

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TASK-AGNOSTIC MOTIFS TO CAPTURE THE CONTINUOUS NATURE OF ANIMAL BEHAVIOR

Anonymous authors

Paper under double-blind review

ABSTRACT

Animals flexibly recombine a finite set of core motor motifs to meet diverse task demands, but existing behavior segmentation methods oversimplify this process by imposing discrete syllables under restrictive generative assumptions. To better capture the continuous structure of behavior generation, we introduce motif-based continuous dynamics (MCD) discovery, a framework that (1) uncovers interpretable motif sets as latent basis functions of behavior by leveraging representations of behavioral transition structure, and (2) models behavioral dynamics as continuously evolving mixtures of these motifs. We validate MCD on a multi-task gridworld, a labyrinth navigation task, and freely moving animal behavior. Across settings, it identifies reusable motif components, captures continuous compositional dynamics, and generates realistic trajectories beyond the capabilities of traditional discrete segmentation models. By providing a generative account of how complex animal behaviors emerge from dynamic combinations of fundamental motor motifs, our approach advances the quantitative study of natural behavior.

1 INTRODUCTION

A critical direction in animal behavior research has been identifying recurring patterns, often referred to as stereotyped behavioral syllables, like back grooming, running, and sniffing, directly from large-scale behavior recordings. Behavior segmentation methods (Wiltschko et al., 2015; Weinreb et al., 2024; Luxem et al., 2022; Hsu & Yttri, 2021; Berman et al., 2014) seek to uncover such structured patterns in behavior by dividing continuous pose trajectories into discrete syllables. Classic behavior segmentation approaches can be categorized into three groups: (1) supervised classification (Marks et al., 2022; Segalin et al., 2021), (2) clustering-based methods (Hsu & Yttri, 2021; Berman et al., 2014; Whiteway et al., 2021), and (3) **hidden-Markov-model(HMM) based methods** (Wiltschko et al., 2015; Weinreb et al., 2024; Luxem et al., 2022; Costacurta et al., 2022). The segmented syllables can then be used to build structured representations of movement for downstream neurobehavioral study.

However, existing behavior segmentation methods (Wiltschko et al., 2015; Weinreb et al., 2024; Luxem et al., 2022; Hsu & Yttri, 2021; Berman et al., 2014) overlook several features of the behavior data. First, **continuity**, they model continuous behavior as combinations of discrete action syllables, which oversimplifies the inherently continuous nature of movement and introduces ambiguity during action transitions. Therefore, they may fail to capture the details of delicate behavior dynamics. Second, **compositionality**, they often extract complex coordinated body movements as abstract syllables that fail to capture how individual body parts contribute to different motions. Therefore, they fail to reveal the connections and distinctions between syllables. For example, back and side grooming both involve similar forelimb movements combined with different turning dynamics, and sniffing may occur while walking or sitting, with similar head motion but distinct lower-body patterns. Third, **long-term dependency**. They either ignore temporal dependency between actions or only consider a very short time window when encoding the behavior. Therefore, they often fail to capture the long-term and multi-scale property of syllables (See Appendix. I for discussions on temporal dependency). Apart from these explicit features, most models are either non-generative (e.g., clustering Hsu & Yttri (2021); Berman et al. (2014)) or rely on restrictive generative assumptions (e.g., linear dynamics and Markov models Wiltschko et al. (2015); Weinreb et al. (2024); Luxem et al. (2022)), often leading to unrealistic synthesized behaviors.

To address these limitations, we introduce a new perspective: modeling behavior under the reinforcement learning (RL) framework. We study behavioral dynamics and motor motifs by inferring the animal’s policy through an RL-based imitation learning (IL) framework. It not only enables more

realistic behavior generation through RL but also allows us to discover reusable motor motif sets to construct a policy driven by internal rewards. By viewing behavior through this lens, we gain a more flexible, generative, and interpretable understanding of motor motifs that go beyond the constraints of discrete segmentation. Note that Aldarondo et al. (2024) also applied RL-based IL to analyze animal behavior, but without parsing long untrimmed behaviors into fine-grained, interpretable motor motifs, so their work lies outside the scope of behavior segmentation considered here.

We hypothesize that animals draw from a fixed set of core motor motifs to construct diverse movements over long behavioral trajectories (Santuz et al., 2019; Flash & Hochner, 2005). Building on this, we propose *Motif-based Continuous Dynamics discovery (MCD)* to parse long trajectories and uncover motifs and policies that reflect behavioral dynamics. Concretely, we learn interpretable latent representations, or **motif sets**, via spectral decomposition-based representation learning in RL (Dai et al., 2014; Ren et al., 2023; Shribak et al., 2024). These motifs correspond to low-level motion patterns serving as modular building blocks of behavior and can involve different body parts. For instance, face grooming (forepaw-to-face) and body grooming (torso strokes) share grooming motifs while engaging distinct body parts. These motifs can then be used to sufficiently represent policies that characterize complex high-level behaviors. Finally, we apply imitation learning to train motif-based policies from demonstrations. This framework leverages RL in two aspects: (1) motifs are inferred through RL-based representation learning, and (2) we use policies formed from motifs to characterize behavioral dynamics. As shown later, both aspects avoid any model assumptions while capturing motifs and policies that faithfully reflect behavioral dynamics.

Another key innovation in constructing policies from motifs is that each motif’s contribution evolves continuously over time, reflecting dynamic behavioral changes. Some motifs may be brief, others prolonged, and multiple motifs can be active simultaneously to build ongoing movement (Fig. 1). This flexible, compositional view cannot be achieved with traditional discrete syllables. MCD thus provides a nuanced account of how complex actions arise from dynamic motif combinations and enables testing whether fine-grained motifs depend on specific neural circuits. Compared with prior segmentation methods, MCD offers *soft segmentation* that captures continuous time-varying processes rather than discrete switches. Further, theoretically the horizon in RL is infinite, enabling longer temporal dependency modeling.

Note that there is a rich literature in robotics on learning skills through imitation learning (Paraschos et al., 2013; Lioutikov et al., 2017; Li et al., 2017; Ajay et al., 2021; Peng et al., 2022; Kuang et al., 2025). We use RL-based imitation not to compete with existing skill learning methods, as most are not suited to the behavior segmentation task for neuroscience study in this paper. Rather, our goal is to employ the RL framework as a principled way to characterize the continuous nature of animal behavior while rendering fine-grained motor motifs, analogous to how *Keypoint-MoSeq* relies on an SLDS framework (Weinreb et al., 2024) and *VAME* relies on an autoencoder framework (Luxem et al., 2022). To summarize, we contribute to *behavior understanding for neuroscience and neuroethology* through the following points:

- We introduce the first RL-based IL framework for behavior segmentation, a fundamental advance since RL naturally treats behavior as a decision-making process shaped by policies and rewards. Unlike dynamics-based methods, it explains why behaviors occur, not just how they unfold.
- Within this framework, we propose RL-based representation learning to discover motif-based policies. The learned motifs and policies do not rely on dynamics assumptions or any model assumptions. They can faithfully characterize behavioral dynamics without the mismatch issues of prior segmentation methods.
- Our method reveals the continuous, compositional and long-term dependent nature of animal behavior, providing a nuanced understanding of how complex behaviors emerge from dynamic combinations of fundamental motor motifs. It moves beyond the discrete segmentation assumptions of existing methods.

2 PRELIMINARIES

Markov Decision Processes (MDP). To define motifs that characterize animal behaviors, we begin by modeling the observed behavioral trajectories within the framework of MDPs. Formally, an MDP is defined as a tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, P, \rho, \gamma, H)$, where \mathcal{S} denotes the state space, capturing both the



Figure 1: A policy for a movement can be seen as a blend of “vocabularies” from a dictionary containing fundamental motor motifs.

108 environment and an animal’s condition—for example, positions of pose keypoints; \mathcal{A} is the action
 109 space denoting feasible movements; $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is a reward function encoding the immediate
 110 utility toward an internal goal; $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition operator, with $\Delta(\mathcal{S})$ representing
 111 distributions over \mathcal{S} ; $\rho \in \Delta(\mathcal{S})$ is the initial state distribution; $\gamma \in (0, 1)$ is a discount factor; and H
 112 is the time horizon. A policy $\pi : \mathcal{S} \times [H] \rightarrow \Delta(\mathcal{A})$ is a conditional distribution over actions given a
 113 state for each time-step. We assume that an animal generates pose trajectories by following such an
 114 MDP where the reward function reflects an intrinsic motivation driving behavior. The behavior is
 115 governed by a policy that seeks to maximize this internal reward.

116 Following standard notations, we define the value function $V(s) := \mathbb{E} \left[\sum_{t=0}^H \gamma^t r(s_t, a_t) | s_0 = s \right]$ and
 117 the action-value function $Q(s, a) = \mathbb{E} \left[\sum_{t=0}^H \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a \right]$, which are the expected
 118 discounted cumulative rewards when executing policy π . From the above definition, we can establish
 119 the following Bellman relationship:
 120

$$Q_h(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V_{h+1}(s')], \quad V_h(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} [Q_h(s, a)]. \quad (1)$$

121 **Offline Imitation Learning.** We use imitation learning(IL) to find a policy π that mimics animal
 122 behavior. In the offline IL setting, we cannot interact with the MDP environment to collect samples
 123 using policy π , but can only access a dataset of transitions sampled from the MDP by the expert,
 124 $\mathcal{D} = \{(s_i, a_i, s'_i) | (s, a) \sim \tau^e, s' \sim P(\cdot | s, a), i = 1, 2, \dots, N\}$, where τ^e is the data distribution of
 125 state-action pairs generated by the expert which is the animal in this study.
 126

3 MOTIF-BASED CONTINUOUS DYNAMICS (MCD) DISCOVERY

127 Given the MDP definition, we frame motif discovery from a control-theoretic perspective. In this
 128 view, motifs are the fundamental components that enable the construction of diverse policies and
 129 reward functions, and thus help explain the motivation behind observed behaviors.
 130

131 **Definition 1** (Motif Set). *Given an arbitrary transition kernel $P(\cdot | s, a)$ in an MDP, we can express it
 132 via a spectral decomposition: $P(s' | s, a) = \phi(s, a)^\top \mu(s') q(s')$,* (2)
 133 *where $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$, $\mu : \mathcal{S} \rightarrow \mathbb{R}^d$, and $q \in \Delta(\mathcal{S})$ is a parametrized probability distribution over
 134 the state space. We define the function ϕ as the **motif set**. The reward function is then parametrized
 135 linearly as $r(s, a) = \phi(s, a)^\top w$.*
 136

137 Spectral decomposition has been widely studied in RL representation learning (Ren et al., 2023;
 138 Zhang et al., 2022; Shribak et al., 2024). We adopt this approach here to define motifs given the
 139 transition kernel and define rewards accordingly. Since spectral decomposition derives latents directly
 140 from the transition kernel without model assumptions, motif learning is thus independent of model
 141 assumptions and faithfully reflects the motifs present in the behavior data.
 142

143 Given the motif definition, substituting Eq. 2 and the linearized reward model into the Bellman
 144 equation (Eq. 1), we get:
 145

$$Q(s, a) = r(s, a) + \gamma \int V(s') P(s' | s, a) ds' = \phi(s, a)^\top \left[w + \gamma \int V(s') \mu(s') q(s') ds' \right] = \phi(s, a)^\top u, \quad (3)$$

146 where $u = w + \gamma \int V(s') \mu(s') q(s') ds'$. Thus, the action-value function $Q(s, a)$ can be expressed
 147 as a linear combination of motif features $\phi(s, a)$, offering a convenient way to link motifs to the
 148 policy. Following the maximum entropy reinforcement learning framework (Haarnoja et al., 2018),
 149 we assume the animal’s objective is to maximize the expected reward augmented by the policy’s
 150 entropy. Under this assumption, the optimal max-entropy policy $\pi(a | s)$ can be shown to follow:
 151

$$\pi(a | s) = \arg \max_{\pi} [\mathbb{E}_{\pi}[Q(s, a)] + H(\pi)] = \frac{\exp(\phi(s, a)^\top u)}{\sum_{a' \in \mathcal{A}} \exp(\phi(s, a')^\top u)}, \quad (4)$$

152 where $H(\pi) := \sum_{a \in \mathcal{A}} \pi(a | s) \log(\pi(a | s))$ is the entropy.
 153

154 **Proposition 1.** *The policy in Eq. 4 is not based on any model assumption but emerges naturally as
 155 the max-entropy policy based on spectral decomposition of the transition kernel. Furthermore, the
 156 learned motifs ϕ can represent any max-entropy policy through an appropriate choice of u .*
 157

158 The reason we define $\phi(s, a)$ as *motifs* is that ϕ provides the linear basis for the environment transition,
 159 policies, and rewards. Policies characterize behavioral dynamics by describing action tendencies
 160 conditioned on state (*how behaviors evolve*). Combined with the environment dynamics $P(s' | s, a)$, it
 161 induces the transition distribution $P(s' | s) = \sum_a P(s' | s, a) \pi(a | s)$, which governs the evolution of
 behavior trajectories, as is often directly modeled in dynamics-based methods (Wiltschko et al., 2015;

Weinreb et al., 2024). Rewards, in turn, reflect the underlying driving factors of these trajectories (*why behaviors evolve*). Moreover, because ϕ is derived solely from the transition dynamics $P(s'|s, a)$, it remains independent of any specific reward or task. In this sense, $\phi(s, a)$ encodes intrinsic, general-purpose motor motifs available to animals, while the weight vector u captures task-specific modulations required to produce behavior aligned with different goals. Thus, we can interpret behavioral trajectories through the lens of motifs ϕ .

From Def. 1 and Prop. 1, we conclude that the learned motifs and policies do not rely on model assumptions, yet the policies faithfully capture behavioral dynamics as action tendencies conditioned on state. Thus, our method is assumption-free while capturing dynamics, unlike classification/clustering methods (no dynamics) or dynamics-based methods (restrictive assumptions).

Next, we introduce how to learn $\phi(s, a)$ and $\mu(s')$ (motif discovery), as well as u (motif-based policy learning that characterizes the continuous behavioral dynamics) from demonstrations. The learning procedure differs depending on the nature of the behavior data (i.e. discrete or continuous).

3.1 DISCRETE VERSION

Motif discovery. For discrete state-action spaces, we apply spectral methods such as singular value decomposition (SVD) (Golub & Reinsch, 1971; Golub & Van Loan, 2013; Trefethen & Bau, 2022) or spectral decomposition representation (Ren et al., 2023; HaoChen et al., 2021) to learn the representations $\phi(s, a), \mu(s') = \arg \min_{\phi, \mu} \|P(s'|s, a) - \phi(s, a)^\top \mu(s')q(s')\|^2$. The resulting motif set $\phi(s, a)$ is then used in the subsequent policy learning stage.

Motif-based policy learning. We now learn the policy $\pi(a|s)$, parameterized by Eq. 4, using maximum likelihood estimation (MLE), i.e., by optimizing the following objective to solve for u :

$$\max_u \mathbb{E}_{(s, a) \sim \tau^e} [\log \pi(a|s)] = \max_u \mathbb{E}_{(s, a) \sim \tau^e} \left[\log \frac{\exp(\phi(s, a)^\top u)}{\sum_{a' \in \mathcal{A}} \exp(\phi(s, a')^\top u)} \right]. \quad (5)$$

3.2 CONTINUOUS VERSION

While learning from discrete data is relatively straightforward, the continuous case presents additional challenges for two main reasons. First, in the motif discovery step (Eq. 2), the decomposition $P(s'|s, a) = \phi(s, a)^\top \mu(s')q(s')$ is too restrictive to capture the complexity of continuous behavioral dynamics, such as pose transitions in freely moving animals (Weinreb et al., 2024). For example, consider a common and biologically plausible behavioral model: $s' = h(s, a) + \epsilon$, where h is a dynamics function and ϵ is Gaussian noise. This additive structure, widely used in behavioral modeling, contrasts with the multiplicative form $\phi(s, a)^\top \mu(s')q(s')$, suggesting that parameterizations preserving additive relationships between $\{s, a\}$ and s' are more suitable. Second, in motif-based policy learning, for discrete datasets with a small action space, the denominator (partition function) in Eq. 5 is easy to compute. But for continuous data, the action space is infinite, making it infeasible to enumerate all actions and integrate. In light of these challenges, we adopt an alternative approach to learn the motif representations and policy in continuous state-action spaces.

Motif discovery. We model $P(s'|s, a)$ as an energy-based model (EBM) (Shribak et al., 2024):

$$P(s'|s, a) = q(s') \exp \left(\psi(s, a)^\top \nu(s') - \log Z(s, a) \right), \quad Z(s, a) = \int q(s') \exp(\psi(s, a)^\top \nu(s')) ds', \quad (6)$$

where $\psi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^g$ and $\nu : \mathcal{S} \rightarrow \mathbb{R}^g$ are neural-network feature maps. Here, $Z(s, a)$ is an intractable partition function. Compared to the unnormalized inner-product model (Eq. 2), this EBM formulation yields smooth, normalized probabilities and stable gradients, leading to more effective and generalizable motif representations.

Proposition 2 (Connection to Motif Definition). *Given the EBM model in Eq. 6, the transition kernel can be approximated by $P(s'|s, a) \approx \phi(s, a)^\top \mu(s')q(s')$, where $\phi(s, a) \in \mathbb{R}^d$ is an explicit function of $\psi(s, a)$ and the partition function $Z(s, a)$, and $\mu(s') \in \mathbb{R}^d$ is a function of $\nu(s')$.*

Appendix. C contains the full proof and derivation of ϕ and μ in terms of ψ , ν , and Z .

To learn ψ and ν , we employ noise-contrastive estimation (NCE) (Ma & Collins, 2018; Gutmann & Hyvärinen, 2010; 2012), which enables optimization of unnormalized statistical models without explicitly computing the partition function. In this way, we sidestep the intractable computation of

216 $Z(s, a)$ in Eq. 6 by solving

$$218 \quad \min_{\psi, \nu} \mathbb{E}_{\substack{(s, a) \sim \tau^e, s' \sim P(\cdot | s, a), \\ s''_i \sim \rho}} \left[\log \frac{\exp(\psi(s, a)^\top \nu(s'))}{\exp(\psi(s, a)^\top \nu(s')) + \sum_{i=1}^k \exp(\psi(s, a)^\top \nu(s''_i))} \right], \quad (7)$$

219 where s' denotes a positive sample drawn from the transition distribution $P(\cdot | s, a)$, and s''_i for
220 $i = 1, \dots, k$ are negative samples from marginalized state distribution $\rho(s) = \int \tau^e(s, a) da$.

222 *Connection to behavioral dynamics.* With simple algebra, we obtain the quadratic potential function
223 $P(s' | s, a) \propto q(s') \exp(\|\psi(s, a)\|^2/2) \exp(-\|\psi(s, a) - \nu(s')\|^2/2) \exp(\|\nu(s')\|^2/2)$ from Eq. 6.
224 By enforcing unit-norm constraints $\|\psi(s, a)\|^2 = \|\nu(s')\|^2 = 1$, assuming $Z(s, a)$ as a constant and
225 $q(s')$ as uniform distribution, as well as taking ν to be the identity map, we obtain a generalized
226 Gaussian form: $P(s' | s, a) = \frac{1}{Z} \exp(-\|s' - \psi(s, a)\|^2)$, which aligns with commonly adopted
227 assumptions in animal behavior modeling discussed earlier. Thus, Eq. 6 offers a more general
228 framework that extends traditional dynamics models for studying behavior. Moreover, in practice,
229 using Eq. 6 results in a unimodal distribution over s' , which closely matches the empirical structure
230 observed in $P(s' | s, a)$ from animal behavior data. Thus, while Eq. 2 is theoretically valid in
231 continuous domains, we adopt the parameterization in Eq. 6 for continuous state and action spaces,
232 as it more effectively supports the learning of motif representations underlying animal behavior.

233 **Motif-based policy learning.** After we obtain the representation $\psi(s, a)$ and $\nu(s')$ from Eq. 7, we
234 could theoretically get motif sets $\phi(s, a)$ expressed as the function of $\psi(s, a)$ and a normalizing
235 term $Z(s, a)$ (see Appendix. C). However, since in practice $Z(s, a)$ remains intractable, even with
236 the optimal ψ it is still hard to obtain ϕ exactly. Therefore, we introduce a mapping $f : \psi \rightarrow \phi$,
237 parameterized with a neural network, and learn it via policy learning. Our aim is to learn a function f
238 so that $\phi = f(\psi)$ yields optimal basis functions of policy that best account for the animal behavior
239 data. By applying $\phi = f(\psi)$ to Eq. 3, we obtain $Q(s, a) = f(\psi(s, a))^\top u$.

240 As mentioned earlier, learning both f and u using the MLE objective in Eq. 5 becomes intractable
241 for continuous data, as the denominator involves integration over an unbounded continuous action
242 space. This brings us back to the challenge of estimating an unnormalized energy function, $\pi(a | s) \propto$
243 $\exp(Q(s, a)) \propto \exp(f(\psi(s, a))^\top u)$. Thus, it's reasonable to apply NCE here again,

$$244 \quad \min_{f, u} \mathbb{E}_{\substack{(s, a) \sim \tau^e, \\ (s'_i, a'_i) \sim \tau^e}} \left[\log \frac{\exp(f(\psi(s, a))^\top u)}{\exp(f(\psi(s, a))^\top u) + \sum_{i=1}^k \exp(f(\psi(s, a'_i))^\top u)} \right], \quad (8)$$

245 where $\{s, a\}$ are positive samples and $\{s'_i, a'_i\}$ are negative samples.

246

247 3.3 UNDERSTANDING ANIMAL BEHAVIOR VIA MOTIF AND POLICY LEARNING

248 In this section, we discuss how motor motifs ϕ and motif weights u can be used to describe animal
249 behavior trajectories, particularly allowing u to vary across tasks t or time points t . As the motif
250 coefficients, $u(t)$ would dynamically modulate the influence of each motif on the final policy. We
251 consider two behavioral modeling scenarios: (1) discrete state-action spaces in a multi-task setting,
252 and (2) continuous state-action spaces in a time-varying setting. The concrete results will be later
253 shown in Sec. 4.2 and Sec. 4.3 respectively. In either case, $u(t)$ would be a matrix where each column
254 corresponds to one weight for one task or time point.

255 *Scenario (1):* Consider a mouse navigating a maze (Rosenberg et al., 2021), where trajectories are
256 discretized into a finite state space (locations) and actions are discrete (up, down, left, right, stay).
257 We assume the animal switches between T strategies, each associated with a unique reward, that
258 guide its navigation, with the timing of each reward condition known from Ke et al. (2025). We first
259 learn shared motifs $\phi(s, a)$ using Eq. 2, then fit task-specific policies $\pi(a | s, t)$ using Eq. 5, where
260 each task t corresponds to one of T strategies. This yields T sets of weights $u(t)$, one per task, while
261 sharing a common motif set across tasks.

262 *Scenario (2):* A representative case is a freely behaving mouse (Wiltschko et al., 2015; Weinreb et al.,
263 2024), where the state is defined by pose keypoints and the action by state change—both continuous.
264 We first learn $\psi(s, a)$ from pose trajectories using Eq. 7. Assuming the policy evolves smoothly over
265 time, we learn $u(t)$ and f via Eq. 8, yielding the motor motif $\phi(s, a) = f(\psi(s, a))$ and time-varying
266 policy $\pi(a | s, t)$. Unlike models with abrupt discrete switches, this continuous-time formulation
267 captures gradual behavioral changes more faithfully over long pose sequences.

270 Beyond capturing smoothly time-varying motif compositions, our framework allows multiple motifs
 271 to be active simultaneously. Since the policy is defined as $\pi(a|s, t) \propto \exp(\phi(s, a)^\top u(t))$, each
 272 action is a generalized linear combination of basis motifs weighted by $u(t)$, enabling overlapping and
 273 composable behaviors. For instance, back grooming may blend grooming and turning back, while
 274 side grooming mixes grooming with turning side—recruiting different motifs concurrently. Unlike
 275 discrete switching-state models, which assign one behavior per state, our continuous motif-based
 276 approach provides a more flexible and interpretable representation of complex pose dynamics and, to
 277 our knowledge, is the first to offer a fully compositional and continuously time-varying description of
 278 animal trajectories. In Sec. 4, we would show (1) what motifs we have learned, and (2) how they are
 279 used to construct the final policy, on one simulation datasets and two real animal behavior datasets.

280 3.4 REWARD RECOVERY

281 After estimating $u(t)$ as the motif weights for policy construction, we can further infer $w(t)$ for
 282 reward representation $r(s, a, t) = \phi(s, a)^\top w(t)$ as $w(t) = u(t) - \gamma \int V(s', t) \mu(s') q(s') ds'$, where
 283 $V(s, t) = \log \sum_a \exp Q(s, a, t)$. This allows us to recover the time-varying reward function $r(s, a, t)$
 284 used by animals. Recovering the internal reward function aligns with the goals of inverse reinforce-
 285 ment learning (IRL) (Ziebart et al., 2008), where both the policy and underlying reward are inferred
 286 from demonstrations. In the context of animal behavior (Ke et al., 2025; Zhu et al., 2024; Ashwood
 287 et al., 2022), identifying such rewards offers insight into the internal motivations driving behavior
 288 and provides a window into animal cognition and decision-making processes. Since $V(s, t)$ can only
 289 be easily computed in closed form in discrete settings, we validate our method by visualizing the
 290 inferred rewards in the first two experiments, where the state-action space is discrete and finite.

291 4 EXPERIMENTS

292 4.1 APPLICATION TO SIMULATED DATA IN A MULTI-TASK GRIDWORLD

293 The gridworld consists of a 3×3 lattice with nine discrete states, and each state allows four possible
 294 actions: Up, Down, Left, and Right (Fig. 2A). In task i , a high reward is assigned to the (s, a) pairs
 295 that move toward the location i . Fig. 2C (left) shows the ground truth of reward functions for all nine
 296 tasks. In each episode, the agent starts from a random start state and must navigate to the task-specific
 297 location i . See Appendix. D for more details for data generation.

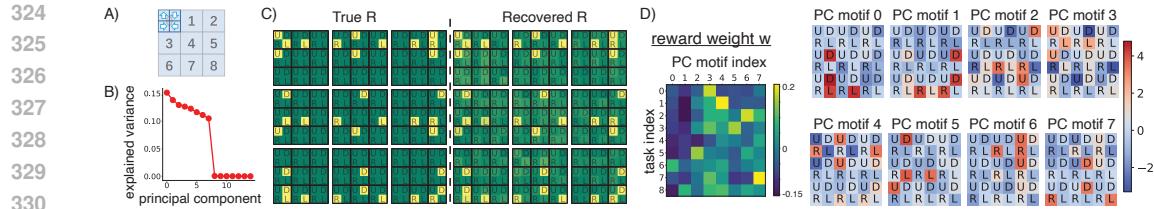
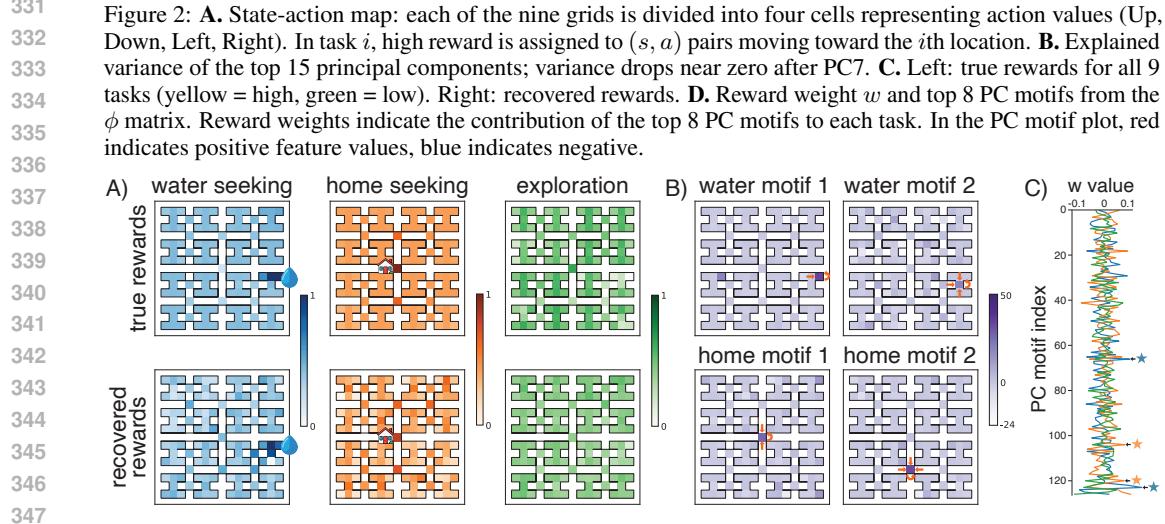
298 As described in Sec. 3.1, we learn a set of latent motifs and use them to construct the task-specific
 299 policy $\pi(a|s, t)$ for each task $t \in \{1, \dots, 9\}$. **Because the computational complexity only scales**
 300 **linearly with the number of motifs, to cover the motif space as much as possible, we select a large**
 301 **number for motif dimension $d = 64$.** (See Appendix. J.1 for discussions of motif dimensions.)
 302 Visualizations of these motifs are shown in the Appendix. D. Using the learned motifs, we recover
 303 the policy and further infer the reward function, as described in Sec. 3.4, with the form: $r(s, a, t) =$
 304 $\phi(s, a)^\top w(t)$. This recovered reward (Fig. 2C, right) closely matches the ground truth, achieving a
 305 Pearson correlation coefficient of 0.96, indicating that the learned motifs are sufficient for accurately
 306 reconstructing the reward function from behavior data.

307 To better interpret the learned motifs and their role in reward composition, we apply principal
 308 component analysis (PCA) to the ϕ matrix and find that only 8 principal components capture most
 309 of the variance (Fig. 2B). Therefore, we visualize the top 8 PC motifs and their corresponding
 310 task-specific coefficients $w(t)$ in Fig. 2D, treating them as basis vectors spanning the motif space.
 311 The PC motifs exhibit interpretable patterns. For instance, in motif 0, (s, a) pairs leading to the
 312 bottom-left grid have strong positive values, while those leading to the middle-right grid have strong
 313 negative values. This motif corresponds to moving away from the middle-right grid toward the
 314 bottom-left. Examining the w matrix, we see that motif 1 has a strong positive weight for task 8,
 315 consistent with the goal of moving toward the bottom-right corner in that task. In contrast, motif 0
 316 contributes negatively to task 8, as it promotes movement toward the bottom-left and away from the
 317 goal. Similar interpretations can be made for other motifs and tasks.

318 In this gridworld experiment, we successfully recover reward functions from behavior trajectories,
 319 and, importantly, the learned ϕ and w are effectively deployed in different task settings.

320 4.2 APPLICATION TO ANIMAL NAVIGATION BEHAVIOR

321 **Dataset and model setup.** We next evaluate our method on a real animal behavior dataset from
 322 Rosenberg et al. (2021). In this experiment, a thirsty mouse is trained to navigate in a binary-tree maze
 323 (Fig. 3A), starting each trial from the central home cage and attempting to reach a water port at one
 leaf node. The state space is defined by the mouse’s location on the tree. The actions include moving



to its left parent, right parent, left child, and right child. Although the mouse’s behavior is primarily driven by water foraging, it also exhibits exploration of unvisited areas and returns to the home cage for shelter. This complex behavior cannot be captured by a single reward function. Studying this dataset allows us to discover motifs shared across multiple reward functions and policies. This in turn tests whether complex navigation behavior, under multiple competing motivations, can be distilled into a small set of reusable motifs that provide interpretable insight into animal decision-making.

We first apply the segmentation algorithm from Ke et al. (2025) to divide long behavior trajectories into three interpretable tasks: water seeking, home seeking, and exploration. The algorithm could also infer reward maps for these tasks, which are shown in Fig. 3A (top row). While the mouse’s true internal reward functions remain unknown, we treat these inferred rewards as effective ground truth since they generate policies that closely replicate the observed behavior. Thus, we are able to segment long navigation trajectories into task-specific episodes, yielding a multi-task dataset with discrete (s, a) pairs, analogous to our simulated gridworld setting. To uncover a task-agnostic set of motifs capable of constructing all three reward functions, we apply our model as described in Sec. 3.1. **Again, to cover the motif space as much as possible, we set the number of motifs $d = 127$. (See Appendix J.1 for more details on the selection of d)**

Results. To assess model performance, we estimate the task-specific weights $w(t)$ and reconstruct the reward function as $r(s, a, t) = \phi(s, a)^\top w(t)$. The recovered reward functions align closely with the ground truth (Fig. 3A, bottom row). In the water-seeking task, the recovered reward has peaks near the water port and along the path leading to it. During home-seeking, a distinct peak appears at the home cage. When exploring, the reward is nearly uniform across the maze, with a notable dip at the water port, suggesting the mouse temporarily suppresses water motivation to explore other areas.

We further visualize the learned motifs by applying PCA to obtain PC motifs. See the Appendix E for raw features of motifs. Fig. 3B displays two top-contributing motifs for the water and home tasks respectively, selected based on the peak of linear weights w (Fig. 3C). The water-related motifs promote movement toward the water port, while the home-related motifs guide navigation to the cage. Notably, the motifs important for one task have minimal or negative contributions to the other

(Fig. 3C), indicating clear functional specialization. Fig. 3C also shows non-task-specific motifs with similar weights in both water- and home-seeking tasks.

These results show that our model not only recovers multiple reward functions from real behavior but also learns interpretable motifs whose contributions to each task are distinct and behaviorally meaningful. Unlike previous reward discovery on this dataset (Ashwood et al., 2022; Ke et al., 2025), which cannot identify such motifs, our approach reveals how reward maps can be decomposed into smaller, reusable action components. This decomposition offers a mechanistic view of how local decision processes combine to produce strategies such as water-seeking or home-seeking.

386 4.3 APPLICATION TO ANIMAL FREE-MOVING BEHAVIOR

387 Dataset and model setup. To verify the generalizability of our method to continuous scenarios,
 388 we apply our method to a continuous dataset of free-moving mouse behaviors (Weinreb et al., 2024)
 389 to extract motor motifs and analyze fine-grained pose dynamics. This dataset contains the keypoint
 390 coordinates of eight mouse body parts, including the head, the nose, both ears, and four spine nodes.
 391 Each dimension of the state corresponds to either x or y coordinate of a body part. The action at
 392 each timestep is defined as the velocity of state, $a_t = (s_{t+1} - s_t)/\delta t$. We set the time interval to
 393 $\delta t = 1$ (1/30s in the original dataset). We formulate the data using a continuous MDP. Studying
 394 this dataset allows us to ask whether free-moving behaviors, which often appear as mixtures of
 395 grooming, locomotion, and postural adjustments, can be represented as combinations of a compact
 396 set of task-agnostic motor motifs.

397 As outlined in Sec. 3.2, we use NCE to learn the motif representation $\phi(s, a)$ and the time-dependent
 398 weights $u(t)$. To ensure temporal smoothness in the learned weights $u(t)$, we place a Gaussian random
 399 walk prior over the trajectories: $u(t) \sim \mathcal{N}(u(t-1), \sigma^2 I)$. To perform more stable optimization, we
 400 optimize $\phi(s, a)$ and $u(t)$ using coordinate descent, updating them alternately. For this dataset, our
 401 focus is on understanding the learned policy structure, which reflects the dynamics of animal poses.
 402 Therefore, we do not perform IRL in this setting and instead concentrate on interpreting the learned
 403 motif representation ϕ and the temporal weights $u(t)$. With respect to the choice of the number of
 404 motifs, we find in practice that the performance grows more slowly once past $d = 64$, so we choose
 405 this as an optimal number. See Appendix. F for more training details. [See Appendix. J.1 for details
 406 on the selection of \$d\$.](#)

407 We compare our MCD method with two representative behavior segmentation approaches: (1)
 408 **Keypoint-MoSeq** (Weinreb et al., 2024), as a representative for switching-dynamics-based segmen-
 409 tation methods; and (2) **SemiSeg** (Whiteway et al., 2021), as a representative for clustering-based
 410 behavior segmentation methods. Note that Keypoint-MoSeq is regarded as a SOTA approach, because
 411 it extends the autoregressive hidden Markov model (AR-HMM) and MoSeq (Wiltschko et al., 2015),
 412 and has been shown to outperform B-SOiD (Hsu & Yttri, 2021), VAME (Luxem et al., 2022), and
 413 MotionMapper (Berman et al., 2014). We also include **OPAL** (Ajay et al., 2021), a representative
 414 autoencoder-based motif learning algorithm from robotics, as a baseline to highlight the advantages of
 415 our method and why robotics approaches are ill-suited for behavioral segmentation in neuroscience.

416 **Results.** We evaluate performance using the area under the Receiver Operating Characteristic (ROC)
 417 curve (AUC), which quantifies the model’s ability to distinguish positive from negative samples.
 418 AUC is chosen because it allows direct comparison between our unnormalized energy function and
 419 Keypoint-MoSeq’s likelihood score. Given $(s, a), (s', a') \sim \tau^e$, we define positive samples as (s, a)
 420 and negative samples as mismatch pairs (s, a') . With respect to the choice of the prediction score, for
 421 Keypoint-Moseq, we use the action log-likelihood. For MCD, we use the negative energy function
 422 $\phi(s, a)^\top u(t)$. For SemiSeg, we assume action variance=1 and use the Gaussian log-likelihood of
 423 actions. For OPAL, we use the action log-likelihood.

424 We repeat the experiment 10 times and report the results as box plots in Fig. 4A. Our model
 425 achieves the highest AUC on both training and test sets (paired t-test, $p < 0.05$ for every baseline),
 426 demonstrating the strongest ability to distinguish positive from negative samples. This suggests that
 427 MCD accurately captures time-varying pose dynamics through smoothly evolving motifs, while
 428 other models fail. Keypoint-MoSeq’s reliances on discrete switching syllables produce a coarser
 429 representation of the underlying complexity, and the autoencoders in the other two models have
 430 weaker expressive ability.

431 Beyond quantitative comparisons, we also qualitatively visualize and interpret the key motifs $\phi(s, a)$
 432 associated with example pose dynamics. For MCD, we examine the time-varying weights $u(t)$ of a

long animal behavior video (length=250) and choose five example animal behavior clips (length=5) to check the interpretability of the result (Fig. 4B). For our model, each clip is characterized by a unique combination of motor motifs. For each clip, we show the top 1-2 most dominant motifs. For each motif, we display the animal’s skeleton with red arrows showing the motion field, computed by averaging the actions that most strongly activate that motif. The movement semantics of each motif are labeled above the visualizations. A more comprehensive visualization of all learned motifs is included in the Appendix. F. For comparison, we run other models on the same behavior video, showing the latent representations by SemiSeg (Fig. 4C) and OPAL (Fig. 4D). To show clearer results for SemiSeg and OPAL, we further run KMeans ($k=10$) on the first 10 PCs of the latents throughout the video and show the segmentation result at the bottom of the latent representations (Fig. 4C, D). We also show the behavioral syllable segmentation produced by Keypoint-MoSeq in Fig. 4E.

By combining the discovered motifs with real animal behavior, we assess the interpretability of each motif in the five clips (Fig. 4B). First, the right-turn behavior in clip 1 is captured by the dominance of two rightward motifs (motif 1 and motif 2). A stronger movement at the head is reflected by a higher value of motif 1. Clips 2, 3, and 4 show the mouse turning right, pausing to groom its head and ears, and then continuing to turn right. The alternate dominance of motif 3 and motif 4 aligns well with the behavior dynamics. Clip 5 shows a simultaneous behavioral mixture of moving forward and sniffing, and is captured by the equal strength of motif 5 and motif 6. Across all motifs, motif 4 appears across clips 2, 3, and 4, showing its general utility. The transitions and mixtures of behaviors are effectively reflected in the learned motifs and their temporal weights $u(t)$.

However, when we examine the segmentation and latent produced by other methods (Fig. 4C-F), we find inconsistencies. In Fig. 4C, alternate dominant behavior patterns in Clip 2-4 in the video are not reflected in its motif weights during this period, as the only dominant motif is the yellow-green one. In Fig. 4D, the motif weights are too dense to interpret. The segmentation results at the bottom of Fig. 4 C and D do not even have repeated behavior patterns and thus could not be seen as a reasonable behavior motif representation. For Keypoint-Moseq, in Fig. 4E, F, clear rightward turning in clip 1 is barely visible in syllable 3 to which it is assigned. Clips 2 and 3 are both assigned to syllable 2, even though clip 2 shows pure turning right while clip 3 is dominated by grooming movements. For clip 5, the mixture of fast moving forward and sniffing is not reflected in syllable 2.

Taken together, these results show that compared with similar approaches, MCD provides a more accurate interpretation of pose dynamics and could capture more complex behaviors through a compact, task-agnostic set of motor motifs. This offers us a detailed perspective on how intricate behaviors emerge from the dynamic combination of fundamental motor motifs.

4.4 EVALUATION ON A HUMAN-ANNOTATED DATASET.

Last, we verify our method on a supervised behavior label dataset. Due to the substantial cost and labor demands of manual annotation, large-scale, high-quality animal behavior datasets with human labels remain limited. Commercial annotation tools (e.g., HomeCageScan) are also expensive, further constraining availability. To support quantitative evaluation, we therefore included a human-annotated subset from the freely moving animal behavior dataset we mentioned last section. Specifically, we selected 200 short video clips (10 recording sessions; in each session we randomly sampled 20 clips, with 200 frames each). Each clip was manually annotated with behavior segments for each frame, resulting in 200 per-frame labels across six categories: Walking, Sniffing/Grooming, Turning left, Turning right, Rearing, and Resting. Manual annotation required approximately 40 hours of expert effort.

As before, we evaluated four models on this dataset: MCD, Keypoint-MoSeq, SemiSeg, and OPAL. Because the latent variables or syllables inferred by these models do not necessarily align with human-defined labels, we trained an additional decoder to map model-specific latent representations to the ground-truth categories. For each model, the decoder input was the motif weights $u(t)$ (MCD), the inferred one-hot syllable (Keypoint-MoSeq), or the latent embedding z (SemiSeg and OPAL). The decoder was implemented as a two-layer neural network with ReLU activation, optimized using the Adam optimizer and cross-entropy loss (learning rate 0.001), following standard settings in the scientific computation package `scikit-learn`. The resulting classification accuracies on the held-out test set (Fig. 4G) demonstrate that MCD substantially outperforms all baselines, achieving

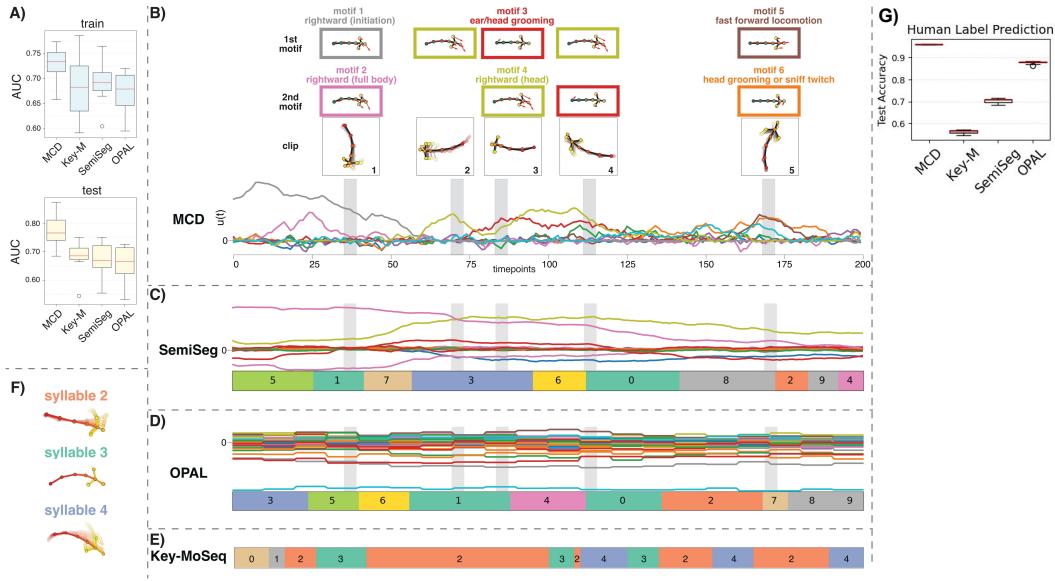


Figure 4: **A.** AUC on training and test sets. We take an example behavior video and run our algorithm. We visualize the motif weights $u(t)$ and show the representative motifs in **B**. For the baseline SemiSeg, we show the latent skills and segmentation results in **C**. For the baseline OPAL, we show the latent skills and segmentation results in **D**. Then we show the segmentation results of Keypoint-MoSeq (Weinreb et al., 2024) in **E** and the representative motifs/syllables in **F**.

near-perfect accuracy (0.96). This indicates that the motifs recovered by MCD align better with actual animal behavior dynamics.

5 DISCUSSION

Several limitations remain to be addressed in future work. First, the accuracy of inferred motifs is sensitive to input data quality, as occlusions or tracking errors can degrade performance. Additionally, while the framework uncovers abstract motor primitives, establishing direct correspondences between these learned "motifs" and specific neural dynamics still requires further experimental validation.

ETHICS STATEMENT

Beyond advancing animal behavior research, MCD has broader implications. Positively, a better understanding of motor control mechanisms could, for instance, inform new treatments for movement disorders or inspire more adaptable AI. On the other side, extending these principles to model human behavior carries ethical risks, such as perpetuating or amplifying societal biases present in training data. A robust ethical framework is essential to mitigate such risks in the development and application of these technologies.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All source code for model training and evaluation is included in the supplementary material, allowing independent verification and replication of our experiments. The complete set of hyperparameter values is documented in the appendix. Additionally, the data preprocessing procedures and evaluation protocols are described in the main text. These resources provide sufficient information for reproducing the results reported in this paper.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive discovery for accelerating offline reinforcement learning. In *International Conference on Learning Representations*, 2021.

540 Diego Aldarondo, Josh Merel, Jesse D Marshall, Leonard Hasenclever, Ugne Klibaite, Amanda
 541 Gellis, Yuval Tassa, Greg Wayne, Matthew Botvinick, and Bence P Ölveczky. A virtual rodent
 542 predicts the structure of neural activity across behaviours. *Nature*, 632(8025):594–602, 2024.

543

544 Zoe Ashwood, Aditi Jha, and Jonathan W Pillow. Dynamic inverse reinforcement learning for
 545 characterizing animal behavior. *Advances in neural information processing systems*, 35:29663–
 546 29676, 2022.

547

548 Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Mapping the stereotyped
 549 behaviour of freely moving fruit flies. *Journal of The Royal Society Interface*, 11(99):20140672,
 550 2014.

551

552 Diana Borsa, Andre Barreto, John Quan, Daniel J. Mankowitz, Hado van Hasselt, Remi Munos,
 553 David Silver, and Tom Schaul. Universal successor features approximators. In *International
 554 Conference on Learning Representations*, 2019.

555

556 Boyuan Chen, Chunming Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
 557 reinforcement learning that transfers using random features. *Advances in Neural Information
 558 Processing Systems*, 36:56411–56436, 2023.

559

560 Julia Costacurta, Lea Duncker, Blue Sheffer, Winthrop Gillis, Caleb Weinreb, Jeffrey Markowitz,
 561 Sandeep R Datta, Alex Williams, and Scott Linderman. Distinguishing discrete and continuous be-
 562 havioral variability using warped autoregressive hmms. *Advances in neural information processing
 563 systems*, 35:23838–23850, 2022.

564

565 Bo Dai, Niao He, Yingyu Pan, Arthur Gretton, and Le Song. Learning from conditional distributions
 566 via dual embeddings. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp.
 567 1105–1113, 2014.

568

569 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
 570 need: Learning skills without a reward function. In *International Conference on Learning
 571 Representations*, 2019.

572

573 Tamar Flash and Binyamin Hochner. Motor primitives in vertebrates and invertebrates. *Current
 574 opinion in neurobiology*, 15(6):660–666, 2005.

575

576 Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
 577 Inverse soft-q learning for imitation. *Advances in Neural Information Processing Systems*, 34:
 578 4028–4039, 2021.

579

580 Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
 581 *Handbook for automatic computation: volume II: linear algebra*, pp. 134–151. Springer, 1971.

582

583 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

584

585 Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for
 586 unnormalized statistical models. In *Proceedings of the 13th International Conference on Artificial
 587 Intelligence and Statistics (AISTATS)*, pp. 297–304, 2010.

588

589 Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
 590 models, with applications to natural image statistics. *Journal of Machine Learning Research*, 13
 591 (Feb):307–361, 2012.

592

593 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 594 maximum entropy deep reinforcement learning with a stochastic actor. *Proceedings of the 35th
 595 International Conference on Machine Learning (ICML)*, 2018.

596

597 Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
 598 deep learning with spectral contrastive loss. *Advances in neural information processing systems*,
 599 34:5000–5011, 2021.

600

601 Alexander I Hsu and Eric A Yttri. B-soid, an open-source unsupervised algorithm for identification
 602 and fast prediction of behaviors. *Nature communications*, 12(1):5188, 2021.

594 Jingyang Ke, Feiyang Wu, Jiyi Wang, Jeffrey Markowitz, and Anqi Wu. Inverse reinforcement
 595 learning with switching rewards and history dependency for characterizing animal behaviors. In
 596 *Forty-second International Conference on Machine Learning*, 2025.

597

598 Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
 599 matching. In *International Conference on Learning Representations*, 2020.

600 Yuxuan Kuang, Haoran Geng, Amine Elhafsi, Tan-Dzung Do, Pieter Abbeel, Jitendra Malik, Marco
 601 Pavone, and Yue Wang. Skillblender: Towards versatile humanoid whole-body loco-manipulation
 602 via skill blending. *arXiv preprint arXiv:2506.09366*, 2025.

603

604 Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
 605 demonstrations. *Advances in neural information processing systems*, 30, 2017.

606 Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, and Jan Peters. Learning movement
 607 primitive libraries through probabilistic segmentation. *The International Journal of Robotics
 608 Research*, 36(8):879–894, 2017.

609

610 Kevin Luxem, Petra Mocellin, Falko Fuhrmann, Johannes Kürsch, Stephanie R Miller, Jorge J Palop,
 611 Stefan Remy, and Pavol Bauer. Identifying behavioral structure from deep variational embeddings
 612 of animal motion. *Communications Biology*, 5(1):1267, 2022.

613 Yao Ma and Michael Collins. Noise contrastive estimation for scalable linear models for one-class
 614 collaborative filtering. In *Proceedings of the 12th ACM Conference on Recommender Systems
 615 (RecSys)*, pp. 230–238, 2018.

616

617 Hiroshi Makino. Arithmetic value representation for hierarchical behavior composition. *Nature
 618 neuroscience*, 26(1):140–149, 2023.

619

620 Markus Marks, Qiuhan Jin, Oliver Sturman, Lukas von Ziegler, Sepp Kollmorgen, Wolfgang von der
 621 Behrens, Valerio Mante, Johannes Bohacek, and Mehmet Fatih Yanik. Deep-learning-based
 622 identification, tracking, pose estimation and behaviour classification of interacting primates and
 mice in complex environments. *Nature machine intelligence*, 4(4):331–340, 2022.

623

624 Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic movement
 625 primitives. In *Advances in Neural Information Processing Systems*, volume 26, 2013.

626

627 Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
 In *Forty-first International Conference on Machine Learning*, 2024.

628

629 Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale reusable
 630 adversarial skill embeddings for physically simulated characters. *ACM Transactions On Graphics
 631 (TOG)*, 41(4):1–17, 2022.

632

633 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
 634 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021a.

635

636 Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Demonstration-guided reinforcement
 637 learning with learned skills. In *5th Annual Conference on Robot Learning*, 2021b.

638

639 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in
 640 neural information processing systems (NeurIPS)*, volume 20, pp. 1177–1184, 2007.

641

642 Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, and Bo Dai.
 Spectral decomposition representation for reinforcement learning. In *The Eleventh International
 Conference on Learning Representations*, 2023.

643

644 Matthew Rosenberg, Tony Zhang, Pietro Perona, and Markus Meister. Mice in a labyrinth show rapid
 645 learning, sudden insight, and efficient exploration. *Elife*, 10:e66175, 2021.

646

647 Alessandro Santuz, Turgay Akay, William P Mayer, Tyler L Wells, Arno Schroll, and Adamantios
 Arampatzis. Modular organization of murine locomotor pattern in the presence and absence of
 sensory feedback from muscle spindles. *The Journal of physiology*, 597(12):3147–3165, 2019.

648 Matteo Saveriano, Fares J Abu-Dakka, Aljaž Kramberger, and Luka Peternek. Dynamic movement
 649 primitives in robotics: A tutorial survey. *The International Journal of Robotics Research*, 42(13):
 650 1133–1184, 2023.

651

652 Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Zelikowsky, Jennifer J Sun,
 653 Pietro Perona, David J Anderson, and Ann Kennedy. The mouse action recognition system (mars)
 654 software pipeline for automated analysis of social behaviors in mice. *Elife*, 10:e63720, 2021.

655

656 Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
 657 unsupervised discovery of skills. In *International Conference on Learning Representations*, 2020.

658

659 Mohit Sharma, Arjun Sharma, Nicholas Rhinehart, and Kris M. Kitani. Directed-info GAIL: Learning
 660 hierarchical policies from unsegmented demonstrations using directed information. In *International
 Conference on Learning Representations*, 2019.

661

662 Dmitry Shribak, Chen-Xiao Gao, Yitong Li, Chenjun Xiao, and Bo Dai. Diffusion spectral represen-
 663 tation for reinforcement learning. In *The Thirty-eighth Annual Conference on Neural Information
 Processing Systems*, 2024.

664

665 Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
 666 Data-driven behavioral priors for reinforcement learning. In *International Conference on Learning
 Representations*, 2021.

667

668 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in
 669 Neural Information Processing Systems*, 34:13–23, 2021.

670

671 Lloyd N Trefethen and David Bau. *Numerical linear algebra*. SIAM, 2022.

672

673 Caleb Weinreb, Jonah E Pearl, Sherry Lin, Mohammed Abdal Monium Osman, Libby Zhang,
 674 Siddharth Annapragada, Eli Conlin, Red Hoffmann, Sofia Makowska, Winthrop F Gillis, et al.
 675 Keypoint-moseq: parsing behavior by linking point tracking to pose dynamics. *Nature Methods*,
 21(7):1329–1339, 2024.

676

677 Matthew R Whiteway, Evan S Schaffer, Anqi Wu, E Kelly Buchanan, Omer F Onder, Neeli Mishra,
 678 and Liam Paninski. Semi-supervised sequence modeling for improved behavioral segmentation.
bioRxiv, pp. 2021–06, 2021.

679

680 Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon,
 681 Stan L Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping
 682 sub-second structure in mouse behavior. *Neuron*, 88(6):1121–1135, 2015.

683

684 Mengjiao Yang, Sergey Levine, and Ofir Nachum. TRAIL: Near-optimal imitation learning with
 685 suboptimal data. In *International Conference on Learning Representations*, 2022.

686

687 Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen Wang, Peng Liu, and Xuelong
 688 Li. Behavior contrastive learning for unsupervised skill discovery. In *International conference on
 machine learning*, pp. 39183–39204. PMLR, 2023.

689

690 Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, and Bo Dai.
 691 Making linear mdps practical via contrastive representation learning. In *International Conference
 on Machine Learning*, pp. 26447–26466. PMLR, 2022.

692

693 Hao Zhu, Brice De La Crompe, Gabriel Kalweit, Artur Schneider, Maria Kalweit, Ilka Diester, and
 694 Joschka Boedecker. Multi-intention inverse q-learning for interpretable behavior representation.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

695

696 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
 697 reinforcement learning. In *Proceedings of the 23rd national conference on Artificial intelligence
 (AAAI)*, pp. 1433–1438, 2008.

698

699

700

701

702 **A LLM USAGE**
703704 In preparing this manuscript, we employed a large language model (OpenAI ChatGPT, GPT-5) as
705 a writing assistant. The model was used exclusively for polishing English grammar, improving
706 clarity, and suggesting more natural phrasing in certain sections of the text. All scientific content,
707 experimental design, analyses, and interpretations were conceived, written, and verified by the authors.
708 The LLM was not used to generate original research ideas, analyses, or results. To ensure accuracy,
709 all model-suggested edits were carefully reviewed and, where necessary, modified by the authors.
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B HYPERPARAMETER SETTING**
757758 We train MCD using the following hyperparameters:
759760 **General hyperparameters.**
761762

- 763 • Discount factor: $\gamma = 0.99$
- 764 • Number of epochs: 1×10^6
- 765 • Batch size: 256

766 **Motif representations.** The motif representation $\phi(s, a) \in \mathbb{R}^d$ and $\mu(s') \in \mathbb{R}^d$ were adopted with
767 different motif dimensions d depending on the task:
768769

- 770 • Gridworld: $d = 64$
- 771 • Animal navigation: $d = 128$
- 772 • Animal free-moving: $d = 64$

773 **Model architectures.**
774775

- 776 • **Discrete version:** ϕ and μ are parameterized by one-hidden-layer neural networks (hidden
size = 512).
- 777 • **Continuous version:**
 - 778 – f : no hidden layer
 - 779 – ν : one hidden layer (hidden size = 512), with one normalization layer to ensure the
780 L2-Norm of the output is 1.
 - 781 – ψ : no hidden layer, with one normalization layer to ensure the L2-Norm of the output
782 is 1.
- 783 • In both cases, u and w are just two matrices, with each column corresponding to $u(t)$ or
784 $w(t)$ at a specific task or timepoint.
- 785 • Activation function: For all networks, if it has at least one hidden layer, then all of its
786 activation functions are Exponential Linear Unit (ELU).

787 **Learning rates.**
788789

- 790 • **Discrete version:**
791 $\phi : 1 \times 10^{-3}, \mu : 1 \times 10^{-3}, u : 3 \times 10^{-4}, w : 3 \times 10^{-4}.$

792

- 793 • **Continuous version:**
794 $\psi : 5 \times 10^{-4}, \nu : 5 \times 10^{-4}, f : 3 \times 10^{-4}, u : 3 \times 10^{-4}.$

795 During testing, u and f are further optimized on the new sequence using gradient descent
796 with learning rate 1×10^{-3} .797 We train SemiSeg and OPAL using the following hyperparameters:
798799

- 800 • Discount factor: $\gamma = 0.99$
- 801 • Number of epochs: 1×10^6
- 802 • Batch size: 4×250 (4 sequences, each of length=250 because this is an RNN-based inference
803 model)
- 804 • Latent dimension: $d = 64$
- 805 • Learning rate: 1×10^{-4} (tuned to get better results)

806 Besides, the following loss coefficients are shared across three models for interpretability results.
807808

- 809 • Temporal smoothness Gaussian random walk loss: 10
- Sparsity L1-loss: 0.1

810
 811 **C APPROXIMATING ENERGY-BASED FORMULATION WITH LOW-RANK**
 812 **SPECTRAL DECOMPOSITION**

813 In this part, we show in detail the connection between the EBM formulation (Eq. 6) and the low-rank
 814 spectral decomposition formulation (Eq. 2) of the transition kernel $P(s'|s, a)$.
 815

816 From Eq. 6, by simple algebra, we obtain the quadratic potential function,
 817

$$818 P(s'|s, a) \propto q(s') \exp\left(\|\psi(s, a)\|^2/2\right) \exp\left(-\|\psi(s, a) - \nu(s')\|^2/2\right) \exp\left(\|\nu(s')\|^2/2\right). \quad (9)$$

820 The term $\exp\left(-\frac{\|\psi(s, a) - \nu(s')\|^2}{2}\right)$ is the Gaussian kernel, for which we apply the random Fourier
 821 feature (Dai et al., 2014; Rahimi & Recht, 2007) and obtain the spectral decomposition of Eq. 6 as
 822

$$823 P(s'|s, a) = \langle \phi_\omega(s, a), \mu_\omega(s') \rangle_{\mathcal{N}(\omega)}, \quad (10)$$

824 where $\omega \sim \mathcal{N}(0, I)$ is the frequency in the Fourier domain, and
 825

$$\phi_\omega(s, a) = \exp(-i\omega^\top \psi(s, a)) \exp\left(\|\psi(s, a)\|^2/2 - \log Z(s, a)\right), \quad (11)$$

$$\mu_\omega(s') = \exp(-i\omega^\top \nu(s')) \exp\left(\|\nu(s')\|^2/2\right). \quad (12)$$

826 Note that Eq. 10 needs infinite ω to calculate the expectation. To connect it to finite dimension
 827 $\phi(s, a) \in \mathbb{R}^d, \mu(s') \in \mathbb{R}^d$, we use the Monte-Carlo method to approximate it with finite samples,
 828

$$829 P(s'|s, a) \approx \frac{1}{M} \sum_{i=1}^M \phi_{\omega_i}(s, a) \mu_{\omega_i}(s') q(s'). \quad (13)$$

830 Introduce vectors $\phi(s, a)$ and $\mu(s')$ such that
 831

$$832 \phi(s, a) := \frac{1}{\sqrt{M}} [\phi_{\omega_1}(s, a), \phi_{\omega_2}(s, a), \dots, \phi_{\omega_M}(s, a)], \quad (14)$$

$$833 \mu(s') := \frac{1}{\sqrt{M}} [\mu_{\omega_1}(s'), \mu_{\omega_2}(s'), \dots, \mu_{\omega_M}(s')]. \quad (15)$$

834 Then it's straightforward to see that,
 835

$$836 \phi(s, a)^\top \mu(s') q(s') = \frac{1}{M} \sum_{i=1}^M (\phi_{\omega_i}(s, a)^\top \mu_{\omega_i}(s')) \approx P(s'|s, a). \quad (16)$$

837 Hence, Eq. 6 can, in principle, yield the motif representation introduced earlier.
 838

D MULTI-TASK GRIDWORLD DATASET

D.1 DATASET

To generate the dataset, we follow this procedure: 1) Use soft value iteration to compute the ground truth Q-function for each task: $Q(s, a, t) = r(s, a, t) + \log \sum_a \exp V(s, t)$; 2) Use the resulting Q-function to define the policy: $\pi(a|s, t) = \frac{\exp(Q(s, a, t))}{\sum_{a'} \exp(Q(s, a', t))}$ and sample trajectories accordingly.

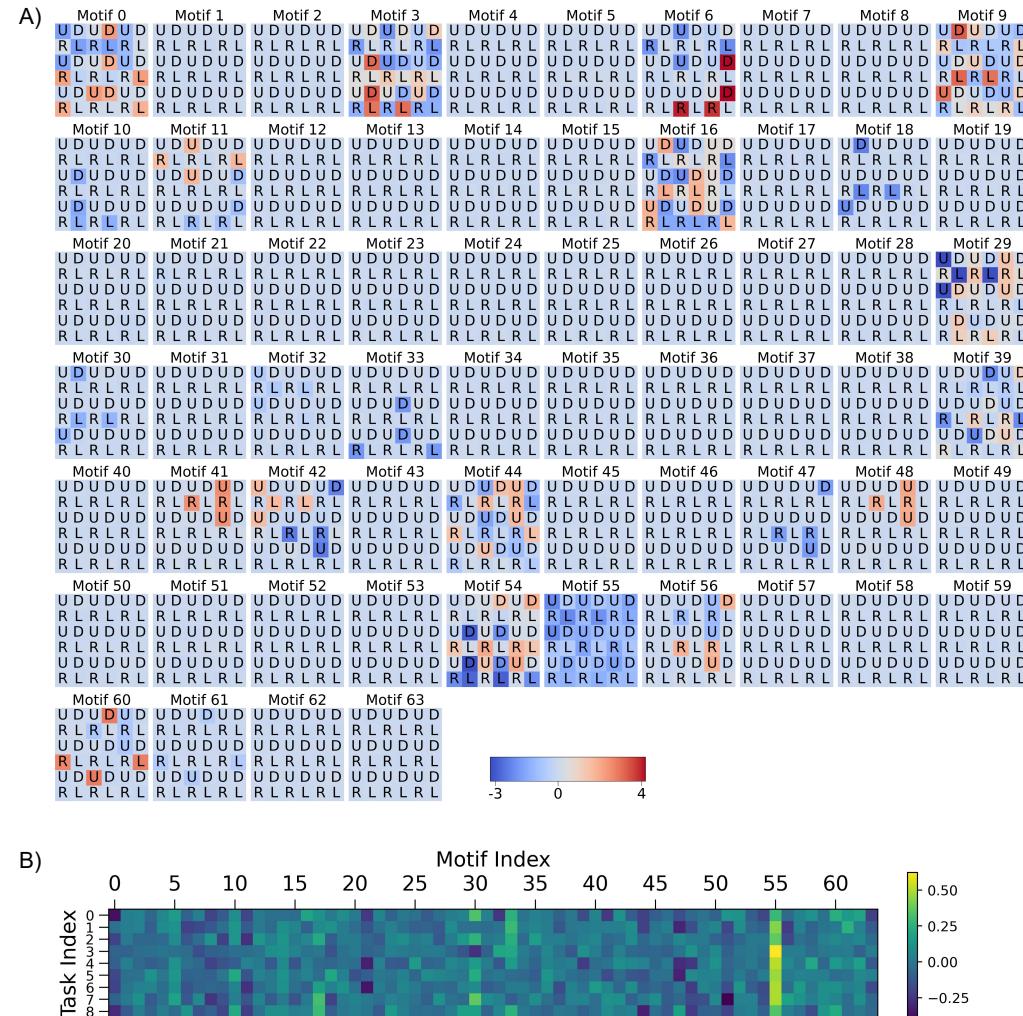


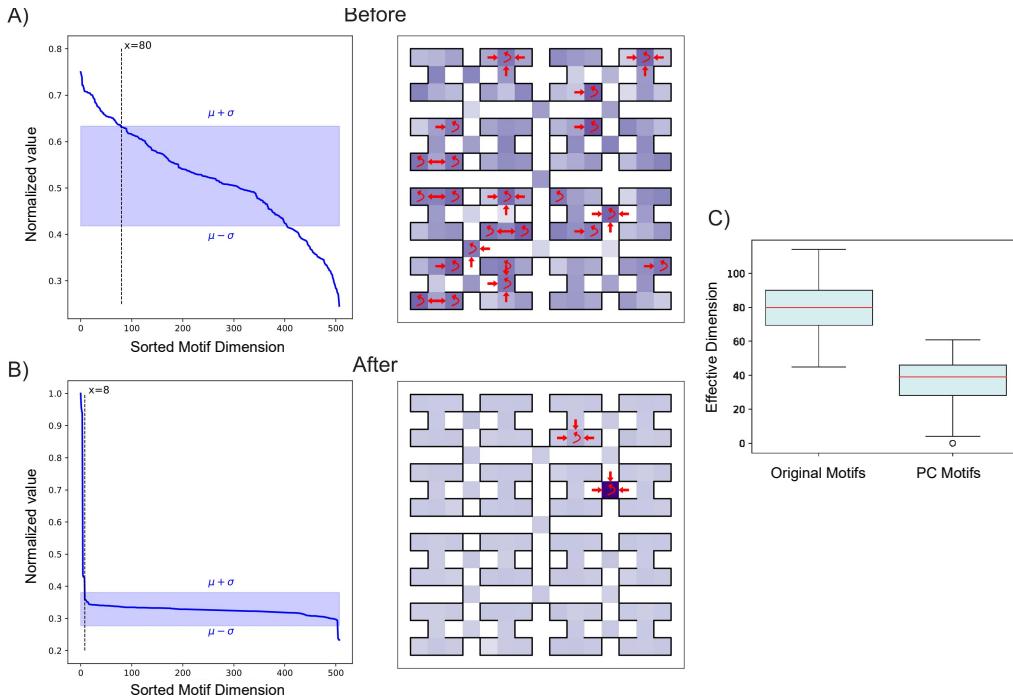
Figure 5: **A.** State-action maps for all 64 motifs. **B.** Reward weight w for all 64 motifs.

D.2 LEARNED MOTIFS

We visualize all original 64 motifs (Fig. 5) introduced in Sec. 4.1. It shows some meaningful patterns as mentioned before. For example, motif 0 assigns high values to those (s, a) pairs leading to the middle-middle grid and the bottom-middle grid, and assigns low values to the up-left grid and the up-right grid. Thus, it is employed negatively in Task 0 (up-left reward) and Task 2 (up-right reward). However, Task 4 (middle-middle) didn't use this motif and used motif 39 negatively instead. The complex many-to-many relationship between motifs and tasks informs us of the redundancy in the original motifs, which inspires us to use PCA to analyze the principal components of the motif space and simplify the motif weights. It could be seen from the comparison between Fig. 2D and Fig. 5A that principal components are a less redundant description of the motif space.

918 E ANIMAL NAVIGATION BEHAVIOR DATASET
919920 E.1 LEARNED MOTIFS
921

922 In the original motifs of the labyrinth environment, multiple (s, a) pairs are simultaneously activated,
923 so it is rather hard to analyze which (s, a) pairs are the most important ones that could represent
924 the focus and function of the motif. Given the redundancy of the motif sets, as in Appendix D,
925 we perform PCA to analyze the principle components of the motif space and simplify the motif
926 representation. To show the effect of PCA, we plot one motif (motif 0) before (Fig. 6A right) and
927 after PCA (Fig. 6B right). Basically, we only want to show the most important pairs in one map and
928 do not want low-value pairs to disturb the visualization. To determine how many (s, a) pairs are
929 important, we sort the (s, a) pairs based on the value $\phi(s, a)$ in motif 0, i.e., the first feature of the
930 output of $\phi(s, a)$ (Fig. 6A left and B left). It could be seen straightforwardly that after PCA, the motif
931 becomes more concentrated on several (s, a) pairs. We calculate the mean μ and variance σ across
932 all motifs and all dimensions and take $\mu + \sigma$ as the threshold, above which (s, a) pairs are deemed
933 the most important ones and are shown on the right. We show 80 pairs before PCA and 8 pairs after
934 PCA. The number of the most important pairs in each motif is called the “effective dimension.” The
935 effective dimension is calculated across all motifs (Fig. 6C). Paired t-test ($p = 1.3 \times 10^{-51}$) shows
936 that there exists a significant decrease of effective dimensions after PCA. So the map becomes more
937 distinct and functionally separated.



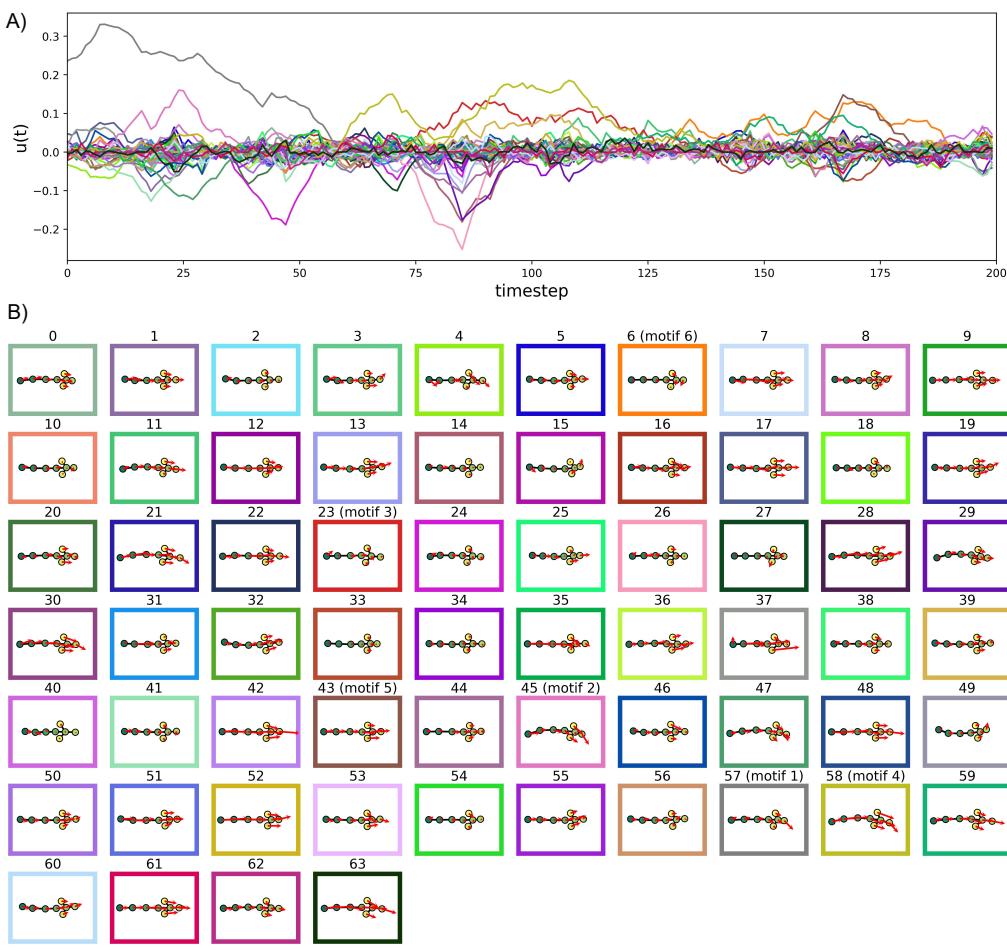
960 Figure 6: **A.** Left. The value for each (s, a) pair in motif 0 before PCA. Right. The most important (s, a) pairs.
961 **B.** Left. The value for each (s, a) pair in motif 0 after PCA. Right. The most important (s, a) pairs. **C.** Boxplot
962 for the effective dimensions before and after PCA.
963
964
965
966
967
968
969
970
971

972 F ANIMAL FREE-MOVING BEHAVIOR DATASET
973974 F.1 DATASET AND TRAINING
975

976 We split the full dataset into training and test trajectories in an 8:2 ratio. We first learn both f and
977 $u(t)$ on the training set. Then, given the learned f , we estimate $u(t)$ on the test set. Here, f is a
978 time-invariant model parameter shared across all time, while $u(t)$ is a time-dependent variable that
979 must be inferred separately for each test trajectory and cannot be transferred from training.

980 F.2 LEARNED MOTIFS
981

982 We show all motifs learned from the 200-timestep video clip of the free-moving mouse mentioned
983 in Sec. 4.3. We have completed the visualization of those motifs that were previously omitted due
984 to their perceived lack of importance. Due to the increased number of displayed motifs, we had to
985 renumber each motif. We show the present motif number above the motif motion field figure, and
986 previous numbers (if applicable) in the parentheses following the present number.
987



1019 Figure 7: **A.** Policy weight $u(t)$ for all 64 motifs. **B.** The motion field for all 64 motifs learned from the video,
1020 computed by averaging the states and actions that most strongly activate each motif.

1021
1022
1023
1024
1025

1026 **G CONNECTIONS TO RELEVANT ALGORITHMS IN RL**
1027
1028
1029

1030 **Motor primitives learning.** Animal behavior research has focused on identifying motor primitives
1031 directly from large-scale recordings. Supervised classification (Marks et al., 2022; Segalin et al.,
1032 2021), clustering-based analysis (Hsu & Yttri, 2021; Berman et al., 2014), and HMM-based meth-
1033 ods (Wiltzschko et al., 2015; Weinreb et al., 2024; Luxem et al., 2022; Whiteway et al., 2021) label
1034 behavior into discrete syllables and analyze neural correlates of transitions. While these approaches
1035 reveal stereotyped motifs such as walking or grooming, they typically treat primitives as rigid and
1036 exclusive, overlooking the continuous, compositional structure of behavior and its adaptation across
1037 contexts.

1038 In robotics, movement primitives have long been studied (Paraschos et al., 2013; Saveriano et al.,
1039 2023; Lioutikov et al., 2017). ProMP (Paraschos et al., 2013) extracts primitives from demonstra-
1040 tions but requires labeled skills/motifs, while ProBS (Lioutikov et al., 2017) jointly infers behavioral
1041 segmentation and a primitive library via Expectation-Minimization (EM), enabling unsupervised skill
1042 discovery. These approaches resemble dynamics-based behavior segmentation in animal behavior
1043 research.

1044 All methods mentioned here lack an RL perspective that links primitives to policies and reward-
1045 driven behavior. Our framework instead leverages offline RL-based imitation learning to uncover
1046 motif-based policies that capture both modular primitives and their sequential composition, and
1047 provides a principled way to explain why behaviors occur, not just how they unfold, and how reusable
1048 motifs/skills contribute to them in a generative decision-making process.

1049 **Offline Imitation learning.** Offline imitation learning presents the problem of learning a policy
1050 from fixed demonstrations when access to environments is impossible. Simple behavior cloning
1051 can be performed offline, but fails to generalize well in some cases because it does not consider
1052 dynamics or environment structure limits. ValueDICE (Kostrikov et al., 2020) considers the dynamics
1053 of the training data and learns a policy that minimizes the KL-divergence between the state-action
1054 occupancies generated by the policy and of the original dataset. But the adversarial optimization of
1055 policy and Q-functions introduces instability in training. IQL (Garg et al., 2021) avoids adversarial
1056 training by directly parameterizing the policy in terms of the Q -function, $\pi(a|s) = \exp(Q(s, a))/Z$.
1057 However, all of these algorithms learn policies as unstructured functions. As the animal behavior
1058 structure is highly modular and stereotyped, it is more appropriate to employ a hierarchical motif-
1059 based policy to model the data.

1060 **Motif/Skill discovery.** Unsupervised skill discovery (DIAYN (Eysenbach et al., 2019), BeCL (Yang
1061 et al., 2023), DADS (Sharma et al., 2020), InfoGAIL (Li et al., 2017), Directed-InfoGAIL (Sharma
1062 et al., 2019), SkillBlender (Kuang et al., 2025), ASE (Peng et al., 2022)) to find a high-level abstraction
1063 of actions has been an effective strategy for online RL and imitation learning. However, they are
1064 limited to online settings when the skills can only be refined through interacting with the environment,
1065 which restricts their application to large-scale offline datasets. Recent offline skill discovery methods
1066 include OPAL (Ajay et al., 2021), SPiRL (Pertsch et al., 2021a), and SkiLD (Pertsch et al., 2021b)
1067 which use an autoencoder to encode trajectories into latent skills z ; and PARROT (Singh et al., 2021)
1068 which uses a flow-based model to learn a behavior prior. In these models, the latent z is later used to
1069 generate the policy $\pi(a|s, z)$ in a non-linear way. Our paper, instead, employs a generalized-linear
1070 structure of the policy $\pi(a|s, z) \propto \exp(\phi(s, a)^\top u(z))$ which provides better interpretability than the
1071 policy network. This interpretability is essential for addressing downstream neuroscience questions.

1072 **Linear structure of environment/policy.** Another line of work (HILP (Park et al., 2024), FB (Touati
1073 & Ollivier, 2021), USFA (Borsa et al., 2019), RaMP (Chen et al., 2023)) based on successor
1074 features (SF) also uses a generalized linear structure to model the motif-based policy as $\pi(a|s, z) \propto$
1075 $\exp(F(s, a, z)^\top z)$ where $F(s, a, z)$ is SF under a certain motif z . The main concern is that they
1076 cannot separate motif representation z from state-action representation in SF, while our work can
1077 (Eq. 4). Therefore, their motifs depend on the specific task or timepoint, while our motifs/skills are
1078 general representations shared across tasks and timepoints. The idea that task-agnostic motifs are
1079 combined adaptively to form new policies aligns better with the need of interpretability and scientific
1080 discovery: we would like to look for neural signals responsible for relatively fixed time-agnostic
1081 behavior patterns, to help us better understand the animal behavior.

1080 TRAIL (Yang et al., 2022) adopts a linear decomposable environment as MCD when learning the
 1081 latent skills. However, the latent-conditioned policy $\pi(a|s, z)$ is not linear, but parametrized by a
 1082 neural network. SkillBlender (Kuang et al., 2025) adopts a linear decomposable policy, and uses
 1083 linear combinations of lower-level controller outputs as the final actions $a_t = \sum_i k_i a_t^i$, while we
 1084 use the linear combinations of different motifs to generate the final state-value functions $Q_t(s, a) =$
 1085 $\sum_i \phi_i(s, a) u_t^i$ rather than direct actions. We believe a naive mixture of the low-level controller is less
 1086 biologically realistic in modeling animal behavior than mixtures of state-value functions. The latter
 1087 can find supporting evidence in neuroscientific literature (Makino, 2023). Besides, their transition
 1088 kernel $P(s'|s, a)$ is not linear.

1089 Compared to them, our work assumes generalized linear structures for both the policy and the
 1090 environment, providing better interpretability. This shared motif is more fundamental in revealing the
 1091 basic structure of the animal’s intentions.

1092 **Our contributions.** Most existing skill-learning methods do not apply to the behavior understanding
 1093 scenario considered here. We study offline data without supervision or task annotations—no explicit
 1094 goals, labels, or trajectory segmentation—only long, unstructured behavior sequences. The challenge
 1095 is threefold: (1) to discover the basic motor skills, (2) to determine how these skills compose spatially
 1096 and temporally within long trajectories in an offline setting, and (3) to ensure interpretability for
 1097 scientific discovery. These are nontrivial problems beyond the reach of existing skill- or motor-
 1098 primitive approaches. To our knowledge, this is the first work to introduce offline RL-based imitation
 1099 learning for behavior segmentation, yielding interpretable skill representations and their compositions.

1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
1135

H IDENTIFIABILITY DISCUSSION

1136
11371138 In this section we clarify the notion of identifiability and how it applies to our motif-based continuous
1139 dynamics (MCD) model. A parameterization is said to be *identifiable* if different parameter values
1140 lead to different model predictions. Conversely, if multiple distinct parameterizations yield identical
1141 likelihoods or value functions, the model is only identifiable up to an equivalence class (e.g., scaling,
1142 rotation, or permutation).1143 **Our model is identifiable at the subspace level.** In MCD, both the transition operator and the
1144 action-value function admit the spectral form

1145
$$P(s'|s, a) = \phi(s, a)^\top \mu(s'), \quad Q(s, a) = \phi(s, a)^\top u.$$

1146

1147 Although individual components of ϕ , μ , and u may be rescaled by an invertible linear transformation
1148 without altering P or Q , the *subspace spanned by the motif functions* is uniquely determined (Ren
1149 et al., 2023). This is analogous to PCA, where the principal subspace is identifiable even if the basis
1150 vectors within that subspace are not uniquely determined. In practice, they converge well.1151 Moreover, in the continuous version, the identifiability of the new representations ψ, ν up to rescaling
1152 has been guaranteed by the normalization operation before the output (Appendix B), which also
1153 ensures the trainability of the contrastive learning algorithm.1154 **Comparison to HMMs and latent variable models.** Classical behavioral segmentation methods
1155 (e.g., Keypoint-Moseq as an HMM variant, SemiSeg as an autoencoder variant) are generally not
1156 identifiable without strong additional assumptions. Different transition matrices, emission matrices,
1157 or latent dynamics parameters can produce indistinguishable observation distributions. These models
1158 typically suffer from label-swapping and more severe transform equivalences in the latent space,
1159 meaning that even the latent subspace is not uniquely determined. In contrast, our method fixes the
1160 ambient representation through the observed state–action pairs and learns a function class whose
1161 span is uniquely tied to the transition operator and value function. Thus, while our motif basis is
1162 identifiable only up to linear transforms (as is standard for spectral decompositions), the underlying
1163 subspace and its behavioral interpretation are stable, reproducible and identifiable.1164 **Summary.** MCD inherits the identifiability properties of spectral RL methods: the motif basis is
1165 identifiable up to an invertible transformation, and the motif *subspace*—the structure that determines
1166 P , Q , and π —is uniquely recoverable. This stands in contrast to latent-variable models such as
1167 HMMs or SLDS, which in general do not admit identifiable latent subspaces without strong, often
1168 unrealistic, constraints.1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 I LONG-TERM DEPENDENCY DISCUSSION
11891190 Compared with prior approaches, our framework implicitly captures the long-term temporal structure
1191 of behavior through the Bellman equation in the reinforcement learning (RL) formulation. The
1192 component responsible for encoding long-term and multi-scale dynamics is the motif weight $u(t)$.
1193 From the linear decomposition of the state-action value function (Eq. 3),

1194
$$u(t) = w + \gamma \int V(s') \mu(s') q(s') ds',$$

1195

1196 it follows that $u(t)$ integrates two sources of information simultaneously: (i) long-horizon structure
1197 through the value function $V(s')$, which summarizes discounted future trajectories, and (ii) short-
1198 horizon structure through the immediate reward parameter w . Since RL theoretically operates over
1199 an infinite horizon, this formulation naturally enables modeling of extended temporal dependencies.
1200 Empirically, we observe this structure in Fig.4B: some motifs exhibit stable, slowly varying activation
1201 profiles (e.g., motif 1, gray curve), whereas others fluctuate rapidly and capture short-term transitions
1202 (e.g., motif 2, pink curve). Intuitively, consider a mouse that intermittently sniffs throughout the day
1203 but engages in fast running only during a brief morning period. The coefficient $u_i(t)$ for sniffing
1204 would rise gradually across long time windows, while the coefficient $u_j(t)$ for running would increase
1205 only during short, specific intervals.1206 A classical model that also captures temporal dependencies is MotionMapper (Berman et al., 2014),
1207 which employs a wavelet transform to decompose motion trajectories in the frequency domain. Al-
1208 though both MotionMapper and MCD may be viewed as spectral methods, they rely on fundamentally
1209 different basis functions. Wavelet bases explicitly correspond to specific temporal frequencies, thus
1210 providing an inherent multi-scale temporal interpretation. Likewise, classical eigendecomposition of
1211 linear dynamical systems yields eigenmodes whose associated eigenvalues determine characteristic
1212 relaxation time-scales. For example, if $P = V\Lambda V^{-1}$, then

1213
$$x_t = P^t x_0 = V\Lambda^t V^{-1} x_0,$$

1214 and long-term behavior is dominated by the eigenvector corresponding to the largest eigenvalue.
1215 In contrast, our method is equivalent to performing a singular value decomposition (SVD) of the
1216 transition operator (Ren et al., 2023), and SVD basis vectors do *not* encode distinct time scales in
1217 general. Thus, the motifs ϕ in MCD are not required to exhibit temporal-frequency separation. Instead,
1218 multi-scale behavioral structure arises from the RL objective itself and is manifested in the evolution
1219 of the motif weights $u(t)$. Another conceptual distinction is that MotionMapper captures multi-scale
1220 structure in the *frequency domain* of motion, whereas our method captures such structure in the *policy*
1221 *domain* via a generative decision-making model, emphasizing the underlying motivational processes
1222 shaping behavior.1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

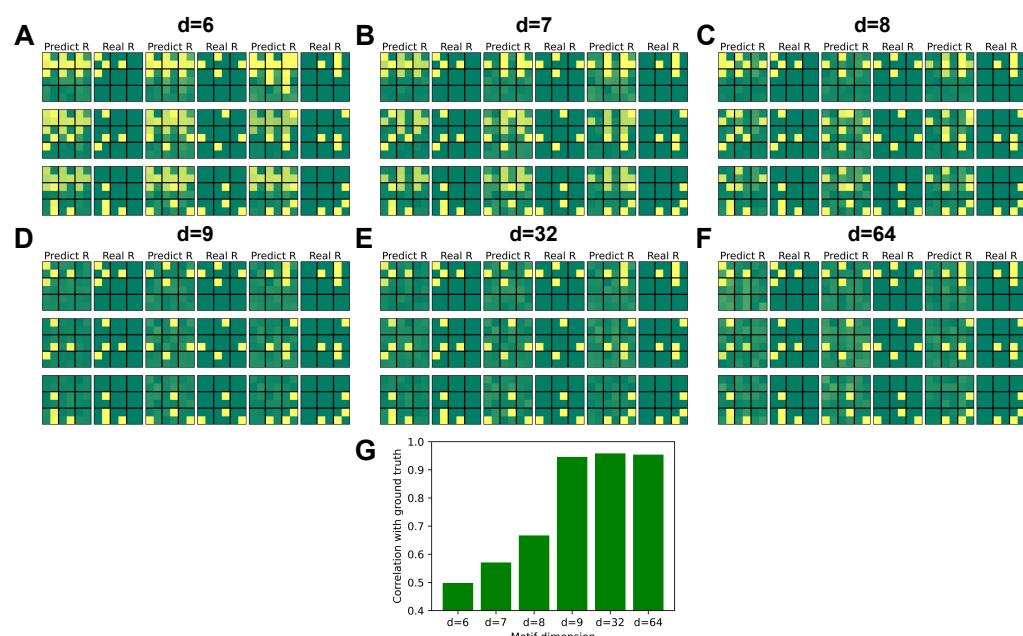
1242 **J HYPERPARAMETER DISCUSSION**
 1243

1244
 1245
 1246 **J.1 MOTIF DIMENSION**
 1247

1248 To evaluate the sensitivity of our model to the dimension of the hidden state, we change the dimensions
 1249 of motifs d and verify them in different datasets.

1250 In the discrete case, there exists a minimum dimension that could fully represent the motif space. In
 1251 fact, the motif discovery (Eq. 2) is equivalent to SVD of the transition matrix $P(s'|s, a)$ (Ren et al.,
 1252 2023). Since the rank of the transition matrix is $|\mathcal{S}|$, the ranks of ϕ and μ matrices are both $|\mathcal{S}|$, which
 1253 is exactly the minimum dimension of $\phi(s, a)$ that could fully represent the motif space. This could
 1254 be clearly seen in the gridworld dataset (Fig. 8) and labyrinth navigation dataset (Fig. 9).

1255 For the gridworld dataset, $d_{min} = 3 * 3 = 9$. If $d < 9$, the SVD could only provide a low-rank
 1256 approximation. As a result, the recovered reward map is blurred and incorrect (Fig. 8A-C) and the
 1257 correlation remains low (Fig. 8G). For $d \geq 9$, the motif matrix is full-rank. So the reward maps
 1258 are nearly perfect (Fig. 8D-F), and the correlations are near 100% (Fig. 8G). Similar analysis also
 1259 applies to labyrinth navigation dataset where $d_{min} = 127$ (Fig. 9). In this case, variant with fewer
 1260 motif dimensions ($d = 64$) cannot generate realistic reward maps while variants with more motif
 1261 dimensions ($d \geq 127$) can faithfully recover the reward peaks in each task.

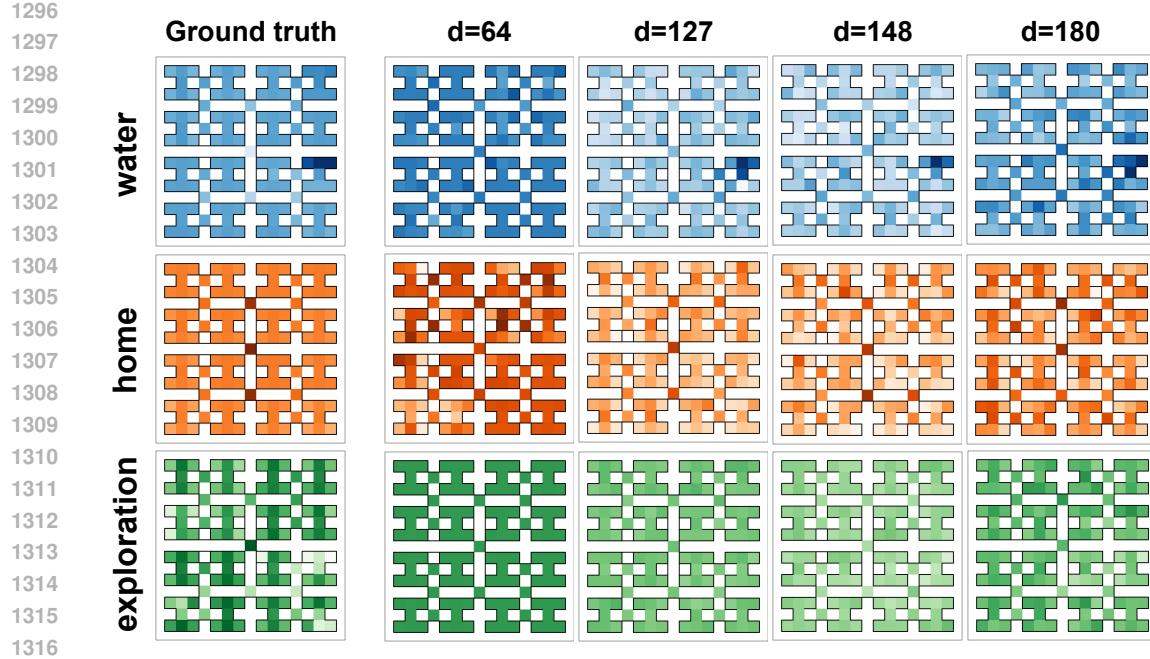
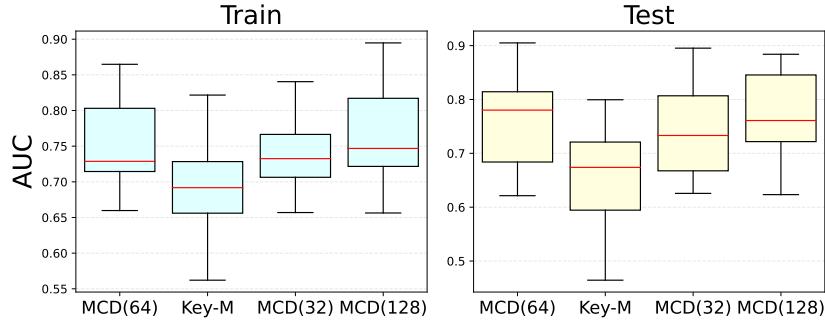


1283
 1284 Figure 8: Reward maps generated by models of different motif dimension d in the gridworld dataset.

1285 In the continuous case, since the transition kernel is infinite-dimension, any finite d would only
 1286 provide a low-rank approximation to the transition kernel. As d increases, the fitting performance
 1287 would be better. However, since the importance of different motifs is different, by observing the
 1288 performance under different d , we could select one to be as small as possible while still capturing the
 1289 entire motif space as comprehensively as possible, and maintain the performance. In this experiment
 1290 (Fig. 10), we select $d = 64$.

1291
 1292 **J.2 NOISE DISTRIBUTION**
 1293

1294 The continuous version of MCD is based on contrastive learning. Therefore, a high-quality negative
 1295 sample distribution is crucial for the motif and policy learning. Here we evaluate different selections
 of noise distributions in the continuous free-moving animal behavior dataset.

Figure 9: Reward maps generated by models of different motif dimension d in the labyrinth navigation dataset.Figure 10: AUC generated by models of different motif dimension d in the animal free-moving dataset.

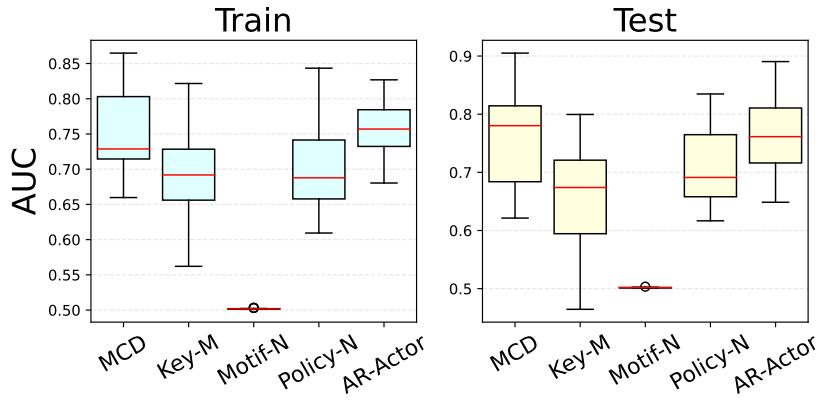
For the motif learning (Eq. 7), in the main text, we directly sample states from the dataset. In other words, the noise distribution is $\rho(s) = \int \tau^e(s, a) da$.

In "Motif-N" variant, we replace it by a uniform distribution, whose dimension-wise bounds are determined as the maximum and minimum values of the states in the dataset, i.e. $s'_i \sim U(\min(\rho(s_i)), \max(\rho(s_i)))$. Because the negative samples are not good enough, the resulting energy-based model can neither capture high-quality motifs nor provide good basis vectors for later policy learning. Therefore the AUC score remains low (Fig 11).

For the policy learning (Eq. 8), in the main text, we also sample negative samples directly from the dataset $(s', a') \sim \tau^e$ and use a' as a negative sample of actions. In other words, the noise distribution is $\zeta(a) = \int \tau^e(s, a) ds$.

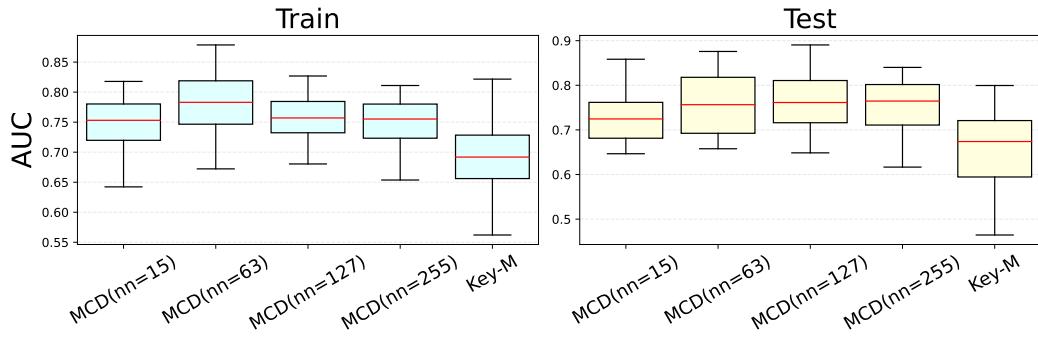
In the "Policy-N" variant, we sample negative pairs from uniform distribution $a'_i \sim U(\min(\zeta(a_i)), \max(\zeta(a_i)))$, similar to "Motif-N". In the "AR-Actor" variant, we additionally train an auxilliary autoregressive actor $\pi(a|s)$ to fit $\pi^e(a|s)$ using MLE. And the negative samples are from this actor $\pi(a|s)$. For each dimension, the actor has a network of two hidden layers, with hidden dimension=256 each, to produce the mean and variance of this action dimension, i.e. $a_i \sim \mathcal{N}(\mu(a_i|s, a_{<i}), \sigma^2(a_i|s, a_{<i}))$. As expected, uniform noise distribution is not good enough, and "Policy-N" achieves lower AUC than the original version. And the "AR-Actor" achieves similar

1350
 1351 performance on the test dataset, proving the robustness of MCD to noise distribution if it is good
 1352 enough.
 1353



1367 Figure 11: AUC generated by models trained under different noise distribution in the animal free-moving dataset.
 1368

1369 We also tested the influences of the number of negative samples (Fig. 12). MCD is consistently better
 1370 than Key-Moseq and maintains a stable performance. It turns out that the model is robust against the
 1371 choice of number of negative samples.
 1372



1385 Figure 12: AUC generated by models trained using different numbers of negative samples for motif contrastive
 1386 learning in the animal free-moving dataset. $nn = k$ means the number of negative samples per positive sample
 1387 is k .
 1388

1389 J.3 DATASET PARTITION

1391 In the third experiment, we randomly split the whole dataset into training set and test set. Here,
 1392 we train the model on some mice and then test it on other heldout mice, i.e. split the dataset by
 1393 mouse identities. This experiment shows whether the motifs learned by the model are general and
 1394 transferrable across different subjects. The result is shown in Fig. 13 where the complete exclusion of
 1395 one animal from the training set does not impair the performance. This experiment proves that the
 1396 MCD can learn a general set of motifs that could be transferred across animals.
 1397

1398 J.4 GAUSSIAN RANDOM WALK PRIOR

1400 In the free-moving animal behavior dataset (Sec. 4.3), we impose a Gaussian random-walk prior on
 1401 the time-varying motif weights $u(t)$ to encourage temporal smoothness. To assess the sensitivity
 1402 of our method to this regularization, we varied the strength of the Gaussian prior and re-evaluated
 1403 model performance (Fig. 14). As expected, very large coefficients introduce slight degradation due to
 oversmoothing. However, across all tested values, performance remains substantially higher than

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Figure 13: AUC generated by models trained using different train-test split methods. For MCD(random), the dataset is randomly split. For MCD(heldout), the behavior of one mouse is specially held out as the test set while the rest is taken as the training set.

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

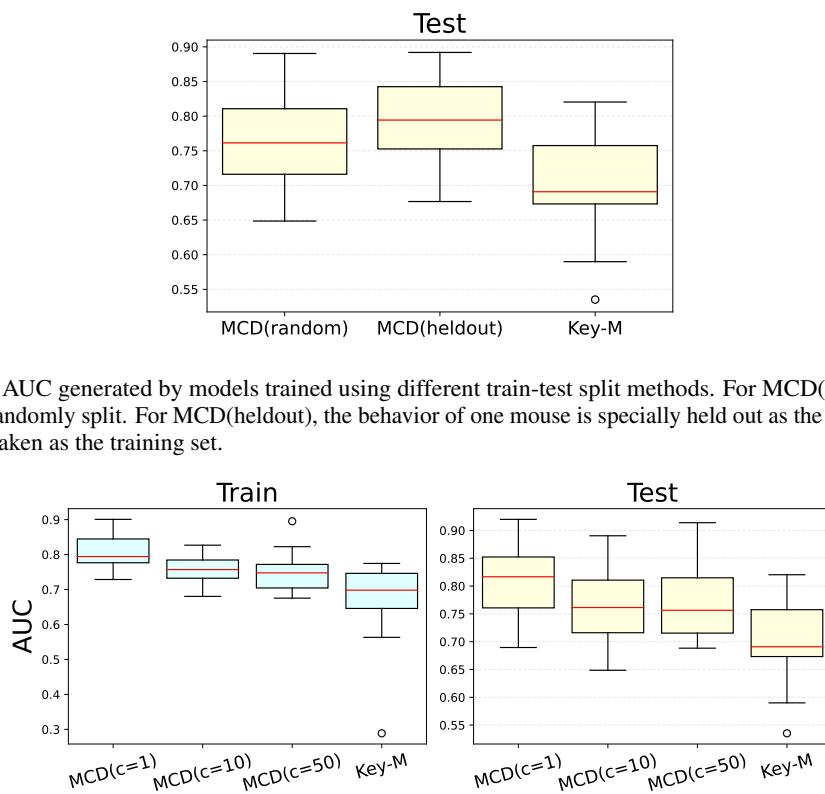


Figure 14: AUC generated by models tested using different Gaussian random walk prior coefficients in the animal free-moving dataset.

the baseline model. This demonstrates that MCD is robust to the choice of Gaussian random-walk regularization strength and does not rely on fine-tuning this hyperparameter to achieve strong results.

1458 K SCIENTIFIC IMPACT AND RELATIONS TO NEUROSCIENCE AND ETHOLOGY
1459
1460
1461

1462 **Scientific relevance to neuroscience.** Our work is primarily motivated by the neuroscience per-
1463 spective, where the goal is to extract interpretable behavioral structure that can be directly linked
1464 to neural circuit dynamics, internal motivational states, and decision-making processes. From this
1465 viewpoint, MCD provides scientifically meaningful variables: it discovers low-level motor motifs
1466 that correspond to reproducible movement primitives and models behavior as smoothly varying
1467 mixtures of these primitives. This mirrors known neural control principles in the motor cortex, basal
1468 ganglia, and brainstem, where overlapping action components, not discrete switches, combine to
1469 generate natural movement. The resulting motif representations and time-varying policy weights
1470 offer a rich, biologically interpretable representation for analyzing how neural populations evolve
1471 alongside behavior.

1472 The learned representations can be mapped to neural representations in future work. Each motif
1473 $\phi(s, a)$ defines a low-level motor primitive, giving a clear behavioral regressor for examining whether
1474 neurons in *motor cortex* encode specific movement components. The time-varying policy weights
1475 $w(t)$ and reward-related weights $u(t)$ describe how motifs are combined and modulated over time,
1476 offering hypotheses about potential control- and value-related signals in the *dorsal striatum*. While we
1477 do not perform neural analyses in this paper, the structured motif representation provides a principled
1478 framework for relating behavior to activity in these circuits in future neuroscience studies.

1479 For the training protocol, our method is trained purely from behavior; no neural signals, reward
1480 labels, or joint behavior–neural objectives are used. This distinguishes our approach from models that
1481 rely on neural data to infer latent goals or value functions. On the other hand, although our method
1482 does not require neural recordings, the learned motifs correspond to low-dimensional dynamical
1483 components of behavior that can in principle be aligned with neural manifolds (e.g., cyclic modes for
1484 gait, motor primitives, or population attractors).

1485 **Relevance to ethology and real-world behavior.** Beyond neuroscience, MCD is well suited for
1486 ethological studies where the goal is to characterize behavior in naturalistic, minimally constrained
1487 environments across multiple timescales. By capturing long-range dependencies, allowing motifs to
1488 co-occur, and modeling continuous dynamics, MCD can describe multi-scale organization of behavior,
1489 such as exploratory sequences, foraging patterns, or grooming hierarchies, without assuming discrete
1490 states. This enables ethologists to quantify how natural behaviors are composed, how they transition,
1491 and how they evolve over long durations. Thus, while our emphasis is on neuroscience applications,
1492 the method is fully compatible with ethological framework and supports general scientific questions
1493 about the structure and function of natural behavior.

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **L REWARD MAPS OF LABYRINTH NAVIGATION DATASET INFERRED BY**
 1513 **DIFFERENT MODELS**

1517 MCD’s result of the navigation labyrinth dataset is based on the task segmentation of Ke et al. (2025).
 1518 There remains two questions: (1) how do other models perform on the same segmentation; and (2)
 1519 whether the ground truth from Ke et al. (2025) is valid. To further validate our results, we evaluated
 1520 two additional inverse reinforcement learning baselines: (1) IQ-Learn (IQL, Garg et al. (2021)),
 1521 where we use the same segmentation from Ke et al. (2025) to infer a reward map for each task; and (2)
 1522 Dynamic-IRL (DIRL, Ashwood et al. (2022)), where without relying on this segmentation, we infer
 1523 a time-varying mixture of reward functions directly from their curated data. We use a tabular version
 1524 of IQL here just like MCD. For comparison, we constructed two auxiliary reward maps: a perfect
 1525 reward map with artificially placed rewards, and a random baseline map whose entries are sampled
 1526 from a standard normal distribution. In the perfect map, the water-seeking task reward function has
 1527 a peak of 1 at the water port. The home-seeking task reward function has a peak of 1 at the home
 1528 location. And the exploration task reward function has a uniform low reward of 0.3 at every location.

1529 Fig. 15A shows all inferred maps, and Fig. 15B reports the Pearson correlation coefficients across all
 1530 maps. There are three important conclusions. (1) The strong alignment between the MCD-recovered
 1531 maps, the ground-truth maps from Ke et al. (2025) (GT), and the perfect manual map demonstrates
 1532 that MCD successfully recovers the underlying motivational structure. (2) MCD achieves consistently
 1533 higher correlation with both GT and the perfect map than IQL under the same task segmentation,
 1534 suggesting that MCD captures the animal’s latent motivation more accurately than the IQL baseline.
 1535 (3) The high correlation between GT, the perfect map, and DDIRL provides external validation for the
 1536 quality of the GT annotations themselves.

1537 Note that although DDIRL achieves higher correlations with the ground-truth maps, it is not suitable
 1538 for our setting. DDIRL requires stereotyped, repeated sequences of *identical* length and therefore
 1539 depends on carefully curated datasets in which such fixed-length segments can be extracted (not
 1540 the same dataset as we use, but the same environment). In contrast, our datasets—especially the
 1541 continuous animal free-moving dataset—exhibit substantial heterogeneity and do not contain repeated
 1542 trajectories of uniform duration. We are also concerned that such curation would introduce bias and
 1543 distort the natural statistics of the behavior. Furthermore, DDIRL relies on *tabular* value iteration to
 1544 backpropagate gradients from the policy to the reward, which is fundamentally incompatible with the
 1545 continuous state and action spaces present in the animal free-moving behavior data.

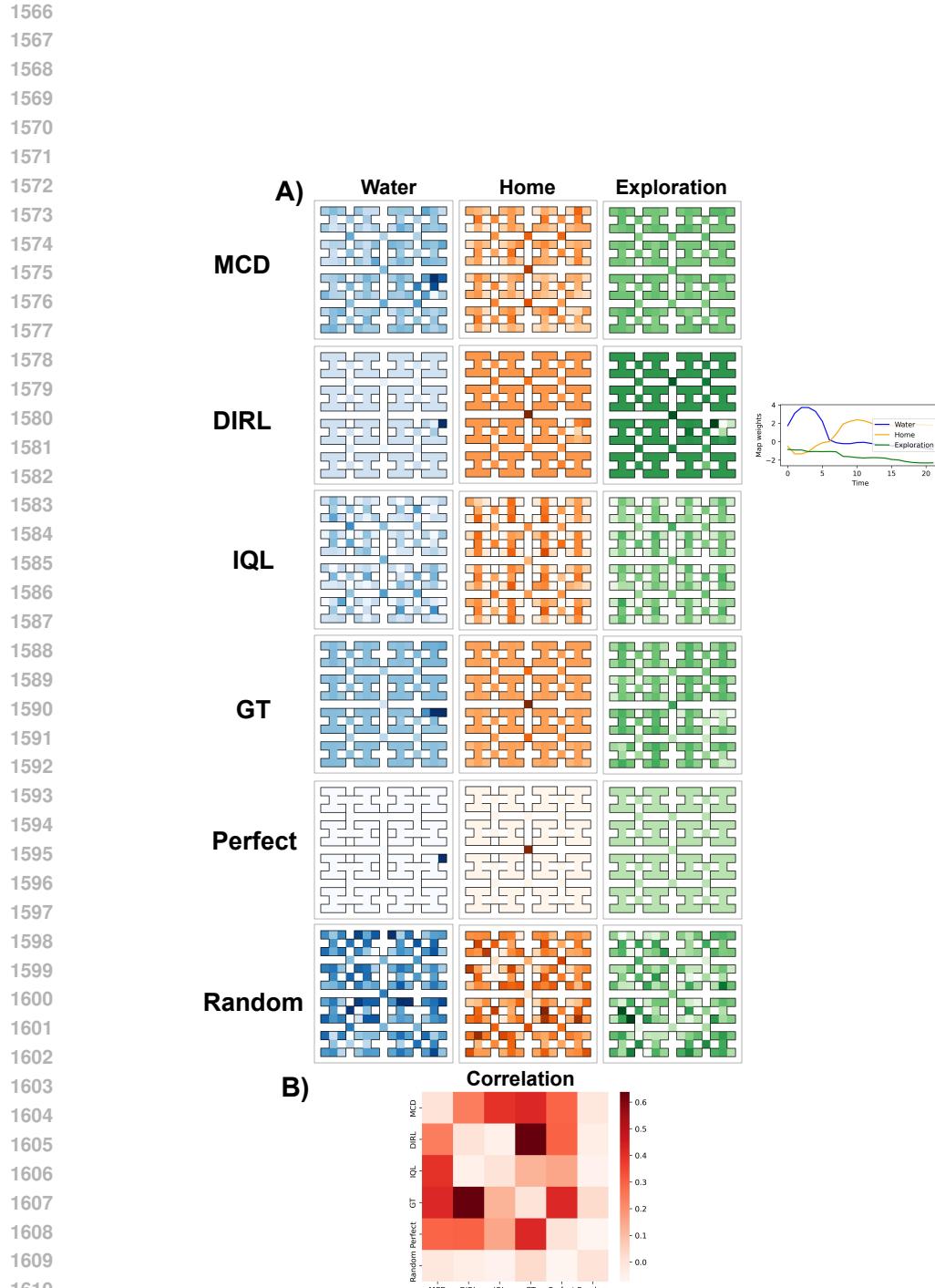


Figure 15: A. Reward maps inferred by different models. The maps from DRL are ranked based on the time-varying weights (right at the corresponding row). "Water" weight increases and then decreases; "home" weight remains low and then increases; and "exploration" weight remains low. **B.** Correlations across the reward maps.

1615
 1616
 1617
 1618
 1619

1620 **M CONNECTIONS TO STATE-SPACE MODEL**

1621
1622
1623
1624
1625
1626 In the animal free-moving behavior dataset, our comparison includes both discrete segmentation
1627 models (e.g., Key-MoSeq), which assign behaviors to discrete syllables, and continuous trajectory
1628 models (OPAL, SemiSeg), which capture smooth behavioral dynamics without imposing explicit
1629 motif boundaries. While our discussion of the discrete models was more detailed, we expand this
1630 section to clarify two additional points. First, the continuous baselines we use—specifically the
1631 SemiSeg variant—are in fact continuous state-space models that model latent behavioral dynamics
1632 through recurrent transitions and stochastic emissions. Second, despite the expressive capacity of
1633 these continuous SSMs, our proposed MCD framework achieves markedly stronger performance,
1634 indicating its advantage in capturing the fine-grained and compositional structure of animal behavior.

1635 With the latent dynamic state h_t , SemiSeg models the sequence (s_1, \dots, s_T) via a deterministic
1636 latent transition model, and a stochastic emission model:

1637
$$h_{t+1} = f_\omega(h_t, s_t), \quad \text{with } p_\omega(h_{t+1} | h_t, s_t) = \delta(h_{t+1} - f_\omega(h_t, s_t)), \quad (17)$$

1638
$$s_{t+1} \sim p_\theta(s_{t+1} | h_{t+1}) = \mathcal{N}(\mu_\theta(h_{t+1}), \sigma^2 I), \quad (18)$$

1639 where f_ω is a GRU transition and μ_θ is a neural network emission function. The delta function can
1640 be viewed as the limit of a Gaussian transition with $\sigma \rightarrow 0$, corresponding to a deterministic latent
1641 transition.

1642 Under this construction, the joint distribution over latent and observed variables can be factorized as

1643
$$p(h_{1:T}, s_{1:T}) = p(h_1) p(s_1 | h_1) \prod_{t=1}^{T-1} p_\omega(h_{t+1} | h_t, s_t) p_\theta(s_{t+1} | h_{t+1}). \quad (19)$$

1644 This is exactly the state-space factorization: a Markovian latent process h_{t+1} evolving in time,
1645 together with a stochastic emission model generating the observed states. The dependence on s_t in
1646 the transition corresponds to an input-driven SSM, with the previous state acting as an input.

1647 We train SemiSeg by maximizing the log-likelihood $\log p(s_{1:T})$ via a variational lower bound.
1648 Introducing an approximate posterior over the latent trajectory $q_\phi(h_{1:T} | s_{1:T})$, the evidence lower
1649 bound (ELBO) \mathcal{L} can be acquired through

1650
$$\log p(s_{1:T}) \geq \mathcal{L} = \mathbb{E}_{q_\phi(h_{1:T} | s_{1:T})} [\log p(h_{1:T}, s_{1:T}) - \log q_\phi(h_{1:T} | s_{1:T})] \quad (20)$$

1651
$$= \mathbb{E}_{q_\phi(h_{1:T} | s_{1:T})} [\log p(s_{1:T} | h_{1:T})] - \text{KL}(q_\phi(h_{1:T} | s_{1:T}) \| p(h_{1:T})) \quad (21)$$

1652 It is easy to factorize the first term

1653
$$\log p(s_{1:T} | h_{1:T}) = \sum_{t=1}^T \log p_\theta(s_t | h_t). \quad (22)$$

1654 For the deterministic transition $h_{t+1} = f_\omega(h_t, s_t)$ with $p_\omega(h_{t+1} | h_t, s_t) = \delta(h_{t+1} - f_\omega(h_t, s_t))$, a
1655 natural variational family is

1656
$$q_\phi(h_{1:T} | s_{1:T}) = q_\phi(h_1 | s_{1:T}) \prod_{t=1}^{T-1} \delta(h_{t+1} - f_\omega(h_t, s_t)), \quad (23)$$

1657 i.e. the posterior has freedom only in the initial latent state h_1 and shares the deterministic transition
1658 with the prior $p(h_{1:T})$. Under this choice, the delta functions cancel in the KL, and the regularization
1659 term reduces to

1660
$$\text{KL}(q_\phi(h_{1:T} | s_{1:T}) \| p(h_{1:T})) = \text{KL}(q_\phi(h_1 | s_{1:T}) \| p(h_1)), \quad (24)$$

1661 where $p(h_1) = \mathcal{N}(0, I)$ is the initial prior. The ELBO therefore simplifies to

1662
$$\mathcal{L} = \sum_{t=1}^T \mathbb{E}_{q_\phi(h_{1:T} | s_{1:T})} [\log p_\theta(s_t | h_t)] - \text{KL}(q_\phi(h_1 | s_{1:T}) \| \mathcal{N}(0, I)). \quad (25)$$

1663 For the Gaussian emission model

1664
$$p_\theta(s_t | h_t) = \mathcal{N}(s_t; \mu_\theta(h_t), \sigma^2 I), \quad (26)$$

1665 the negative log-likelihood decomposes (up to an additive constant) as

1666
$$-\log p_\theta(s_t | h_t) = \frac{1}{2\sigma^2} \|s_t - \mu_\theta(h_t)\|_2^2 + \text{const.} \quad (27)$$

1674

Consequently, the training objective (negative ELBO, ignoring constants) is

1675

1676

1677

$$\mathcal{J}(\theta, \omega, \phi) = \frac{1}{2\sigma^2} \sum_{t=1}^T \mathbb{E}_{q_\phi(h_{1:T} | s_{1:T})} \|s_t - \mu_\theta(h_t)\|_2^2 + \text{KL}(q_\phi(h_1 | s_{1:T}) \| \mathcal{N}(0, I)). \quad (28)$$

1678

1679

In particular, if we fix $\sigma^2 = 1$ and use a deterministic initial latent (e.g. $h_1 = 0$), the loss reduces to a mean-squared reconstruction term, consistent with SemiSeg (Whiteway et al., 2021).

1680

1681

1682

1683

SemiSeg is therefore a continuous neural state-space model with: (i) a deterministic latent dynamical state updated by a recurrent transition $h_{t+1} = f_\omega(h_t, s_t)$, and (ii) a stochastic emission model $p_\theta(s_{t+1} | h_{t+1})$. Given that MCD still performs better than SemiSeg (Fig. 4.3), our model thus demonstrates more powerful ability to capture continuous behavior dynamics than continuous state-space models.

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 N GENERATED ROLLOUT TRAJECTORIES
1729
1730
1731

1732 In the animal free-moving dataset, we train a generative energy model to estimate the state–action
1733 value function. Here, we assess its reliability using Hamiltonian Monte Carlo (HMC) sampling.
1734 For each motif d_i , we construct a one-hot vector u with $u_{d_i} = 1$ and $u_{d_j} = 0$ for all $j \neq i$, and
1735 then sample an action a from the learned energy model. For each d_i , we sample 10 actions in total.
1736 The resulting motif-specific rollout trajectories (Fig 16) largely align with the empirical averages
1737 (Fig. 7B), demonstrating that the model captures the dominant behavioral tendencies. A small number
1738 of trajectories deviate from the empirical trends, probably because u is never used as a strict one-hot
1739 vector during training but instead appears as a mixture over motifs. We attribute these deviations to
1740 unavoidable generative noise and the distributional mismatch between test-time one-hot inputs and
1741 the mixed representations observed in real data.

1741 For that, we choose several clips and generate the rollouts (number of rollout steps=5) based on the
1742 inferred $u(t)$. The alignment between generated trajectories and real trajectories (Fig. 17) show that
1743 MCD could capture the real behavior dynamics.

1745 **HMC parameters.** We use a step size of 1×10^{-4} , 100 leapfrog steps per action, temperature = 1,
1746 mass matrix $M = I$, and initial momentum $r \sim \mathcal{N}(0, 1/200)$. The leapfrog integrator is employed
1747 to improve sampling accuracy.

1769 Figure 16: Motif-specific rollout trajectories generated by HMC sampling from the trained energy model.
1770 Indexes are consistent with Fig. 7.

1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835