settings

We consider various settings for the Toy256 examples to verify that the simplicity bias discussed
in this paper is general enough. For the input signals, we first consider two types of one-hot
concatenation vectors. One is the concatenation of two 2-dim vectors (OHT2 for short). For example,
blue box and red circle are encoded as [0101] ·W4×d and [1010] ·W4×d, respectively, where
W4×d is a randomly initialized matrix fixed for all 256 mappings. Another setting is OHT3, which
considers a redundant dimension for each attribute, where blue box and red circle are encoded
as [010010] ·W6×d and [100100] ·W6×d, respectively. We also consider the vision input, where
the image is sampled and colored from the dSprite dataset, as illustrated in Figure 1.

We consider different network structures for different input modalities. For the one-hot input, we use
an MLP with three hidden layers with a width of 128. For the image input, we consider both a 3-layer
MLP and a ResNet9 [8] with narrower hidden layers. The task heads for all the networks are identical:
we add two separate linear projection layers with size h× 2 on the output of the backbone. After that,
we take Softmax on each of these outputs to generate probabilistic predictions. When calculating the
loss function, we consider both cross-entropy (CE) loss and a mean square error (L2) loss, where
the latter is calculated between the predicting probability vector and a one-hot distribution of the
ground truth labels. When optimizing the network, we consider both stochastic gradient descent
(SGD) and Adam. Unless otherwise stated, the learning rate is set to 10−3, weight decay is 5 ∗ 10−4,
and all other parameters are set to be the default values. Note that all hyper-parameters (including the
initialization of the network) are shared for all 256 experiments in each group.

D More Experimental Results

To visualize the relationship between learning speed and the simplicity of each mapping, we provide
three types of visualizations in Figure 4 and Figure 5. The first one is the learning curves of all 256
mappings. It is clear that under most settings, the blue curves (i.e., those for compositional mappings)
decay faster than the red ones (the non-compositional bijections). The second one is the scatter plots
showing the correlation between the converging time (i.e., the integral under the learning curve) and
CL in Equation (4). The third one is the scatter plots showing the correlation between the converging
time and topological similarity defined in Equation (3). We also calculate the Pearson correlation in
the latter two cases in Table 1. It is clear that in most cases, simpler mappings are indeed learned
faster under different settings. One exceptional case is training a ResNet with image input using
Adam optimizer. The simplicity bias is even reversed compared with the results using SGD. This
phenomenon hints that the bias in DNN’s learning is also influenced by the inherent bias of specific
network structures and optimizers. We left this for our future work.

9

Table 1: The statistical correlation between learning speed and simplicity.
CL-Conv.Time Topsim-Conv.Time CL-Conv.Time Topsim-Conv.TimeInput Optim. Loss
ρ p ρ p

Input Optim. Loss
ρ p ρ p

CE 0.6475 8.1*1e-32 -0.7101 1.4*1e-40 CE 0.6866 5.0*1e-37 -0.5911 1.6*1e-25SGD L2 0.5793 2.4*1e-24 -0.7817 5.3*1e-54 SGD L2 0.5932 1.1*1e-25 -0.6057 5.1*1e-27
CE 0.6598 2.3*1e-33 -0.5731 9.4*1e-24 CE 0.5403 8.4*1e-21 -0.6720 5.5*1e-35

OHT2
MLP Adam L2 0.5378 1.4*1e-20 -0.7223 1.2*1e-42

Image
MLP Adam L2 0.4433 9.5*1e-14 -0.6585 3.4*1e-33

CE 0.5976 3.5*1e-26 -0.7963 2.2*1e-57 CE 0.6711 7.4*1e-35 -0.2619 2.2*1e-5SGD L2 0.6386 9.8*1e-31 -0.7311 4.5*1e-44 SGD L2 -0.015 0.8159 -0.0297 0.6358
CE 0.5672 3.4*1e-23 -0.6418 4.1*1e-31 CE -0.5115 1.8*1e-18 0.0423 0.4999

OHT3
MLP Adam L2 0.5582 2.3*1e-22 -0.7026 2.1*1e-39

Image
ResNet Adam L2 -0.2876 2.8*1e-06 0.0197 0.7538

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

SG
D-

CE

degenerate
compositional
holistic
others

40 45 50 55 60 65

20

40

60

80

100

120

Co
nv

er
gi

ng
 T

im
e

OHT2
degenerate
compositional
holistic
others

1.0 0.5 0.0 0.5 1.0

20

40

60

80

100

120

Co
nv

er
gi

ng
 T

im
e

degenerate
compositional
holistic
others

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65
20

40

60

80

100

120

140

160

Co
nv

er
gi

ng
 T

im
e

OHT3

1.0 0.5 0.0 0.5 1.0
20

40

60

80

100

120

140

160

Co
nv

er
gi

ng
 T

im
e

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 lo
ss

SG
D-

L2

40 45 50 55 60 65

10

20

30

40

50

60

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0

10

20

30

40

50

60
Co

nv
er

gi
ng

 T
im

e

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65

25

50

75

100

125

150

175

200

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0

25

50

75

100

125

150

175

200

Co
nv

er
gi

ng
 T

im
e

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

Ad
am

-C
E

40 45 50 55 60 65

20

30

40

50

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0

20

30

40

50

Co
nv

er
gi

ng
 T

im
e

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65
15

20

25

30

35

40

45

50

55

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
15

20

25

30

35

40

45

50

55

Co
nv

er
gi

ng
 T

im
e

0 50 100 150 200
Learning Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 lo
ss

Ad
am

-L
2

40 45 50 55 60 65
Coding Length (in bits)

8

10

12

14

16

18

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
Topological Similarity

8

10

12

14

16

18

Co
nv

er
gi

ng
 T

im
e

0 50 100 150 200
Learning Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65
Coding Length (in bits)

4

6

8

10

12

14

16

18

20

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
Topological Similarity

4

6

8

10

12

14

16

18

20

Co
nv

er
gi

ng
 T

im
e

Figure 4: Experiments for the one-hot vector inputs.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

SG
D-

CE

degenerate
compositional
holistic
others

40 45 50 55 60 65
10

15

20

25

30

Co
nv

er
gi

ng
 T

im
e

Image-MLP

degenerate
compositional
holistic
others

1.0 0.5 0.0 0.5 1.0
10

15

20

25

30

Co
nv

er
gi

ng
 T

im
e

degenerate
compositional
holistic
others

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65

10

12

14

16

18

Co
nv

er
gi

ng
 T

im
e

Image-ResNet

1.0 0.5 0.0 0.5 1.0

10

12

14

16

18

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 lo
ss

SG
D-

L2

40 45 50 55 60 65
6

8

10

12

14

16

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
6

8

10

12

14

16

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

Ad
am

-C
E

40 45 50 55 60 65
2

3

4

5

6

7

8

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
2

3

4

5

6

7

8

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
Learning Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 lo
ss

Ad
am

-L
2

40 45 50 55 60 65
Coding Length (in bits)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
Topological Similarity

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Co
nv

er
gi

ng
 T

im
e

0 10 20 30 40 50
Learning Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 lo
ss

40 45 50 55 60 65
Coding Length (in bits)

8

10

12

14

16

Co
nv

er
gi

ng
 T

im
e

1.0 0.5 0.0 0.5 1.0
Topological Similarity

8

10

12

14

16

Co
nv

er
gi

ng
 T

im
e

Figure 5: Experiments for the vision inputs.

10

	Introduction
	Compositional Mappings are the Simplest Bijections
	Simpler Mappings are Learned Faster
	Conlusion
	Compositional Representation and Platonic Representation Hypothesis
	The Underlying Assumption of the Ground-truth Generating Mechanism
	Measuring Metrics: Kernel Alignment, Disentanglement, and Topological Similarity
	The Converging Pressures

	Coding Length and Topological Similarity for the Mappings in Toy256
	Experimental Settings
	More Experimental Results

