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ABSTRACT

Diffusion models have seen notable success in continuous domains, leading to
the development of discrete diffusion models (DDMs) for discrete variables. De-
spite recent advances, DDMs face the challenge of slow sampling speeds. While
parallel sampling methods like τ -leaping accelerate this process, they introduce
Compounding Decoding Error (CDE), where discrepancies arise between the true
distribution and the approximation from parallel token generation, leading to de-
graded sample quality. In this work, we present Jump Your Steps (JYS), a novel
approach that optimizes the allocation of discrete sampling timesteps by minimiz-
ing CDE without extra computational cost. More precisely, we derive a practical
upper bound on CDE and propose an efficient algorithm for searching for the op-
timal sampling schedule. Extensive experiments across image, music, and text
generation show that JYS significantly improves sampling quality, establishing it
as a versatile framework for enhancing DDM performance for fast sampling.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021b; Ho et al., 2020; Song et al., 2021a;
Karras et al., 2022) have achieved remarkable success in generation tasks within the continuous do-
main. However, certain modalities, such as text and music, inherently possess discrete features.
Recently, discrete diffusion models (DDMs) (Austin et al., 2021; Campbell et al., 2022; 2024; Gat
et al., 2024) have demonstrated performance comparable to state-of-the-art methods in various ar-
eas, including text (Lou et al., 2024; Shi et al., 2024) and image (Chang et al., 2022; Gu et al.,
2022) generation. Nevertheless, like their continuous counterparts, DDMs encounter a significant
bottleneck in sampling speed due to their progressive refinement process.

In contrast to continuous-domain diffusion models, where sampling dynamics are driven by sample-
wise differential equations (Song et al., 2021b), allowing for the direct application of well-
established numerical methods to accelerate generation, enhancing speed in DDMs poses a sig-
nificant challenge. To address this, researchers have proposed fast and efficient samplers, including
notable methods such as the τ -leaping (Campbell et al., 2022; Lezama et al., 2022; Sun et al., 2023)
and k-Gillespie algorithms (Zhao et al., 2024), which facilitate parallel sampling of multiple tokens
in a single step. However, this parallel but independent sampling introduces Compounding Decoding
Error (CDE) (Lezama et al., 2022), which arises from a mismatch between the training and infer-
ence distributions of intermediate latents during parallel sampling. Specifically, while each token
is generated according to its marginal distribution, the joint distribution deviates from the learned
distribution. To mitigate this issue, the predictor-corrector (PC) sampler (Campbell et al., 2022) has
been proposed. This sampler slightly perturbs the generated data to correct incorrectly generated
tokens. However, these methods have limitations, including impracticality under low computational
budgets (Campbell et al., 2022), the need for an additional corrector (Lezama et al., 2022), or re-
liance on specialized architectures and loss functions (Zhao et al., 2024).

To reduce CDE and enable fast sampling in DDM fundamentally, we first introduce a rigorous
quantity to measure CDE (see Figure 1 Top, and Section 3.1) and propose a novel approach called
Jump Your Steps (JYS), which optimizes the allocation of discrete sampling timesteps {T � t1 �
. . .� tN−1 � 0}1 under a fixed total sampling budget N to minimize CDE. Our core idea is to

1In this work, s� t denotes sampling across timesteps from s to t.
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Figure 1: (Top) Comparison of sampling trajectories: ground truth vs. parallel sampling using a
uniform schedule and the Jump Your Steps (JYS) schedule. (Bottom) Uniform schedule exhibits
compounding decoding errors during parallel sampling, while JYS reduces them by using fewer
steps in deterministic phases and reallocating skipped steps to other timesteps.

derive efficiently computable bounds for CDE (see Section 3.2 and Section 3.3) and strategically
select sampling timesteps by solving minimization problems to reduce these bounds (Section 3.4
and Section 3.5), theoretically ensuring a decrease in the gap between the ground truth distribution
and the approximated distribution through parallel sampling (see Figure 2).

Unlike previous methods such as the PC sampler, our approach requires no additional computational
resources or modifications to the model architecture or loss function. We empirically validate the
effectiveness of our sampling schedule across various datasets, including synthetic sequential data,
CIFAR-10 (image), Lakh Pianoroll (music), and text modeling. Our approach accelerates DDM
sampling across models using different forward corruption transition kernels, such as uniform, Gaus-
sian, and absorbing transition matrices. Our comprehensive experiments cover both unconditional
and conditional generation tasks, consistently showing that optimizing the sampling schedule sig-
nificantly enhances sampling quality. These results indicate that our method serves as a general
framework for speeding up discrete diffusion model sampling.

2 BACKGROUND

2.1 CONTINUOUS TIME FRAMEWORK FOR DISCRETE DIFFUSION MODELS.

DDMs define the generative process as the reverse of the data-corrupting forward process, expressed
as a Continuous Time Markov Chain (CTMC) on a finite state space S (Campbell et al., 2022). For
the data-corrupting process (Xt)t∈[0,T ], the density evolution is described as:

qt+dt|t(y | x) = δxy +Rt(x, y)dt+ o(dt) (1)

Here, δxy is the Dirac delta function, Rt ∈ RS×S is the transition rate matrix of the forward
CTMC, with S = |S|, and dt > 0. Rate matrices ensure the marginal distribution qt(xt) =∫
qt(xt|x0)q0(x0)dx0, where q0 = pdata and qT ≈ π, the stationary distribution of the forward

CTMC. Various transition matrices have been proposed, allowing π to follow a uniform or Gaussian
distribution, or converting samples into masked tokens.

For generation, we reverse the forward process, moving from the marginal qT back to pdata. This
time-reversal CTMC is also a CTMC (Campbell et al., 2022; 2024):

qt−dt|t(y | x) = δxy + R̃(x, y)dt+ o(dt), (2)

2
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where the backward transition rate R̃ is defined as:

R̃(x, y) = R(y, x)
qt(y)

qt(x)︸ ︷︷ ︸
Score Parametrization

= R(y, x)
∑
x0

qt(y | x0)

qt(x | x0)
q0|t(x0 | x)︸ ︷︷ ︸

Denoising Parametrization

The literature primarily falls into two parameterizations: Denoising parameterization (Campbell
et al., 2024; Austin et al., 2021; Campbell et al., 2022) approximates a parameterized denoising
model as pθ0|t(x0|x) ≈ q0|t(x0|x). Conversely, score parameterization (Lou et al., 2024; Meng
et al., 2022) estimates the ratio of the data distribution as sθt (y|x) = qt(y)/qt(x).

2.2 SAMPLING FROM THE BACKWARD CTMC

Gillespie’s Algorithm was proposed as a simulation algorithm for a given CTMC (Gillespie,
2007). Gillespie’s algorithm simulates the CTMC by calculating the rate matrix at each state tran-
sition. If the rate matrix of the CTMC depends only on the state, Gillespie’s algorithm serves as an
exact simulation method. However, since it allows for only one token transition each time the rate
matrix is calculated, it is computationally inefficient.

k-Gillespie’s Algorithm Instead of updating only one token for each rate matrix calculation, the k-
Gillespie’s algorithm (Zhao et al., 2024) updates k tokens in parallel. This reduces the computation
by a factor of 1/k compared to the original Gillespie algorithm.

τ -Leaping On the other hand, Campbell et al. (2022) proposes sampling through τ -leaping. Un-
like the k-Gillespie algorithm, which update k tokens in parallel, τ -leaping simultaneously updates
all tokens according to the given fixed rate matrix within the specified time interval [t, t + τ). Re-
cently, Tweedie τ -leaping, which considers changes in the rate matrix according to the noise sched-
ule, has been proposed (Sun et al., 2023; Lou et al., 2024).

3 OPTIMIZING THE SAMPLING SCHEDULE OF DISCRETE DIFFUSION MODELS

In this section, we aim to optimize sampling schedule {T� t1� t2� . . .� tN−1� 0} to minimize
the CDE introduced by parallel sampling. First, we define and analyze the CDE, examining its
relationship to both the sampling schedule (Section 3.1) and sampling quality (Section 3.2). In
Section 3.3, we derive an upper bound on the CDE, which serves as the objective for the sampling
schedule optimization. Finally, we introduce heuristic algorithms to make the optimization tractable
including hierarchical breakdown strategy (Section 3.4) and computational techniques (Section 3.5).
Figure 2 summarizes the relationships between the theoretical analyses and algorithms discussed in
this section.

Although this section focuses on samplers based on τ -leaping, all methods are also applicable to the
k-Gillespie algorithm. For extensions to k-Gillespie, please refer to Algorithm 1.

Notations To begin, we introduce some essential mathematical notation. X : a random variable,
x : its observation, P,Q : distributions, {T � t1 � . . .� tN−1 � 0} : sampling schedule, and
Qa�b�···�c : the distribution generated by the sampling schedule {a� b� · · ·� c}. For clarity, when
working with backward CTMCs, we slightly abuse notation and express intervals as [s, t] ≜ {u |
s ≥ u ≥ t}; the same applies to open and half-open intervals.

3.1 TIME-DEPENDENT NATURE OF COMPOUNDING DECODING ERRORS

We introduce a measure for the CDE, ECDE, which quantifies the discrepancy between the true
joint distribution and the distribution from parallel token generation. For illustration, we consider
a discrete process Xt = (X1

t , X
2
t ) with sequence length 2, consisting of tokens X1

t and X2
t . The

general case is provided in Appendix B.1.

We propose measuring the CDE for a single parallel sampling step {s� t} start from xs by using the
KL divergence between the joint distribution PX1

t ,X
2
t |xs

and the product of marginal distributions
PX1

t |xs
⊗ PX2

t |xs
:

3
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DKL(P0∥Qt0�t1�···�0
0 ) ≤

∑N−1
i=0 DKL(Pti+1∥Q

ti�ti+1
ti+1

) ≤ DKL(Ppaths∥Qt0�t1�···�0
paths )

Theorem 3.1 Eq. (10)

∑N−1
i=0 ECDE(ti � ti+1) KLUBPT (P0∥Qt0�t1�···�0

0 )

{T� t1� . . .� tN−1� 0}

Eqs. (3, 5) Theorem 3.2

Algorithm 1, 2.

Figure 2: An illustration of the relationship between the KL divergence of the distribution, the
compounding error ECDE (defined in Section 3.1), and KLUB (defined in Section 3.3). The sampling
schedule {T� t1� . . .� tN−1� 0} is optimized to minimize KLUB using the efficient algorithms
detailed in Section 3.4, and 3.5.

ECDE(s � t|xs) ≜ DKL( PX1
t ,X

2
t |xs︸ ︷︷ ︸

True distribution

∥ PX1
t |xs
⊗ PX2

t |xs︸ ︷︷ ︸
Approx. distribution from parallel sampling

). (3)

We note that the defined CDE is equivalent to the conditional mutual information I(X1
t ;X

2
t |xs) of

tokens X1
t , X

2
t :

ECDE(s � t|xs) = I(X1
t ;X

2
t |xs). (4)

This expression links the compounding error to the mutual information between tokens; lower mu-
tual information reduces parallel sampling errors. For example, as shown in Figure 1 (Bottom),
as generation progresses, the uncertainty of each token decreases over time due to the tokens al-
ready generated, reducing mutual information and preventing CDE. In general, CDE depends on
the timesteps, and its behavior varies with the data distribution, corruption kernel (see Fig. 9 for
illustration), and DDM sampling methods. Motivated by this observation, we hypothesize that we
can reduce the CDEs during generation process by optimizing the sampling schedule.

3.2 RELATION BETWEEN COMPOUNDING DECODING ERRORS AND GENERATION QUALITY

While the Eq. (3) allows us to estimate the CDE starting from a specific state xs, in practice, we are
interested in the average compounding error over all possible starting states at time s. To assess the
overall impact of the CDE when transitioning over the timesteps s � t, we consider the expected
value of ECDE(s � t|xs) with respect to xs ∼ Ps. This leads us to consider:

ECDE(s � t) ≜ Exs
[ECDE(s � t|xs)] . (5)

Consider a sampling schedule {T = t0 � t1 � . . .� tN−1 � 0 = tN}, which will be specified
later. Our goal is to minimize the cumulative CDE that arises from each parallel sampling step
within the given schedule. If we ignore the accumulated error from the previous steps that affects
the consecutive steps, our objective is as follows (Appendix A.2):

min
t1,t2,...,tN−1

N−1∑
i=0

ECDE(ti � ti+1). (6)

Interestingly, we find in the following theorem that cumulative CDEs over the sampling schedule
can upper bound the KL divergence between the true distribution at time t = 0, denoted P0, and the
distribution QT�t1�···�0

0 obtained from parallel sampling along the sampling schedule (see Appendix
B.1 for proof):

Theorem 3.1. We have the following bound on the KL divergence between P0 and QT�t1�···�0
0 in

terms of cumulative CDEs:

DKL(P0∥QT�t1�···�0
0 ) ≤

N−1∑
i=0

ECDE(ti � ti+1). (7)

4
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This theorem suggests that effectively allocating the time schedule to minimize the CDEs can implic-
itly reduce the discrepancy between the true distribution and the approximate distribution obtained
from parallel sampling. Motivated by this, in the next section, we derive a tractable upper bound
for

∑N−1
i=0 ECDE(ti � ti+1) that depends on the sampling schedule {T� t1� . . .� tN−1� 0} to

facilitate its optimization.

3.3 ESTIMATING THE COMPOUNDING DECODING ERROR USING GIRSANOV’S THEOREM

As shown in Eq. (3), computing ECDE(s � t|xs) involves determining the KL divergence between
the true distribution and the approximated distribution from DDM’s parallel sampler, which is often
intractable. To address this, we treat the ground truth reverse process and the sampling process
from DDM’s parallel samplers (introduced in Section 2.2) as two CTMCs, starting from the same
initial distribution. By applying Girsanov’s theorem (Ding & Ning, 2021; Chen et al., 2023), we
derive a tractable formula to compare the KL divergence between the distributions of these stochastic
processes at any time interval [s, t]. We summarize this as the following general theorem applicable
to any two backward CTMCs with R1

t and R2
t as their respective transition rate matrices:{

CTMC 1 : q1u−du|u(y | x) = δxy +R1
t (x, y)du+ o(du),

CTMC 2 : q2u−du|u(y | x) = δxy +R2
t (x, y)du+ o(du).

We defer its proof to Appendix B.2.
Theorem 3.2. (KL-Divergence Upper Bound, KLUB) Consider an interval [s, t] (s > t). If both
CTMCs start from the same initial distribution, πs = Ps = Qs, then we have:

DKL(Pt∥Qt) ≤ DKL(Ppaths∥Qpaths) = EPpaths

∑
i ̸=j

∑
t<u≤s

Hij
u log

R1
u(i, j)

R2
u(i, j)


︸ ︷︷ ︸

≜ KLUBπs (Pt∥Qt)

. (8)

Here, Pt and Qt are the probability distributions at time t resulting from CTMC 1 and CTMC 2,
respectively. Ppaths and Qpaths denote the distributions over their path spaces (Xu)u∈[t,s], gener-
ated by CTMC 1 and CTMC 2, respectively. The indicator function Hij

u is defined as Hij
u = 1 if a

transition from state i to j occurs at time u, and Hij
u = 0 otherwise.

We denote the rightmost term in Eq. (8) as the Kullback-Leibler Divergence Upper Bound (KLUB),
which quantifies the mismatch between distributions generated by different CTMCs based on their
rate matrices. Consider CTMC 1 as the ground truth reverse CTMC and CTMC 2 as the reverse
CTMC obtained via parallel sampling by substituting the forward transition kernel with the corre-
sponding reverse-in-time kernel. Thus, ECDE(s � t|xs) can be expressed as the KL divergence
between the output distributions of the two CTMCs at time t, starting from the initial point xs. This
leads to the upper bound (Proof in Appendix B.3):

ECDE(s � t) ≤ KLUBPs
(Pt∥Qs�t

t ), (9)
where Qs�t

t is given by the process discretized at time s and t. This expectation considers the
distribution of states at time s and offers a more comprehensive measure of the CDE over the interval
[s, t]. Moreover, from the additivity of KLUB, we can bound the sum of CDEs as
ECDE(s � t)+ECDE(t � u) ≤ KLUBPs(Pt∥Qs�t

t )+KLUBPt(Pu∥Qt�u
u ) = KLUBPs(Pu∥Qs�t�u

u ),
(10)

which shows that the KLUB can be useful for comparing the quality of discretization of the interval
[s, u] with different break point t. We can easily extend this result for the sum of CDEs over the
entire sampling schedule {T = t0� t1� . . .� tN−1� 0 = tN}.

DKL(P0∥QT�t1�···�0
0 ) ≤

N−1∑
i=0

ECDE(ti � ti+1) ≤ KLUBPT
(P0∥QT�t1�···�0

0 ), (11)

where inequality on the left-hand side comes from Theorem 3.1.

To summarize, optimizing the sampling schedule involves finding a set of timesteps {T� t1� . . .�
tN−1� 0} that minimizes the KLUB on the right-hand side. This approach approximately reduces
the cumulative CDE (middle) and provides an upper bound on the KL divergence between the true
distribution and the sampled distribution for the given schedule (left-hand side).

5
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3.4 FEASIBLE COMPUTATION WITH HIERARCHICAL BREAKDOWN STRATEGY

Using the derived KLUB, we can formulate the timestep search as a minimization problem over
KLUB. Here, we employ a hierarchical breakdown strategy, dividing a coarser sampling schedule
into a finer one, as shown in Figure 3.4. Suppose our sampling schedule is given by {T� t� 0}. Let
QT�t�0

0 represent the distribution generated by this schedule. Our goal is to find the optimal t that
minimizes cumulative CDE, i.e., ECDE(T � t) + ECDE(t � 0). This is approximately achievable
by minimizing its KLUB upper bound:

t1 = argmin
t∈(T,0)

KLUB(P0∥QT�t�0
0 ) (12)

With the initial refined interval {T� tt� 0}, we seek optimal timesteps t2 ∈ (T, t1) and t3 ∈ (t1, 0)
by solving the following minimization problems:

t2 ∈ argmin
t∈(T,t1)

KLUB(Pt1∥Q
T�t�t1
t1 ) and t3 ∈ argmin

t∈(t1,0)

KLUB(P0∥Qt1�t�0
0 ).

NFE = 1 𝑇 0

𝑇 0NFE = 2

𝑇 0NFE = 4

⋯ ⋯

𝑡2 𝑡3

Figure 3: We optimize the sampling schedule
by refining it from coarse intervals to finer inter-
vals, using a hierarchical breakdown strategy.

The first minimization problem targets match-
ing DKL(Pt1∥Qt1), while the second focuses on
matching DKL(P0∥Q0). This results in a further
refined sampling schedule {T � t2 � t1 � t3 �
0}. By iterating this process, we continue split-
ting each interval into smaller ones, optimizing
breakpoints using the KLUB criterion. After K
iterations, this hierarchical strategy yields a sam-
pling schedule with 2K NFEs (Number of Func-
tion Evaluations), optimizing the schedule as the
number of steps increases.

3.5 FEASIBLE COMPUTATION FOR KLUB
ESTIMATION

Directly estimating KLUBPT
(P0∥QT�t�0

0 ) using Eq. (8) is impractical due to (1) the need for exten-
sive Monte Carlo sampling for reliable estimates, and (2) the high cost of sampling from Ppaths. To
address this issue, we propose two techniques that simplify the estimation process.

Technique 1: Maximizing KL Divergence from a Coarser Approximation Instead of minimiz-
ing the mismatch between the ground truth distribution Ppaths and QT�t�0

paths , we choose to maximize
the discrepancy between QT�t�0

paths and a simpler, coarser approximation QT�0
paths. The key insight is that

maximizing this divergence, we can find the optimal sampling time t, which helps reduce the com-
pounding error relative to the true distribution. This relationship can be approximated as (Appendix
B.4):

DKL(QT�t�0
paths ∥Q

T�0
paths) ≈ DKL(Ppaths∥QT�0

paths)−DKL(Ppaths∥QT�t�0
paths ),

Thus, by maximizing the divergence on the left-hand side, we effectively minimize the discrepancy
DKL(Ppaths

∥∥QT�t�0
paths ) between the true distribution Ppaths and the optimized schedule QT�t�0

paths .

Based on this, we can rewrite our optimization objective as follows (Proof in Appendix B.4):

t∗ = argmax
t∈(T,0)

KLUBQT
(QT�t�0

0 ∥QT�0
0 ) = argmax

t∈(T,0)

EQT�t�0
paths

∑
i ̸=j

log
Rt(i, j)

RT (i, j)

∑
0<u≤t

Hij
u

 (13)

Equation Eq. (13) offers a significant computational advantage over Eq. (8) by eliminating the need
to compute the rate matrix at every transition time. Note that, calculating the reverse rate matrix
involves neural network evaluations. Given a trajectory (Xu)u∈[T,0], Eq. (8) requires computing the
rate matrix Ru for all transitions where Hij

u = 1. In contrast, Eq. (13) decouples the rate matrix
from the transition times u, requiring computations only at times T and t. Moreover, between times
T and t, the rate matrices for both QT�t�0

paths and QT�0
paths are equal to RT , eliminating the need for

additional computations in this interval.

6
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Technique 2: Applying the Law of Total Expectation Instead of directly compute the expecta-
tion over QT�t�0

paths , we compute expectation of conditional expectation, using the law of total expec-
tation, i.e., E[X] = E[E[X|Y ]]:

EQT�t�0
paths

∑
i̸=j

log
Rt(i, j)

RT (i, j)

∑
0<u≤t

Hij
u

 = EQT�t
paths

EQt�0
paths

∑
i ̸=j

log
Rt(i, j)

RT (i, j)

∑
0<u≤t

Hij
u

∣∣∣∣∣Xt = i


On the left side, to compute the expected value, we would need to sample the entire trajectory
(Xu)u∈[T,0] and then calculate the inner sum. On the right side, this process is broken down into
two steps: first, we sample a trajectory from XT to Xt, and then, given Xt, we sample from Xt to
X0 to compute the inner expectation. Our main insight is that the expected value in the second step
can be obtained in closed form.

The term
∑

0<u≤t H
ij
u counts the number of transitions from state i to state j in the interval [t, 0).

Since Qt�0
paths uses a single rate matrix over this interval, for i ̸= j, the expected number of transitions

from i to j is approximately given by (Campbell et al., 2022, Sec. 4.3):

EQt�0
paths

 ∑
0<u≤t

Hij
u

 ≈ Rt(i, j)∆t (14)

where ∆t represents the size of the time interval.

Using this result, we can simplify Equation Eq. (13) as follows (Derivation in Appendix B.5):

KLUBQT

(
QT�t�0

0

∥∥QT�0
0

)
≈ EQT�t

paths

 ∑
j ̸=Xt

log
Rt(Xt, j)

RT (Xt, j)
×Rt(Xt, j)∆t

 . (15)
K
L
U
B
(𝑄

0𝑇
→
𝑡→

0
||
𝑄
0𝑇
→
0
)

Diffusion timesteps

0.9𝑇 0.1𝑇𝑡

Figure 4: The values of KLUB
with respect to t. Blue lines show
estimated results from individual
(Xt)t∈[T,0], while the red line is
the average.

In Eq. (13), obtaining a reliable KLUB estimation requires
sampling trajectories to capture transitions between vari-
ous states i and j, which is both inaccurate and sample-
inefficient—especially when dealing with large state spaces.
For instance, in text generation tasks where the state space can
be around 50,257, it’s practically impossible to estimate the
transition ratios between all pairs (i, j) through sampling alone.
In contrast, Eq. (15) allows us to compute this component in
closed form, leading to more reliable and efficient calculations.
The full algorithm for KLUB computation, combining Tech-
niques 1 and 2, is provided in Appendix C.1.

Now, we can maximize Eq. (15) using a standard optimization
algorithm. Before selecting the algorithm, we conduct a pre-
liminary check to observe how the KLUB value changes with
respect to t (Figure 4). Interestingly, it exhibits a unimodal shape. Since we are working with a
single variable t in the unimodal optimization landscape, we use the golden section search (Press,
2007), a well-known one-dimensional search algorithm, to find the value of t that maximizes KLUB.
This method has the advantage of not relying on hyperparameters like learning rate, which can sig-
nificantly affect performance.

4 EXPERIMENTS

In this section, we evaluate the Jump Your Steps (JYS) sampling schedule across various datasets and
models. We compare the JYS schedule with the uniform sampling schedule, which sets all intervals
to the same size. Except for the Countdown dataset, we use open-sourced pretrained models for our
experiments. It is important to note that the Gillespie algorithm is only applicable to an absorbing
transition matrix, as uniform or Gaussian transition kernels do not have a fixed number of transitions.
For further experimental details and additional qualitative results, please refer to the Appendix D and
E.5.
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Figure 6: (Left) Performance comparisons on CIFAR-10. (Right) Samples generated using the
uniform and JYS schedules, both with NFE 64.

4.1 THE COUNTDOWN DATASET

Number of Function Evaluations

E
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Figure 5: Performance comparisons
on Countdown. The JYS schedule en-
hances sampling quality across differ-
ent types of samplers.

Following Zhao et al. (2024), to evaluate our sampling
schedule performance, we created a synthetic sequence
dataset with a strong position-wise correlation structure.
Each sample consists of 256 tokens, and each token has
a value between 0 and 31. Each data sequence X0:255 is
generated according to the following rules:

X0 ∼ Uniform{1, . . . , S},

Xd+1 | Xd ∼
{
δXd−1 if Xd ̸= 0

Uniform{1, . . . , S} if Xd = 0

We trained a SEDD (Lou et al., 2024) with an absorb
transition matrix on this generated data. We measure the
model performance by the proportion of generated sam-
ples that violated the rule, i.e., failed to count downwards
from the previous token. The results are shown in Fig-
ure 5. We observe that the JYS schedule has fewer errors
compared to the uniform schedule for the same NFE.

4.2 CIFAR-10

We demonstrate our sampling schedule in the image domain. For this experiment, we use a pre-
trained model from Campbell et al. (2022), which employs a gaussian transition matrix and denois-
ing parameterization. Each data sample is a flattened image with a length of 3× 32× 32, composed
of tokens with values ranging from 0 to 255.

Figure 6 (left) shows the FID score using 50k samples with the number of function evaluations
(NFE) from 32 to 256. We observe that, for all NFEs, the JYS schedule yields a better FID score
at the same NFE compared to the uniform schedule. Figure 6 (right) shows randomly generated
unconditional CIFAR-10 samples with NFE = 64. The uniform schedule produces blurry images,
whereas the images generated using the JYS schedule exhibit clearer colors and shapes of objects.

4.3 MONOPHONIC MUSIC

We test our method on conditional music generation using the Lakh pianoroll dataset (Raffel, 2016;
Dong et al., 2018). For this experiment, we employ a pretrained model from Campbell et al. (2022),
which uses a uniform transition matrix and denoising parameterization. Each data sequence contains
256 timesteps (16 per bar), and we measure performance by conditioning on two bars to generate
the remaining 14 bars, following the setup in Campbell et al. (2022).

We evaluate how different the generated results were when using a smaller NFE (from 2 to 64),
compare to samples generated with an NFE of 512. Specifically, we calculate the Hellinger distance

8
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Figure 7: Performance comparisons
on Monophonic music.
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Figure 8: Performance comparisons on text generation. Gen-
erative perplexity is measured by using GPT-2-large.
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Figure 9: Sampling trajectories for different dataset-transition matrix combinations. (Top) Tra-
jectories using infinitesimal timesteps. (Middle) Trajectories using the JYS schedule. (Bottom)
Optimized sampling schedule with JYS.

between the note distributions in the generated samples. The results are presented in Figure 7.
Given the same NFE, we observe that samples generated using our method were more similar to
those generated with a high NFE.

4.4 TEXT MODELING

Finally, we validate our method on text generation. For this experiment, we use a pretrained model
from Lou et al. (2024), which employs an absorbing transition matrix and score-based parame-
terization. We use two model sizes, SEDD-small and SEDD-medium, in the experiments; both
models use the GPT-2 tokenizer and were trained on OpenWebText. The JYS schedule, optimized
on SEDD-small, is also used for the experiments with SEDD-medium.

Following Lou et al. (2024), we measure the generative perplexity of sampled sequences (using a
GPT-2 large for evaluation). We generated 1,024 samples and each sample constructed with se-
quences of 1,024 tokens. We simulate 16 to 256 NFE for generation. Figure 8 shows the results,
demonstrating better perplexity at the same NFE.

4.5 CHARACTERISTICS OF JUMP-YOUR-STEP SAMPLING SCHEDULE

In Section 3.1, we hypothesized that in regions where the conditional mutual information is low,
the CDE would also be small, allowing steps to be skipped with minimal performance degradation.
Here, we aim to verify if the JYS operates as expected according to this hypothesis.

Figure 9 shows the JYS sampling schedules optimized for various transition matrices. First, in the
absorb case (Left), as discussed in Figure 1 (Bottom), we observe that large intervals are concen-
trated toward the latter part of the process. This occurs because the previously generated tokens
help reduce the uncertainty of other tokens. In contrast, in the uniform case (Middle), large intervals
appear at the beginning. This can be understood as a result of Xt following a uniform distribu-
tion, making the tokens independent, leading to lower mutual information for larger t. Lastly, for
the Gaussian transition (Right), large intervals appear initially and then increase again over time.

9
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This pattern suggests that, initially, tokens behave independently like in the uniform case, but af-
ter a certain timestep, the effect of resolving uncertainty, similar to the absorb case, becomes more
significant as more tokens are generated.

These observations demonstrate how the JYS schedule adapts to the underlying data distribution and
token dependencies, effectively allocating computational resources where they are most needed to
minimize the compounding error during parallel sampling.

4.6 ADDITIONAL EXPERIMENTS

The appendix presents supplementary analyzes and experiments to support our findings, including
the computational cost of optimizing sampling schedules (Appendix E.1), comparisons with heuris-
tic schedules beyond the uniform schedule (Appendix E.4), and qualitative results on a Toy 2D
dataset (Appendix E.5).

5 RELATED WORK

5.1 EFFICIENT SAMPLING FOR CONTINUOUS DIFFUSION MODELS

After the seminal work by Song et al. (2021b), which interpreted diffusion models as a Stochastic
or Ordinary Differential Equations (SDE/ODE), various SDE (Jolicoeur-Martineau et al., 2021; Xu
et al., 2023) and ODE solvers (Song et al., 2021a; Lu et al., 2022; Zhang & Chen, 2023; Dockhorn
et al., 2022; Liu et al., 2022; Zheng et al., 2023) have been proposed to improve sampling speed.

The work most closely related to ours is “Align Your Step” (Sabour et al., 2024) and AdaptiveSched-
ules (Chen et al.), which focuses on sampling schedule optimization in continuous diffusion models.
In contrast, our approach targets DDMs, where we derive the KLUB for CTMCs to optimize the
sampling schedule. We also propose a computationally efficient algorithm for KLUB computation
and optimization.

5.2 DISCRETE DIFFUSION MODELS

Several approaches have been developed for training DDMs, including denoising parameteriza-
tion (Austin et al., 2021; Campbell et al., 2022; Gu et al., 2022; Gat et al., 2024; Campbell et al.,
2024; Shi et al., 2024; Sahoo et al., 2024) and score parameterization (Sun et al., 2023; Meng et al.,
2022; Lou et al., 2024). Types of DDMs that do not fall into these two categories are also being
continuously proposed (Hoogeboom et al., 2021b;a; Santos et al., 2023). Recently, SEDD has out-
performed GPT-2 in text modeling, gaining traction as an alternative to autoregressive models (De-
schenaux & Gulcehre, 2024).

In terms of sampling, two main directions have emerged. The first focuses on efficient sampling,
with τ -leaping for CTMC and methods like analytic sampling (Sun et al., 2023), Tweedie sampling
(Lou et al., 2024), and k-Gillespie (Zhao et al., 2024) improving accuracy. The second aims to
reduce compounding error via corrector steps, such as random correctors (Campbell et al., 2022),
separate corrector training (Lezama et al., 2022), or enabling the model to act as an informed cor-
rector (Zhao et al., 2024).

These methods complement the sampling schedule optimization explored in this paper and can be
used together for further improvements.

6 CONCLUSIONS

We present Jump Your Steps, a principled method designed to optimize the sampling schedule and
minimize these numerical errors without incurring additional computational costs during inference.
Unlike existing approaches that rely on extra computational efforts, such as predictor-corrector
methods, our technique operates independently and efficiently. Through extensive evaluations on
synthetic and real-world datasets—including monophonic piano, image, and text generation—we
demonstrate that our method consistently enhances performance across different transition kernels
in DDMs and effectively complements various samplers.
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A DISCUSSIONS

A.1 LIMITATIONS

Although the JYS sampling schedule is a method that can improve sampling quality in a plug-and-
play manner for general DDMs, there are still problems that need to be solved. The first drawback
is that, due to the nature of the hierarchical breakdown strategy, we can only optimize sampling
schedules where NFE = 2K , so flexibility is reduced.

Another theoretical limitation that needs to be addressed is that technique 2 uses the single-state
transition assumption (Eq. 14)). This assumption is completely valid for the absorb transition kernel
but does not apply to other transition kernels. This could potentially make the sampling schedule
optimization suboptimal. Addressing this issue is interesting future work.

A.2 DISCUSSIONS

What does it mean to ignore the accumulated error from the previous steps? The ”accumu-
lated error from the previous steps that affects consecutive steps” occurs when a generated xt does
not belong to the distribution q(xt), i.e., generated dataset mismatched with the training dataset. We
refer to this error as exposure bias [1]. While exposure bias is indeed an interesting problem to ad-
dress in generative model sampling, our work focuses specifically on resolving the CDE caused by
parallel decoding. Therefore, we chose to set aside exposure bias in this study. To improve clarity,
we have added a discussion of this point to Section X of the revised paper.
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Optimization using gradient descent As we mentioned in the main text, we perform optimization
using the golden-section search algorithm. In preliminary experiments, we also tried the gradient
descent algorithm but encountered two issues. The first was that gradient estimation was very noisy,
and the second was that it was too sensitive to hyperparameters, i.e., the learning rate. Particularly,
the second drawback made it impractical to use because we had to perform hyperparameter search
optimization every time we optimized each step.

Is there an alternative optimization algorithm to the golden section search? As part of our pre-
liminary experiments, we explored an alternative strategy—hierarchical merging—where smaller,
fragmented sampling schedules are combined into a coarse sampling schedule. However, our ex-
perimental results indicated that this approach often gets stuck in local optima and fails to deliver
significant performance improvements. We will include this discussion in the revised version of the
paper.

B THEORETICAL DETAILS

B.1 PROOF OF THEOREM 3.1

Although we treated the two-dimensional case where we have Xt = (X1
t , X

2
t ) in the main body,

we consider the general d-dimensional case with Xt = (X1
t , . . . , X

d
t ). In that case, the definition of

ECDE is given by

ECDE(s→ t|xs) ≜ DKL(Pxt|xs
∥PX1

t |xs
⊗ · · · ⊗ PXd

t |xs
). (16)

In general, for a discrete probability distribution Pprior(·) over the space S and a conditional distri-
bution (or denoiser) Pcond(·|·) over the same space, i,e, Pcond : S × S → R, let us just write the
resulting distribution as follows:

PcondPprior ≜ Ex∼Pprior
[Pcond(·|x)] =

∑
x∈S

Pcond(·|x)Pprior(x).

Then, if we define Pti+1|ti(·|xti) ≜ PXti+1
|xti

and Qti+1|ti(·|xti) ≜ PX1
t |xs
⊗ · · · ⊗ PXd

t |xs
fol-

lowing equation 16, we can denote the target distributions in the theorem as follows:

P0 = PtN |tN−1
· · ·Pt1|t0Pt0 , Q0 ≜ QT�t1�···�0

0 = QtN |tN−1
· · ·Qt1|t0Pt0 .

For simplicity, let us also define the mid-time distributions as

Pti ≜ Pti|ti−1
· · ·Pt1|t0Pt0 , Qti ≜ Qti|ti−1

· · ·Qt1|t0Pt0 , Qt0 ≜ Pt0 .

In the proof of the theorem, we use the following well-known lemma:
Lemma B.1. For discrete finite sets X ,Y and the joint probability distributions PX,Y and QX,Y on
X × Y , we have

DKL(PX,Y ∥QX,Y ) = DKL(PX∥QX) + Ex∼PX

[
DKL(PY |X(·|x)∥QY |X(·|x))

]
,

where PX ,QX and PY |X ,QY |X respectively denote the marginal and conditional distributions.

Proof. We can just compute as

DKL(PX,Y ∥QX,Y ) =
∑
y,x

PY |X(y|x)PX(x) log
PY |X(y|x)PX(x)

QY |X(y|x)QX(x)

=
∑
y,x

PY |X(y|x)PX(x) log
PX(x)

QX(x)
+
∑
y,x

PY |X(y|x)PX(x) log
PY |X(y|x)
QY |X(y|x)

= DKL(PX∥QX) +
∑
x

PX(x)DKL(PY |X(·|x)∥QY |X(·|x)),

which leads to the stated equation.
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Now we can proceed to the proof of the theorem.

Proof of Theorem 3.1. Let us now consider the case where s = ti−1 and t = ti for some i > 0
specifically. Let

Pt,s(y, x) ≜ Pt|s(y|x)Ps(x), Qt,s(y, x) ≜ Qt|s(y|x)Qs(x)

to denote joint distributions on S × S. Then, since Pt = Pt|sPs and Qt = Qt|sQs are marginal
distributions of Pt,s and Qt,s, we have (from Lemma B.1) the following:

DKL(Pt∥Qt) ≤ DKL(Pt,s∥Qt,s)

= DKL(Ps∥Qs) + Ex∼Ps
[DKL(Pt|s(·|x)∥Qt|s(·|x))]

= DKL(Ps∥Qs) + Exs∼Ps [ECDE(s→ t|xs)]

= DKL(Ps∥Qs) + ECDE(s→ t). (17)

From Lemma B.1, equality holds if and only if DKL(Pt|s∥Qt|s) = 0.

By iteratively using equation 17, we obtain

DKL(P0∥Q0) = DKL(PtN ∥QtN )

≤ DKL(PtN−1
∥QtN−1

) + ECDE(tN−1 → tN )

≤ DKL(PtN−2
∥QtN−2

) + ECDE(tN−2 → tN−1) + ECDE(tN−1 → tN )

...

≤ DKL(Pt0∥Qt0) +

N−1∑
i=0

ECDE(ti → ti+1).

Since we set Pt0 = Qt0 = π, where π is terminal distribution, we have completed the proof.
Furthermore, equality holds if and only if DKL(Pti|ti+1

∥Qti|ti+1
) = 0 for all t ∈ {0, · · · , N − 1}.

B.1.1 COMPARISON: NEGATIVE ELBO VS SUM OF CDES

Let us just denote by Pt0,...,ti the joint distribution of the variables (xt0 , . . . ,xti) generated based on
Pt0 and Ptj+1|tj ’s. Similarly define Qt0,...,ti . We can also see the sum of CDEs as the KL divergence
between discrete path measures. Indeed, by using Lemma B.1 with decomposing (xt0 , . . . ,xti+1

)
into (xt0 , . . . ,xi) and xti+1

, we have

DKL(Pt0,...,ti+1
∥Qt0,...,ti+1

)

= DKL(Pt0,...,ti∥Qt0,...,ti)

+ Ext0
,...,xti

∼Pt0,...,ti

[
DKL(Pti+1|t0,...,ti(·|xt0 , . . . ,xti)∥Qti+1|t0,...,ti(·|xt0 , . . . ,xti))

]
= DKL(Pt0,...,ti∥Qt0,...,ti) + Exti

∼Pti

[
DKL(Pti+1|ti(·|xti)∥Qti+1|ti(·|xti))

]
where the second equality comes from the Markov property of the defined processes. By iteratively
using this, we have

DKL(Pt0,...,tN ∥Qt0,...,tN )

= DKL(Pt0∥Qt0) +

N−1∑
i=0

Exti
∼Pti

[
DKL(Pti+1|ti(·|xti)∥Qti+1|ti(·|xti))

]
(18)

= DKL(Pt0∥Qt0) +

N−1∑
i=0

ECDE(ti → ti+1).

Now, notice that it is quite similar to the usual negative ELBO loss (e.g., LDT in Campbell et al.
(2022, page 3)) to compare the P (target) and Q (approximation) in training diffusion models. By
replacing Pti+1|ti(·|xti) with Pti+1|ti,0(·|xti ,x0) by conditioning on x0 ∼ P0 = PtN , we mostly
recover the negative ELBO.
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Let us proceed more formally. The negative ELBO we consider (Campbell et al., 2022; Sohl-
Dickstein et al., 2015) can be written as:

LNELBO(P,Q) = Ex0∼P0 [L
x0

NELBO(P,Q)],

where

Lx
NELBO(P,Q) = DKL(Pt0|tN (·|x)∥Qt0) + ExtN−1

∼PtN−1|tN (·|x)[− logQtN |tN−1
(x|xtN−1

)]

+

N−2∑
i=0

Exti
∼Pti|tN (·|x)[DKL(Pti+1|ti,tN (·|xti , x)∥Qti+1|ti(·|xti))].

Note that the negative ELBO and our summation of CDEs (equation 18) are both trying
to upper-bound the target KL divergence DKL(P0∥Q0). In the following, we shall prove
DKL(Pt0,...,tN ∥Qt0,...,tN ) ≤ LNELBO(P,Q) to see our bound actually gives a tighter approximation
of DKL(P0∥Q0) than the negative ELBO computed at timesteps {T� t1� t2� . . .� tN−1� 0}.
Since PtN |tN−1,tN (·|xtN−1

, x) is the delta distribution at x, we can formally rewrite a term in
Lx
NELBO as − logQtN |tN−1

(x|xtN−1
) = DKL(PtN |tN−1,tN (·|xtN−1

, x)∥QtN |tN−1
(·|xtN−1

)) and
so obtain

Lx
NELBO(P,Q) = DKL(Pt0|tN (·|x)∥Qt0)

+

N−1∑
i=0

Exti
∼Pti|tN (·|x)[DKL(Pti+1|ti,tN (·|xti , x)∥Qti+1|ti(·|xti))]. (19)

By using equation 18 and equation 19, we prove DKL(Pt0,...,tN ∥Qt0,...,tN ) ≤ LNELBO(P,Q) =
Ex0∼P0

[Lx0

NELBO(P,Q)] in a term-by-term manner. We shall heavily use the convexity of KL diver-
gence (Cover & Thomas, 2006)[Theorem 2.7.2] in the following form:

DKL(Ex∼π[PY |X(·|x)]∥QY ) ≤ Ex∼π[DKL(PY |X(·|x)∥QY )], (20)

where PY |X is a conditional distribution and π is any reference probability distribution.

First term. We can prove

DKL(Pt0∥Qt0) ≤ Ex∼PtN
[DKL(Pt0|tN (·|x)∥Qt0) (21)

first. Since we have Ex∼PtN
[Pt0|tN (·|x)] = Pt0 , it directly follows from the convexity (equation 20).

Summation term. For each term in the summation, we can also prove the following:

Exti
∼Pti

[DKL(Pti+1|ti(·|xti)∥Qti+1|ti(·|xti))]

≤ Ex∼PtN
Exti

∼Pti|tN (·|x)[DKL(Pti+1|ti,tN (·|xti , x)∥Qti+1|ti(·|xti))]. (22)

Indeed, we can replace Ex∼PtN
Exti

∼Pti|tN (·|x) with Exti
∼Pti

Ex∼PtN |ti (·|xti
) and it thus suffices to

prove

DKL(Pti+1|ti(·|xti)∥Qti+1|ti(·|xti)) ≤ Ex∼PtN |ti (·|xti
)[DKL(Pti+1|ti,tN (·|xti , x)∥Qti+1|ti(·|xti))]

for each xti . Since Ex∼PtN |ti (·|xti
)[Pti+1|ti,tN (·|xti , x)] = Pti+1|ti(·|xti), this again follows from

the convexity.

By combining equation 21 and equation 22, we obtainDKL(Pt0,...,tN ∥Qt0,...,tN ) ≤ LNELBO(P,Q),
which means the CDE-based upper bound is at most as loose as the commonly used negative
ELBO bound. We can also come to this conclusion directly applying the convexity after show-
ing LNELBO(P,Q) = Ex∼P0

[DKL(Pt0,...,tN−1,tN |tN ∥Qt0,...,tN )], which is also written in Campbell
et al. (2022, page 3), but we chose the above term-by-term derivation since it would give additional
intuitions.
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B.2 PROOF OF THEOREM 3.2

Although we state the theorem for a backward CTMC from time s to time t (t < s) and bound
the KL-divergence at time t, here we will just consider the forward CTMC from time 0 to time T
and bound the KL-divergence at time T for simplicity. After this change of the time direction and
interval, the formal statement and proof of Theorem 3.2 is given in Theroem B.4.

To derive the KL-divergence upper bound (KLUB) for continuous-time Markov chains (CTMCs),
we first adopt the change of measure dPpaths

dQpaths
for CTMCs from Section 3 of Ding & Ning (2021).

Next, we compute and organize the equation for the DKL(Ppaths|Qpaths) = EPpaths

[
log

dPpaths

dQpaths

]
.

We consider the following two forward CTMCs over [0, T ]:{
CTMC 1 : q1u+du|u(y | x) = δxy +R1

t (x, y)du+ o(du),

CTMC 2 : q2u+du|u(y | x) = δxy +R2
t (x, y)du+ o(du).

Here, R1
t and R2

t represent the rate matrices of each CTMC, with a finite state space S =
{x1, · · · , xN}, and du > 0.

We introduce some notations. Define the functions Hi
t , H

ij
t as follows:

Hi
t := δ(Xt − xi), Hij

t := Hj
tH

i
t−,

where δ(·) denotes the Dirac delta function, and t− is the left limit of t. By definition, Hij
t = 1

indicates a transition from xi to xj at time t. The CTMC (Xt)t∈[0,T ] is defined as a function from
the sample space Ω to the path space C ≜ [0, T ]× S, i.e., X : Ω→ C.

We define two probability measures over the path space:

• Ppaths, under which (X1
t )t∈[0,T ] has the law of CTMC 1.

• Qpaths, under which (X2
t )t∈[0,T ] has the law of CTMC 2.

First, we adopt the change of measure for CTMCs from Ding & Ning (2021).
Proposition B.2. (Ding & Ning (2021), Eq. 3.2) Consider a family of bounded real-valued pro-
cesses {κt(i, j)}i,j∈{1,··· ,N}, such that κt(i, j) > −1 and κii(t) = 0. Define (ηt)0≤t≤T as

ηt = e−Lt

∏
0<u≤T

1 +

N∑
i,j=1

κu(i, j)H
ij
u

 ,

where Lt =
∫ t

0

∑N
i,j=1 κu(i, j)R

1
u(i, j)H

i
udu. This result implies the existence of a probability

measure Q defined by
dQ
dP

= ηt. (23)

The following result allows us to define κt(i, j) for two CTMCs.
Proposition B.3. (Ding & Ning (2021), Eq. 3.4) For the probability measure Q defined in Eq.(23),
if (X1

t )t∈[0,T ] is a CTMC under P with rate matrix R1 and (X2
t )t∈[0,T ] is a CTMC under Q with

rate matrix R2, then R2 satisfies

R2
ii(t) = −

∑
j ̸=i

R2
t (i, j),

R2
t (i, j) = (1 + κt(i, j))R

1
t (i, j).

From Proposition A.2, defining κt(i, j) = R2
t (i, j)/R

1
t (i, j) − 1 (as in Proposition A.1), we can

compute the change of measure between the two CTMC-defined measures Ppaths and Qpaths as
dPpaths

dQpaths
.

Now, we are ready to derive the KLUB for CTMCs:
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Theorem B.4. (KL-divergence Upper bound, KLUB) Consider the following two forward CTMCs:{
CTMC 1 : q1u+du|u(y | x) = δxy +R1

t (x, y)du+ o(du),

CTMC 2 : q2u+du|u(y | x) = δxy +R2
t (x, y)du+ o(du).

Here, R1
t and R2

t represent the rate matrices of each CTMC over [0, T ], with a finite state space
S = {x1, · · · , xN}. Let PT and QT be the resulting probability distributions at the time T of the
outputs of CTMC 1 and 2, respectively. Then we have:

DKL(PT ∥QT ) ≤ EPpaths

 ∑
Hij

u =1
0<u≤T

log
R1

u(i, j)

R2
u(i, j)

.


where, Ppaths refers to the distribution over path space (Xt)t∈[0,T ] ∈ [0, T ] × S generated by
running CTMC 1, and Hij

u = 1 represent the transition of state from xi to xj at time u.

Proof. This result is derived by combining Proposition A.1 and A.2 and rearranging the resulting
expression.

DKL (Ppaths∥Qpaths) = EPpaths

[
log

dPpaths

dQpaths

]
(24a)

= EPpaths

[
log η−1

t

]
(24b)

= EPpaths

∫ t

0

N∑
i,j=1

κu(i, j)R
1
u(i, j)H

i
udu− log

∏
0<u≤T

(1 +

N∑
i,j=1

κu(i, j)H
ij
u )


(24c)

= EPpaths

∫ t

0

N∑
i,j=1

(R2
u(i, j)−R1

u(i, j))H
i
udu+

∑
Hij

u =1
0<u≤T

(logR1
u(i, j)− logR2

u(i, j))


(24d)

= EPpaths

 ∑
Hij

u =1
0<u≤T

(logR1
u(i, j)− logR2

u(i, j))

 . (24e)

Step (18c) follows from Proposition A.1, while step (18d) is derived by substituting κt(i, j) =
R2

t (i,j)

R1
t (i,j)

− 1 as defined in Proposition A.2. Additionally, step (18e) utilizes the property of the rate
matrix, where

∑
j R

1
t (i, j) = 0 for any t and i.

Finally, we denote the distributions generated by CTMC 1 and CTMC 2 at time T as PT and
QT , respectively. Since PT and QT are the marginal distributions of Ppaths and Qpaths at
time T , by the data processing inequality, the KL-divergence DKL(PT ∥QT ) is upper-bounded by
DKL(Ppaths∥Qpaths), concluding the proof.

It is important to note that the KLUB derived here for CTMCs does not fully capture the case of
discrete diffusion models, where the reverse rate matrix depends on the state. Nonetheless, we
believe the metric derived here provides a useful proxy for estimating the error introduced when
using τ -leaping to sample in discrete diffusion models. Finding KLUB for state-dependent CTMCs
would be an interesting direction for future work.
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B.3 PROOF OF EQ. (9)

Let Xi refers to the i-th dimension of X . Define Pti+1|ti(·|xti) ≜ PXti+1
|xti

and Qti+1|ti(·|xti) ≜
PX1

t |xs
⊗ · · · ⊗ PXd

t |xs
We can now derive the following relationship:

ECDE(s � t |xs) ≜ DKL

(
Pt|s

∥∥Qt|s
)
≤ DKL

(
P[s,t]|s

∥∥Q[s,t]|s
)
= KLUBxs

(Pt∥Qt).

where KLUBxs
represents comparing two continuous-time Markov chains (CTMCs), both starting

at the initial point xs.

Now we are ready to prove the result:

ECDE(s � t) ≜ EXs∼Ps
[ECDE(s � t |Xs)]

≤ EXs∼Ps

[
KLUBXs

(Pt∥Qs�t
t )

]
= EXs∼Ps

EPt|s

 ∑
Hij

u =1
0<u≤T

log
R1

u(i, j)

R2
u(i, j)




= EPpaths

 ∑
Hij

u =1
0<u≤T

log
R1

u(i, j)

R2
u(i, j)


= KLUBPs(Pt∥Qs�t

t ).

B.4 TECHNIQUE 1

The approximation is made as follows:

DKL(Ppath∥QT�0
path)−DKL(Ppath∥QT�t�0

path ) = EPpath

[
log

QT�t�0
path

QT�0
path

]
(25a)

≈ EQforward
path

[
log

QT�t�0
path

QT�0
path

]
(25b)

≈ EQT�t�0
path

[
log

QT�t�0
path

QT�0
path

]
(25c)

= DKL(QT�t�0
path ∥Q

T�0
path) (25d)

Equation equation 25a assumes that Ppath ≈ Qforward
path where Qforward

path refers to the distribution
made by forward CTMC. In equation equation 25b, we assume that Qpath ≈ QT→t→0

path . It is im-
portant to note that we can use equation 25a as a formula for KLUB computation, as introduced
in Algorithm 1. However, the results of JYS sampling schedule optimization show little difference
between the two.

Compared to coarser sampling, KLUB computation can be organized as follows:

KLUB
(
QT�t�0

0

∥∥QT�0
0

)
= EQT�t�0

paths

∑
i̸=j

T∑
u=0

Hij
u log

RT�t�0
u (i, j)

RT�0
u (i, j)

 (26a)

= EQT�t�0
paths

∑
i̸=j

t∑
u=0

Hij
u log

Rt(i, j)

RT (i, j)
+

∑
i ̸=j

T∑
u=t

Hij
u
�

���
��

log
RT (i, j)

RT (i, j)


(26b)

= EQT�t�0
paths

∑
i̸=j

log
Rt(i, j)

RT (i, j)

t∑
u=0

Hij
u .

 (26c)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In Eq. (26b), we utilized the fact that under τ -leaping, RT�t�0
u (i, j) = RT (i, j) for u ∈ [t, T ] and

RT�t�0
u (i, j) = Rt(i, j) for u ∈ [0, t]. In Eq. (26c), the rate matrices are constant over intervals,

allowing us to pull log Rt(i,j)
RT (i,j) outside the summation.

B.5 TECHNIQUE 2

Consider the meaning of E
[∑t

u=0 H
ij
u

]
; it calculates the average probability of a transition from

i to j occurring between time 0 and t. If we knew ∂up(xu = j, xu− = i), this could be found by∫ t

0
∂up(xu = j, xu− = i) du. However, we do not have access to ∂up(xu = j, xu− = i).

Fortunately, we do know the conditional transition rate ∂up(xu = j | xu− = i) = Rt(i, j). Let’s
assume that there are maximally single transition of state in each dimension during the time interval,
which is the assumption behind using τ -leaping algorithm for DDMs (Campbell et al., 2022). Using
this, we can rewrite Eq. (26c):

EQT�t�0
paths

∑
i ̸=j

log
Rt(i, j)

RT (i, j)

∑
t<u≤T

Hij
u

 = EQT�t
paths

EQt�0
paths

∑
i ̸=j

log
Rt(i, j)

RT (i, j)

∑
t<u≤T

Hij
u

∣∣∣∣∣Xt = i


(27a)

≈ EQT�t
paths

 ∑
Xt ̸=j

log
Rt(Xt, j)

RT (Xt, j)
×Rt(Xt, j)∆t

 (27b)

Equation Eq. (27a) applies the Law of Total Expectation, and in Eq. (27b), we utilize the equation:

EQt�0
paths

[
t∑

u=0

Hij
u

∣∣∣∣∣Xt = i

]
≈ Rt(i, j)∆t,

where ∆t = t−0 = t. The approximation becomes exact when there are only one transition in each
dimension during single interval, and this assumption is true for absorb transition matrix.

C ALGORITHM

In this section, we present the main algorithm for Jump your steps (JYS).

C.1 KLUB COMPUTATION

Please refer to Algorithm 1.

In the case of k-Gillespie, computing KLUB using Algorithm 1 requires the start timestep s, the
end timestep u, and the breakdown timestep t. However, in k-Gillespie, the schedule is determined
not by timesteps but by the number of generated tokens. Specifically, the start number of generated
tokens ks, the end number of generated tokens ku, and the breakdown number of generated tokens
kt are provided as inputs. Once the corresponding timestep t for a given number of generated tokens
k (i.e., p(t|k)) is determined, Algorithm 1 can be used to compute KLUB(Qks→kt→ks∥Qks→ku).

Note that the noise schedule determines the probability pt of each token being masked at time t,
enabling us to compute the probability of k tokens are unmasked at time t. Let pt denote the
probability that a token will be unmasked at time t. Now, imagine that we implement the forward
process qs|0. First, we sample a value between 0 and 1 from a uniform distribution for each token;
Second, tokens with values greater than pt are masked. The reverse process p(t|k) can be derived
similarly: assign a random value between 0 and 1 to each token and find the value of t such that
exactly k tokens have values greater than pt. This approach allows us to effectively sample p(t|k).

C.2 JUMP YOUR STEPS

Please refer to Algorithm 2.
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Algorithm 1: Computation of KLUB(Qs�t�u∥Qs�u)

Require:
θ: Diffusion model parameters
s, t, u: Timesteps, with s > t > u
pdata: Data distribution
N : Number of Monte Carlo samples

Ensure:
KLUB: Computed KLUB value

1: Initialize KLUBu ← 0 and KLUBd ← 0
2: for iteration = 1 to N do
3: Sample X0 ∼ pdata ▷ Sample from data distribution
4: Sample Xs ∼ qs|0(Xs | X0) ▷ Forward process to s

5: Sample Xt ∼ pθt|s(Xt | Xs) ▷ If we use Eq. (25a), Xt ∼ qt|0(Xt | X0).
6: Set ∆t← s− t

7: Update KLUBu ← KLUBu +
∑

j ∆tRθ
t (Xt, j) log

Rθ
t (Xt,j)

Rθ
T (Xs,j)

▷ Eq. (15)
8: Increment KLUBd ← KLUBd + 1
9: end for

10: Compute KLUB← KLUBu/KLUBd ▷ Final KLUB value
11: return KLUB

Algorithm 2: Jump Your Steps

Require:
2K : Number of function evaluations
T, 0: Maximum and minimum timesteps

Ensure:
K ≥ 1: Number of iterations

1: Initialize Timesteps← (T, 0)
2: for k = 1 to K do
3: Initialize Timesteps∗ ← ()
4: for each pair (s, u) in Timesteps[: −1] and Timesteps[1 :] do
5: Compute t← GoldenSection (t,KLUB(Qs→t→u∥Qs→u))
6: Update Timesteps∗ ← Timesteps∗ + (t)
7: end for
8: Initialize Timesteps∗∗ ← ()
9: for each pair (ti, tj) in Timesteps[: −1] and Timesteps∗[1 :] do

10: Update Timesteps∗∗ ← Timesteps∗∗ + (ti, tj)
11: end for
12: Update Timesteps← Timesteps∗∗

13: end for
14: return Timesteps

C.3 k-GILLESPIE ALGORITHM

To aid readers’ understanding, we include the k-Gillespie algorithm (Zhao et al., 2024). Please refer
to Algorithm 3. The algorithm is structured as follows: first, the backward rate matrix is calculated.
Then, the holding time for k transitions is computed to update t, and k transitions are performed
sequentially.

D EXPERIMENT DETAILS

Golden Section The golden section search was stopped if the difference between the newly opti-
mized t and the previous t was smaller than T/2048. The maximum number of iterations was set to
32, but usually, the iterations were completed within 8 steps.
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Algorithm 3: k-Gillespie’s Algorithm with Corrector Steps

Require:
θ: Diffusion model parameters
k: number of token generated in a single step
L: sequence length

1: Initialize time t← 1
2: Initialize sample x← MASKL

3: for i = 1 to L do
4: Compute backward rate rli = R̂θ

i (x,G
l
i(x))

5: Calculate total rate rl =
∑

i ̸=l r
l
i

6: Sample holding time τ l ∼ Exp(rl)
7: for k = 1 to K do ▷ Make multiple state transitions
8: Get dimension of transition l∗ = SORTED(τ l)[k]
9: Update state xl∗ ← Cat(rl

∗
) where rl

∗
= 1

rl∗
(rl

∗

1 , . . . , rl
∗

S )
10: end for
11: Update time t← t− τ l

∗

12: if t ≤ tmin then
13: break
14: end if
15: end for
16: Find most likely values for the ungenerated dimensions x← argmaxx0 p

θ
t (x0 | x)

17: return x
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Figure 10: The effect of the number of Monte
Carlo samples on the performance of the JYS
schedule.
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Figure 11: We measured the wall-clock
time required for optimizing the JYS sampling
schedule in a practical setup using a single
24GB NVIDIA RTX 3090 GPU.

CountDown We use SEDD (Lou et al., 2024) for loss function and the DiT (Peebles & Xie, 2023)
as a model architecture, the noise schedule followed the log-linear scheme proposed in the SEDD
paper. KLUB computation was done with num samples = 2048, and one golden section search
took approximately 4 seconds.

CIFAR10 The pretrained model provided by CTMC (Campbell et al., 2022) was used. For CI-
FAR10, with num samples = 1024, one golden section search took about 30 seconds.

Monophonic Music The pretrained model provided by CTMC (Campbell et al., 2022) was used.
KLUB computation was performed with 2048 samples, and one golden section search took about
20 seconds.

Text The pretrained model provided by SEDD (Lou et al., 2024) was used. With num samples =
256, one golden section search took 120 seconds.
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E ADDITIONAL RESULTS

E.1 EFFICIENCY OF THE JYS ALGORITHM IN SAMPLING SCHEDULE OPTIMIZATION

To inspect the practical utility of our algorithm, we investigate the optimization time to get JYS
schedule. When optimizing the sampling schedule, there is a trade-off: increasing the number
of Monte Carlo samples for KLUB estimation improves the reliability of the estimation but also
increases computational demands. Our goal is to use the minimum number of samples necessary
while maintaining reliable performance.

We conducted experiments on CIFAR-10 and a text generation task to evaluate this trade-off (see
Figure 10). Our findings show that reducing the number of Monte Carlo samples to as few as 16 does
not result in a significant performance drop. We hypothesize that the sampling schedule optimization
is robust with fewer samples because the KLUB, which our optimization aims to minimize, does not
vary greatly between the sample trajectories (see Figure 4).

Based on these results, we measured the time required for the JYS sampling schedule optimization
on a practical setup using a single 24GB NVIDIA RTX 3090 GPU (Figure 11). Note that with more
GPUs, the Monte Carlo sampling could be parallelized, further reducing the time. For a sampling
schedule with NFE=64, the optimization took only 45 seconds in CIFAR-10 and 5 minutes on the
text generation model (SEDD-small). In contrast, AYS required approximately 6 GPU hours for
NFE=50 on CIFAR-10 and 32 GPU hours for ImageNet 256×256 with RTX6000 GPUs (Sabour
et al., 2024).

Importantly, this time cost applies only to the initial sampling schedule optimization; once opti-
mized, there is no additional inference cost.
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Figure 12: Error bars or standard
deviations for the quantitative met-
rics are shown, with the maximum
and minimum values represented as
shaded regions and the mean value in-
dicated by a solid line.

Importantly, this time cost applies only to the initial sam-
pling schedule optimization; once optimized, there is no
additional inference cost.

E.2 ERROR BARS AND
STANDARD DEVIATIONS FOR QUANTITATIVE METRICS

In Figure 12, we report the minimum, maximum, and
mean values from experiments conducted with three ran-
dom seeds on CIFAR-10 and the text generation task. The
results show minimal differences across the three seeds,
demonstrating the robustness of our metrics to random seed
variations. This robustness likely stems from generating
a sufficiently large number of samples (10K for FID and
1,024 for generative perplexity) before performing the mea-
surements, thereby reducing variability. For CIFAR-10, the
average difference between the maximum and minimum
FID (10K) values is 0.37, while for text generation, the av-
erage difference in perplexity (PPL) values is 0.65—both
negligibly small.

E.3 PERFORMANCE IMPROVEMENTS ACHIEVED BY JYS
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Figure 13: Relative perfor-
mance gains from JYS com-
pared to model size scaling.

To demonstrate the impact of JYS, we compared its performance
gains to those achieved by increasing the model size. In Fig-
ure 13, we show the reduction in generative perplexity (PPL) when
transitioning from a uniform to a JYS sampling schedule for each
NFE, alongside the reduction observed when scaling the model from
SEDD-small to SEDD-medium. This comparison highlights the
proportion of performance improvement attributable to JYS relative
to that achieved by increasing the model size.

E.4 COMPARISON WITH HEURISTIC SAMPLING SCHEDULES

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Uniform

JYS

NFE = 2 NFE = 4 NFE = 8 NFE = 16

Ground Truth

Figure 15: Toy 2D dataset results - Moons.

Ground Truth

Uniform

JYS

NFE = 2 NFE = 4 NFE = 8 NFE = 16

Figure 16: Toy 2D dataset results - Circles.
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Figure 14: Performance comparisons
on CIFAR-10.

To provide a more comprehensive evaluation, we con-
ducted additional experiments comparing our approach
with heuristic sampling schedules beyond the uniform base-
line. Specifically, we tested a sampling schedule match-
ing the signal-to-noise ratio (SNR) of LogSNR-Cosine
and heuristic schedules inspired by the timestep sampling
from (Esser et al., 2024), which allocate more sampling
steps toward the middle (Sigmoid) and both ends (Logit).
As shown in Figure 14, these heuristic schedules con-
sistently underperformed compared to the JYS schedule,
which achieved the best performance across all NFE val-
ues on both CIFAR-10 and text generation tasks. This un-
derscores the challenges of improving sampling schedules
solely through heuristic methods.

E.5 QUALITATIVE RESULTS

In this subsection, we present qualitative comparison between Jump Your Steps and Uniform sam-
pling schedule under various NFEs.

Toy 2D datasets Figures 15, 16, and 17 display generated samples under various NFE and sam-
pling schedules. All results were generated using the Euler τ -leaping sampler. It is evident that JYS
produces higher-quality samples compared to the uniform sampling schedule.
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Ground Truth

Uniform

JYS

NFE = 2 NFE = 4 NFE = 8 NFE = 16

Figure 17: Toy 2D dataset results - Gaussian Mixture.

Uniform Jump your steps (Ours)

NFE = 32

NFE = 64

NFE = 128

NFE = 256

Figure 18: CIFAR10 results.

CIFAR10 Figure 18 shows generated images with various NFE and sampling schedule. All results
are generated using Euler τ -leaping sampler.

Text Figure 19, 20, 21, 22 show generated text samples with various NFE and sampling schedule.
All results are generated using Euler τ -leaping sampler.
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', while playing for Vevian, a Habs minor when he was sent to to Providence, Nova Scotia.\n\nThere were signs, while seated in the stands, of a self awareness between 

Giiroz and Vevian, who were son who raised him how the three could possibly stand in front of Habs’s jersey to help ease his mind.\n\n“Isn’t an insular thing, " Giiroz said. 

"They’re your teammates, and they love helping you."\n\nAdvertisement\n\nJosh willre B. Rogers mentioned Dustin Quick\'s name up on Bruins jerseys. The team plays 

Wednesday night, Feb. 4, in Bel Air N.J. J. M. Stringer/AP\n\n“I don’t think anybody’d be mad at anybody to resell them like that," Giiroz said. "Of things."\n\nThe aren’t 

talking of Team No. 3. Currently the team\'s name is A6, the Gi five nickname, but already there’s been enough sales to name more than 100 players, in addition to using 

the team\'s name in games.\n\n“It’s really important and I’ve got a lot of people who don’t like us at all, but some people may not and all I am saying is that we are selling 

them our jerseys, these jerseys can look different, there’s a lot more trust than people would like it to have, ” Giiroz said.\n\n“I don’t speak for the guys that even have 

them, but the will doesn’t have to feel for them as the ego does," Granoff said."Just don’t ever concern or complain.”\n\nAdvertisement\n\n“I was walking around town, 

they can’t be named U27 and A34 and what could I say? Two years ago they mentioned about them that they were the Bruins No. 3," he told NewHockey’s Plex 

Myers.\n\nIt appeared first on Jarusthir\'s jersey when his car, recently registered seven times, was stolen in 2012.\n\nThe forwardian Johnson said he\'s one of the six in the 

No. 3 team, "because I can’t get my name. I am one of the game. It was sold and the decision they made is theirs."<|endoftext|>Health is number one during pregnancy in 

America, with a lack of complications, such as heart disease, heart problems and health or mental problems. Finally, the Health Institutes is slowly diluting itself in its own 

way: Last year, the health care debate in the country was challenging yet electrified Liberal leaders. (Still, anyone who doubts that public health care will be at hand could 

easily claim that it fails to deliver no matter how hard you work.)\n\nThe big guns on health care when it comes to health America’s health crisis have been the dismantling 

of some traditional government programs.\n\nThe Health and Human Health Service is drawing up a starting line here in Washington this week for a 180-page health 

reform proposal. The White House is still drafting its latest draft law, which will have its first version by the end of the year.\n\nThe economist is in charge of the 

department of health care and troubled Medicaid Services, which plans to eliminate up to 750,000 employees next year — accusing health insurance buyers of taking 

profits away from communities. Mr. Price, a former GOP congressman in the House, said this interview that he would work on expanding exclusive hospital care for sick 

patients, citing concerns over either public or professional spending on drug use.\n\nMs. A. also contends that there is a surge in medical care and highlights challenges 

such as rising insurance premiums, growing market sizes and shrinking health benefit programs in key markets such as hospitals, universities, schools and 

hospitals.\n\n(Fix: Watch the full video to calls out on uninsured’s rise on gov)\n\nIn an e-mail, Mrs. C Perry countered that any new overhaul of pay would typically 

“seriously affect our workforce and its cost and administrative efficiency.”\n\nThat\'s because strong health care programs have bolstered smart young people as an 

alternative to older adults — thanks, in part, to pressures such by Democrats and the Congress to share savings on top-stealing causes.\n\nFirst, first and foremost, the 

health, today’s economy — health care, which is being replicated heavily, sees a rise of information technology workers who are fluent in certain kinds of work — peaked 

in 1996. That number of health employees reached 1.2 million in 2010. The current number is smaller than most of the working-age workforce, by registered 

age.\n\nAmerica\'s young people\n\nAlso, the Federal government restricts healthcare delivery to certain low-income people so that they can not be forced into the 

insurance market. Two-thirds'

NFE = 64, Uniform

Figure 19: Generated samples using uniform schedule (NFE = 64).

' organization used it for a marketing campaign, some of them. The office was sent to to Providence, arcana. Overall, the organization generated $12 million in revenue for 

2015 and $8 million in tax revenue spending.\n\nGreg Cohn, who was one who first knew how the organization came to Boston, came back in Toronto and now visits 

Boston to help players.\n\n"That man hates me," he said. "This organization, the player, they come from special circumstances and often in the world, and they love helping 

you."\n\nHe assured us they will be found. But when I heard their name, I had to wonder if they would work to build the organization, and bring those guys out of the 

shadows themselves and bring a little Pete Noles to the Boston scene.\n\n“I don’t know if we are containing the cream, but that was exactly what I thought when asked to 

speak when that organization went to Toronto,” said Eric Krodyns, the team\'s director. AIM then asked Cohn why he was still in Boston. He declined to comment on the 

name and structure of that office.\n\nOnce the team began the reporters to Boston,, the staff had problems raising the idea of calling into those reporters, he explained. He 

said he chuckled after listening to many plays at Soarin’s. “But I am the man that we are identifying with."\n\n\nOne can completely swear he wouldn’t. The Royals are 

destined for nothing like the White Sox, and they are be heading back to The kid’s dreams only if teams are willing to bless that and turn them into something that will 

allow them to totally get there. Wow, not easy, does it?\n\n"Just don’t ever let the scouts use their names on the field, don’t let them leave town, let their not show in a lot of 

games. A candid scout is what I’ve heard a million times, but that’s a very serious thing," he told New America Baseball’s Scott Davis. “[It is a] catalyst for either, for a 

split second, a six or seven people that just might be there. That organization has given us a chance to get back into the rotation in the spring. Our team has showed us a 

really, really great game.”\n\nAs of how to live out this season of the Mets? This is pretty chime. The real road is to make the World Series. They really surprise other teams 

as always. Sources from their three league report told Yahoo Sports last month the Mets’ schedule is now second in its baseball calendar. Last year they’re not in the 11th, 

yet using baseball calendar.\n\nStill, anyone that should be awarded a win Sunday night at home could easily not make it over weekend, no matter how hard they 

work.\n\nBut Larry Anthony, CEO of Major League Baseball Baseball of America said it’s hard not to understand why some teams could not easily win during the regular 

season.\n\n"We should stop losing, here in Toronto, three days a week. That can\'t be in for half."\n\nGet the latest in USA our Page View Map for first looks at the 

European and American leagues.\n\nLead image RICA / taken under a Creative Commons.<|endoftext|>Toronto’s craft sector will gross up about 2.92 percent this year as 

foreign-owned buyers are taking starts away from U.S. regional chains, a Toronto bank in a new study said Friday.\n\nThere compounding is an undersupply of new 

restaurants, as new restaurants next expect to take hold next year. By then, Service Canada already is set to double as a U.S.-based market — now the fastest-topping craft 

market — and about 29 restaurants in Canadian craft markets will be added this year, going by 6.48 percent to 14.51 percent, CIBC economist with HBC’s CIBC Corp. 

said.\n\nThe eOBA study led by CNAB Brendon Barley said new restaurants typically “seriously drain our workforce and demoralise the restaurant industry.”\n\nThat\'s 

last fall\'s report from 2009 to March when more than 700 restaurants are currently insupplied, in part because of pressures such as an internet industry struggling to place 

value on top-staple craft.\n\n“First and foremost, based to Statistics Canada’s data — which has tracked which industries are investing heavily, including the rise of cheap 

Canadian workers, new Canadians, major property market reforms — there are just over 150 craft restaurants across the continental U.S. in 2010. The craft sector is 

Canadian in most descriptive terms,” Barley noted.\n\n“That\'s where people are most prepared to work and businesses are being forced to try to adapt themselves," he 

said.\n\nOne of the other ramifications is a poor Canadian pace'

NFE = 64, JYS

Figure 20: Generated samples using Jump Your Steps schedule (NFE = 64).

'. I still like it as though. But now\'s the right time for me to say yes. And the right time for to say yes, the right time to say yes is to have a good time for me to finish this 

question."\n\nDonald said, Trump emerged from meeting his father in a private school, took parting shots at one of the few people who he has a connection with. He\'s so 

strong, and he\'s one of the strongest people he\'s seen.\n\nIt\'s like Donald Trump is over it\n\n"It\'s been a 100 percent experience," Trump told CNN after he shot him, 

"and it\'s not all, I think, it\'s just me. But I feel like I made me feel like something. I made me feel like something. But I\'d never felt this way, I\'d never ever need to go. 

But almost fading away, right now he\'s feeling something special."\n\nThis is my father\n\nTrump calls Trump one of the heen talks he\'s ever seen. "Then he did some 

words like, and he asked me a question, "and then he said, "I don\'t need to you, just shoot me." I said, I\'ve talked to at least one man, I can\'t wait to do that." 

Trump\n\nAre we going to want to be his father to play on?\n\nTypically in interviews, Trump says you have to ask, and they won\'t change anything. But he says he does 

want to be his father in the world. Even if he\'s depressed by what\'s happening, he says there is more from him. He added, "I really want to get myself out there and be the 

best person in the world, so go out there."\n\nBut is what want? Trump, says, "I don\'t have to worry much about myself anymore, but I just want to make my day 

better."\n\nEveryone\'s going to hate him, Donald Trump\n\n"I am a great moment when people say I hate," he said. "I also know him, the world has a saying called, 

\'Here\'s my son,\' and I\'m gonna like it. But also, I\'m really really proud of what he does. He brings so much. His life to me that makes him me. A hero to the world. But 

all the conversation going through, it\'s almost like I find out who his father really is. But then I go just don\'t he. Just have that son, and be a different dad. That is going to 

happen eventually.\n\nTrump says change, "sometimes it just takes time, and then sometimes it does, but I think he\'ll be different, and he will be the new leader. I hope he 

will be my mentor. And eventually, I may just be his replacement," Trump added.\n\nHe\'s going to have a Republican convention here, anyway\n\nNobody will tell you 

how big an impact that Donald Trump made in Cincinnati because he had because of the first Republican convention in America. "I said to all of the white people, much of 

all of the white people, I was like, \'You don\'t know enough about these people.\' I, to mention all that, tried to sound like a little too obvious and too politician," he said on 

CNN.\n\nTrump denies that kind of thing. "You should come across it."<|endoftext|>The Donald Trump will meet in January on Russia\n\nPresident Donald Trump leaves 

the House on Friday January 20, 2017.\n\nWASHINGTON, DC (WASHINGTON, Jan 20, 2017) —He has never been a man, but a partisan, both ways of looking on the 

scale of controversies in 2016 and 2016.\n\nWhile Mr. Trump touted his vision on such issues, he retired from last year’s presidential election, even after he was earlier this 

year fired by members of the FBI and James Comey sent a letter in which he recommended Clinton not a presidential nominee.\n\nThen last month, Trump denounced the 

timing of his letter, say it was an obstruction only as it was not newsworthy.\n\nEven as he met with the FBI, Donald Trump rejected the apology to the media. 

(Reuters)\n\nMr. Comey, the man who led the Russia probe, said on Meet With The Press that he met with frontrunner, Hillary Clinton 2016, because it was the best way to 

make concessions.\n\n“I thought she would just something to me because she saw the favoritism of me, and she did so little for Clinton. That’s not the deal,” Trump said of 

him last week.\n\nMeanwhile, Mr. Comey is not a Democrat. “You know, this is going to be a great transition,” Mr Mr. Comey’s statement said, and it informed the 

president that he will next meet on Russia.\n\n“It’s winding up a very long time, very long,” Mr. Comey said. “And'

NFE = 256, Uiform

Figure 21: Generated samples using uniform schedule (NFE = 256).
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'Story highlights Bush and Clinton as though they have more things to do\n\nBut Obama finally leads\n\nSome 47 percent of voters say they split the popular vote in 

November if the United States president wins the White House\n\nAccording to the latest Fox News poll, Americans everywhere from about 28 to 55 believe they would 

know if the other 48% of the U.S. has been president\n\nIt\'s clear why voters, on the one hand, believe that it\'s the most difficult years, why they believe Obama is 

president.\n\nObama has not spoken for as many months and says he cares deeply about him. More recently, he says months turned to me to nothing.\n\n"You\'ve got to 

wait until or until next month knows what\'s all going on?" he says.\n\n"I\'m staying here in 14 more years," Obama replies. "I don\'t think right now that\'s the way to 

go."\n\nBack to 2008\n\nBy the vast majority of the vote, Obama\'s up 44 percent. His support in the U.S. is about 16.2 percent, less than three points recorded by the 

Presidents George W. Bush and , though his leads has already climbed to about 50 points. That\'s one of those numbers that was crucial to Obama in Virginia.\n\nIf Obama 

is now leading Clinton in an effort to capitalize on the last presidential victory in November, Democrats won\'t have a victory, and they won\'t have anything official at 

all.\n\nThere are four notable candidates in the White House, and let\'s just ask what the real candidates might be. Former President. W. Bush? We really know what he is: 

He said Obama was one of the candidates in the debate. The candidates were named.\n\nBut former President. W. Bush, "Especially with presidential politics, doing this is 

impossible." Former U.S. Gen. George E. Bush Obama maintained his clear lead in this debate. (Getty)\n\n"I think we have probably just come close to winning," he said. 

"I also know that many the people have a hand-to-hand and some of the number of other candidates is rising. But also, I guess I don\'t know what Bush would think of me, 

and I don\'t know what that would say, and we have to try on. But all the issues going through a president that I think I will overcome are really, really tough. But then I still 

just don\'t think anyone really knows who he is."\n\nCritics of the status quo question the Obama presidency. How the circumstance will change: "Actually, I think 

Washington will change the way it might get but I think people are suffering from poverty and lot of problems and I don\'t think this country will be so successful. I think 

other countries may not be taking care," said Dale Schleulich, past president of the Republican factions here, Texas and Wisconsin. (AP)\n\nThe southern states are key 

elections in a broader political strategy because they are not part of North America.\n\nPresident U.S. Obama won the support of several of the eastern states, including 

states in Ohio and Pennsylvania.\n\nSack has been raking in inroads in California, although he recently secured a majority in Wisconsin.\n\nOregon also is outshot in the 

U.S. presidential primary.\n\nThe political battle across America is tight. (The Texas debate is still on.)\n\nThe Ohio showdown: Ohio\n\nThere are polls indicating that 

Obama believes Republicans won\'t lose again four times next year, with maybe none voting the other way. However, he might take in a majority of the western states, 

leading up to Ohio in 2016.\n\nWhere the mirror may look\n\nSixty-six percent of Democrats say they\'re leaning in this election, according to Gallup.\n\nDemocrats have 

meanwhile been consistent on trade and national policy, incorporating racially polarized Republican policies.\n\nIn Vietnam this fall.\n\nJapan and South Korea benefit 

from a new U.S. relationship with Asian rivals, as China explores its role.\n\nJapan qualifies as trade ties with China, where there\'s rising the ante to the conflict. 

(Reuters)\n\nN.J. Gov. Chris Christie takes over the federal government this June. The state is in for a tough task as president-elect, and political experts expect he\'ll make 

an upset bid if Republicans win.\n\nVoters across the U.S. overwhelmingly favor him- for president and liberal candidate Bernie Sanders of New York, won by a landslide. 

Sanders has secured nearly 60% of Democratic primary voters.\n\nPresident George W. Bush isn\'t a good Cabinet secretary either, even further this year though Clinton 

has a great lead in the U.S. Senate -- which made him the party\'s leader in the race. A Gallup poll of the 2012 race earlier this year showed he is struggling to keep up with 

his rivals.\n\nGenerally, a mere 47% say the least say in some'

NFE = 256, JYS

Figure 22: Generated samples using Jump Your Steps schedule (NFE = 256).
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