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ABSTRACT

Climate-induced disasters are and will continue to be on the rise, and thus search-
and-rescue (SAR) operations, where the task is to localize and assist one or sev-
eral people who are missing, become increasingly relevant. In many cases the
rough location may be known and a UAV can be deployed to explore a given,
confined area to precisely localize the missing people. Due to time and bat-
tery constraints it is often critical that localization is performed as efficiently as
possible. In this work we approach this type of problem by abstracting it as an
aerial view goal localization task in a framework that emulates a SAR-like setup
without requiring access to actual UAVs. In this framework, an agent operates
on top of an aerial image (proxy for a search area) and is tasked with localiz-
ing a goal that is described in terms of visual cues. To further mimic the situ-
ation on an actual UAV, the agent is not able to observe the search area in its
entirety, not even at low resolution, and thus it has to operate solely based on par-
tial glimpses when navigating towards the goal. To tackle this task, we propose
AiRLoc, a reinforcement learning (RL)-based model that decouples exploration
(searching for distant goals) and exploitation (localizing nearby goals). Exten-
sive evaluations show that AiRLoc outperforms heuristic search methods as well
as alternative learnable approaches, and that it generalizes across datasets, e.g. to
disaster-hit areas without seeing a single disaster scenario during training. We also
conduct a proof-of-concept study which indicates that the learnable methods out-
perform humans on average. Code and models have been made publicly available
at https://github.com/aleksispi/airloc.

1 INTRODUCTION

Recent technological developments of unmanned aerial vehicles (UAVs) and satellites have resulted
in an enormous increase in the amount of aerial view landscape and urban data that is available
to the public (Boguszewski et al., 2020; Mnih, 2013; the Loop; Kuzin et al., 2021; Xiong et al.,
2022; Schmitt et al., 2022; Xia et al., 2022). An important application area of UAVs is within
search-and-rescue (SAR) operations, where the task is to localize and assist one or several people
who are missing, for example after a natural disaster. It may often be the case that the people
in need are known to be within a confined area, such as within a specific neighborhood or city
block. In such a scenario, a UAV can be used to explore the area from an aerial perspective to
precisely localize and subsequently assist the missing people. Obviously, controlling the UAV
in an informed and intelligent manner, rather than exhaustively scanning the whole area, could
significantly improve the likelihood of succeeding with the operation.

In this paper, we propose a novel setup and task formulation that allows for controllable and
reproducible development of and experimentation with systems for UAV-based SAR operations.1
More specifically, we abstract the problem within a framework that emulates a SAR-like setup
without requiring access to actual UAVs. In this framework, an agent operates on top of an aerial

1Also relevant for many types of environmental monitoring applications, e.g. in forestry management.
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image (proxy for a specific search area) and is tasked with localizing a goal for which coordinates
are not available, but where some visual cues of the goal are provided. For our task, which we
denote aerial view goal localization, we assume that the visual cues are given in terms of a top-view
observation of the goal within the search area (see Fig. 1). This provides a streamlined proxy setup,
but note that in a real SAR operation such cues could instead be provided e.g. by the missing people,
assuming they have been able to send information about their surroundings (e.g. ground-level
images). The active localization methodologies we propose can easily be extended to allow for more
flexible goal specifications, for example by integrating an off-the-shelf geo-localization module.

There are many cases where GPS coordinates of the goal location are not available, or where
such information is not reliable (e.g. because global satellite navigation systems are susceptible to
radio frequency interruptions and fake signals). Hence there is a need for robust aerial localization
systems that do not rely on global positional information, but that can operate reliably based on
visual information alone. Moreover, to further mimic the situation on an actual UAV, it is assumed
in our task that only a partial glimpse of the search area can be observed at the same time. In many
cases, a UAV could elevate to a higher altitude to get a generic (lower-resolution) sense of the whole
search area, but there are also conditions which makes this impractical, e.g. if the battery of the
UAV is running low. Adverse weather conditions could also make it risky or impossible to operate
at a high altitude.

To tackle our suggested aerial view goal localization task, we propose AiRLoc, a reinforce-
ment learning (RL)-based model that decouples exploration (searching for distant goals) and
exploitation (localizing nearby goals) – see Fig. 1. Extensive experimental results show that
AiRLoc outperforms heuristic search methods and alternative learnable approaches. The results
also show that AiRLoc generalizes across datasets, e.g. to disaster-hit areas without seeing a
single disaster scenario during its training phase. We also conduct a proof-of-concept study which
indicates that this task is difficult even for humans.

2 RELATED WORK

Several prior works have proposed methods for autonomous control a UAVs (Stache et al., 2022;
Meera et al., 2019; Dang et al., 2018; Bartolomei et al., 2020; Sadat et al., 2015; Zhao et al., 2021;
Popović et al., 2020). Many of these works (e.g. Stache et al. (2022); Sadat et al. (2015); Zhao
et al. (2021)) revolve around methodologies for efficient scanning of large areas (e.g. agricultural
landscapes) such that certain types of global-level downstream inferences – such as determining
the health status of a field of crops – can be accurately performed based on a limited number of
high-resolution observations. Aside from differing in task formulation (ours requiring precise
localization of a particular goal, while the aforementioned works often revolve around global-level
inference), these prior works assume access to a global lower-resolution observation of the whole
area of interest, while we do not. There are also works that are closer to us in terms of task setup
(Bartolomei et al., 2020; Meera et al., 2019; Dang et al., 2018). For example, Bartolomei et al.
(2020) propose a hierarchical planning approach for a goal reaching task, where a rough plan is
first proposed using A*. This rough plan is subsequently used as an initial guess by a finer-grained
planner which parametrizes the initial trajectory as continuous B-splines and performs trajectory
optimization. Different from us, their system assumes access to ground truth detections of moving
objects and ground classifications.

Our work is also related but orthogonal to the increasingly studied problem of geo-localization
(Wilson et al., 2021; Vallone et al., 2022; Zhu, 2022; Zeng et al., 2022; Pramanick et al., 2022;
Wang et al., 2022b; Shi & Li, 2022; Berton et al., 2022b;a; Zhu et al., 2022; Downes et al., 2022).
Such works aim to infer relationships between two or more images from different perspectives,
e.g. predicting the satellite or drone view corresponding to a ground-level image. Most such
methods perform this task by an exhaustive comparison within a large image set, and are thus
very different to our setup which instead revolves around minimizing the amount of observations
when performing localization. However, our proposed methodologies could further benefit from
incorporating geo-localization methods. For example, if the goal location is specified from
a ground-level perspective, which may be more realistic in practice, geo-localization methods
can be used to match the top-view images observed by our proposed method during goal localization.
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Figure 1: Overview of AiRLoc, our RL-based agent for aerial view goal localization. The state st
consists of the agent’s current position pt, its currently observed patchOt, and the goal patchOgoal.
First, segmentation masks for Ot and Ogoal are computed, and Ot, Ogoal and their segmentations
are then fed through a patch embedder to generate a common representation ct. The positional
encoding pt is then added to ct, and the sum, together with an exploitation prior ut (see §3.2), are
subsequently processed by an LSTM, whose output is fed to a decision unit. The decision unit also
receives ut and outputs an action probability distribution π(·|st). A movement at is then sampled
from π(·|st), which results in the next state st+1 and reward rt+1 (a reward is provided during
training only). The process is repeated, either until the agent reaches the goal, or until a maximum
number of steps T have been taken. Note that AiRLoc never observes the full search area, not even
at a low resolution.

From a pure task formulation perspective, and setting aside the application areas, our setup
may be most closely related to embodied image goal navigation (Anderson et al., 2018; Zhu et al.,
2017; Mezghani et al., 2022). In this framework, an agent is tasked to navigate in a first-person
perspective within a 3d environment towards a goal location which is specified as an image within
the environment. On the one hand, the embodied setting may sometimes be more challenging than
our setup, since the exploration trajectories are typically longer (as the agent moves a significantly
smaller extent per action) and because exploration is performed among obstacles (e.g. walls and
furniture). On the other hand, embodied first person agents may often observe the goal from far
away (e.g. from the other side of a newly entered room), while our formulation is more challenging
in that the goal can never be observed in any way prior to reaching it.

To the best of our knowledge, in addition to us relatively few prior works have considered
inference based solely on partial glimpses of an underlying image (Rangrej & Clark, 2021; Rangrej
et al., 2022). In contrast, most earlier RL-based methods that have been proposed for computer
vision tasks – e.g. for object detection (Caicedo & Lazebnik, 2015; Gao et al., 2018; Pirinen &
Sminchisescu, 2018) and aerial view processing (Uzkent & Ermon, 2020; Ayush et al., 2020) –
assume access to at least a low-resolution version of the entire scene or image being processed.
Even the seminal work by Mnih et al. (2014) uses lower-resolution full image input in addition to
high-resolution partial glimpses during its sequential processing, even though in principle it may be
possible to re-design the system to operate based on high-resolution glimpses alone.

3 AERIAL VIEW GOAL LOCALIZATION

In this section we first explain in detail our proposed aerial view goal localization task and framework
(§3.1). Then, in §3.2, we explain AiRLoc, our reinforcement learning (RL)-based approach for
tackling this task. See Fig. 1 for an overview. Finally, §3.3 describes the baseline methods we have
developed and that we evaluate and compare with AiRLoc in §4.
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3.1 TASK DESCRIPTION

The task is executed by an agent within a search area, which is discretized as an M × N grid that
is layered on top of a given aerial image (with a small distance between each grid cell, to avoid
overfitting models to edge artefacts). Every grid cell within the search area corresponds to a valid
position pt of the agent, and the agent can only directly observe the image content Ot of its current
cell. In each episode, one of the grid cells corresponds to the goal that the agent should localize.
The image content of the goal cell is denoted Ogoal and its position is denoted pgoal. Note that
the goal position pgoal is never observed by the agent; it is only used to determine if the agent is
successful. The task is considered successfully completed as soon as the agent’s current position pt
and the goal position pgoal coincide,2 i.e. when pt = pgoal.

In each episode, the agent’s start location p0 and the goal location pgoal are sampled at uni-
form random within the search area (p0 6= pgoal). The agent then moves around until it either
reaches the goal (pt = pgoal), or a maximum number of steps T have been taken. This limit T is
included to represent time and resource constraints. In our task formulation, an agent has eight
possible actions, which correspond to moving to any of its eight adjacent locations (grid cells). An
agent may in general move outside the search area, and if so, the agent receives an entirely black
observation. There is never any advantage to moving outside the search area, and thus it should be
avoided (it is easy to avoid given pt).

3.2 AIRLOC MODEL

In this subsection we describe AiRLoc, the reinforcement learning (RL)-based model we propose
for tackling the aerial view goal localization task. An overview is shown in Fig. 1.

States, actions and rewards. The state st contains the currently observed patch Ot, the
goal patch Ogoal, and an encoding pt ∈ R256 of the agent’s position. As described above, AiRLoc
has eight possible actions at, which correspond to moving to any of its adjacent locations. During
training, a negative reward is provided for each action that does not move the agent into the goal
location, and a positive reward is provided when the goal is found. Specifically, after taking action
at−1 in state st−1 the reward rt = 3·1

(
pt = p

goal
)
−1 is provided, where 1 is the indicator function.

Policy overview: In each step, the state st is processed by four modules to generate the cur-
rent action distribution πθ(∗|st), where θ denotes all learnable parameters. First, Ot and Ogoal are
passed through a pretrained segmentation unit (a U-net (Ronneberger et al., 2015), see supplement)
which predicts building segmentation masks for Ot and Ogoal, respectively. Second, Ot and Ogoal

and their segmentations are passed through a patch embedder which yields a low-dimensional
embedding ct ∈ R256 of what the agent observes and what it aims to localize. The patch embedder
also outputs an exploitation prior ut ∈ R8 (described more below). Third, pt is added to ct and
the result and ut are passed to an LSTM-based temporal unit (Hochreiter & Schmidhuber, 1997)
which integrates information over time. Finally, the LSTM output and ut are passed to a decision
unit which yields the probability distribution πθ(∗|st). This decision unit first projects the LSTM’s
output into the action space dimensionality, then adds the exploitation prior ut, and finally generates
an action distribution using softmax. Note that we use an LSTM rather than a Transformer for
the temporal unit, since we want to keep the overall architecture lightweight – the model weights
occupy less than 4 MB of memory, and inference can be efficiently performed even without a GPU.

Patch embedder: The patch embedder should extract relevant information about the rela-
tionship between Ot and Ogoal. To achieve this, we use an architecture similar to that by
Doersch et al. (2015), who consider a self-supervised visual representation learning task where
the spatial displacement between a pair of adjacent random crops from an image should be
predicted. Note that when the start location p0 is adjacent to the goal location pgoal, and when
the movement budget T = 1, our task becomes equivalent to the representation learning task
introduced by Doersch et al. (2015). Our patch embedder architecture consists of two parallel
branches with four convolutional layers (ReLUs and max pooling are applied between layers).
First, Ot and Ogoal, with their segmentations channel-wise concatenated, are fed separately into

2A reasonable next step would be to require that an agent has to declare when it has reached its goal.
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one branch each. To enable early information sharing between the agent’s current patch and
the goal patch, after two convolutional layers, the outputs of the two branches are concatenated
and sent through the rest of their respective branches. The two resulting 128-dimensional em-
beddings are then concatenated and the result is passed through a dense layer with output ct ∈ R256.

Pretraining backbone vision components is common in RL setups, since it often yields a
higher end performance (Sax et al., 2018; Parisi et al., 2022; Wang et al., 2022a; Xiao et al., 2022;
Yadav et al., 2022). We therefore pretrain the patch embedder in the same self-supervised fashion as
Doersch et al. (2015). During pretraining, another dense layer (with input ct) is attached to produce
an 8-dimensional output ut which is fed to a softmax function. The eight outputs correspond to
the possible locations of Ogoal relative to Ot, assuming these are adjacent. When using the patch
embedder within AiRLoc, we take advantage of both ct and ut, cf. Fig. 1. Note that ut can be
interpreted as an exploitation prior, as it is specifically tuned towards localizing (’exploiting’)
adjacent goals. Thus, feeding ut to the temporal unit as well as directly to the decision unit allows
AiRLoc to learn when to explore and when to exploit (without ut, the same policy must be able
to both localize adjacent goals and explore far-away goals). The choice of using both ct and ut is
empirically justified in §4.2.

Positional encoding: Positional information is represented similarly to Transformers (Vaswani
et al., 2017); see details in the supplement. Note that AiRLoc never receives global positional
information, i.e. it is always relative to a given search area. Such information may be available
during SAR within a confined area, where a UAV can keep track of its location relative to the
borders of this area. Let (x, y) denote the agent’s coordinates within the M × N -sized search
area (thus x ∈ {0, . . . ,M − 1}, y ∈ {0, . . . , N − 1}). Then the i:th element pit of the positional
encoding vector pt ∈ Rd (with d even; for us d = 256) is given by:

pit =


cos (x/1002(i−1)/(d/2)) if i ∈ {1, . . . , d/2} and i is odd
sin (x/1002i/(d/2)) if i ∈ {1, . . . , d/2} and i is even
cos (y/1002(i−1)/(d/2)) if i ∈ {d/2 + 1, . . . , d} and i is odd
sin (y/1002i/(d/2)) if i ∈ {d/2 + 1, . . . , d} and i is even

(1)

Policy training. To learn the parameters of AiRLoc, we first pretrain the patch embedder in a self-
supervised fashion (without RL) as described above. We then freeze the patch embedder weights
and train the rest of AiRLoc using REINFORCE (Williams, 1992). We employ within-batch reward
normalization based on distance left to the goal, i.e. rewards associated with states of equal distance
to the goal are grouped and normalized to zero mean and unit variance. We use a pretrained segmen-
tation unit (one can simply use an off-the-shelf aerial view segmentation model) and it is not refined
during policy training – see the supplementary material for details.

3.3 BASELINES

In §4 we compare AiRLoc with the following baselines:

• Priv random selects actions randomly, with two exceptions: i) it cannot move outside the
search area; ii) it avoids previous locations.

• Local selects actions by repeatedly calling the pretrained patch embedder (which assumes
the goal is adjacent to the current location).

• Priv local is the same as Local but with the privileged movement restrictions of Priv ran-
dom.

• Human represents the average human performance from a proof-of-concept evaluation
with 19 subjects (see details in the supplementary material).

4 EXPERIMENTS

In this section we extensively evaluate and compare AiRLoc and the various baselines described in
§3.2 and §3.3, respectively. First we however describe what datasets and evaluation metrics we use,
explain different variants of AiRLoc, and provide some further implementation details.
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Datasets. We mainly use Massachusetts Buildings (Masa) by Mnih (2013) for development
and evaluation (70% for training; 15% each for validation and testing). The data contains images
of Boston and the surrounding suburban and forested areas. It depicts houses, roads and other
clearly identifiable man-made structures, but also woods and less developed regions. The data also
includes segmentation masks for buildings, which are used to separately train the segmentation
unit (cf. Fig. 1) that is used by most of the learnable models in the results below. Models are
also evaluated on the Dubai dataset (the Loop), which also depicts urban regions, although the
surrounding areas are instead dry deserts. This dataset is hence used to assess the generalization
of the various methods. Finally, we also train and evaluate on the xBD dataset by Gupta et al.
(2019), which contains satellite images from various regions both before (xBD-pre) and after
(xBD-disaster) various natural distastes, e.g. wildfires and floods. In this case the models are trained
on non-disaster-hit data from xBD-pre and evaluated on xBD-disaster, where we also ensure that the
training data depicts other geographical areas than those in xBD-disaster. More details are found in
the supplementary material.

Evaluation metrics. For performance evaluation we use the following five metrics. Success
is the percentage of episodes where the goal is reached. Steps is the average number of actions
taken per episode (for failure episodes this is set to the movement budget T ). Step ratio measures
the average ratio between the taken number of steps and the minimum number of steps required
(lower is better). It is only computed for successful trajectories. Residual distance measures the
average distance between the final location relative to the goal location in unsuccessful episodes
(lower is better). Finally, Runtime is the average runtime per episode.

AiRLoc variants. We also train and evaluate several ablated variants of AiRLoc. No sem
seg omits the segmentation unit and uses only RGB patches in the patch embedder (which is instead
pretrained with RGB-only inputs). No residual omits ut in the decision unit, but not in the temporal
unit, cf. Fig. 1. Finally, no prior entirely discards the prior ut in the architecture.

Implementation details. All methods are implemented in, trained and evaluated using Py-
Torch. Training AiRLoc3 takes 30h on a Titan V100 GPU. To learn the parameters of the policy
networks, we use REINFORCE (Williams, 1992) with Adam (Kingma & Ba, 2015), batch size 64,
search area size M × N = 5 × 5, movement budget T = 10, learning rate 10−4, and discount
γ = 0.9. The grid cells of the search areas are of size 48 × 48 × 3, with 4 pixels between each
other to avoid overfitting models to edge artefacts (each cell corresponds to roughly 100 × 100
meters). Each model is trained until convergence on the validation set (typically happens within 50k
batches). We apply left-right and top-down flipping of images (search areas) as data augmentation.
The AiRLoc variants are trained with five random network initializations each, and the results
for the median-performing models on the validation set are reported below. AiRLoc is not seed
sensitive, as shown in §4.3. Unless otherwise specified, all models are evaluated in deterministic
mode, i.e. the most probable action is selected in each step. All models are evaluated on the exact
same start configurations for fair comparisons.

4.1 MAIN RESULTS

In Table 1 we compare AiRLoc to the heuristic random and learnable local baselines on the test set
of Massachusetts Buildings (Masa). AiRLoc obtains a higher success rate than the baselines, both
in search areas of size 5 × 5 and 7 × 7 (AiRLoc is only trained in the 5 × 5 setting). AiRLoc and
Priv local have roughly the same runtime per trajectory, and note that all methods have runtimes
that would be negligible compared to the movement overhead of an actual UAV. It is also clear that
the segmentation model is crucial, which is in line with prior works that find that mid-level vision
capabilities are important for high performance in RL-vision setups (Sax et al., 2018). As seen in
Table 2, AiRLoc and the best alternative learnable approach Priv local generalize excellently to an
entirely new dataset.

Table 3 contains results on xBD-disaster; these results are particularly relevant from a per-
spective of SAR-operations in disaster-hit areas. Columns 1-3 show that AiRLoc generalizes

3Details about the patch embedder and segmentation network training are found in the supplement.
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Table 1: Results on the test set of Massachusetts Buildings (movement budget T = 10 and T = 14
for setups of sizes 5 × 5 and 7 × 7, respectively). For both search area sizes, the success rate
of AiRLoc is higher than for the baselines. Mid-level vision capabilities (semantic segmentation)
are crucial for AiRLoc’s performance. The standard local approach performs very poorly and is
significantly improved by imposing the privileged movement constraints. The time per episode is
low for all methods.

Agent type Success Step ratio Steps Res. dist. Runtime
AiRLoc (5x5) 67.6 % 1.45 6.2 2.4 120 ms
Priv local (5x5) 64.2 % 1.59 6.5 2.4 117 ms

Local (5x5) 24.7 % 1.47 8.1 7.0 138 ms
Priv random (5x5) 41.0 % 2.56 8.0 1.6 48 ms

AiRLoc (7x7) 59.0 % 1.52 9.4 3.3 188 ms
Priv local (7x7) 56.3 % 1.72 9.9 3.4 178 ms

Local (7x7) 17.8 % 1.20 11.9 8.7 202 ms
Priv random (7x7) 25.2 % 1.82 12.3 3.5 74 ms

AiRLoc (no sem seg, 5x5) 61.7 % 1.54 6.7 2.4 94 ms
Priv local (no sem seg, 5x5) 61.6 % 1.67 6.8 2.4 88 ms

Local (no sem seg, 5x5) 20.5 % 1.28 8.4 6.2 92 ms
AiRLoc (no sem seg, 7x7) 52.5 % 1.61 10.1 3.5 141 ms
Priv local (no sem seg, 7x7) 51.1 % 1.89 10.2 3.3 133 ms

Local (no sem seg, 7x7) 14.1 % 1.37 12.4 8.0 136 ms

Figure 2: Examples of AiRLoc (red) and Priv local (dashed green) on the test set of Masa (left,
middle) and Dubai (right). Left: AiRLoc takes the same first two actions as Priv local and then
takes the shortest path to the goal (’G’). Priv local also reaches the goal. Middle: AiRLoc first
deviates from Priv local and then follows the same path. AiRLoc reaches the goal faster. Right:
AiRLoc follows the same path as Priv local until it is adjacent to the goal and then moves into the
goal, while Priv local fails.

quite well from having been trained on an entirely different dataset (Masa), which depicts
non-disaster-hit urban areas, to disaster-hit areas at various other spatial locations. Results are
however improved further (columns 4-6) if models are first trained on non-disaster-hit images from
the same dataset (xBD-pre) and then evaluated at different locations that depict disaster-hit scenarios.

In summary, AiRLoc outperforms the baselines across all datasets and search area sizes, and
localizes goals in fewer steps on average. See Fig. 2, Fig. 4 - 5 and the supplementary material for
visualizations of AiRLoc and Priv local.

Human performance evaluation. The results of the proof-of-concept human performance
evaluation in Fig. 3 (left) indicate that our proposed task is in general difficult, since only slightly
above half of all human controlled trajectories are successful. We also see that AiRLoc and Priv
local achieve significantly higher success rates compared to human operators. Details about the
human performance evaluation are found in the supplementary material.
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Table 2: AiRLoc and baselines evaluated on previously unseen Dubai data (movement budget T =
10 and T = 14 for setups of sizes 5 × 5 and 7 × 7, respectively). AiRLoc and the privileged local
approach generalize very well to this out-of-domain data. Note that AiRLoc is the most successful
method in all settings, often by a large margin.

Agent type Success Step ratio Steps Res. dist. Runtime
AiRLoc (5x5) 68.8 % 1.52 6.3 2.4 126 ms

Priv local (5x5) 65.6 % 1.59 6.5 2.4 113 ms
Local (5x5) 23.5 % 1.23 8.2 6.6 136 ms

Priv random (5x5) 41.0 % 1.96 8.0 2.5 48 ms
AiRLoc (7x7) 57.2 % 1.54 9.7 3.4 194 ms

Priv local (7x7) 53.7 % 1.85 10.2 3.6 184 ms
Local (7x7) 15.5 % 1.25 12.2 7.9 207 ms

Priv random (7x7) 26.9 % 1.64 12.0 3.5 72 ms
AiRLoc (no sem seg, 5x5) 67.1 % 1.59 6.5 2.4 91 ms

Priv local (no sem seg, 5x5) 65.1 % 1.67 6.6 2.5 86 ms
Local (no sem seg, 5x5) 23.3 % 1.25 8.2 6.6 90 ms

AiRLoc (no sem seg, 7x7) 48.6 % 1.56 10.3 3.3 144 ms
Priv local (no sem seg, 7x7) 41.9 % 1.69 10.8 3.4 140 ms

Local (no sem seg, 7x7) 15.0 % 1.28 12.3 7.6 135 ms

Table 3: Results on scenarios depicting various natural disasters (xBD-disaster) for models trained
in two different ways. Columns 1 - 3: AiRLoc generalizes quite well from having been trained
on an entirely different dataset (Masa), which contains satellite images of non-disaster-hit urban
areas, to disaster-hit areas at various other spatial locations. Columns 4 - 6: Results are improved
further if models are first trained on non-disaster-hit images from the same dataset (xBD-pre) and
then evaluated at different locations depicting disaster-hit scenarios.

Agent type Success Steps Runtime Success Steps Runtime
AiRLoc (5x5) 66.1 % 6.5 130 ms 72.8 % 6.1 122 ms

Priv local (5x5) 63.8 % 6.7 121 ms 67.3 % 6.4 115 ms
Priv random (5x5) 40.8 % 7.9 48 ms 40.8 % 7.9 48 ms

AiRLoc (7x7) 50.7 % 10.2 204 ms 55.7 % 9.9 198 ms
Priv local (7x7) 50.5 % 10.2 184 ms 53.6 % 10.0 180 ms

Priv random (7x7) 25.5 % 12.2 74 ms 25.5 % 12.2 74 ms

4.2 ABLATION STUDY: MOTIVATING THE EXPLOITATION PRIOR

In Fig. 3 we evaluate the various AiRLoc variants described earlier,4 together with the best
non-RL-based model Priv local and the human baseline. AiRLoc is better than its ablated variants
on average in both settings (5× 5 and 7× 7), as well as for most start-to-goal distances (exception
at distance 4 in the 7× 7 setting). This motivates the design choice of fully utilizing the exploitation
prior within the policy architecture – see also Table 4.

Recall that Priv local is trained solely in the setting where the start and goal are adjacent, so
it can be interpreted as an ’exploitation only’ model, where the action distribution is obtained by
feeding the exploitation prior ut through a softmax, cf. Fig. 1. Conversely, the no prior variant of
AiRLoc is trained without any exploitation prior, so the policy must simultaneously learn to explore
(search for the goal when it is further away) and exploit (move to the goal when it is adjacent),
which may be ambiguous. As seen in Fig. 3, the no residual variant, which allows ut to guide
the agent’s decision making by feeding ut to the temporal unit, is only marginally better. Our full
AiRLoc agent, which clearly outperforms the other variants, takes this a step further by decoupling
exploration and exploitation and only has to learn a residual between the two (since ut is added

4Please see the supplement for more ablation results.

8



Published as a conference paper at ICLR 2023

Figure 3: Left and middle: Success rate versus start-to-goal distance on the validation set of Masa
(averages are dashed). Search areas are of size M × N = 5 × 5 and T = 10 (left) or 7 × 7
and 14 (middle). Left: The methods are generally more successful when the start is closer to the
goal. AiRLoc and Priv local achieve higher success rates than human operators. AiRLoc performs
roughly on par with Priv local when the goal and start are adjacent (Priv local is trained only in
this setting) and outperforms it at larger distances. AiRLoc is also more successful than its ablated
variants in all settings. Middle: AiRLoc is best on average, despite having only been trained in the
5 × 5 setting. Priv local is better when the start and goal are close to each other, while AiRLoc
is better when they are three or more steps apart. Right: How frequently AiRLoc selects the same
action as the exploitation prior (argmax of ut) versus goal distance. The full AiRLoc agent has the
largest variability in exploitation versus exploitation depending on distance to goal.

Table 4: Seed sensitivity analysis of the various AiRLoc variants on the validation set of Mas-
sachusetts Buildings (search area size 5 × 5, movement budget T = 10). The results on the first
lines of each block are the median-performing AiRLoc models and are the ones we have evaluated
in the rest of the paper. None of the AiRLoc variants are sensitive to the random seed used for policy
network initialization. The worst performing seed of the no residual variant of AiRLoc performs
better than the best performing seed of the no prior variant, and it is also somewhat better than
the alternative learnable approach Priv local. Similarly, the worst performing seed of our full AiR-
Loc outperforms the best performing seed of both the ablated variants and Priv local, which again
motivates our design choices.

Agent type Success Step ratio Steps Res. dist.
AiRLoc 72.6 % 1.49 6.0 2.4

AiRLoc (other seed #1) 72.2 % 1.45 6.1 2.4
AiRLoc (other seed #2) 72.2 % 1.51 6.2 2.5
AiRLoc (other seed #3) 74.3 % 1.56 6.2 2.4
AiRLoc (other seed #4) 75.9 % 1.53 6.1 2.5

AiRLoc (average) 73.4 % 1.51 6.1 2.5
AiRLoc (no residual) 68.5 % 1.49 6.3 2.2

AiRLoc (no residual, other seed #1) 68.6 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #2) 69.5 % 1.52 6.3 2.2
AiRLoc (no residual, other seed #3) 68.2 % 1.60 6.4 2.2
AiRLoc (no residual, other seed #4) 67.2 % 1.57 6.4 2.2

AiRLoc (no residual, average) 68.4 % 1.54 6.3 2.2
AiRLoc (no prior) 65.9 % 1.56 6.5 2.4

AiRLoc (no prior, other seed #1) 64.8 % 1.56 6.7 2.4
AiRLoc (no prior, other seed #2) 66.6 % 1.56 6.5 2.5
AiRLoc (no prior, other seed #3) 66.6 % 1.50 6.4 2.3
AiRLoc (no prior, other seed #4) 64.9 % 1.50 6.6 2.4

AiRLoc (no prior, average) 65.8 % 1.54 6.5 2.4
Priv local 67.0 % 1.54 6.3 2.3

within the softmax of the decision unit). Hence, during RL training AiRLoc essentially learns when
to explore and when to exploit.
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4.3 RANDOM SEED SENSITIVITY ANALYSIS

Table 4 shows the results of a seed sensitivity analysis (regarding policy network initilization) for
AiRLoc and its ablated variants on the validation set of Massachusetts Buildings. The AiRLoc
variants are trained with five random network initializations each until convergence on the validation
set, and the results for the median-performing models on the validation set are the ones reported
within the rest of the paper. The seed sensitivity is low overall. Furthermore, our full AiRLoc agent
outperforms Priv local even for the worst-performing seed.

5 CONCLUSIONS

In this work we have introduced the novel aerial view goal localization task and framework, which
allows for controllable and reproducible development of methodologies that can eventually be
useful for automated search-and-rescue operations, e.g. in regions that are heavily affected by
climate-induced disasters. Naturally, as with most technologies, there are also possible applications
that may be unethical. We strongly discourage extending our research in such directions, and
instead call for extensions towards benign use-cases.

The difficulty for humans to perform well on our proposed task shows that it is a reasonable
first step for model development and evaluation, even though the setup avoids some challenges of
real use-cases. Relevant next steps toward making the proposed methodologies more practically
useful include making the goal specification more flexible (e.g. allowing for a ground-level image
description of the goal); requiring the agent to explicitly declare when it has reached its goal; and
considering even larger search areas.

A reinforcement learning-based approach, AiRLoc, was developed to tackle the proposed
task, in addition to several other learnable and heuristic methods. Key components of the policy
architecture include a mid-level vision module and an explicit decoupling between exploration
and exploitation, both of which were shown to be crucial for AiRLoc’s performance. Extensive
experimental evaluations clearly showed the benefits of our AiRLoc agent over the learnable and
heuristic baselines. In particular, our methodology can be used to localize goals in aerial images
depicting disaster zones, despite being trained only on scenarios without disasters. Code and models
have been made publicly available5 so that others can further explore and extend our proposed task
towards real use-cases, for example within disaster relief and management.

5https://github.com/aleksispi/airloc
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Figure 4: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in xBD-
disaster (7 × 7 setup, movement budget T = 14). The start and goal locations are denoted ’S’ and
’G’, respectively. The numbered circles show which locations are visited and in what order. Recall
that the full underlying search area is never observed in its entirety, i.e. the agents must operate based
on partial glimpses alone. Also note that AiRLoc was only trained on search areas of size 5× 5 and
movement budget T = 10. AiRLoc takes the same first two steps as Priv local, then deviates and
reaches the goal in fewer steps than Priv local.

Figure 5: Successful examples of AiRLoc (left) and Priv local (right) on a post-wildfire scenario in
xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first step as Priv
local, then deviates, and reaches the goal twice as fast. Priv local precisely manages to reach the goal
within its movement budget. Please see the supplementary material for additional visualizations.
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A SUPPLEMENTARY MATERIAL

In this supplementary material we provide additional results and insights for our proposed AiRLoc
agent, baselines and the datasets we have used. In §A.1 we provide several additional qualitative
examples (visualizations) of AiRLoc and the second best approach Priv local. In §A.2 we provide
more details about the policy architecture of AiRLoc. An extended ablation study is presented in
§A.3. Further dataset details are given in §A.4. Finally, a description of the human performance
evaluation is found in §B.

A.1 VISUALIZATIONS OF AGENT TRAJECTORIES

In Fig. 6 - 9 we show additional qualitative examples of AiRLoc and the best alternative learnable
approach Priv local on the test set of Massachusetts Buildings (Masa). In this case the models
were trained on the training set of Masa. Fig. 10 - 19 show additional visualizations of AiRLoc
and Priv local on disaster-hit search areas from the dataset xBD-disaster. In this case the models
were trained on non-disaster-hit data from xBD-pre, where we have ensured that this training data
depicts other geographical areas than those in xBD-disaster. See more detailed information about
each dataset in §A.4.

When inspecting these visual examples, keep in mind the connection between AiRLoc and
Priv local, where Priv local is essentially an ’exploit only’ model that is optimized to localize
adjacent goals. The action distribution of Priv local is obtained6 by feeding its final output ut ∈ R8

through a softmax. Our full AiRLoc agent takes advantage of this exploitation prior ut and
decouples exploration from exploitation, as explained in the main paper. AiRLoc thus decides when
to resort to Priv local’s exploitative behavior (although without the privileges) and when to explore
independently.

6Subject to privileged movement constraints, without which it performs abysmally (see Table 5).
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Figure 6: Successful examples of AiRLoc (left) and Priv local (right) on the Masa test set (5 × 5
setup, movement budget T = 10). The start and goal locations are denoted ’S’ and ’G’, respectively.
The numbered circles show which locations are visited and in what order. Recall that the full un-
derlying search area is never observed in its entirety (they are shown here for visualization purposes
only), i.e. the agents must operate based on partial glimpses alone. AiRLoc takes a different and
much shorter path towards the goal location.

Figure 7: An unsuccessful example of AiRLoc (left) and a successful example of Priv local (right)
on the Masa test set (5× 5 setup, movement budget T = 10). AiRLoc moves in the wrong direction
early on, even though it manages to backtrack and get close to the goal again (e.g. location #1 and
#8 coincide). However, AiRLoc ultimately fails to find the goal location in this example.
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Figure 8: Successful examples of AiRLoc (left) and Priv local (right) on the Masa test set (5 × 5
setup, movement budget T = 10). AiRLoc and Priv local take the same first action, then AiRLoc
deviates from the exploitation prior and takes a shorter path towards the goal. Note that AiRLoc
even moves outside the search area but still reaches the goal. Recall that Priv local has explicit
restrictions which ensure that it always stays within the search area (as shown in the main paper,
without such privileges this approach yields very poor results).

Figure 9: Successful examples of AiRLoc (left) and Priv local (right) on the Masa test set (5 × 5
setup, movement budget T = 10). In this example AiRLoc begins by deviating from the exploitation
prior and explores the area differently. Note in particular how it takes a suboptimal action from
location #5 to location #6 (instead of moving left towards the goal), then recovers and backtracks
(location #5 and #7 coincide), and finally resorts to the exploitation prior (compare #7 - #9 with Priv
local on the right) which takes it to the goal location. Both agents reach the goal location in the
same number of steps.
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Figure 10: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (5×5 setup, movement budget T = 10). AiRLoc takes a different and slightly shorter
path towards the goal location.

Figure 11: Successful examples of AiRLoc (left) and Priv local (right) on a post-wildfire scenario
in xBD-disaster (5× 5 setup, movement budget T = 10). AiRLoc takes a different and significantly
shorter path towards the goal location. Note that Priv local visits the location below the start loca-
tion after 2 and 5 steps, despite its privileged movement constraints which tries to avoid previous
locations. However, in this example, after the 4th step there are no unvisited locations to move to,
and so it has to move somewhere.
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Figure 12: A Successful example of AiRLoc (left) and an unsuccessful example of Priv local (right)
on a flooding scenario in xBD-disaster (5× 5 setup, movement budget T = 10). AiRLoc’s location
#7 shares forest-structure with the goal location, which may have been an important visual cue in
the last step.

Figure 13: Successful examples of AiRLoc (left) and Priv local (right) on a wildfire scenario in xBD-
disaster (5 × 5 setup, movement budget T = 10). Both agents take the exact same (and shortest)
path towards the goal, i.e. AiRLoc fully resorts to the exploitation prior in this case.
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Figure 14: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes the first same step as Priv
local, then deviates and takes a shortest path towards the goal. Priv local reaches the goal using
several more steps.

Figure 15: A successful example of AiRLoc (left) and an unsuccessful example of Priv local (right)
on a post-wildfire scenario in xBD-disaster (5×5 setup, movement budget T = 10). AiRLoc moves
in the same way as Priv local for the first two steps and then deviates. Note that AiRLoc does not
take the shortest path towards the goal but nonetheless reaches it well within the movement budget.
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Figure 16: An unsuccessful example of AiRLoc (left) and a successful example of Priv local (right)
on xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes the same path as Priv
local for the first six steps and then deviates (it is adjacent to the goal when the budget T = 10 is
exhausted). Priv local precisely manages to reach the goal within the budget.

Figure 17: Successful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (5 × 5 setup, movement budget T = 10). AiRLoc takes a different and much shorter
path towards the goal location.
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Figure 18: Unsuccessful examples of AiRLoc (left) and Priv local (right) on a flooding scenario in
xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first two steps as
Priv local, then deviates, but (like Priv local) fails to reach the goal.

Figure 19: A successful example of AiRLoc (left) and an unsuccessful example of Priv local (right)
on xBD-disaster (7 × 7 setup, movement budget T = 14). AiRLoc takes the same first step as
Priv local and then deviates. Note that AiRLoc even moves outside the search are at one occasion
(location #8), but still manages to reach the goal well within the movement budget.
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A.2 MORE DETAILS ABOUT THE PATCH EMBEDDER AND SEGMENTATION UNIT

Pretraining backbone vision components is common in RL setups, since it often yields a higher
end performance (Sax et al., 2018; Parisi et al., 2022; Wang et al., 2022a; Xiao et al., 2022; Yadav
et al., 2022). Before training the rest of AiRLoc with reinforcement learning, the patch embedder is
therefore pretrained (in the same self-supervised fashion as Doersch et al. (2015)) on the training set
of Massachusetts Buildings (or on xBD-pre, depending on which experiment is considered) using
the categorical cross-entropy loss. This loss is computed using the 8-dimensional patch embedder
prediction and a one hot encoding of the true goal direction relative to the start location (recall that
during this pretraining stage, the start and goal are assumed to be adjacent). The Adam optimizer
(Kingma & Ba, 2015) with batches of 256 pairs of image patches (start and goal) and a learning
rate of 10−3 is used during this pretraining phase.

For the segmentation unit, we use and adapt the U-net model for biomedical segmentation
applications (Ronneberger et al., 2015). A publicly available implementation of this U-net7 is
used as a starting point. However, since the patches (partial glimpses of the search area) are
smaller than in the original U-net, the network structure is altered. This altered network consist of
four downsampling convolutional blocks, which reduce the spatial dimensions of the input into a
3× 3× 64 embedding. Then, four upsampling convolutional blocks are used to recreate the spatial
dimension of the input patch (thus the segmentation unit outputs a binary 48 × 48 × 1 building
segmentation mask, although in general the segmentation unit could obviously include more classes
as well). The segmentation network is pretrained on the training set of Massachusetts Buildings
using a cross-entropy loss with Adam, batch size 128, and learning rate 10−4, and is kept frozen
when training the rest of AiRLoc.

A.3 EXTENDED ABLATION STUDY

See Table 5 for an extended ablation study of AiRLoc on the validation set of Massachusetts Build-
ings. For convenience, we here repeat the definitions of the various AiRLoc variants. No sem seg
omits the segmentation unit and uses only RGB patches in the patch embedder (which is instead
pretrained with RGB-only inputs). No residual omits ut in the decision unit, but not in the temporal
unit, cf. Fig. 1 in the main paper. No prior entirely discards the prior ut in the architecture. Finally,
Priv refers to the use of the privileged movement constraints which i) ensures that the agent cannot
move outside the search area; and ii) it avoids previous locations.

A.4 DATASET DETAILS

As described in the main paper, Massachusetts Buildings is used as the main dataset for model
development and evaluation. There are 832 different search areas in training (70%), 178 in
validation (15%), and 178 in testing (15%). Since top-right and left-right flipping of search areas
is performed during training, and since search a area of size M × N = 5 × 5 has 25 · 24 different
start-goal configurations, there are in total 832 · 4 · 25 · 24 ≈ 2 · 106 unique training configurations.
As the various agents are trained for roughly 50k batches each, and since each batch consists of 64
episodes, this amounts to 3.2 · 106 training episodes.

During evaluation, one randomly generated but fixed configuration of each start-to-goal dis-
tance is used per search area, which results in 712 fixed validation and test configurations,
respectively, in the 5 × 5 setting (4 · 178 = 172). Similarly, when evaluating on the Dubai dataset
(the Loop), there are 196 search areas and thus 784 fixed evaluation configurations. The grid cells
of the search areas are of size 48 × 48 × 3, with 4 pixels between each other to avoid overfitting
models to edge artefacts (each cell corresponds to roughly 100× 100 meters).

As for the xBD-pre and xBD-disaster data, they again depict data from non-disaster-hit (xBD-pre)
and disaster-hit (xBD-disaster) areas,8 and the respective data splits are from different geographical

7https://github.com/milesial/Pytorch-UNet
8More specifically, xBD-pre contains the satellite image subset depicting various locations prior to hurricane

Michael (found in the tier1 subset of the xBD dataset), and xBD-disaster contains the satellite image subset
depicting various locations after various natural disasters (also found in the tier1 subset of the xBD dataset).
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Table 5: Extended ablation study on the validation set of Massachusetts Buildings (movement budget
T = 10 and T = 14 for setups of sizes 5 × 5 and 7 × 7, respectively). Adding the movement
constraint privileges of Priv local does not yield any significant improvements for AiRLoc – it even
reduces the success rate for our full AiRLoc agent. Conversely, in the bottom of this table we report
results for Local, which is the same as Priv local but without the privileged movement constraints
(thus Local may visit the same location multiple times and move outside the search area). Different
to AiRLoc, which also lacks any privileged movement constraints, Local performs abysmally when
it is not given such constraints. Mid-level vision capabilities (semantic segmentation) are crucial for
AiRLoc’s performance. The fact that the ablated AiRLoc variants generally result in a lower success
rate motivates our design choices.

Agent type Success Step ratio Steps Res. dist.
AiRLoc (5x5) 72.6 % 1.49 6.0 2.4

AiRLoc (priv, 5x5) 68.8 % 1.47 6.2 2.3
AiRLoc (no residual, 5x5) 68.5 % 1.49 6.3 2.2

AiRLoc (no residual, priv, 5x5) 71.9 % 1.52 6.2 2.5
AiRLoc (no prior, 5x5) 65.9 % 1.56 6.5 2.4

AiRLoc (no prior, priv, 5x5) 67.1 % 1.56 6.4 2.6
AiRLoc (no sem seg, 5x5) 62.6 % 1.52 6.6 2.4

AiRLoc (no sem seg, priv, 5x5) 64.6 % 1.56 6.7 2.5
AiRLoc (no residual, no sem seg, 5x5) 61.1 % 1.56 6.8 2.4

AiRLoc (no residual, no sem seg, priv, 5x5) 62.6 % 1.59 6.8 2.5
AiRLoc (no prior, no sem seg, 5x5) 60.7 % 1.67 6.9 2.5

AiRLoc (no prior, no sem seg, priv, 5x5) 62.2 % 1.69 6.9 2.6
AiRLoc (7x7) 57.6 % 1.54 9.6 3.4

AiRLoc (priv, 7x7) 51.4 % 1.49 10.1 3.3
AiRLoc (no residual, 7x7) 50.5 % 1.54 10.1 3.4

AiRLoc (no residual, priv, 7x7) 52.3 % 1.54 9.9 3.5
AiRLoc (no prior, 7x7) 50.5 % 1.59 10.2 3.6

AiRLoc (no prior, priv, 7x7) 52.1 % 1.59 10.1 3.6
AiRLoc (no sem seg, 7x7) 48.4 % 1.56 10.4 3.3

AiRLoc (no sem seg, priv, 7x7) 47.7 % 1.69 10.7 3.2
AiRLoc (no residual, no sem seg, 7x7) 46.1 % 1.59 10.4 3.6

AiRLoc (no residual, no sem seg, priv, 7x7) 48.8 % 1.64 10.4 3.7
AiRLoc (no prior, no sem seg, 7x7) 42.4 % 1.79 11.1 3.4

AiRLoc (no prior, no sem seg, priv, 7x7) 44.4 % 1.82 11.0 3.4
Priv local 67.0 % 1.54 6.3 2.3

Local 19.9 % 0.79 8.5 6.1

areas (thus there is no spatial overlap). There are 902 different search areas in training (xBD-pre),
and since top-right and left-right flipping of search areas is performed during training, and since
search a area of size M ×N = 5× 5 has 25 · 24 different start-goal configurations, there are in total
902 · 4 · 25 · 24 ≈ 2.2 · 106 unique training configurations. During evaluation (on xBD-disaster), one
randomly generated but fixed configuration of each start-to-goal distance is used per search area,
which results in 5212 evaluation configurations in the 5 × 5 setting (there are 1303 search areas in
xBD-disaster and 4 · 1303 = 5212).

B DESCRIPTION OF THE HUMAN PERFORMANCE EVALUATION

To compare the performance of AiRLoc with a human operator in a similar setting, a game version
of the task was developed. For fair comparisons, this game was designed to resemble how AiRLoc
perceives the search area. Therefore, in addition to receiving the current and goal patches, the human
operator is also aware of the borders of the search area, and knows the current position as well as the
history of all previously visited positions within the confined area – see Fig. 20. In fact, the human
operator can even see all the previously visited patches, while this information is not provided to
AiRLoc. We decided to provide humans with this additional information as they have not been
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Figure 20: An example of the human performance evaluation setup. Each participant was given a
set of 12 different such games (a game is a search area and an associated start and goal location),
and there was no overlap in the games played by different participants. Each search area was of size
5× 5 and the movement budget was T = 10.

trained for the task at hand. Based on this input, the human operator can move to any of the eight
adjacent patches. The movement is selected by clicking with a mouse cursor on one of the eight dark
squares surrounding the current location in the Player Area, shown on the left in Fig. 20. The game
uses search areas of size 5 × 5 and ends either when the movement budget T = 10 is exhausted or
when the player moves into the goal location (just as for AiRLoc and the other baselines). Moreover,
different to the other approaches, the human participants have a limited time to complete each game
(60 seconds). Such a time limit was used for the convenience of the participants – we wanted to
avoid that the participants felt like they had to spend several minutes per action to squeeze out the
maximum possible performance. The 60 second time limit was assessed to be more than sufficient
for completing each game, and the participants agreed with this.

The age span of the 19 people who participated is between 14 and 42 years, with an average of 26.4
years and a median of 25 years. There were 13 men and 6 women (68% and 32%, respectively). For
each human operator, 12 unique search areas from the validation set of Massachusetts Buildings
were used, as well as a few sample search areas for the player to get acquainted with the controls
of the game – the participants were able to practice as long as they desired, and no statistics were
tracked during this warm up phase. The exact games provided span a subset of the games that
AiRLoc and the other baselines are evaluated on, to ensure that the comparison is as fair as possible.
However, each human is not tested on the entire dataset since it is impractically large, and hence
there is a higher uncertainty in the human performance evaluation. The difficulty settings were split
equally over these twelve games, with three games per difficulty (here difficulty is the distance
between the start and goal patches, ranging from 1 to 4 steps away).
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Even though the human setup is very similar to that of AiRLoc, there are some concepts that
do not translate well to a human controlled setup. First, the positional encoding of AiRLoc is
difficult to translate to human visual processing, and instead a map of the positions was implemented
(thus the participants receive explicit information from past locations, different from AiRLoc).
Second, the human participants have not trained on the task like AiRLoc, and their visual systems
are likely not tailored towards handling the quite low resolution patches. On the other hand, humans
have implicitly conducted a lifetime worth of generic visual pretraining, which AiRLoc has not.
These discrepancies, in conjunction with the limited number of human controlled trajectories,
somewhat limit the reliability of the human baseline. Nonetheless, it is still a useful indication of
the human performance on our proposed task.
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