
Efficiently Generating Multidimensional Calorimeter Data with Tensor
Decomposition Parameterization

Paimon Goulart∗

pgoul002@ucr.edu

Shaan Pakala∗

spaka002@ucr.edu

University of California, Riverside

Evangelos Papalexakis
epapalex@cs.ucr.edu

Abstract

Producing large complex simulation datasets can often be
a time and resource consuming task. Especially when these
experiments are very expensive, it is becoming more rea-
sonable to generate synthetic data for downstream tasks.
Recently, these methods may include using generative ma-
chine learning models such as Generative Adversarial Net-
works or diffusion models. As these generative models im-
prove efficiency in producing useful data, we introduce an
internal tensor decomposition to these generative models to
even further reduce costs. More specifically, for multidi-
mensional data, or tensors, we generate the smaller tensor
factors instead of the full tensor, in order to significantly
reduce the model’s output and overall parameters. This re-
duces the costs of generating complex simulation data, and
our experiments show the generated data remains useful. As
a result, tensor decomposition has the potential to improve
efficiency in generative models, especially when generating
multidimensional data, or tensors.

1. Introduction

Producing complex simulation data is a vital step to un-
derstanding physical systems, in domains such as climate
science [3, 10, 12] and high energy physics [7, 8] . Un-
fortunately, performing the experiments to generate this
simulation data sometimes requires excessive amounts of
time and computational resources [7, 12]. For this reason,
we see generative models, such as Generative Adversar-
ial Networks (GANs) [4] and Denoising diffusion models
[6, 20], used for the generation of complicated simulation
data [1, 8]. This is especially useful as these datasets have
higher resolution, becoming more expensive to generate ex-
perimentally and using overwhelming amounts of comput-
ing power [1, 7, 8].

*Equal contribution

To further accelerate this dataset generation, we intro-
duce an internal tensor decomposition for these genera-
tive models, to significantly reduce the model parameters
and increase overall efficiency. When generating multidi-
mensional data, or tensors, we instead generate the much
smaller tensor factors. Then after we generate these fac-
tors, we can combine them into the full generated tensor
[17]. By doing this, we significantly reduce the number of
parameters that are directly output by the model, reducing
the overall model parameters as well. In our experiments,
we show the viability of this internal tensor decomposition
by comparing it with standard generative models that output
the entire generated tensor. We make comparisons using the
widely used Fréchet Inception Distance (FID) [5], to quan-
tify how well the distribution of generated data matches the
distribution of original data. In our results, we see that
we can reduce the number of parameters by decreasing the
tensor decomposition rank, and still maintain similar per-
formance to the generative models with more parameters.
Our code is available at https://github.com/Pie115/GenTen-
GAN-Diffusion.

2. Preliminaries
2.1. Tensors & Tensor Decomposition
Tensors are multidimensional arrays. In other words, a
vector is a 1-dimensional tensor, and a matrix is a 2-
dimensional tensor. We will be looking at tensors of 3 or
more dimensions [9, 19].

2.1.1. Tensor Decomposition
Tensor decomposition is the process of expressing a tensor
using smaller factors. For example, a common method of
tensor decomposition is Canonical Polyadic Decomposition
(CPD) [9, 19]. CPD expresses a tensor as a sum of rank-one
tensors. A rank R decomposition of a third-order tensor
X ∈ RIxJxK would be expressed as: X ≈

∑R
r=1(ar ◦

br ◦ cr), where ar ∈ RI ,br ∈ RJ , cr ∈ RK , and ◦
denotes outer product.

https://github.com/Pie115/GenTen-GAN-Diffusion
https://github.com/Pie115/GenTen-GAN-Diffusion


2.2. Generative Adversarial Networks
Generative Adversarial Networks (GANs) [4] are a type of
ML model that generates synthetic data. It utilizes two in-
ternal ML models: a generator and a discriminator. The
generator is trained to generate realistic images based on
a set of real data. The discriminator is trained as a binary
classification model to distinguish between the real dataset
and the generator’s output. By training these two models in
this way, the generator is encouraged to generate realistic
images that will fool the discriminator.

2.3. Diffusion Models
Denoising diffusion models [6, 20] are a class of generative
ML models, which like GANs, are used to generate new
data. Unlike GANs however, diffusion models do not need
to perform adversarial training. Instead, a neural network is
trained to reverse a process which denoises data that is cor-
rupted with varying amounts of Gaussian noise. New sam-
ples are then produced by iteratively denoising pure Gaus-
sian noise into a new image.

3. Methods
3.1. Tensor Decomposition in GANs
Utilizing tensor decomposition in GANs allows it to gener-
ate multidimensional data, while requiring far less parame-
ters. In Figure 1, we visualize an example of a GAN using
tensor decomposition to generate tensors.

Figure 1. Example GAN with internal tensor decomposition. The
GAN takes in a 1-dimensional random (N(0, 1) distribution) la-
tent vector and passes it through MLPs to generate tensor factors.
Then these tensor factors can be combined (using CPD in this fig-
ure) to produce the final generated tensor. In this figure, the gen-
erator produces three factor matrices of dimensions Ri×r , Ri×r ,
and Rj×r . Then we combine these factor matrices to produce the
final generated tensor of shape Ri×i×j .

The tensor in this example is of shape Ri×i×j , so gener-
ating the full tensor would require i2× j output parameters.

Generating the tensor factors [17] only requires (i+i+j)×r
output parameters, which is usually much less.

3.1.1. Generator
The generator loss is the average discriminator’s output on
the generated data. Since the discriminator outputs a deci-
mal value closer to 1 if it predicts generated data, and closer
to 0 if it predicts real data, the generator wants to minimize
this number. If the generator can minimize the discrimina-
tor’s average predictions on the generated data (closer to 0),
this means the discriminator is predicting real for the gener-
ated data. This hopefully means the generator is producing
data that is indistinguishable from the real data.

3.1.2. Discriminator
For the discriminator, we take in the tensor as input and
perform 2D convolutions on each slice. For example, the
Calorimeter data is of shape R25×51×51, with 25 ‘slices’
(each slice is a 2D matrix) and a height and width of 51.
Then the discriminator pools these outputs and passes this
through a dense layer and sigmoid layer to essentially per-
form logistic regression on the intermediate layer. If the out-
put is closer to 1, then it is predicting the input is generated
data, and if it is closer to 0 then it is predicting real data. For
the discriminator training, we use PyTorch’s Binary Cross
Entropy loss function to evaluate the discriminator’s ability
to distinguish between the real and generated data.

3.2. Tensor Decomposition in Diffusion Models
In our model, we adopt a denoising diffusion implicit model
(DDIM) framework. Compared to a standard denoising dif-
fusion probabilistic model (DDPM), DDIM gives us faster
sampling by using a deterministic non-Markovian process
[20]. Rather than requiring a full sequence of T diffusion
steps, DDIM allows us to generate high-quality samples us-
ing a reduced number of steps.

Since it has been shown that predicting the original sam-
ple x0 is theoretically equivalent to predicting noise ϵ [11]
we decided to use the former. Rather than having the model
learn to predict noise ϵ, we predict the clean sample x0 from
a noisy observation xt. This choice seems intuitive in our
setting, as the model ultimately produces factorized com-
ponents of the original sample, and predicting x0 allows for
direct comparison of these components or their reconstruc-
tion.

In order to explore how diffusion could be applied with
tensor decomposition, we decided to look into two different
approaches. First is factor to factor where the model learns
to directly denoise the factor matrices themselves. Second
is tensor to factor where the model operates on full tensors
and learns to output the factor matrices. Both of these ap-
proaches leverage CPD, but differ in how the denoising pro-
cess works and where factorization occurs. In the following
sections, we describe each method in detail.



3.2.1. Factor to Factor
In order to fully leverage tensor decomposition with diffu-
sion, instead of using one large model to generate an en-
tire tensor X ∈ RI×J×K , one natural approach would be
to split this process into three separate diffusion processes,
each responsible for one factor matrix of a CPD. In Figure
2 we visualize this process, illustrating how each factor ma-
trix is independently denoised in order to combine into one
tensor sample.

Figure 2. Factor to Factor diffusion sampling process. Each factor
matrix is independently denoised through its own diffusion pro-
cess, and the final tensor is obtained by combining the denoised
factors (using CPD).

To achieve this, we first use CPD to decompose the ten-
sors into three factor matrices. In this example, the fac-
tor matrices are of shape a ∈ Ri×r, b ∈ Ri×r, c ∈ Rj×r

where r is the target rank. These three factor matrices are
independently corrupted with varying amounts of Gaussian
noise and are then used to train three models in parallel.
During the sampling phase, we reverse this process. The
trained models start from pure Gaussian noise and progres-
sively denoise each factor matrix. In figure 3 we visualize
the denoising trajectory for each factor matrix.

In order to ensure that the models generate three factor
matrices that correspond to one another, we calculate the
loss as

Ltotal = Et,A0,B0,C0,ϵ

[
∥Apred − A0∥2

F + ∥Bpred − B0∥2
F + ∥Cpred − C0∥2

F

]
(1)

In doing so, we significantly reduce both the input and
output parameters when compared to operating on the full
tensor space. From i× i×j parameters to (i+ i+j)×r pa-
rameters. Similarly to how latent diffusion models operate
[16] which perform diffusion in a compressed representa-
tion space.

While this approach is intuitive and parameter efficient,
one major drawback lies in the cost of decomposing the ten-
sors ahead of time. At higher ranks, this decomposition be-

comes extremely computationally expensive. As a result,
despite reducing the number of model parameters, the over-
all pipeline can become less efficient. This motivates our
second approach.

3.2.2. Tensor to Factor
To avoid the need to decompose tensors before training our
model, we propose using a single model that operates di-
rectly on noisy tensors and learns to predict the three factor
matrices that reconstruct them. In Figure 4 we show this
new process. This removes the overhead of decomposition
while still reducing the output parameters.

To do this, we begin with full tensors from the train-
ing dataset and corrupt them with varying levels of Gaus-
sian noise. These noised tensors are then passed into a
single model that outputs three factor matrices, denoted
a ∈ Ri×r, b ∈ Ri×r, c ∈ Rj×r. In order to ensure
that the model generates three factor matrices that accu-
rately represent the original tensor, we first combine the
three predicted factor matrices by taking the outer product
X pred ≈

∑R
r=1(ar ◦ br ◦ cr), and compute the loss as

Ltotal = Et,X 0,ϵ

[
∥X pred − X 0∥2

F

]
(2)

From this, we are able to maintain the benefit of reduced
output parameters, but now without the need to decompose
the tensors ahead of time. As a result, the model can be
trained end-to-end directly on the data, making it more effi-
cient and scalable in practice.

3.3. Evaluation
For our evaluation, we choose to use the widely used
Fréchet Inception Distance (FID) [5, 18] to quantify how
well the distribution of our generated data matches that of
our real data.

3.4. Dataset
In our experiments, we use a publicly-available calorimeter
simulation dataset as our multidimensional simulation data
(https://zenodo.org/communities/mpp-hep). This data is es-
sentially 3D images (R25x51x51) of electron [13], neutral
pion [14], and photon [15] showers.

4. Experiments
4.1. Number of Parameters vs Performance
In this experiment, we visualize the trade-off between per-
formance and lower-rank tensor decompositions (less pa-
rameters). In Figures 5 & 6, we display the performance
(using the Fréchet Inception Distance) of our models with
different fractions of the full output parameters. We com-
pare these with the performance of a GAN & diffusion
model with the full output parameters (red dashed line). For
this comparison, we used a diffusion model without internal
tensor decomposition. For the GAN comparison, we used

https://zenodo.org/communities/mpp-hep


Figure 3. Progressive denoising of each factor matrix over time (from left to right). The three rows correspond to factor matrices A, B, and
C, respectively (from top to bottom).

Figure 4. Tensor to Factor diffusion sampling process. A single
model denoises a noisy tensor and predicts its corresponding factor
matrices. These predicted factors are then combined using CPD to
reconstruct the final tensor.

a high-rank tensor decomposition such that the output pa-
rameters match the full tensor. Ideally, we would compare
a GAN with no tensor decomposition, but this method out-
performed other full-parameter GANs in our experiments.

Figure 5. For the GANs, we display the Fréchet Inception Distance
(FID) versus the output parameters. Output parameters shown as
percent of full tensor (vs. smaller factor outputs).

For both GAN & diffusion plots, we notice a sharp de-
crease in the FID, followed by a plateau at around 10-20%
of the full output parameters. This indicates that we can
maintain similar performance (in terms of FID) while re-
ducing parameters with a lower rank tensor decomposition.

For diffusion we observe that the tensor to factor variant

Figure 6. For the diffusion models, we display the Fréchet Incep-
tion Distance (FID) versus the output parameters. Output parame-
ters shown as percent of full tensor (vs. smaller factor outputs).

achieves a remarkably lower FID than the factor to factor
variant across all ranks.

5. Conclusion
In these experiments, we show that tensor decomposition is
promising for reducing the output size for generative mod-
els such as GANs and diffusion models. This is especially
true as the output is multidimensional and higher resolution,
as these simulation datasets often are. We are able to sig-
nificantly decrease the output parameters and overall model
parameters by utilizing tensor decomposition, and still gen-
erate useful synthetic data.

6. Acknowledgments
Research was supported in part by the National Science
Foundation under CAREER grant no. IIS 2046086 and
grant no. IIS 1901379, by the Agriculture and Food Re-
search Initiative Competitive Grant no. 2020-69012-31914
from the USDA National Institute of Food and Agriculture,
and by the Army Research Office and was accomplished
under Grant Number W911NF-24-1-0397. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Army Re-
search Office or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion herein.



References
[1] Oz Amram and Kevin Pedro. Denoising diffusion models

with geometry adaptation for high fidelity calorimeter simu-
lation, 2023. 1

[2] Ivana Balažević, Carl Allen, and Timothy M Hospedales.
Tucker: Tensor factorization for knowledge graph comple-
tion. arXiv preprint arXiv:1901.09590, 2019. 7

[3] Veronika Eyring, Sandrine Bony, Gerald A Meehl, Cather-
ine A Senior, Bjorn Stevens, Ronald J Stouffer, and Karl E
Taylor. Overview of the coupled model intercomparison
project phase 6 (cmip6) experimental design and organiza-
tion. Geoscientific Model Development, 9(5):1937–1958,
2016. 1

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 1, 2

[5] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 1, 3

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Infor-
mation Processing Systems, pages 6840–6851. Curran Asso-
ciates, Inc., 2020. 1, 2

[7] HEP Software Foundation hsf-editorial-secretariat@ google-
groups. com, Johannes Albrecht, Antonio Augusto Alves,
Guilherme Amadio, Giuseppe Andronico, Nguyen Anh-Ky,
Laurent Aphecetche, John Apostolakis, Makoto Asai, Luca
Atzori, et al. A roadmap for hep software and computing
r&d for the 2020s. Computing and software for big science,
3:1–49, 2019. 1

[8] Gul Rukh Khattak, Sofia Vallecorsa, Federico Carminati, and
Gul Muhammad Khan. Fast simulation of a high granularity
calorimeter by generative adversarial networks. The Euro-
pean Physical Journal C, 82(4):386, 2022. 1

[9] T.G. Kolda and B.W. Bader. Tensor decompositions and ap-
plications. SIAM review, 51(3), 2009. 1, 7

[10] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson,
Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman
Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al.
Learning skillful medium-range global weather forecasting.
Science, 382(6677):1416–1421, 2023. 1

[11] Calvin Luo. Understanding diffusion models: A unified per-
spective, 2022. 2

[12] Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel,
Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly
Burkhart, Stuart Dalziel, Drummond Fielding, et al. The
well: a large-scale collection of diverse physics simulations
for machine learning. Advances in Neural Information Pro-
cessing Systems, 37:44989–45037, 2024. 1

[13] M. Pierini and M. Zhang. Clic calorimeter 3d images: Elec-
tron showers at random angle, 2020. 3

[14] M. Pierini and M. Zhang. Clic calorimeter 3d images: Neu-
tral pion showers at random angle, 2020. 3

[15] M. Pierini and M. Zhang. Clic calorimeter 3d images: Pho-
ton showers at random angle, 2020. 3

[16] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. CoRR, abs/2112.10752,
2021. 3

[17] William Shiao, Benjamin A Miller, Kevin Chan, Paul Yu,
Tina Eliassi-Rad, and Evangelos E Papalexakis. Tengan: ad-
versarially generating multiplex tensor graphs. Data Mining
and Knowledge Discovery, 38(1):1–21, 2024. 1, 2

[18] Konstantin Shmelkov, Cordelia Schmid, and Karteek Ala-
hari. How good is my gan? In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 213–
229, 2018. 3

[19] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu,
Kejun Huang, Evangelos E Papalexakis, and Christos Falout-
sos. Tensor decomposition for signal processing and ma-
chine learning. IEEE Signal Processing Magazine, 2016. 1

[20] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models, 2022. 1, 2



Appendix

Sample Images

Figure 7. We display some sample images. The first row is the
real data, the last row is a GAN using the full output parameters,
and the remaining rows are GANs using various rank decompo-
sitions. For each row, we display different 2D ”slices” of our 3D
Calorimeter data. For our data of shape (i, j, k), we display 2D
matrices of shape (i, j), (i, k), and (j, k).

Figure 8. We display some sample images. The first row is the
real data, the last row is a diffusion model using the full output
parameters, and the remaining rows are factor to factor diffusion
models using various rank decompositions. For each row, we dis-
play different 2D ”slices” of our 3D Calorimeter data. For our data
of shape (i, j, k), we display 2D matrices of shape (i, j), (i, k), and
(j, k).

Future Work

We plan to perform a wider variety of experiments and use
different performance metrics to further demonstrate how
useful the tensor decomposition is. This includes captur-
ing the utility of the generated images by using it as ad-
ditional training data in downstream ML tasks, as well as



Figure 9. We display some sample images. The first row is the
real data, the last row is a diffusion model using the full output
parameters, and the remaining rows are tensor to factor diffusion
models using various rank decompositions. For each row, we dis-
play different 2D ”slices” of our 3D Calorimeter data. For our data
of shape (i, j, k), we display 2D matrices of shape (i, j), (i, k), and
(j, k).

performing our experiments on a wider variety of datasets
(e.g. higher order). In addition, we want to explore other
tensor decomposition methods, such as Tucker [2], to see if
we can outperform CPD [9].


	Introduction
	Preliminaries
	Tensors & Tensor Decomposition
	Tensor Decomposition

	Generative Adversarial Networks
	Diffusion Models

	Methods
	Tensor Decomposition in GANs
	Generator
	Discriminator

	Tensor Decomposition in Diffusion Models
	Factor to Factor
	Tensor to Factor

	Evaluation
	Dataset

	Experiments
	Number of Parameters vs Performance

	Conclusion
	Acknowledgments

