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ABSTRACT

Identifying predictive patterns for stock market trends, known as alpha factors, is a
critical challenge in quantitative finance. Symbolic regression (SR) methods can
discover these factors as interpretable mathematical expressions, offering advan-
tages over “black-box” machine learning approaches and manual methods that rely
heavily on human expertise. However, existing SR methods typically restart the
discovery process for each new dataset, failing to leverage prior knowledge. To
address this limitation, we propose AlphaFormer, an encoder-decoder Transformer
model designed for the end-to-end generation of synergistic alpha factors from
raw stock market data. AlphaFormer leverages pre-training on synthetic datasets
to efficiently uncover synergistic alpha factors for new datasets, capitalizing on
acquired prior knowledge. To overcome the challenge of generating synthetic stock
datasets with temporal dependencies, we introduce a novel generative framework
that integrates multiple time-series generative models to generate synthetic stock
data and dynamically select the highest quality samples, ensuring the creation of
high-fidelity datasets crucial for pre-training. Extensive evaluations on real-world
stock market datasets demonstrate that AlphaFormer outperforms existing methods
across widely used metrics, achieving superior performance with significantly
reduced inference computation—generating only 33% as many factors as the best
baseline and requiring no further training during inference. Backtests further
show that AlphaFormer delivers the highest annual return among all methods,
highlighting its practical potential for superior investment performance.

1 INTRODUCTION

In the dynamic landscape of financial markets, achieving investment returns exceeding a benchmark
is a primary objective for investors and financial institutions. Consistently generating this superior
performance relies on the ability to identify predictive patterns in financial data Qian et al. (2007).
These predictive patterns are referred to as alpha factors, serving as the fundamental building blocks
for forecasting stock market trends Tulchinsky (2019). The systematic process of discovering these
predictive factors is termed alpha mining. Therefore, identifying novel and exploitable alpha factors
is a critical area of research within quantitative finance, serving as the foundation for competitive
trading strategies.

Extensive efforts have been dedicated to the challenge of alpha mining, giving rise to various
approaches. Generally, current approaches can be categorized into two main paradigms: machine
learning-based methods and formulaic alpha methods. Machine learning techniques, including
tree-based models like LightGBM Ke et al. (2017) and XGBoost Chen & Guestrin (2016), and deep
learning models such as LSTM Hochreiter & Schmidhuber (1997), have been extensively employed
due to their capacity in uncovering intricate and often non-linear patterns. More recently, advanced
sequence modeling architectures such as Transformer-based models Xu et al. (2021) and state-space
models (e.g., S5 Smith et al. (2023)) have been explored for financial time-series representation
learning, offering powerful tools for capturing long-range dependencies. However, despite their
strong predictive capacity, these approaches remain largely opaque, further reinforcing the appeal of
interpretable formulaic alphas Yu et al. (2023). In contrast, formulaic alpha methods aim to discover
explicit mathematical expressions as alpha factors—such as “mean(close, 20d)”—offering greater
simplicity and interpretability. Valuing these attributes of transparency and analytical tractability, this
work focuses on the second paradigm.
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Research into formulaic alpha methods has historically evolved through two stages: manual ap-
proaches and symbolic regression (SR)-based methods. Initially, the field relied predominantly on
manual approaches, where experts identified potential factors based on economic theory, intuition, or
standard statistical analyses Kakushadze (2016). However, these methods were inherently limited
by their dependence on human expertise and lacked the flexibility to systematically explore the
vast space of possible factors. Recognizing the need for more systematic and data-driven discovery,
the field advanced to SR-based methods, which encompass Genetic Programming (GP)-based and
Reinforcement Learning (RL)-based approaches. GP-based methods employ evolutionary algorithms
operating on expression trees to automatically search for and evolve factor formulas Cui et al. (2021);
Zhang et al. (2020). More recently, RL-based SR methods have emerged Yu et al. (2023); Shi
et al. (2025); Ren et al. (2024); Shin et al. (2024). These methods use a policy network, typically
implemented with RNNs, to output an expression. The output expression obtains a reward based
on some goodness-of-fit metric (e.g., Information Coefficient), allowing the policy network to learn
to assign higher probabilities to more effective alpha factors. While these SR-based methods offer
significant improvements in flexibility and automation over manual techniques, a limitation persists:
both GP-based and RL-based SR methods often initiate the factor search anew for each distinct stock
dataset, failing to leverage knowledge from prior discovery efforts.

Recent advancements in pre-trained SR provide a compelling solution to the limitation of traditional
SR methods Biggio et al. (2021); Kamienny et al. (2022); d’Ascoli et al. (2023a;b); Becker et al.
(2023); d’Ascoli et al. (2022). By utilizing an encoder-decoder transformer model Vaswani et al.
(2017) pre-trained on large-scale synthetic datasets, pre-trained SR equips the model to generalize
symbolic regression tasks. This enables it to directly infer mathematical expressions for new datasets
by leveraging acquired prior knowledge. Inspired by this innovation, we propose AlphaFormer,
an encoder-decoder Transformer model designed to generate synergistic symbolic expressions for
alpha factors (e.g., “mean(close, 20d)”) from a raw stock dataset in an end-to-end fashion. Our
AlphaFormer can leverage prior knowledge gained from pre-training for efficient inference, without
the extensive search required by traditional symbolic regression approaches.

A key challenge in pre-training AlphaFormer lies in the generation of synthetic stock datasets with
temporal dependencies. Prior studies in pre-trained SR often relied on manual approaches to construct
synthetic datasets from simple distributions like mixtures of Gaussians Biggio et al. (2021); Kamienny
et al. (2022); Valipour et al. (2021). However, these methods are impractical for synthetic stock data
generation due to the inherent temporal dependencies within stock data. To address this challenge,
we introduce a novel generative framework specifically designed to create high-fidelity synthetic
stock datasets for pre-training AlphaFormer. This framework generates synthetic stock data from
multiple time-series generative models—including GRU Dey & Salem (2017), Transformer Vaswani
et al. (2017), and diffusion models Tashiro et al. (2021)—and dynamically selects the synthetic data
with the highest quality. This dynamic selection strategy, leveraging the complementary strengths of
different generative models, ensures the creation of more realistic synthetic stock datasets, ultimately
enhancing the alpha discovery capability of AlphaFormer.

Our contributions can be summarized as follows:

1. We propose AlphaFormer, an encoder-decoder Transformer model tailored to generate
synergistic alpha factors from raw stock market data in an end-to-end manner.

2. We introduce a novel generative framework that integrates multiple time-series generative
models to generate synthetic stock data and dynamically select the highest quality samples,
ensuring the creation of high-fidelity datasets essential for pre-training AlphaFormer.

3. We extensively evaluate AlphaFormer on real-world stock market datasets, demonstrating
superior performance over existing methods. Specifically, AlphaFormer surpasses existing
baselines on the tested stock market datasets across widely used metrics, while generating
only 33% as many factors as the best baseline method and requiring no further training
during inference. Additionally, in a simulated trading environment, our approach yields the
highest annual return compared with other baseline methods, highlighting its potential for
superior investment returns in practice.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 ALPHA FACTOR

We consider a stock dataset D ∈ RS×K×T comprising S stocks over a total of T trading days with
K features (e.g., opening and closing prices). This dataset is a three-dimensional tensor where the
dimensions represent stocks, features, and time, respectively. On each trading day t ∈ {1, 2, . . . , T},
each stock i ∈ {1, 2, . . . , S} is associated with a feature matrix xti ∈ RK×t, which contains the K
features over the past t days. Let Xt ∈ RS×K×t denote the tensor whose i-th row is xti. An alpha
factor is defined as a function f : RS×K×t → RS that maps the feature tensor Xt to a vector of alpha
values zt = f(Xt) ∈ RS , where each component corresponds to a stock.

2.2 ALPHA MINING

The objective of alpha mining is to identify a set of up to M synergistic alpha factors capable of
forecasting stock trends, specifically the future returns of all stocks, denoted by yt ∈ RS for each
trading day t.1 This collection of alpha factors, limited to a maximum size of M , is termed the Alpha
Pool. We combine the factors within the Alpha Pool using a linear model. Given m ≤ M alpha
factors f1, f2, . . . , fm, the composite alpha vector for day t is expressed as:

zt = g(Xt) =

m∑
k=1

wkfk(Xt), (1)

where w = (w1, w2, . . . , wm) represents the weights assigned to each factor. These weights w are
optimized by minimizing the following loss function:

L(w) = 1

ST

T∑
t=1

∥g(Xt)− yt∥22 + λ∥w∥1, (2)

where λ is the regularization coefficient, the first term measures the mean squared error between the
predicted and actual returns, and the second term promotes sparsity in the weights.

We evaluate forecasting performance using the average Information Coefficient (IC) and the average
Rank IC. The daily IC for day t is the Pearson correlation between the predicted alpha vector g(Xt)
and the target return vector yt, denoted as σ(g(Xt), yt). The average IC is:

σ̄(g(X), y) =
1

T

T∑
t=1

σ(g(Xt), yt). (3)

Similarly, the daily Rank IC is the Pearson correlation between the ranks of g(Xt) and yt, denoted as
σrank(g(Xt), yt) = σ(r(g(Xt)), r(yt)), and the average Rank IC is:

σ̄rank(g(X), y) =
1

T

T∑
t=1

σrank(g(Xt), yt). (4)

2.3 FORMULAIC ALPHA

Formulaic alphas are alpha factors represented by mathematical expressions constructed from a
predefined set of operators, features, and constants. The operators in these expressions fall into two
categories: (i) elementary functions that operate on single-day data, such as addition (+) and logarithm
(log), and (ii) time-series operators that process data across multiple days, such as Max(close,10d),
which computes the highest closing price of a stock over the most recent 10 days. Features are derived
from raw stock data, including opening and closing prices, trading volumes, and other financial
indicators, while constants are numerical values, such as the time window in a time-series operator
(e.g., 10 or 20 days) or numeric literals in elementary functions (e.g., 0.5 or -1.0). A comprehensive
list of all operators, features, and constants utilized in this framework is provided in Appendix B.

1A common definition of the future return is (Ps,t+N/Ps,t) − 1 for an N -day horizon, where Ps,t is the
closing price of stock s on trading day t.

3
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Figure 1: Framework for generating synthetic stock data with time dependencies. Multiple generative
models produce candidate synthetic stock data from historical inputs. An LSTM Evaluator assesses
each candidate and selects the data with the highest likelihood for inclusion in the synthetic dataset.

Each formulaic alpha is uniquely represented in Reverse Polish Notation (RPN), making the genera-
tion of an expression equivalent to generating its corresponding RPN sequence. For example, generat-
ing expression “mean(volume, 20d)” is equivalent to generating sequence [volume, 20d, mean, end],
where end denotes the termination of the sequence. This equivalence simplifies the generation of
alpha factors into a sequence generation task.

3 METHODS

3.1 DATA GENERATION

To pre-train a transformer-based model for generating alpha factors from a raw stock dataset end-to-
end, we follow the practice in prior studies on pre-trained SR that utilized synthetic datasets {Di}Ni=1
for pre-training Biggio et al. (2021); Kamienny et al. (2022); Valipour et al. (2021). In those studies,
each synthetic dataset is limited to two dimensions–sample and feature–with samples treated as
independent. This sample independence enabled researchers to manually generate samples from
simple distributions to construct the dataset. In contrast, our synthetic stock dataset incorporates
three dimensions: stock, feature, and time. The addition of the time dimension introduces temporal
dependencies among stock features, rendering previous manual generation approaches impractical.
To overcome this challenge, we propose a novel generative framework that integrates multiple time-
series generative models, such as RNN-based and diffusion-based models, to capture the temporal
dependencies of stock features effectively. The following paragraph details the generation process for
our synthetic stock datasets.

For each synthetic dataset Di, we first sample the number of stocks S uniformly from the range
[Smin, Smax], and the number of time steps T uniformly from [Tmin, Tmax]. Then, for each stock in
Di, we apply a dynamic selection strategy to select the highest-quality generated stock data from
various generative models based on their likelihood, which serves as a measure of how well the
generated sequences capture the temporal patterns observed in real-world stock data. As illustrated in
Figure 1, this process proceeds as follows:

1. Context Sampling: A segment of real-world stock data with a fixed context window of size
c is sampled to serve as historical conditioning data.

2. Data Generation: Multiple generative models (e.g., GRU, Transformer, Diffusion-based)
produce future stock data of length T , conditioned on the sampled historical stock data.

3. Evaluation: An LSTM-based evaluator estimates the likelihood of each generated future
stock data sequence by computing the product of probabilities for each future time step.

4. Selection: The future stock data with the highest likelihood is selected for inclusion in the
synthetic dataset, while all other sequences are discarded.

Our dynamic selection strategy leverages the complementary strengths of the generative models.
For example, the RNN-based model excels at generating short time series, while the diffusion-
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Figure 2: Architecture of our proposed alpha factor generator Pθ(f |D,P), which is used to iteratively
update the pool P of synergistic alpha factors by generating one new factor at a time. The generator
takes the current Alpha Pool P and stock dataset D as inputs, producing a new alpha factor fnew that
is subsequently used to update the Alpha Pool.

based model is better suited for longer sequences Zhang et al. (2024). This adaptability ensures the
generation of high-quality synthetic stock data for subsequent pre-training.

Both generative models and the LSTM evaluator are trained on stock data from the Chinese stock
market, by optimizing the log likelihood or variational lower bound (for diffusion models). Detailed
hyperparameters and pseudo-code of generating synthetic datasets are provided in Appendix C.

3.2 MODEL ARCHITECTURE

Our goal is to discover a synergistic set of alpha factors—i.e., factors whose joint predictive power
exceeds the sum of their standalone effects because they capture complementary signals with limited
redundancy and low collinearity—capable of forecasting stock trends within a given universe. We
refer to this fixed-size collection of M factors as the Alpha Pool. Constructing such a pool in one
shot is computationally prohibitive: if the search space for a single factor is L, then the space for
an M -factor pool scales as LM . To make the problem tractable, we adopt an iterative procedure
that updates the pool one factor at a time. At each step, we generate a candidate factor and evaluate
its conditional contribution given the current pool—prioritizing incremental predictive gain and
diversity—before integrating it into the Alpha Pool. The following paragraphs describe how new
factors are produced and incorporated under this criterion.

The core of our iterative methodology is the alpha factor generator, Pθ(f |D,P). This generator takes
the current Alpha Pool P (containing m factors) and a stock dataset D ∈ RS×K×T as inputs, and
outputs a new alpha factor to refine the pool. As depicted in Figure 2, the generation process begins
by transforming the dataset and existing factors into embeddings, as detailed below.

1. Dataset Embedding: The dataset embedder first processes each stock’s data si ∈ RT×K

using a LSTM network. The hidden state of the LSTM’s final time step for each stock i
serves as its stock embedding hi ∈ Rnhid (where nhid is the dimension of the hidden state).
These stock embeddings, {hi}Si=1, are then fed into a Transformer encoder. This encoder
applies self-attention mechanisms to capture inter-stock relationships, producing contextual
stock embeddings. Finally, a mean-pooling operation is applied across these contextual
embeddings over the stock dimension to yield a dataset embedding d ∈ Rnhid .

5
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Algorithm 1 Iterative refinement of an Alpha Pool

1: Input: An Alpha Pool P = {fj}mj=1, maximum pool size M , and new alpha factor fnew
2: Output: An updated Alpha Pool P⋆

3: P ′ ← P ∪ {fnew}
4: w ← argminw∈R|P′| L(w) ▷ L(w) is defined by Equation (2)
5: if |P ′| ≤M then
6: P⋆ ← P ′

7: else
8: k ← argminj=1,...,|P′| |wj | ▷ Find index of factor with smallest absolute weight
9: P⋆ ← P ′ \ {fk}

2. Factor Embeddings: The m alpha factors currently in the Alpha Pool are first converted
into their Reverse Polish Notation (RPN) representation. Each RPN is a sequence composed
of operators, input features, and constants. These RPN sequences are then processed by an
LSTM encoder, where the last hidden state for each RPN sequence forms its corresponding
factor embedding, resulting in m factor embeddings {fi|fi ∈ Rnhid}mi=1.

Once the dataset embedding d and factor embeddings {fi}mi=1 are obtained, they are combined to
create input embeddings {xi}mi=1 for generating a new factor: The dataset embedding d is replicated
m times, and these copies are added element-wise to the m factor embeddings to obtain input
embeddings, that is, xi = d+ fi. If the Alpha Pool is empty (m = 0), only the dataset embedding d
is used as the input embedding. These combined input embeddings are then passed to an encoder-
decoder Transformer model, which autoregressively generates the RPN sequence of a new alpha
factor. This generated RPN is subsequently converted into its corresponding alpha factor expression.

Upon generation, the new alpha factor is integrated into the Alpha Pool. The newly generated
alpha factor is provisionally added to the Alpha Pool. A linear model is then utilized to combine
all factors within this augmented pool. The weights for this linear combination are determined by
minimizing a loss specified in Equation (2). If the number of alpha factors (m + 1) in the Alpha
Pool does not exceed the maximum size M , all factors and their corresponding weights are retained.
However, if m+ 1 > M , the alpha factor associated with the smallest absolute weight in the linear
model is removed from the pool. This iterative procedure, as shown in Algorithm 1, allows for the
incremental refinement of the Alpha Pool while strictly adhering to the size constraint M . Detailed
hyperparameters of the model architecture are provided in Appendix D.

3.3 PRE-TRAINING AND INFERENCE

To identify synergistic alpha factors for predicting future stock returns, we optimize the IC of the
Alpha Pool (Equation 3) as the objective for pre-training our generator Pθ(f |D,P). During pre-
training, for each stock dataset D, the model performs num_iter iterations, generating one new alpha
factor in each iteration to refine the Alpha Pool. In each iteration j, the model takes the dataset D
and the existing Alpha Pool {fi}mi=1, generates a new alpha factor fj , and updates the Alpha Pool
accordingly. The IC of the updated pool is computed and used as the reward rj . We collect the
tuple (D, {fi}mi=1, fj , rj) from each iteration and use these tuples to update the model’s parameters
via the PPO algorithm Schulman et al. (2017), a stable and widely adopted reinforcement learning
algorithm. Detailed hyperparameters and the pseudo-code of the pre-training process are provided in
Appendix E.

During inference, with model parameters fixed, we initialize an empty Alpha Pool and run for
Num Factors refinement steps, typically far exceeding the pool size M (e.g., Num Factors = 20,000
while M = 100). At each step, the generator proposes a new candidate alpha factor conditioned
on the dataset D and the current pool; the candidate is then evaluated and the pool is updated via
Algorithm 1, retaining at most the top M factors under our selection criterion.
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4 EXPERIMENTS

We conduct comprehensive experiments to evaluate the performance of AlphaFormer. Our experimen-
tal design is structured to achieve four primary objectives: (i) to demonstrate AlphaFormer’s ability
to discover effective alpha factors with significantly reduced inference computation; (ii) to validate
the effectiveness of our multi-model generative framework in enhancing AlphaFormer’s alpha factor
discovery; (iii) to assess its generalization capability across diverse stock markets; (iv) to confirm the
practical effectiveness of AlphaFormer’s generated factors under realistic trading conditions.

4.1 EXPERIMENTAL SETTINGS

Datasets. The experiments utilize daily raw market data from the Chinese A-shares market. Six
fundamental features are selected as inputs for the alpha factors: {open, close, high, low, volume, and
vwap (volume-weighted average price)}. The target is the 20-day holding period return, calculated
as Ref(close,−20)

close − 1, where Ref(close, -20) denotes the closing price 20 days in the future. The
dataset is chronologically divided into a training period (2004-01-01, 2018-12-31), and a testing
period (2019-01-01, 2023-12-31). Our experiments focus on the constituent stocks of the CSI300 and
CSI500 indices, which are widely used benchmarks in prior studies Yu et al. (2023); Shi et al. (2025).

Baselines. To comprehensively evaluate AlphaFormer, we benchmark it against methods from two
primary paradigms, Detailed Hyperparameters of these baselines can be found in Appendix G:

1. Machine Learning-based Methods: These methods directly predict stock trends without
generating explicit alpha factor expressions. They receive 60 days of raw features as input
and are trained to predict the 20-day returns directly.
MLP: A feedforward neural network modeling complex relationships in input features.
LSTM: A Recurrent neural network capturing temporal relationships in input features.
XGBoost: An efficient gradient boosting algorithm.
LightGBM: A scalable gradient boosting framework.

2. Symbolic Regression-based Methods: These methods generate explicit mathematical
expressions for alpha factors.
GP: An evolutionary algorithm-based approach evolving mathematical expressions.
AlphaGen: A reinforcement learning framework identifying synergistic alpha factors.
AlphaForge: A generative predictive neural network for alpha factor generation.

Evaluation Metrics. We assess model performance using the following metrics:

• IC: Average information coefficient (see Eq. 3).
• Rank IC: Average rank information coefficient (see Eq. 4).
• Num Factors: For SR-based methods, the total number of generated alpha expressions during

inference. This is not the Alpha Pool size (the pool is fixed at M=100 for all SR methods). Num
Factors serves as a proxy for inference-time computational effort.

• Sharpe Ratio (SR): Risk-adjusted return, computed as mean return divided by return volatility.
• Annual Return (CAGR): Annualized compounded growth rate over the evaluation horizon.
• Maximum Drawdown (MDD): Worst peak-to-trough decline of the cumulative value (equity)

curve.

4.2 MAIN RESULTS

To demonstrate AlphaFormer’s superior alpha factor discovery, we compare AlphaFormer against the
aforementioned baselines on both the CSI300 and CSI500 stock datasets.

As detailed in Table 1 and 2, AlphaFormer consistently achieves the highest IC and Rank IC across
both datasets. This indicates its advanced stock selection ability compared to existing methods.
Furthermore, AlphaFormer demonstrates this superior performance while generating only 33% as
many factors as the best-performing baseline method. It is also crucial to note that AlphaFormer’s

7
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Table 1: Performance on CSI 300. Values are averaged over five random seeds ([0,1,2,3,4]); standard
deviations in parentheses. N/A in Num Factors indicates the method does not generate factors.

Methods IC(%) ↑ RankIC(%) ↑ Num Factors ↓ Sharpe Ratio ↑ CAGR ↑ MDD ↓
MLP 2.11 (0.33) 2.81 (0.33) N/A 0.75 (0.09) 0.13 (0.02) -0.26 (0.03)
LSTM 3.02 (0.66) 3.49 (0.92) N/A 0.77 (0.08) 0.13 (0.02) -0.24 (0.04)
XGB 3.55 (0.08) 5.15 (0.13) N/A 0.83 (0.07) 0.14 (0.01) -0.22 (0.04)
LGBM 3.86 (0.14) 4.92 (0.12) N/A 0.80 (0.06) 0.12 (0.01) -0.21 (0.02)

GP 3.49 (1.14) 4.00 (1.06) 40000 0.67 (0.12) 0.12 (0.02) -0.27 (0.01)
AlphaGen 5.19 (0.70) 6.35 (0.60) 60000 0.76 (0.07) 0.13 (0.01) -0.23 (0.04)
AlphaForge 2.68 (0.80) 4.42 (0.74) 53461 0.47 (0.05) 0.10 (0.01) -0.44 (0.06)
Ours 6.01 (0.32) 6.95 (0.23) 20000 0.86 (0.08) 0.15 (0.02) -0.23 (0.04)

Table 2: Performance on CSI 500. Values are averaged over five random seeds ([0,1,2,3,4]); standard
deviations in parentheses. N/A in Num Factors indicates the method does not generate factors.

Methods IC(%) ↑ RankIC(%) ↑ Num Factors ↓ Sharpe Ratio ↑ CAGR ↑ MDD ↓
MLP 3.13 (0.28) 4.99 (0.47) N/A 0.74 (0.07) 0.15 (0.01) -0.31 (0.02)
LSTM 3.51 (0.53) 5.31 (0.62) N/A 0.75 (0.09) 0.16 (0.02) -0.28 (0.04)
XGB 3.04 (0.08) 5.38 (0.11) N/A 0.71 (0.07) 0.13 (0.01) -0.27 (0.02)
LGBM 3.99 (0.08) 5.49 (0.12) N/A 0.85 (0.04) 0.17 (0.01) -0.26 (0.02)

GP 3.30 (1.16) 4.21 (0.22) 40000 0.53 (0.07) 0.10 (0.01) -0.33 (0.02)
AlphaGen 3.48 (0.60) 4.66 (0.27) 60000 0.65 (0.07) 0.12 (0.01) -0.31 (0.02)
AlphaForge 2.36 (0.68) 5.64 (1.12) 78362 0.21 (0.12) 0.05 (0.03) -0.45 (0.06)
Ours 5.34 (0.29) 5.82 (0.34) 20000 0.91 (0.07) 0.17 (0.01) -0.29 (0.04)

pre-trained model parameters remain fixed during the factor generation process, whereas methods
like AlphaGen and AlphaForge require ongoing parameter updates. This distinction underscores
AlphaFormer’s enhanced computational efficiency at inference time. Example of the Alpha Pool
genrated from our framework can be found in Appendix F.

4.3 IMPACT OF MULTI-MODEL SYNTHETIC DATA GENERATION FRAMEWORK

GRU Transformer Diffusion Ours
Generative Framework

5.0

5.5

6.0

6.5

7.0

7.5

Va
lu

e 
(%

)

5.53

5.81

5.47

6.01

6.23

6.69

6.17

6.95

IC
RankIC

Figure 3: Performance comparison of Al-
phaFormer on the CSI300 dataset when
pre-trained with synthetic datasets gener-
ated by different generative frameworks,
which presents an ablation study on their
impact.

To validate the effectiveness of our multi-model genera-
tive framework, we conduct an ablation study. We pre-
train separate AlphaFormer models using synthetic stock
datasets generated by: (i) Our proposed multi-model gen-
erative framework (integrating GRU, Transformer, and
diffusion models). (ii) Single-model generative frame-
works (using GRU-only, Transformer-only, or Diffusion-
only). These differently pre-trained AlphaFormer models
are then evaluated on the CSI300 dataset. The performance
comparison is presented in Figure 3.

Figure 3 shows that the AlphaFormer model pre-trained
with synthetic datasets from our multi-model genera-
tive framework achieves the highest IC. This result vali-
dates our hypothesis that integrating the complementary
strengths of multiple time-series generative models leads
to a more effective pre-training phase for AlphaFormer,
ultimately enhancing its alpha discovery capabilities.

4.4 GENERALIZATION ABILITY OF ALPHAFORMER

To evaluate the generalization ability of AlphaFormer, we apply AlphaFormer to the SP500 dataset,
which comprises American stock data. Notably, the generative models used to create the synthetic
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Table 3: Comparison of IC for different alpha mining methods on the SP500 dataset, which evaluates
AlphaFormer’s generalization ability. AlphaFormer is applied using its pre-trained model without
further training on SP500 data, while baseline methods are trained on the SP500 dataset.

MLP LSTM XGB LGBM GP AlphaGen AlphaForge Ours
SR 0.67 (0.11) 0.72 (0.12) 0.79 (0.10) 0.79 (0.10) 0.78 (0.13) 0.79 (0.04) 0.76 (0.16) 0.80 (0.17)
CAGR 0.10 (0.01) 0.11 (0.02) 0.12 (0.01) 0.13 (0.02) 0.11 (0.01) 0.12 (0.01) 0.13 (0.03) 0.12 (0.02)
MDD -0.27 (0.04) -0.26 (0.03) -0.25 (0.02) -0.30 (0.01) -0.27 (0.03) -0.27 (0.02) -0.25 (0.02) -0.24 (0.02)

Nov 2018
Mar 2019

Jul 2019
Nov 2019

Mar 2020
Jul 2020

Nov 2020
Mar 2021

Jul 2021
Nov 2021

Mar 2022
Jul 2022

Nov 2022
Mar 2023

Jul 2023
Nov 2023

Date

100%

120%

140%

160%

180%

200%

220%

240%

260%

Cu
m

ul
at

iv
e 

Ex
ce

ss
 R

et
ur

n 
(%

)

Cumulative Excess Return
Ours
AlphaGen
AlphaForge
GP
LightGBM
XGBoost
LSTM
MLP

Figure 4: Backtest results on CSI300. We track the cumulative return of simulated trading agents
utilizing the various alpha mining methods, which assess the practical utility of these methods.

datasets for pre-training AlphaFormer were trained on Chinese stock data. This setup tests Al-
phaFormer’s ability to generalize across markets without additional adaptation to the SP500 dataset.
In contrast, baseline methods are trained on the SP500 dataset following their standard procedures.

The performance of AlphaFormer and the baseline methods in the SP500 dataset is presented in Ta-
ble 3. Despite being pre-trained on synthetic data from a different market, AlphaFormer demonstrates
competitive performance on SP500 data, on par with baselines trained directly on that market. This
result provides compelling evidence of AlphaFormer’s robust cross-market generalization capability,
showcasing its ability to generate effective alpha factors for an unseen market.

4.5 PERFORMANCE IN SIMULATED TRADING ENVIRONMENT

To assess the practical utility of AlphaFormer’s generated factors, we conduct backtests using a
“top-k/drop-n” investment strategy during the testing period (2022-01-01, 2022-12-31) on the CSI300
dataset. On each trading day, we rank stocks by their alpha values and select the top k stocks for an
equally weighted portfolio. To minimize excessive trading costs, we limit the strategy to buying or
selling at most n stocks per day. Consistent with prior studies Yu et al. (2023); Shi et al. (2025), we
set k = 50 and n = 5. The transaction cost is set to be 0.05%.

Figure 4 illustrates that the portfolio strategy based on AlphaFormer’s generated factors outperforms
the baseline methods on the CSI300 benchmark, which demonstrates its superior profitable ability.

5 CONCLUSION

In this paper, we propose AlphaFormer, a Transformer model designed to generate alpha factors from
raw stock market data end-to-end. We also introduce a novel generative framework that integrates
multiple time-series generative models, ensuring the creation of high-fidelity synthetic datasets essen-
tial for pre-training AlphaFormer. Extensive experiments demonstrate that AlphaFormer outperforms
existing methods on real-world stock market datasets with lower inference costs. Simulated trading
experiments also show its potential in practical applications.
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A RELATED WORK

Machine Learning-based Alpha Factors. Machine learning-based methods for alpha mining
have rapidly evolved, initially treating stock trends as individual time series predicted by models
such as Multilayer Perceptrons (MLPs) LeCun et al. (2015), Transformers Vaswani et al. (2017),
LSTMs Hochreiter & Schmidhuber (1997), and tree-based methods like LightGBM Ke et al. (2017)
and XGBoost Chen & Guestrin (2016). Subsequent advancements introduced specialized archi-
tectures, exemplified by the SFM model Zhang et al. (2017) which employed a Discrete Fourier
Transform (DFT)-like mechanism to identify multi-frequency trading patterns. More recently, the
field has expanded to incorporate non-standard data sources for enhanced predictive power; for
instance, Zolfagharinia et al. (2024) fuse multiple textual features from tweets to enhance stock price
prediction, while HIST Xu et al. (2021) integrated concept graphs with time series to model shared
characteristics and semantic relationships among stock groups. While these machine learning-based
methods offer strong predictive capabilities, they often lack the interpretability of Formulaic Alpha
methods.

Formulaic Alpha Factors. The search space for formulaic alpha factors is vast, given the extensive
range of operators and features available. Traditionally, genetic programming has been used to
generate these factors by mutating expression trees—structures representing mathematical expres-
sions Koza (1994). For instance, Lin et al. (2019b) enhanced the gplearn library with time-series
operators tailored to formulaic alphas, laying the foundation for an alpha-mining framework. This
framework was advanced by Lin et al. (2019a), who enabled the mining of alphas with nonlinear
relationships to returns, using the mutual Information Coefficient (IC) as the fitness metric. To
improve the diversity of generated alpha sets, Zhang et al. (2020) applied mutual IC to filter out
overly similar alphas. AlphaEvolve Cui et al. (2021) utilized computation graphs to represent alphas,
enabling more complex operations like matrix-wise computations. It evolved new factors by building
on existing ones through evolutionary algorithms. Recently, reinforcement learning emerged as
a powerful approach to alpha generation. AlphaGen Yu et al. (2023) employed a policy network,
implemented with recurrent neural networks (RNNs), to produce alpha expressions. Trained via
reinforcement learning, the network received rewards based on the Information Coefficient (IC) of
the generated alphas, encouraging the creation of highly predictive factors. Similarly, AlphaForge Shi
et al. (2025) used a generative predictive neural network to generate factors, guided by a separate
predictive network that acted as a reward model. This design helped the system learn effective factor
generation strategies even with sparse reward signals. However, a key limitation persists in these
methods: they start from scratch for each new alpha mining task, failing to leverage knowledge from
prior efforts.

Pre-trained Symbolic Regression. Pre-trained Symbolic Regression (SR) commonly involves pre-
training an encoder-decoder Transformer model for the end-to-end generation of symbolic expressions
from input data. By pre-training on large-scale synthetic datasets, these Transformer models can
generalize to unseen datasets and perform efficient inference, as task-specific retraining is often
minimized or unnecessary. The work by Biggio et al. (2021); Kamienny et al. (2022); Valipour et al.
(2021) demonstrated the effectiveness of pre-trained SR, achieving results comparable to GP methods
while requiring significantly less inference computation. Holt et al. (2023) proposed an end-to-end
loss function inspired by Bayesian inference, which helps the model learn equation invariances more
effectively than traditional cross-entropy loss. With its demonstrated capabilities, pre-trained SR
has found applications in diverse scientific areas, including the discovery of ordinary differential
equations d’Ascoli et al. (2023a); Becker et al. (2023), Boolean formulas d’Ascoli et al. (2023b),
and recurrence relations d’Ascoli et al. (2022). While not yet applied to alpha factor mining, the
principles of pre-trained SR offer a promising direction for addressing the limitations of existing
alpha generation methods, particularly in leveraging prior knowledge and improving efficiency.

B LIST OF OPERATORS, FEATURES, AND CONSTANTS

Operators. Our model utilizes four types of operators, categorized into two main groups: elementary
operators and time-series operators. Elementary operators (denoted “E”) process data exclusively
from the current trading day. In contrast, time-series operators (denoted “TS”) consider data over a
consecutive period. Each group is further divided into unary operators (denoted “U”), which apply to
a single series, and binary operators (denoted “B”), which apply to two series.
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Table 4: Table of Operators

Operator Category Description
Abs(x) E-U The absolute value, |x|.
Log(x) E-U The natural logarithm, ln(x).

x+ y, x− y, x · y, x/y E-B Standard arithmetic operations: addition, subtraction,
multiplication, and division.

Greater(x, y), Less(x, y) E-B Returns the greater or lesser of the two values x and y,
respectively.

Ref(x, t) TS-U The value of expression x evaluated t days prior to the
current day.

Mean(x, t), Med(x, t), Sum(x, t) TS-U The arithmetic mean, median, or sum of expression x
over the preceding t days.

Std(x, t), Var(x, t) TS-U The sample standard deviation or variance of expression
x over the preceding t days.

Max(x, t), Min(x, t) TS-U The maximum or minimum value of expression x over
the preceding t days.

Mad(x, t) TS-U The Mean Absolute Deviation of x over the preceding t
days, defined as E[|xi − E[x]|].

Delta(x, t) TS-U The difference xcurrent − Ref(x, t).
WMA(x, t), EMA(x, t) TS-U Weighted Moving Average (WMA) or Exponential

Moving Average (EMA) of x over the preceding t days.

Cov(x, y, t) TS-B The sample covariance between time series x and y over
the preceding t days.

Corr(x, y, t) TS-B The sample Pearson correlation coefficient between
time series x and y over the preceding t days.

Table 5: Table of Stock Features

Feature Description
Open The opening price of the stock for the trading day.
Close The closing price of the stock for the trading day.
High The highest price of the stock during the trading day.
Low The lowest price of the stock during the trading day.
Volume The total number of shares traded during the trading day.
VWAP The volume-weighted average price of the stock during the trading day.

Table 6: Table of Constants

Category Values
Basic −30,−10,−5,−2,−1,−0.5,−0.01, 0.01, 0.5, 1, 2, 5, 10, 30
Time-Series 10d, 20d, 30d, 40d, 50d

Features. The model utilizes six features recorded daily for each stock. These features are described
in Table 5.

Constants. Our model employs two categories of constants. ’Basic’ constants are utilized within
elementary operators, while ’Time-Series’ constants specify the lookback period (time range) for
time-series operators. The permissible values for these constants are detailed in Table 6.
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C DETAILS OF GENERATING SYNTHETIC STOCK DATASETS

GRU. GRU Dey & Salem (2017) is a variant of recurrent neural networks (RNNs) designed to model
sequential data by maintaining a hidden state that encapsulates temporal dependencies. It utilizes
two key gating mechanisms—the update gate and the reset gate—to regulate the flow of information,
enabling the model to selectively retain relevant past information while integrating new observations.
In time-series generation, the GRU leverages its hidden state, which encodes the sequence history up
to the current time step, to condition on past data. The generation process operates autoregressively:
the model predicts the next time step based on the current hidden state, feeds this prediction back as
input, and iterates to produce subsequent future values, thereby generating a sequence of future data
conditioned on the observed past.

Transformer. Transformer Vaswani et al. (2017) is a neural network architecture that employs a
attention mechanism to process sequential data, allowing it to weigh the relevance of all parts of the
input sequence simultaneously and capture long-range dependencies effectively. Unlike recurrent
models, it processes the entire sequence in parallel, making it well-suited for time series with intricate,
extended patterns. For time-series generation, the Transformer conditions on past data through
masked attention, which restricts the model to attend only to previous time steps when predicting
future values. During generation, it operates autoregressively by predicting the next time step based
on the historical sequence, incorporating each prediction into the input for the subsequent step, and
repeating this process to construct a future sequence that reflects the context of the past data.

CSDI. CSDI (Conditional Score-based Diffusion Model) Tashiro et al. (2021) is a generative model
that employs diffusion processes to model time-series data distributions probabilistically. Diffusion
models function by incrementally adding noise to data and learning to reverse this process, thereby
reconstructing the original distribution. In time-series generation, CSDI conditions on past data by
integrating observed values into the diffusion process, enabling the model to generate future sequences
consistent with the historical context. The generation involves sampling from the conditional
distribution of future time steps given the observed past, guided by a score-based approach. Through
iterative denoising steps, CSDI refines an initial noisy sequence into coherent future data.

LSTM Evaluator. The LSTM Evaluator is a Long Short-Term Memory network, a specialized
type of recurrent neural network designed to model sequential data by capturing long-term temporal
dependencies. It employs memory cells and three key gating mechanisms—the input gate, forget
gate, and output gate—to regulate the retention and flow of information over time. Trained on
real-world stock data, the LSTM Evaluator learns to model the conditional probability distribution
P (xt|x1, . . . , xt−1) for each time step t. For a generated future sequence xc+1, xc+2, . . . , xc+T

conditioned on a historical context x1, x2, . . . , xc, the LSTM Evaluator computes the likelihood
as the product of conditional probabilities:

∏T
t=1 P (xc+t|x1, . . . , xc+t−1). This likelihood score

determines the plausibility of the synthetic sequence, guiding the selection of the highest-quality data
for the synthetic dataset.

All models, including the generative models and the LSTM Evaluator, were trained on real-world
stock data from the Chinese stock market, specifically stocks listed in the CSI 300 and CSI 500
indices, spanning 2012-01-01 to 2021-12-31, totaling 1,868 unique stocks. The generative models
were trained to produce future stock data conditioned on historical sequences, while the LSTM
Evaluator was trained to model conditional distribution, enabling it to compute likelihoods for
evaluating generated sequences. After training, each generative model was conditioned on historical
segments of 200 time steps to generate synthetic future sequences, following the procedures outlined
in subsection 3.1. Through this approach, 1,000 synthetic stock datasets (containing approximately
550K individual synthetic stock sequences) were generated for pre-training. The pseudo-code for
synthetic dataset generation is provided in Algorithm 2, with the corresponding hyperparameters
listed in Table 7.

D DETAILS OF MODEL ARCHITECTURE

Our model has three major components: Dataset Embedder for dataset embedding, LSTM Encoder
for factor embeddings, and encoder-decoder Transformer for factor generation. The hyperparameters
configuration can be found in Table 8.
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Table 7: Synthetic Dataset Generation Hyperparameters

Hyperparameter Value
Smin 300
Smax 800
Tmin 500
Tmax 1000
c 200

Algorithm 2 Process of Generating Synthetic Datasets

1: Input: Generative models {Gi}ki=1, Evaluator E, Real-world stock data R, Hyperparameters
Smin, Smax, Tmin, Tmax, c

2: Output: A synthetic stock dataset D
3: Sample S ∼ Uniform[Smin, Smax]
4: Sample T ∼ Uniform[Tmin, Tmax]
5: D ← ∅
6: for s = 1 to S do
7: Sample context contexts of size c fromR
8: Generate {sequencei = Gi(contexts) | i = 1, . . . , k}
9: Compute li = E(sequencei | contexts) for i = 1, . . . , k

10: j ← argmaxi=1,...,k li
11: sequences ← sequencej
12: D ← D ∪ {sequences}
13: return D

Table 8: Model Architecture Hyperparameters

Component Module / Hyperparameter Value

Dataset Embedder

LSTM: Number of Layers 2
LSTM: Hidden Size (nhid) 128
Transformer Encoder: Number of Layers 2
Transformer Encoder: Hidden Size 128

LSTM Encoder Number of Layers 2
Hidden Size (nhid) 128

Encoder-Decoder Transformer
Encoder Layers 2
Decoder Layers 4
FFN Dimension 512

E DETAILS OF PRE-TRAINING

Our objective is to pre-train a conditional alpha factor generator Pθ(f |D,P) that generates new alpha
factors f to iteratively refine an Alpha Pool P for a given dataset D. The pre-training procedure is
structured as follows:

1. Initialization: For each datasetDi in a batch of k datasets, we randomly sample a maximum
Alpha Pool size M from the set {1, 10, 20}. This variability promotes generalization across
different pool capacities. We then initialize an empty Alpha Pool Pi

0 with maximum size
M and set the number of iterations, num_iter, to 2M , ensuring sufficient iterations to learn
both the addition and pruning of alpha factors.

2. Experience Collection: For each iteration j from 1 to num_iter:
• Sample a new alpha factor fj ∼ Pθ(f |Di,Pi

j−1) using the current generator.

• Update the Alpha Pool to Pi
j by applying a specified update mechanism (e.g., adding

fj and potentially pruning less effective factors).
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Table 9: Pre-training Hyperparameters

Hyperparameter Value
Learning Rate 0.0003
L1 Coefficient 0.005
PPO Clip Ratio 0.2
Value Function Coefficient 0.5
Max Gradient Norm 0.5
Batch Size 100
Epoch 10

• Compute the reward rj as the Information Coefficient (IC) of the updated pool Pi
j on

Di.
• Store the experience tuple ej = (Di,Pi

j−1, fj , rj) in a replay buffer B.
3. Model Optimization: Using the Proximal Policy Optimization (PPO) algorithm, we update

the model parameters after collecting experiences. For each mini-batch sampled from B, we
compute the total loss as follows:

L(θ, ϕ) = LCLIP(θ) + ηLvalue(ϕ) (5)

where LCLIP(θ) is the clipped policy loss:

LCLIP(θ) = −Ê
[
min

{
ratio(θ)Â, clip (ratio(θ), 1− ϵ, 1 + ϵ) Â

}]
, (6)

where Â is calculated by r − Vϕ(D,P)2. And Lvalue(ϕ) is the value function loss:

Lvalue(ϕ) = ∥Vϕ(D,P)− r∥22. (7)

We minimize the total loss using gradient descent with respect to both θ and ϕ, enhancing
the generator’s ability to produce effective alpha factors.

A comprehensive list of hyperparameters for the pre-training phase is provided in Table 9. The
pseudo-code of pre-training can be found in Algorithm 3.

F EXAMPLE OF ALPHA POOL

# Alpha Weight
1 Div(Div(1.0,Div(Sub(high,Abs(Max(Mul(30.0,5.0),20d))),0.01)),-0.5) -0.0043
2 Delta(Log(close),40d) -0.0148
3 Less(Abs(Div(-10.0,Abs(-10.0))),Abs(Var(volume,20d))) -0.0054
4 Less(Add(Abs(close),Mul(low,Sub(-2.0,Add(-1.0,-0.5)))),Abs(30.0)) -0.0102
5 Mul(Mul(Std(Log(close),5d),Med(-10.0,10d)),-0.5) 0.0102
6 Log(Greater(Log(volume),-10.0)) -0.0237
7 Std(Greater(Div(Abs(-0.5),0.01),open),10d) -0.0059
8 Less(Std(Corr(low,high,5d),20d),30.0) -0.0080
9 EMA(Mul(0.5,Abs(Mul(volume,vwap))),20d) -0.0085

10 Abs(Mul(low,Sub(low,Abs(-30.0)))) -0.0035
11 Min(Div(close,Greater(Add(-5.0,Mul(Corr(0.5,volume,10d),10.0)),low)),5d) -0.0058
12 Div(Var(Log(volume),10d),30.0) -0.0091
13 Mean(Ref(Abs(Min(Sub(close,low),20d)),10d),10d) 0.0050
14 Less(low,Mul(Log(Div(high,Add(low,2.0))),Abs(1.0))) -0.0566
15 Delta(Log(high),20d) -0.0430

Continued on next page
2The value function Vϕ(D,P) is computed by a two-layer MLP value head, which takes encoded representa-

tions from the generator’s transformer encoder as input. As a result, some parameters of the value function are
shared with the generator.
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Continued from previous page
# Alpha Weight

16 Abs(Abs(Std(WMA(Greater(5.0,Log(volume)),10d),10d))) -0.0034
17 Add(Add(Sub(Less(Sub(low,Div(0.01,-2.0)),5.0),-10.0),close),-0.5) -0.0215
18 Mul(Div(Ref(Sum(WMA(Greater(30.0,close),10d),5d),10d),-5.0),open) 0.0094
19 Cov(close,Var(Add(Log(5.0),Greater(volume,Greater(5.0,open))),20d),10d) 0.0070
20 Corr(Add(close,-2.0),vwap,20d) 0.0216
21 Corr(Abs(Greater(Abs(Add(0.01,Log(Min(volume,1d)))),-

5.0)),volume,40d)
0.0083

22 Var(Log(Mad(Ref(Greater(volume,-30.0),5d),5d)),10d) -0.0083
23 Delta(Abs(Mean(Mul(Greater(Less(10.0,Abs(open)),-1.0),2.0),5d)),5d) 0.0033
24 Mean(Abs(Corr(vwap,close,10d)),5d) 0.0117
25 Delta(low,20d) -0.0042
26 Log(Std(Mul(Add(-5.0,Greater(2.0,-5.0)),vwap),5d)) 0.0094
27 Mul(Abs(Max(Delta(Abs(Corr(low,vwap,40d)),1d),1d)),-1.0) 0.0031
28 Abs(Med(Max(Div(Mul(0.01,-0.5),Greater(volume,Add(30.0,-

0.01))),40d),1d))
0.0177

29 Std(Div(Greater(Var(-0.5,5d),close),open),10d) 0.0108
30 Mul(Cov(Div(low,Greater(low,2.0)),close,20d),Min(Greater(0.5,0.01),10d)) 0.0029
31 Var(Greater(Less(Div(volume,-10.0),Div(0.01,30.0)),-30.0),5d) -0.0044
32 Corr(low,Sub(2.0,close),10d) -0.0093
33 Less(Div(Min(Abs(Div(-30.0,Add(Less(0.01,-30.0),close))),1d),1.0),low) -0.0027
34 WMA(Delta(Sum(volume,10d),10d),10d) -0.0041
35 Div(Ref(Sub(Greater(Med(Greater(close,vwap),1d),-0.5),1.0),5d),open) 0.0315
36 Mean(Corr(vwap,volume,20d),10d) -0.0231
37 Greater(Delta(vwap,1d),-30.0) -0.0045
38 Sub(2.0,Sub(-1.0,Delta(Corr(high,close,10d),20d))) -0.0073
39 Abs(Sub(Abs(Abs(Sub(Abs(-2.0),Add(0.5,Abs(high))))),low)) -0.0099
40 Less(vwap,Greater(Log(Delta(vwap,20d)),-1.0)) -0.0110
41 Less(Delta(vwap,40d),5.0) 0.0182
42 Delta(Abs(Div(Abs(30.0),Greater(-10.0,Log(close)))),40d) -0.0067
43 Abs(Cov(Mul(Std(high,20d),-10.0),Max(Sum(high,1d),40d),5d)) 0.0041
44 Less(Ref(Mul(Add(volume,-0.01),10.0),5d),Corr(-0.5,-2.0,40d)) 0.0067
45 Abs(Log(Mean(Add(-2.0,volume),40d))) -0.0155
46 Sum(Div(Div(Mul(Mul(1.0,Div(open,0.01)),-10.0),Abs(0.01)),vwap),5d) 0.0145
47 Log(Abs(Sub(Div(Min(Div(WMA(volume,10d),-0.01),40d),-

2.0),Log(0.01))))
-0.0051

48 Div(EMA(open,40d),Abs(vwap)) -0.0302
49 Cov(Add(Min(Mul(1.0,WMA(close,5d)),1d),-2.0),volume,10d) -0.0033
50 Mul(Log(Sub(Greater(Greater(Min(volume,10d),0.5),1.0),Mul(vwap,30.0))),30.0)-0.0086
51 Mad(Log(Abs(Sub(30.0,close))),40d) -0.0096
52 Var(Log(Abs(high)),5d) -0.0034
53 Less(Log(volume),Div(vwap,low)) 0.0070
54 Abs(Mul(Sub(Abs(Greater(Greater(open,-0.5),-1.0)),close),-2.0)) 0.0036
55 WMA(Corr(close,Mul(Add(Div(Add(0.5,low),-30.0),-2.0),-2.0),40d),5d) 0.0078
56 Div(low,Mad(Sub(close,0.5),40d)) 0.0047
57 Greater(Log(2.0),Corr(volume,high,20d)) -0.0146
58 Div(Greater(Log(Log(high)),-30.0),0.5) -0.0030
59 Less(Delta(close,20d),WMA(1.0,10d)) 0.0046
60 Add(Add(Log(open),-5.0),Mul(close,-0.01)) -0.0466
61 Mul(Div(Add(Delta(Greater(-0.01,Abs(vwap)),5d),2.0),open),high) -0.0075
62 Less(Log(Abs(volume)),Mean(Sub(Mul(close,vwap),-5.0),1d)) -0.0114
63 Sub(Greater(-5.0,Abs(Log(vwap))),Log(high)) 0.0105
64 Add(Add(Corr(vwap,Mean(low,1d),5d),Add(Mean(-0.5,20d),-5.0)),-0.01) 0.0097
65 Cov(Log(high),Mul(volume,Add(10.0,-1.0)),20d) -0.0047
66 Mul(Add(Div(Ref(open,1d),high),0.01),5.0) 0.0133
67 Var(Add(Abs(Delta(open,1d)),-0.5),5d) -0.0061
68 Corr(Div(open,-30.0),volume,5d) -0.0036

Continued on next page
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Continued from previous page
# Alpha Weight

69 Less(Ref(volume,20d),10.0) 0.0043
70 Corr(Mul(-2.0,Abs(low)),Div(volume,vwap),5d) 0.0130
71 Div(low,WMA(low,20d)) -0.0218
72 Greater(Greater(0.5,Corr(low,Sub(-2.0,volume),40d)),-0.5) -0.0044
73 Greater(Mul(Ref(Mad(close,40d),1d),5.0),-5.0) 0.0097
74 Mul(EMA(Sub(Delta(high,1d),1.0),10d),Mul(2.0,close)) 0.0027
75 Std(Div(Less(close,10.0),Sub(1.0,2.0)),20d) 0.0131
76 Abs(Delta(Abs(volume),40d)) -0.0077
77 Abs(Add(Div(vwap,low),Less(Add(2.0,0.01),-10.0))) -0.0070
78 Less(Div(Min(Abs(Greater(0.01,Div(low,0.5))),20d),Less(open,30.0)),high) -0.0186
79 Delta(Div(-5.0,high),20d) 0.0060
80 Delta(Sub(Abs(Abs(-1.0)),Sum(open,20d)),20d) 0.0137
81 Abs(Div(Delta(Greater(Abs(Div(-30.0,low)),-2.0),1d),2.0)) 0.0043
82 Abs(Delta(WMA(Std(Add(vwap,Log(30.0)),5d),10d),20d)) -0.0046
83 Mul(Max(Sub(vwap,high),10d),Mul(Log(Sum(30.0,5d)),2.0)) 0.0105
84 Div(Mul(WMA(close,5d),Mul(-0.5,30.0)),vwap) 0.0289
85 Add(Abs(Log(Add(Abs(Sub(0.01,volume)),Mul(-1.0,-0.5)))),open) 0.0910
86 Ref(Add(Sub(Mad(Greater(Log(Log(low)),30.0),5d),10.0),volume),40d) 0.0030
87 Abs(Delta(Mul(Sub(Mul(Delta(-5.0,1d),0.01),close),0.5),40d)) 0.0210
88 Corr(close,vwap,10d) 0.0044
89 Delta(Greater(vwap,30.0),20d) 0.0110
90 Div(Log(Mul(Std(Div(vwap,close),10d),5.0)),-10.0) 0.0072
91 Min(Add(Cov(low,close,5d),close),1d) -0.0111
92 Less(Div(WMA(Min(open,10d),20d),vwap),10.0) -0.0184
93 Div(Log(Greater(Mul(EMA(-0.01,10d),-5.0),Sub(5.0,Abs(low)))),-0.01) -0.0088
94 Mul(Abs(Log(Greater(-1.0,Greater(Abs(volume),1.0)))),30.0) 0.0060
95 Cov(Add(Abs(Abs(close)),30.0),volume,20d) -0.0030
96 Div(vwap,Std(Log(Div(0.5,volume)),20d)) -0.0130
97 Div(vwap,Sub(Mul(close,Less(vwap,-10.0)),1.0)) -0.0220
98 Corr(close,volume,5d) -0.0072
99 Delta(Mul(WMA(volume,10d),Greater(Less(-

5.0,Min(volume,10d)),low)),5d)
-0.0035

100 Less(Sum(volume,20d),Abs(Mul(-0.01,Less(-5.0,0.5)))) -0.0059

Table 10 presents a representative combination of 100 alpha factors generated by our framework
and evaluated on the CSI300 constituent stocks. The weights are computed by minimizing Eq 2.
These factors are obtained through an iterative refinement process applied to the 20, 000 alpha factors
produced by AlphaFormer, capturing the distilled essence of the generated factors.

G BASELINES

In our experiments, we evaluate our approach against baselines from two distinct paradigms: machine
learning-based methods and symbolic regression-based methods. Machine learning-based methods
directly predict stock trends, whereas symbolic regression-based methods generate alpha factors for
use in predictive models. Detailed descriptions of each baseline are provided below.

1. Machine Learning-based Methods
XGBoost: A gradient boosting framework that leverages an ensemble of decision trees to
predict stock trends efficiently. Implemented using the xgboost Python library3.
LightGBM: A gradient boosting framework optimized for speed and scalability, utilizing
tree-based algorithms to predict stock trends. Implemented using the lightgbm Python
library4.

3https://xgboost.readthedocs.io
4https://lightgbm.readthedocs.io
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Table 11: Hyperparameter settings for Symbolic Regression and Machine Learning-based methods.

Symbolic Regression Methods Machine Learning-based Methods
GP Hyperparameters
Parameter Value

population_size 1000
generations 40
init_depth (2, 6)
tournament_size 600
p_crossover 0.3
p_subtree_mutation 0.1
p_hoist_mutation 0.01
p_point_mutation 0.1
p_point_replace 0.6
max_samples 0.9
L1 Coefficient 0.005

AlphaGen Hyperparameters
Parameter Value

LSTM Num Layers 2
LSTM Hidden Dimension 128
Value Head Num Layers 2
Value Head Dimension 64
Policy Head Num Layers 2
Policy Head Dimension 64
Clip Range 0.2
Learning Rate 0.001
L1 Coefficient 0.005

AlphaForge Hyperparameters
Parameter Value

Generator Num Layers 2
Generator Hidden Dimension 128
Predictor Num Layers 2
Predictor Hidden Dimension 128
Correlation Threshold 0.8
IC Threshold 0.025
ICIR Threshold 0.1
Learning Rate 0.001
L1 Coefficient 0.005

LightGBM Hyperparameters
Parameter Value

Num Leaves 210
Max Depth 8
Learning Rate 0.05
Feature Fraction 0.9
Bagging Fraction 0.8
Bagging Frequency 5

XGBoost Hyperparameters
Parameter Value

Colsample_bytree 0.9
Max Depth 8
Learning Rate 0.05
Subsample 0.9
Num Boost Rounds 1000

MLP Hyperparameters
Parameter Value

Num Layers 2
Batch Size 512
Learning Rate 0.001
Hidden Dimension 64

LSTM Hyperparameters
Parameter Value

Num Layers 2
Batch Size 512
Learning Rate 0.001
Hidden Dimension 64
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Algorithm 3 Pre-training Procedure for Conditional Alpha Factor Generator

1: Input: Batch size k of datasets, Conditional generator Pθ(f |D,P) , Value function Vϕ(D,P) ,
Loss function L(θ, ϕ) defined by Equation (5) for pre-training , Hyperparameters (e.g., learning
rate lr)

2: Output: Pre-trained conditional generator Pθ(f |D,P)
3: Initialization:
4: Initialize replay buffer B
5: Experience Collection:
6: for i in {1, ..., k} do
7: M ← sample from {1, 10, 20}
8: Initialize Pi

0 as empty Alpha Pool with maximum size M
9: num_iter← 2×M

10: for j in {1, ..., num_iter} do
11: fj ∼ Pθ(f |Di,Pi

j−1) ▷ Sample alpha factor from conditional generator
12: Pi

j ← update(Pi
j−1, fj) ▷ Update the Alpha Pool based on Algorithm 1

13: rj ← R(Pi
j ,Di) ▷ Calculate reward based on Equation (3)

14: ej ← (Di,Pi
j−1, fj , rj) ▷ Collect experience tuple

15: B ← B ∪ ej
16: Model Optimization:
17: for each mini-batch B from B do
18: L← 0
19: for each experience tuple e from B do
20: L← L+ L(θ, ϕ) ▷ Calculate loss function based on experience tuple
21: θ ← θ − lr ×∇θL
22: ϕ← ϕ− lr ×∇ϕL

MLP: A multi-layer perceptron, a feedforward neural network with non-linear activa-
tion functions, designed to model complex relationships in input features for stock trend
prediction. Implemented using the pytorch Python library5.

2. Symbolic Regression-based Methods

GP: Genetic Programming, an evolutionary algorithm that derives mathematical expressions
to serve as alpha factors. Implemented using the gplearn Python library6.
AlphaGen: A framework employing reinforcement learning to identify a synergistic set of
alpha factors. Implemented using the authors’ open-source code7.
AlphaForge: A framework that uses a generative predictive neural network to produce
alpha factors. Implemented using the authors’ open-source code8.

H HARDWARE SPECIFICATION

Our experiments were performed on a Linux-based system equipped with an AMD EPYC 9654
96-Core Processor and an NVIDIA L20 GPU.

I LIMITATION

Our approach for alpha mining relies on GPU for training and inference, while traditional methods like
GP operate in CPU environments. Consequently, our method may not be well-suited for deployment
in CPU environments.

5https://pytorch.org/
6https://gplearn.readthedocs.io
7https://github.com/RL-MLDM/alphagen
8https://github.com/dulyhao/alphaforge
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J BROADER IMPACT

Social Impact. This paper investigates alpha mining, leveraging AlphaFormer for end-to-end
generation of alpha factors. This approach enables the efficient discovery of novel, exploitable alpha
factors, enhancing investment strategies and potentially democratizing access to advanced financial
tools.

21


	Introduction
	Preliminary
	Alpha Factor
	Alpha Mining
	Formulaic Alpha

	Methods
	Data Generation
	Model Architecture
	Pre-training and Inference

	Experiments
	Experimental Settings
	Main Results
	Impact of Multi-Model Synthetic Data Generation Framework
	Generalization Ability of AlphaFormer
	Performance in Simulated Trading Environment

	Conclusion
	Related Work
	List of Operators, Features, and Constants
	Details of Generating Synthetic Stock Datasets
	Details of Model Architecture
	Details of Pre-training
	Example of Alpha Pool
	Baselines
	Hardware Specification
	Limitation
	Broader Impact

