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ABSTRACT

Genomic Language Models (gLMs), encompassing DNA models, RNA models,
and multimodal models, are becoming widely used for the analysis of biological
sequences. Typically, models trained on RNA are used for RNA-related tasks,
and models trained on DNA sequences are used for DNA tasks. However, this re-
quires the development and maintenance of several classes of models to match the
modality of the sequence. These models take significant resources and data to cre-
ate, and maintaining separate models for DNA and RNA tasks is a computational
burden.
To reduce this burden, we introduce novel Adaptive Mixture of Codon Reforma-
tive Experts (CodonMoE) that can be incorporated into DNA gLMs in order to
adapt them for mRNA-based predictive tasks. We show that, by using this plug-
and-play operator, DNA-based gLMs can achieve performance similar to that of
RNA-trained models on mRNA tasks. We further show that recent, efficient sub-
quadratic DNA-based state space model (SSM) architectures can be used with
the CodonMoE to achieve parameter- and computationally-efficient predictions
for mRNA tasks. Specifically, experimental results demonstrate that CodonMoE
improves diverse DNA-based backbones by a large margin, with some models
achieving comparable or superior performance to current state-of-the-art RNA-
specific models across several downstream tasks, while reducing both time com-
plexity and model parameters.
Our results provide a path for focusing development efforts of gLMs on DNA
models, which can then be adapted to mRNA tasks. Because DNA data is more
prevalent than assembled mRNA data, and modeling efforts can focus on a single
class of model, this is likely to foster improved DNA models for mRNA tasks
at lower computational cost and is a significant step towards unifying genomic
language modeling.

1 INTRODUCTION

Recent advancements in artificial intelligence, particularly in the domain of Large Language Models
(LLMs), are revolutionizing numerous scientific disciplines, with the biomedical sciences experienc-
ing especially profound impacts (Jumper et al., 2021; Varadi et al., 2022). The fundamental goal of
Natural Language Processing (NLP) is to comprehend and manipulate sequences of words, a task
that bears similarities to one of the central objectives in biology: deciphering the meaning and func-
tion encoded in biological sequences (Eraslan et al., 2019), as well as designing and generating novel
genomic sequences with desired properties. This parallel has given rise to a new frontier in computa-
tional biology: Genomic Language Models (gLMs). GLMs are large-scale language models trained
on vast amounts of biological sequence data. These models aim to capture the complex patterns
and dependencies within genomic sequences, much like how general LLMs learn the intricacies of
human language (Bepler & Berger, 2021). By leveraging the power of large language models and
the abundance of genomic data now available, gLMs have the potential to significantly advance our
understanding of genomes and reveal how DNA or RNA elements at various scales interact to give
rise to biological functions (Zhou et al., 2018).

Recent progress in state-space models (SSMs) have addressed the quadratic scaling limitations in-
herent in self-attention mechanisms, offering efficient alternatives to transformers for gLMs (Ji et al.,
2021; Benegas et al., 2023; Ratcliff, 2024) with subquadratic or linear scaling in sequence length.
HyenaDNA (Nguyen et al., 2024b), built on the Hyena Hierarchy, represents a significant leap for-
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ward in genomic modeling, processing input contexts up to 1 million nucleotides — a 500-fold in-
crease over previous dense attention-based models. This architecture enables single-nucleotide-level
analysis across extensive genomic regions, crucial for capturing long-range interactions and subtle
genetic variations like SNPs. Caduceus (Schiff et al., 2024), leveraging the Mamba-based SSM (Gu
& Dao, 2023), introduces bi-directionality and reverse complementarity (RC) equivariance, essen-
tial properties for comprehensive DNA sequence analysis. Trained on 131 kb sequences, Caduceus
demonstrates superior performance on long-range prediction of variant effects tasks compared to
much larger models. Building upon this framework, PlantCaduceus (Zhai et al., 2024) extends these
capabilities to diverse plant genomes, showcasing high transferability across species that diverged
160 million years ago and enabling genome-wide deleterious mutation identification without multi-
ple sequence alignment. EVO (Nguyen et al., 2024a), a hybrid architecture combining Hyena and
Transformer elements, pushes the boundaries further with its 7 billion parameter model and 131 kb
context length. EVO’s multi-modal approach allows it to generalize across DNA, RNA, and pro-
tein prediction tasks, while also demonstrating unprecedented capabilities in generating synthetic
molecular complexes and coding-rich sequences up to 650 kb in length.

Despite significant advancements in genomic language modeling, the development of distinct
gLMs—encompassing DNA models, RNA models, and multimodal models—introduces a consider-
able cost burden. This issue becomes increasingly pronounced as the size and complexity of gLMs
grow. Moreover, attention-based models, particularly in the context of RNA language modeling,
continue to dominate most RNA-specific tasks. Although these models deliver strong performance,
their high computational demands remain a substantial challenge. According to the central dogma
of molecular biology, DNA serves as the primary repository of genetic information, while mRNA
functions as an intermediary in the expression of this information (Crick, 1970). Building upon this
fundamental concept, DNA-based language models offer a more holistic and foundational approach
to genomic modeling compared to mRNA-focused models. However, despite their great potential,
DNA-based models have largely been underutilized in downstream mRNA analyses.

To address these challenges, we propose a novel approach based on the hypothesis that DNA models
can effectively replace RNA models when augmented with RNA-specific control information. Cen-
tral to our method is Adaptive Mixture of Codon Reformative Experts (CodonMoE), a versatile
plug-and-play module designed to seamlessly integrate with existing DNA models, transforming
them into robust tools for mRNA analyses. We also demonstrate that recent, efficient sub-quadratic
DNA-based state space model (SSM) architectures can be effectively combined with the Codon-
MoE to yield parameter- and computationally-efficient predictions for mRNA tasks. This marks
the first approach to bridge the gap between DNA and RNA language models through a universally
applicable CodonMoE.

Theoretical proof demonstrates that CodonMoE is a universal approximator of mRNA properties
at the codon level. Experimental results further show that CodonMoE significantly enhances var-
ious DNA-based backbones by a wide margin, as illustrated in Figure 1. Some of these models
achieve performance comparable to or exceeding state-of-the-art (SOTA) mRNA-specific models
across critical downstream tasks, while also achieving substantial reductions in time complexity and
model parameters.

In general, CodonMoE offers the following “3A” characteristics in versatility:

• Adaptability: CodonMoE integrates seamlessly with a variety of DNA model architec-
tures, including SSMs and attention-based models, ensuring compatibility across diverse
computational frameworks.

• Applicability: CodonMoE is capable of handling DNA models trained on datasets from
diverse species, making it suitable for a wide range of biological tasks without being re-
stricted by species-specific data.

• Across-Species Generalization: CodonMoE consistently enhances DNA models for
mRNA-related tasks, achieving high performance even when applied to species not rep-
resented in the original training data, thereby demonstrating broad utility across multiple
species in RNA analyses.

Source code for this work is available at https://anonymous.4open.science/r/CodonMoE.
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Figure 1: Performance comparison on mRFP expression and SARS-CoV-2 vaccine degradation
datasets across GPN-MSA (Benegas et al., 2023), HyenaDNA (Nguyen et al., 2024b), and Ca-
duceus (Schiff et al., 2024) models, with and without our CodonMoE integration.

2 RELATED WORK

Transformer-based genomic language models. Transformer models (Vaswani et al., 2017) (De-
vlin, 2018) have become a popular choice for genomics modeling, offering the ability to capture
long-range dependencies critical for DNA and RNA sequence analysis (Benegas et al., 2024). De-
spite their success, transformer-based models often face limitations in handling long context lengths
and relying on tokenization schemes that aggregate nucleotides into basic language model units,
compromising single-nucleotide resolution. In the DNA space, DNABERT (Ji et al., 2021) tack-
les tasks like transcription factor binding site prediction by adapting the BERT architecture with
DNA tokenized with k-mer, demonstrating the potential of transformers to capture long-range de-
pendencies in genomic data. Enformer (Avsec et al., 2021) further extends this concept by incor-
porating convolution layers before and after transformer blocks. Nucleotide Transformer further
pushes the boundaries of what transformers can achieve in genomics, achieving five times the scale
of DNABERT and ten times that of Enformer (Dalla-Torre et al., 2023). MegaDNA (Shao, 2023), a
multiscale transformer model for bacteriophage genomes, extends the context window to accommo-
date longer sequences, and showcases the potential of transformers in generative tasks. GPN-MSA
(Benegas et al., 2023), unlike these models, offers an approach leveraging whole-genome sequence
alignments across multiple species, demonstrating how the evolutionary structure of sequences en-
hances DNA modeling tasks.

On the RNA side, transformer-based models like RNABERT (Akiyama & Sakakibara, 2022) and
BigRNA (Celaj et al., 2023) have also been developed to address various transcriptomic tasks. Spe-
cialized models like CodonBERT (Li et al., 2024) and SpliceBERT (Chen et al., 2023) focus on
tasks like codon-level translation and splicing, respectively, while scBERT (Yang et al., 2022) tar-
gets single-cell RNA-seq data annotation. Despite these advancements, RNA transformer models
share similar challenges to their DNA counterparts, particularly when handling long sequences and
maintaining computational efficiency. These limitations have fueled the rise of state-space models
(SSMs) as an alternative, offering reduced time complexity and improved scalability for long-range
dependencies.

SSM-based genomic language models. In response to the limitations of transformers, state-space
models (SSMs) have gained traction in genomic language modeling, offering the ability to handle
longer context lengths with reduced time complexity. Models such as HyenaDNA (Nguyen et al.,
2024b) and Caduceus (Schiff et al., 2024) have proven effective in sequence modeling tasks, capi-
talizing on the strengths of SSMs. Going beyond sequence modeling, EVO (Nguyen et al., 2024a)
showcases the potential of an SSM-based model for whole-genome-scale DNA generation. These
developments underscore the increasing significance of SSMs in genomic research, offering pow-
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erful tools for large-scale sequence analysis and generation. In addition to DNA, EVO has learned
information encoded in other modalities including RNA.

Mixture of Experts. Mixture of Experts (MoE) enhances model performance by a set of experts
focusing on different aspects of input data. The concept was first introduced in Jacobs et al. (1991),
and extended to hierarchical settings in Jordan & Jacobs (1994). In the Natural Language Pro-
cessing (NLP) domain, Shazeer et al. (2017) introduced a sparsely-gated MoE layer, with only a
subset of experts activated for each input, thereby improving efficiency and scalability, successfully
scaled MoE to a 137 billion parameter LSTM. Building on this idea, Lepikhin et al. (2021) scaled
up transformers beyond 600 billion parameters with GShard, demonstrating MoE’s effectiveness
in large-scale models. The Switch Transformer (Fedus et al., 2021) simplified gating to select a
single expert, leading to a 1.6T-parameter MoE. Additionally, GLaM (Du et al., 2021) uses sparse
activation to further scale up, matching GPT-3 quality with only one-third of the energy. Finally,
Zuo et al. (2022) refined the activation process proposed with stochastic experts, enhancing sparsity
management. In summary, MoE enhances model performance by dynamically activating the most
relevant experts and allows efficient scaling of models and datasets while reducing computational
effort.

3 METHODOLOGY

We introduce a novel module CodonMoE that can be integrated into state-of-the-art pretrained SSMs
and attention-based models designed for DNA sequence analysis for adapting them for RNA anal-
yses. The CodonMoE processes these hidden states from those DNA backbones by restructuring
the input into codons (three-nucleotide sequences) and applying an Adaptive Mixture of Codon
Reformative Experts. Each expert within the CodonMoE is designed to identify and emphasize
various biological signals, enabling the model to capture both codon-level and broader sequence
patterns. Furthermore, we demonstrate that the CodonMoE is a universal approximator at the codon
level. Given sufficient expert capacity, the CodonMoE can approximate any continuous function that
maps codon sequences to specific target properties with arbitrary precision when combined with the
pretrained backbone model. In general, this architecture effectively translates DNA models to RNA
contexts, allowing for robust analysis of RNA sequences.

3.1 MODEL OVERVIEW

As illustrated in Figure 2, our architecture is underpinned by a state-of-the-art, pretrained state space
model (SSM) originally designed for DNA language analysis. This robust framework is augmented
by the CodonMoE, a modular enhancement specifically developed to translate DNA-centric models
for RNA sequence analysis. The base model extracts hidden states, capturing patterns encoded
within DNA sequences. These states are subsequently processed by the CodonMoE, which employs
a novel approach to adapt these DNA-derived patterns for mRNA contexts. This adaptation process
begins with the grouping of inputs into codons which is followed by the deployment of our Adaptive
Mixture of Codon Reformative Experts, each expert fine-tuned to recognize and amplify different
biological signals inherent in the sequence data. This model will be introduced in detail in this
section.

3.2 CODONMOE: ADAPTIVE MIXTURE OF CODON REFORMATIVE EXPERTS

Sample-wise dynamic codon-level representation. The CodonMoE processes representations of
codons, which are groups of three nucleotides in genetic sequences encoding amino acids. The in-
put to CodonMoE consists of nucleotide representations with dynamic dimensionality, allowing it
to accommodate input samples of varying sequence lengths. These inputs are reshaped into codon
groups, preserving the structure of the genetic code is preserved. The CodonMoE slices this se-
quence to extract codon-related segments and reshapes them to facilitate further processing.

Adaptive Mixture of Reformative Codon Experts. One of the core CodonMoE functionalities
is handled by Adaptive Mixture of Codon Experts layers, where multiple experts, each specializing
in different aspects of the codon data, process these representations. The transformation is given by:
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Figure 2: Overview of CodonMoE and proposed framework. The architecture combines pretrained
DNA-focused state space models with a novel CodonMoE module. This CodonMoE adapts DNA-
derived patterns for RNA analysis by grouping inputs into codons and using a Mixture of Experts
(MoE) approach. This design enables effective translation of DNA models for RNA sequence anal-
ysis, leveraging the strengths of both domains.

yMoE
codons =

K∑
k=1

gk(x)Ek(ycodons),

where gk(x) is the gating mechanism that determines the contribution of each expert Ek. This
dynamic expert selection allows the MoE to process the codon data in multiple ways, with the
gating system controlling which perspective should dominate.

Dynamic reshaping and contextualization. After processing by the experts, the codon-level rep-
resentations are reshaped to match the original sequence length and structure. The CodonMoE
contextualizes this information, enriching it with surrounding data before recombining it with the
rest of the input sequence:

youtput = yreshaped + yMoE
codons.

This process ensures that codon-level information is properly embedded and aligned within the orig-
inal sequence, helping the model recognize both local codon-specific patterns and broader genetic
patterns.

For more detailed specification of the algorithm, please refer to the appendix A.1.

3.3 CODONMOE IS A UNIVERSAL APPROXIMATOR AT CODON LEVEL

We show that given sufficient capacity, our proposed CodonMoE can approximate any function
that maps codon sequences to target properties with arbitrary precision when integrated with the
pretrained backbone model.

Definitions and Preliminaries We begin by defining the key concepts.

DNA Sequence Space (X ) is defined as the set of all possible DNA sequences composed of nu-
cleotides from the alphabet {A,C,G, T}. In our framework, the RNA nucleotide ‘U’ is systemat-
ically replaced with the DNA nucleotide ‘T’, aligning RNA codons with their corresponding DNA
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representations. This substitution ensures compatibility between RNA and DNA sequences within
our model. Codon Space (C) consists of all possible codons, where each codon is a sequence of
three nucleotides from {A,C,G, T}. Formally, C = {A,C,G, T}3. Function Class (F) comprises
all continuous functions f : Cn → R that map sequences of n codons to specific target properties,
where n is the number of codons in the sequence.

Our modeling approach is structured around a two-stage paradigm. Initially, a Backbone Model
h : X → RL×D is pretrained on DNA sequences, where L represents the sequence length and D
the embedding dimension. This pretraining phase equips the backbone with foundational knowledge
of genetic sequences and their inherent patterns. We directly use the pretrained models on DNA
sequences. Subsequently, the CodonMoE serves as an adapter to this pretrained backbone model.
Formally, the CodonMoE is a function g : RL×D → R that is fine-tuned on mRNA sequences to
specialize the model for mRNA-specific tasks. This fine-tuning process involves training the adapter
using mRNA sequences, which have been converted by replacing ‘U’ with ‘T’, thereby maintaining
consistency with the DNA-based backbone.

Theorem 3.3 Let C = {A,C,G, T}3 be the codon space, and let F = {f : Cn → R |
f is continuous} be the class of target functions. Consider a pretrained backbone model h : X →
RL×D, where X = {A,C,G, T}∗, and an adapter CodonMoE g : RL×D → R structured as a dense
MoE with K experts. Assume the following conditions hold:

1. Expert Capacity: Each expert Ek : RD → RD′
within the MoE is a neural network

capable of uniformly approximating any continuous function on compact subsets of RD.
2. Gating Mechanism: The gating network G : RD → ∆K (where ∆K is the K-simplex)

assigns non-negative weights gk(zi) to each expert based on the input zi ∈ RD, satisfying∑K
k=1 gk(zi) = 1.

3. Embedding Representation: Each DNA sequence x ∈ X is partitioned into codons
(c1, c2, . . . , cn), and the backbone model generates embeddings h(x) ∈ RL×D, where
L = 3n (assuming each codon is represented by three consecutive embeddings).

Then, for any function f ∈ F and for any ϵ > 0, there exists a number of experts K and correspond-
ing parameters for the CodonMoE such that, for all x ∈ Cn, the approximation error satisfies∣∣∣∣∣f(c1, c2, . . . , cn)− g

(
n∑

i=1

K∑
k=1

gk(zi) · Ek(zi)

)∣∣∣∣∣ < ϵ,

where zi = [h(ci)] ∈ RD is codon ci represented by averaging three nucleotide embeddings.

For technical proof of Theorem 3.3, please refer to the appendix A.2.

4 EXPERIMENTS

4.1 TASKS AND DATASETS

mRFP expression dataset. We have used the monomeric Red Fluorescent Protein (mRFP) ex-
pression dataset generated by Nieuwkoop et al. (2023). This dataset consists of 1,459 unique mRFP
variants, each with paired expression levels (the target variable) and sequence data. These vari-
ants are derived from three codon-randomized libraries with varying codon adaptation index (CAI)
biases, allowing for analysis of how sequence variations impact mRFP expression.

SARS-Cov-2 vaccine degradation dataset. For our analysis of mRNA design principles for
SARS-CoV-2 vaccines, we have used the comprehensive dataset generated by Leppek et al. (2022).
This dataset contains 2,400 samples, with each sample including data on vaccine stability or degra-
dation (the target variable) and associated sequence characteristics, providing insight into factors
affecting mRNA vaccine durability.

Both datasets were selected to evaluate the performance of our models and are the same as several
used in the CodonBERT paper (Li et al., 2024), facilitating direct comparison across key mRNA-
related prediction tasks.
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For more details of the datasets, please refer to the appendix section A.3.

4.2 EXPERIMENTAL SETTINGS

For each dataset, two SSM-based backbones including Caduceus and HyenaDNA and one attention-
based backbone GPN-MSA are tested with different variants of CodonOperator. The baseline ex-
periments for DNA backbone feature analysis use various regressors such as MLP and XGBoost,
with specified learning rates and epochs for certain models. For more detailed experimental config-
urations and parameters, please refer to the appendix section A.3 and A.4.

4.3 MAIN RESULTS

The table presented (Table 1) offers comparisons of state-of-the-art codon-based RNA and DNA
language models, with a specific focus on enhancements from both computational cost and per-
formance aspects provided by the CodonMoE. Metrics for evaluation include the Spearman’s rank
Correlation for the SARS-CoV-2 vaccine degradation and mRFP expression datasets, which mea-
sures the models’ ability to accurately capture and predict biologically relevant patterns. A high
Spearman’s rank correlation indicates that the model effectively ranks biological variables in align-
ment with experimental observations, thus validating its predictive power in complex biological
processes.

The CodonMoE’s integration into existing DNA models demonstrates marked improvements in
mRNA analyses, as indicated by Spearman’s rank correlation metrics. The integration of the Codon-
MoE transforms diverse DNA models into significantly more powerful tools for mRNA analysis.
This is evident from the performance leaps observed in models like HyenaDNA-CodonMoE and
Caduceus-CodonMoE, where the CodonMoE not only amplifies their inherent capabilities but also
enables them to rival or surpass state-of-art codon-based RNA models in performance with much
fewer model parameters, which are reduced by above 80% compared with attention-based mRNA
specific state-of-art models.

4.3.1 RNA-BASED BENCHMARK

The authors of CodonBERT (Li et al., 2024) evaluated three prominent RNA-based models, each of
which exhibits quadratic time complexity due to their reliance on self-attention mechanisms. The
first model, RNABERT + TextCNN (Akiyama & Sakakibara, 2022; Li et al., 2024), integrates a
pretrained RNABERT architecture with a TextCNN layer tailored for downstream tasks. Despite
having fewer than 20 million parameters, this model demonstrated competitive performance in both
RNA-related tasks.

In contrast, RNA-FM + TextCNN (Chen et al., 2022; Li et al., 2024), with over 80 million param-
eters, leverages a larger architecture combining RNA-FM pretraining with a TextCNN layer. This
more extensive architecture demonstrated an enhanced capacity for sequence feature extraction, per-
forming better in tasks requiring greater complexity.

Finally, CodonBERT (Li et al., 2024), specifically optimized for codon-based RNA tasks, emerged
as the top-performing RNA language model among our baselines. This model’s fine-grained un-
derstanding of codon patterns positions it as the leading benchmark for RNA-specific downstream
tasks, though it has quadratic time complexity and a large parameter count.

4.3.2 CODONMOE LEADS TO COMPUTATIONAL EFFICIENCY AND PERFORMANCE
SUPERIORITY OVER DNA MODELS

Base models and enhanced models with CodonMoE. The GPN-MSA (Benegas et al., 2023) and
Caduceus (Schiff et al., 2024) models, in their standard configurations without the CodonMoE en-
hancements, exhibit moderate-to-low performance metrics. Specifically, the Caduceus model shows
a notable underperformance in predicting SARS-CoV-2 vaccine degradation outcomes. Integration
of the CodonMoE significantly improves both models. GPN-CodonMoE and Caduceus-CodonMoE
display substantial improvements in their Spearman scores, illustrating the CodonMoE’s efficacy in
enhancing the capabilities of DNA-based models. The HyenaDNA model (Nguyen et al., 2024b)
exhibits variable outcomes in its standard and enhanced forms. The integration of the CodonMoE
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(HyenaDNA-CodonMoE) markedly boosts its performance, achieving the highest Spearman corre-
lations in the group. This significant enhancement in processing mRNA sequences underscores the
computational efficiency impact of the framework, which includes our CodonMoE.

Computational efficiency and parameter efficiency. Both the Caduceus and HyenaDNA mod-
els, even when augmented with the CodonMoE, maintain a linear or subquadratic time complexity.
This characteristic is highly advantageous, enabling the efficient processing of extensive genomic
datasets. Enhanced models, such as Caduceus-CodonMoE and HyenaDNA-CodonMoE, not only
perform well but also maintain a minimal parameter footprint, with fewer than 20 million parame-
ters. This efficiency highlights their potential for scalable deployment in diverse genomic applica-
tions.

Based on the aforementioned findings, we infer that CodonMoE-augmented models benefit from
efficient codon-level embeddings, which allow the models to capture the functional differences be-
tween codons and their impact on mRNA properties. This enables the model to predict which
sequences are optimal for high protein expression. The models efficiently acquire knowledge re-
garding the contextual interaction of codons within a larger mRNA sequence, with the support of
SSM architectures. This is crucial because the secondary structure of the mRNA can be influenced
by the modification of a single codon, which in turn affects the stability and translation of the mRNA.

Meanwhile, as indicated in Table 1, SSMs are designed to handle long sequences, making them ideal
for processing the long contexts required to model codon interactions effectively. This is critical
for understanding the secondary structure of mRNA, where codon interactions over long distances
significantly influence folding and stability. The ability of SSMs to capture these dependencies effi-
ciently provides a substantial edge over traditional models, which often struggle with computational
costs and context limitations in long-range sequence tasks.

Table 1: Evaluation of computational complexity and Spearman’s rank correlation metrics across
RNA and DNA language models: delineating the impact of CodonMoE integration on model per-
formance and parameter efficiency. CodonMoE suffix indicates models enhanced with our proposed
CodonMoE module. Each data set is split into training, validation, and testing with a 0.7, 0.15, and
0.15 ratio, using the same split set as in the CodonBERT (Li et al., 2024). The metric is Spearman’s
rank Correlation.

Method Modality Time Complexity Model Parameters Vaccine Degradation mRFP Expression

RNA Models
RNABERT+TextCNN RNA quadratic <20M 0.64 0.40
RNA-FM+TextCNN RNA quadratic >80M 0.74 0.80
CodonBERT RNA quadratic >80M 0.77 0.85

DNA Models
GPN-MSA DNA quadratic >80M 0.55 0.33
GPN-MSA-CodonMoE DNA quadratic >80M 0.77 0.79
Caduceus DNA linear <20M 0.56 0.49
Caduceus-CodonMoE DNA linear <20M 0.80 0.80
HyenaDNA DNA subquadratic <20M 0.69 0.44
HyenaDNA-CodonMoE DNA subquadratic <20M 0.81 0.84

4.4 ABLATION STUDY

4.4.1 COMPARATIVE ANALYSIS OF CODONOPERATOR VARIANTS IN RNA MODELING

To test whether more complex frameworks like the MoE are necessary, we implemented and eval-
uated a simpler approach. We developed a method called CodonMean, which computes the mean
of codon features derived from three nucleotide embeddings extracted from the backbone models.
This method acted as a lightweight and parameter-efficient adapter. While CodonMean yielded
improvements on key mRNA tasks compared to using pure DNA backbones, it struggled to reach
the performance levels of existing codon-based RNA models that typically leverage attention-based
mechanisms. This led us to explore more sophisticated approaches, ultimately resulting in the de-
velopment of CodonMoE as a more advanced and effective solution.
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Table 2: CodonOperator variant comparison on mRFP ex-
pression dataset.

GPN-MSA HyenaDNA Caduceus

CodonMean 0.740 0.765 0.766
CodonMoE 0.790 0.837 0.802

For the mRFP expression task, the
experiments were conducted on three
different DNA models: GPN-MSA,
HyenaDNA, and Caduceus, with
two versions of the CodonOpera-
tor: CodonMean and CodonMoE.
As shown in Table 3, the integration
of either codon operator significantly
improved the performance of all these DNA models. CodonMean, which employs a simple codon-
mean aggregation, produced strong results. CodonMoE, which uses a more sophisticated Mixture
of Experts (MoE) mechanism to better capture codon-level dependencies, outperformed the Codon-
Mean across all models.

Table 3: CodonOperator variant comparison on SARS-CoV-
2 vaccine degradation dataset.

GPN-MSA HyenaDNA Caduceus

CodonMean 0.729 0.789 0.755
CodonMoE 0.770 0.812 0.795

In the SARS-CoV-2 vaccine degrada-
tion task, we further validated the ap-
plicability of codon operators in en-
abling DNA models to perform well
in mRNA-focused tasks. As with the
mRFP task, both codon operators ver-
sions were tested across GPN-MSA,
HyenaDNA, and Caduceus models
(Table 3). CodonMean delivered a
solid performance. However, CodonMoE once again showed its superiority, achieving the high-
est scores across all models.

The results from both tasks underscore the flexibility and impact of a codon operator. As a plug-
and-play module, CodonOperator can be integrated into nucleotide-level DNA models, enabling it
to effectively handle RNA downstream tasks. This approach not only enhances the predictive power
of DNA models but also brings them to the forefront of RNA-specific challenges.

4.4.2 EVALUATING THE EFFECTIVENESS OF PRETRAINED DNA MODEL FEATURES FOR
RNA TASKS

To further investigate the effectiveness of the features extracted by prevailing DNA models for RNA-
related tasks without using a codon operator, we conducted ablation studies using two regression
methods: MLP and XGBoost. These models were applied to features directly extracted from pre-
trained GPN-MSA, HyenaDNA, and Caduceus models that were not augmented with any codon op-
erator. The goal of this ablation study was to evaluate how well the raw features from the pretrained
models perform in downstream tasks when processed by external regression models, as opposed to
using our tunable CodonMoE integrated into diverse nucleotide-level DNA backbones.

Table 4: Evaluation of DNA pretrained model feature effec-
tiveness on mRFP expression dataset using MLP and XG-
Boost.

GPN-MSA HyenaDNA Caduceus

MLP 0.330 0.439 0.490
XGBoost 0.479 0.512 0.476

In the mRFP expression task pre-
sented in Table 4, we extracted
features from the pretrained GPN-
MSA, HyenaDNA, and Caduceus
models and applied them to both
MLP and XGBoost models. The
results indicated that XGBoost was
more effective when using fea-
tures from GPN-MSA and Hye-
naDNA, where it demonstrated bet-
ter performance overall, which showed a stronger capability in handling the features
extracted from HyenaDNA, suggesting that its more complex, decision tree-based ar-
chitecture is better aligned with the structure of HyenaDNA’s feature representations.
For the SARS-CoV-2 vaccine degradation task, XGBoost consistently outperformed MLP across
all three models as shown in Table 5. This indicates that XGBoost’s ability to handle complex
interactions between features made it more suitable for this particular task. MLP, while performing
reasonably well with HyenaDNA, was less effective with the features extracted from GPN-MSA and
Caduceus.
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Table 5: Evaluation of DNA pretrained model feature effec-
tiveness on SARS-CoV-2 vaccine degradation dataset using
MLP and XGBoost.

GPN-MSA HyenaDNA Caduceus

MLP 0.572 0.695 0.560
XGBoost 0.750 0.711 0.737

Analysis. These ablation studies
reveal the strength and limitations
of the feature representations learned
by the pretrained DNA models for
mRNA tasks. While MLP exhibits
some capability to process these fea-
tures, particularly for GPN-MSA and
Caduceus in the mRFP expression
task, XGBoost generally performed
better, especially in the SARS-CoV-2 degradation task. This supports the idea that XGBoost’s tree-
based architecture is better suited for handling the structured and possibly sparse features generated
by DNA-pretrained models, offering more stable and higher performance without requiring exten-
sive tuning. The results can be firstly attributed to XGBoost being more robust and less sensitive
to hyperparameter tuning compared to MLPs, which require careful optimization of neural network
parameters for optimal performance. Secondly, while the raw features from pretrained DNA models
contain some information about RNA, directly applying DNA models to mRNA analyses is sub-
optimal for downstream tasks (compare Table 4 and Table 5 with Table 1). This is partly because
DNA models have not been trained to capture mRNA-specific properties, instead focusing on more
fundamental nucleotide characteristics and DNA-specific interactions and functions.

4.4.3 CONSISTENT PERFORMANCE OF CODONMOE ACROSS DIFFERENT MODELS

Integrating the CodonMoE module into the GPN-MSA, HyenaDNA, and Caduceus models resulted
in significant performance improvements across critical genomic prediction tasks as presented in
Figure 1. Additionally, the results indicate that standard DNA models perform poorly on mRNA
tasks, which is expected since these models are pretrained on DNA data and capture sequence prop-
erties distinct from mRNA. However, with our proposed CodonMoE, a codon-aware, plug-and-
play module, the performance of the models consistently improves by a significant margin. This
highlights the effectiveness of codon-based adapters, which not only leverage the rich information
within DNA models but also enhance mRNA analysis capabilities. In all cases, the models exhib-
ited enhanced accuracy in predicting mRNA expression levels and vaccine degradation. Moreover,
the feature visualization comparisons between the backbones with and without CodonMoE align
closely with the results presented in Figure 1. For a more detailed discussion of these visualization
comparisons and more experiments, please refer to Appendix A.5 and Appendix A.6.

5 CONCLUSION

Our theoretical and experimental results highlight the characteristics of CodonMoE. Firstly, Codon-
MoE is highly adaptable to various DNA model architectures, such as state space models (SSMs) and
attention-based models, providing flexibility across different computational frameworks. Moreover,
it is also applicable to DNA models trained on datasets from diverse species, making it well-suited
for generalized biological contexts without being restricted to species-specific data. Furthermore,
CodonMoE performs well in mRNA-related tasks, significantly enhancing the performance of DNA
backbones and providing comparable or even superior performance to RNA-specific models across
several downstream tasks, while reducing computational burden. Its versatility allows it to main-
tain high performance even when applied to species not present in the DNA model training dataset,
offering broad utility across multiple species in mRNA analyses.

Our findings delineate an approach for directing the formation of gLMs toward DNA models, which
can then be modified for mRNA applications. The predominance of DNA data over assembled
mRNA data, coupled with the ability to concentrate modeling efforts on a single model class is
expected to enhance DNA models for mRNA tasks at reduced computational expense, representing
a crucial advancement in the unification of genomic language modeling.
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A APPENDIX

A.1 ALGORITHM PSEUDOCODE

The proposed CodonMoE whose pseudocode is given in Algorithm 1, efficiently analyzes mRNA
sequences by leveraging a novel MoE model tailored for codon-level feature extraction. This method
is designed to operate on the hidden representations produced by a base model trained on DNA
sequences, improving mRNA sequence analysis through a codon-level adapter. Below, we outline
the core components in this algorithm.

Input and hidden representation The algorithm takes as input hidden states H ∈
Rbatch size×seq len×dmodel , where H is the latent representation generated by a base model trained on
nucleotide-level tokenized DNA sequences. These hidden states encapsulate nucleotide-level pat-
terns in the DNA sequence but lack the explicit codon-level representation required for understand-
ing mRNA translation and regulation. CodonMoE restructures these hidden states to focus on codon-
level features for better-adapting DNA models for mRNA analysis.

Codon aggregation and reshaping mRNA sequences consist of codons, which are triplets of
nucleotides fundamental to protein synthesis. The hidden states H are reshaped into groups of
three consecutive hidden vectors to form codon-level representations. Specifically, the tensor is
reshaped into [B,S/3, 3d], where each codon consists of three concatenated hidden vectors. This
step captures interactions between nucleotides within each codon.

Mixture of Experts (MoE) for codon-level feature learning At the core of the CodonMoE is a
MoE mechanism that selects from multiple expert networks to process codon-level representations
dynamically. Each codon is processed by num experts linear sub-networks (experts), where each
expert specializes in extracting different semantic aspects of the codon. The outputs of these experts
are weighted by a softmax gating mechanism, conditioned on the codon input. This ensures the
CodonMoE mechanism is highly adaptable to varying contexts within RNA sequences.

Codon-level expansion and integration After extracting codon-level features from the MoE,
these features are expanded to match the original sequence length by repeating the codon features
three times, once for each nucleotide in the codon. This expanded representation is reshaped back
to [B,S − 1, d] and added element-wise to the original hidden states. The result is an enhanced
representation that incorporates both nucleotide-level and codon-level information, improving the
model’s ability to capture local patterns and broader codon interactions.

Regularization and transformation To ensure robust learning and prevent overfitting, the algo-
rithm applies a series of regularization and transformation steps:

• Layer normalization: Ensures stability during training by normalizing the feature map.
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• GELU activation: Introduces non-linearity to enhance the model’s ability to learn complex
relationships between codon sequences and biological function.

• Dropout: Prevents overfitting by randomly dropping units during training, particularly
useful for high-dimensional biological data.

The final feature map is then flattened and passed through a linear transformation, producing a
compact feature vector Y that can be used for downstream tasks, such as mRNA classification or
regression.

Algorithm 1 CodonMoE for mRNA Sequence Analysis

1: Input: Hidden states H ∈ Rbatch size×seq len×dmodel

2: Output: Feature vector Y
3: Hyperparameters: num experts← 4, dropout rate← 0.1
4: function MIXTUREOFEXPERTS(X)
5: for i = 1 to num experts do
6: experti ← Sequential(Linear(3d, 3d),GELU,Linear(3d, d))
7: outputs[i]← experti(X)
8: end for
9: gate← Softmax(Linear(3d, num experts)(X))

10: return
∑num experts

i=1 outputs[i]⊙ gate[:, :, i]
11: end function
12: function CODONMOE(H)
13:
14: (B,S, d)← shape(H)
15: Y ← H[:, : S − 1, :]
16: codons← Reshape(Y, [B,S//3, 3d])
17: moe← MixtureOfExperts(codons)
18: expanded← Repeat(moe, 3, dim = 1)
19: expanded← Reshape(expanded, [B,S − 1, d])
20: Y ← Y + expanded
21: Y ← Dropout(GELU(LayerNorm(Y )), dropout rate)
22: Y ← Linear((S − 1)d, d)(Flatten(Y ))
23: Y ← Dropout(GELU(LayerNorm(Y )), dropout rate)
24: return Linear(d, 1)(Y )
25: end function
26: function ANALYZE MRNA(sequence)
27:
28: tokens← Tokenize(sequence)
29: hidden← BaseModel(tokens)
30: return CodonMoE(hidden)
31: end function

A.2 PROOF OF THEOREM 3.3

We aim to show that the CodonMoE, functioning as an adapter to the pretrained DNA backbone h,
is a universal approximator for any function f ∈ F , where F is the class of continuous functions
mapping codon sequences to target properties.

Let x ∈ X be a sequence partitioned into n codons:

x = (c1, c2, . . . , cn), ci ∈ C.

The backbone model h : X → RL×D with L = 3n generates embeddings:

h(x) = [e1, e2, . . . , eL]
⊤ ∈ RL×D.

Each codon ci is represented by averaging three nucleotide embeddings:

zi =
e3i−2 + e3i−1 + e3i

3
∈ RD.
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The CodonMoE applies a Mixture of Experts model to each zi:

fMoE(zi) =

K∑
k=1

gk(zi) · Ek(zi),

where:

gk(zi) =
exp(ϕk(zi))∑K
j=1 exp(ϕj(zi))

,

with gating functions ϕk : RD → R, and expert networks Ek : RD → Rm.

By the Universal Approximation Theorem (Hornik et al., 1989), for each fk and any ϵ > 0, there
exists Ek such that:

∥Ek(zi)− fk(zi)∥ <
ϵ

Kn
,

where fk ∈ C(RD,Rm).

Define the overall network function:

F (x) =

n∑
i=1

fMoE(zi) =

n∑
i=1

K∑
k=1

gk(zi)Ek(zi).

For the target function f ∈ F , assume:

f(x) =

n∑
i=1

fi(zi), fi ∈ C(RD,Rm).

Then, the approximation error is:

∥F (x)− f(x)∥ =

∥∥∥∥∥
n∑

i=1

K∑
k=1

gk(zi)Ek(zi)−
n∑

i=1

fi(zi)

∥∥∥∥∥ .
Assuming

∑K
k=1 gk(zi) = 1 and gk(zi) ≥ 0, we have:

∥F (x)− f(x)∥ ≤
n∑

i=1

K∑
k=1

gk(zi)∥Ek(zi)− fi(zi)∥ <
n∑

i=1

K∑
k=1

gk(zi)
ϵ

Kn
=

ϵ

K
.

The backbone model h ensures that embeddings zi capture essential genetic information:

h : X → RL×D, zi = P(h(x)),

where P denotes the partitioning into codon embeddings via averaging.

Combining the above, for any f ∈ F and ϵ > 0, there exists a CodonMoE network such that:

∥F (x)− f(x)∥ < ϵ.

Thus, the CodonMoE integrated with the pretrained backbone h satisfies:

F =

n∑
i=1

K∑
k=1

gk(zi)Ek(zi) ≈ f(x), ∀f ∈ F .

Therefore, the CodonMoE module, when combined with the pretrained Backbone Model h, serves
as a universal approximator for any continuous function mapping codon sequences to target proper-
ties within the class F .
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A.3 ADDITIONAL EXPERIMENTAL DETAILS

Experimental settings. Table 6 outlines the key components and hyperparameters used for dif-
ferent backbone models, highlighting the settings in regressor types and training parameters such as
learning rates and the number of epochs. Specifically, it details the setup for the mRFP expression
dataset, using Caduceus and HyenaDNA as primary backbones with variations such as Caduceus-
CodonMean and Caduceus-CodonMoE, indicating different CodonMoE variations within the same
framework. Specific configurations such as the backbone sequence length, model dimensions, num-
ber of layers, and learning rates are listed, with pure backbone models integrating machine learning
regressors like MLP and XGBoost. It also outlines settings for the SARS-CoV-2 vaccine degra-
dation dataset with similar backbone models but slightly adjusted parameters, such as a different
sequence length for the HyenaDNA models. Both tables showcase the learning rates and epochs
where applicable, providing a comprehensive view of how each model is tuned for its respective
task.

Table 6: Summary of experimental settings for SARS-CoV-2 vaccine degradation dataset and mRFP
expression dataset.

Backbone Model Backbone Name Regressor Learning Rate Epochs
Caduceus Caduceus caduceus-ps seqlen-1k d model-256 n layer-4 lr-8e-3 mlp - -
Caduceus Caduceus caduceus-ps seqlen-1k d model-256 n layer-4 lr-8e-3 xgboost - -
Caduceus Caduceus-CodonMean caduceus-ps seqlen-1k d model-256 n layer-4 lr-8e-3 - 0.0005 100
Caduceus Caduceus-CodonMoE caduceus-ps seqlen-1k d model-256 n layer-4 lr-8e-3 - 0.0005 100

HyenaDNA HyenaDNA hyenadna-small-32k-seqlen mlp - -
HyenaDNA HyenaDNA hyenadna-small-32k-seqlen xgboost - -
HyenaDNA HyenaDNA-CodonMean hyenadna-small-32k-seqlen - 0.0005 100
HyenaDNA HyenaDNA-CodonMoE hyenadna-small-32k-seqlen - 0.0001(0.001) 100

Dataset details. For the mRFP expression dataset, the researchers in the study by Nieuwkoop et al.
(2023) constructed low (CAI L), medium (CAI M), and high (CAI H) CAI libraries and expressed
them in Escherichia coli DH10B. They quantified mRFP expression using both flow cytometry and
microplate reader measurements, normalizing fluorescence to account for variations in cell density.
The full-length coding sequence (675 bp) for each variant was determined by Sanger sequencing.
They applied quality control criteria to ensure data integrity, excluding samples with low-quality
sequencing reads, amino acid mutations, mixed populations, or significant deviations between mea-
surement methods. This curation process resulted in a high-quality dataset that provides a founda-
tion for investigating the determinants of translation efficiency in E. coli. We accessed this dataset
through the public repository as provided by the original authors and used it as the basis for our
machine learning approach to predict protein production levels from mRNA sequence features.

For the SARS-Cov-2 vaccine degradation dataset, this dataset includes mRNA constructs encoding
a multi-epitope vaccine (MEV) candidate based on SARS-CoV-2 antigens. The key component
of this dataset that we focus on in our experiments is the in-cell mRNA stability via time-course
degradation experiments in HEK293T cells. This dataset, as described by Leppek et al. (2022),
provides a resource for investigating the relationships between mRNA sequence, structure, stability,
and expression efficiency in the context of SARS-CoV-2 vaccine design.

A.4 COMPUTATIONAL RESOURCES

Model training and inference are accomplished on two A100 and two A6000 GPUs.

A.5 FEATURE EMBEDDING VISUALIZATION

SARS-CoV-2 vaccine degradation task. As shown in Figure 3, the UMAP and t-SNE visualiza-
tions highlight the CodonMoE model’s superior ability to capture fine-grained codon-level patterns
and dynamically specialize through its Adaptive Mixture of Experts, resulting in more distinct and
diverse clusters compared to the backbone model. CodonMoE’s expert system allows for better sep-
aration of genetic features, capturing both local codon-specific and broader sequence patterns. This
leads to smoother transitions in the continuous target values, as seen in the clearer color gradients
in the t-SNE plot, indicating that CodonMoE is able to approximate complex relationships between
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Figure 3: t-SNE and UMAP comparison between features from HyenaDNA model and CodonMoE-
enhanced HyenaDNA model on SARS-CoV-2 vaccine degradation dataset.

codon sequences and degradation rates. In contrast, the backbone model’s visualizations show more
compressed clusters and limited separation, suggesting that it struggles with representing nuanced
degradation patterns.

mRFP expression task. In Figure 4, the t-SNE and UMAP visualizations highlight the improved
performance of the CodonMoE-enhanced HyenaDNA model compared to the backbone model on
the mRFP expression dataset. In the t-SNE plot, the backbone model shows tight clusters with
limited spread, indicating that it struggles to differentiate between various expression levels, lead-
ing to more uniform representations. In contrast, CodonMoE demonstrates broader, more distinct
clusters, reflecting its ability to capture finer differences in mRFP expression levels, as seen in the
smoother color gradient transitions. Similarly, the UMAP visualization reveals that the backbone
model’s clusters are tightly packed, suggesting less feature diversity, whereas CodonMoE’s clusters
are more spread out, indicating richer, more nuanced representations. This enhanced separation and
feature diversity in CodonMoE can be attributed to its architecture, which allows it to capture both
local codon-level patterns and broader sequence features, resulting in better predictions of continu-
ous targets like mRFP expression levels. Figure 5 shows that the CodonMoE-enhanced GPN-MSA
model demonstrates clearer and more distinct clustering. In both t-SNE and UMAP visualizations,
the CodonMoE-enhanced backbone features tighter and more defined clusters with a pronounced
variation in metric values, suggesting a more effective differentiation.
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Figure 4: t-SNE and UMAP comparison between features from HyenaDNA model and CodonMoE-
enhanced HyenaDNA model on mRFP expression dataset.

Figure 5: t-SNE and UMAP comparison between features from GPN-MSA model and CodonMoE-
enhanced GPN-MSA model on mRFP expression dataset.
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A.6 ADDITIONAL EXPERIMENTS: GPN-SS BACKBONE ENHANCED WITH CODONMOE

The GPN-SS (Genomic Pre-trained Network - Single Sequence) model (Benegas et al., 2023),
trained on single-species genomic data, uses convolutional layers to efficiently learn and predict
the impacts of genetic variants. This model focuses on analyzing single-species genomes without
the confounding effects of cross-species genomic variations, making it valuable for studies targeted
at species-specific genomic features. Table 7 shows the comparison of the GPN-SS and GPN-SS-
CodonMoE methods in terms of Spearman Rank Correlation metrics for vaccine degradation and
mRFP expression, highlighting the universal applicability of our designed module across different
backbone architectures and tasks.

Table 7: Evaluation of computational complexity and Spearman’s rank correlation metrics based on
GPN-SS model.

Method Modality Time Complexity Model Parameters Vaccine Degradation mRFP expression

GPN-SS DNA linear >50M 0.60 0.56
GPN-SS-CodonMoE DNA linear >50M 0.74 0.82

A.7 UPDATED MAIN TABLE WITH DETAILED PARAMETERS AND ENHANCED MODELS

In the updated main table (Table 8), we provide a comprehensive evaluation of computational
complexity and Spearman’s rank correlation metrics across various RNA models and CodonMoE-
enhanced DNA backbones. This update primarily focuses on comparing detailed backbone param-
eters, introducing a new framework, and detailing the performance improvements achieved through
our proposed modifications.

A significant addition to our evaluation is the introduction of the HyenaDNA-CodonMoETextCNN
framework. In this variant, the traditional MLPs within the CodonMoE module are replaced with
TextCNN architectures. This substitution leverages the strengths of convolutional neural networks
in capturing local patterns and hierarchical features within genomic data. By integrating TextCNN in
place of MLPs, the CodonMoE module becomes more adept at handling the sequential and spatial
dependencies inherent in DNA sequences. This architectural enhancement not only improves the
model’s ability to extract meaningful representations from the data but also maintains a balance
between computational efficiency and performance.

The introduction of the HyenaDNA-CodonMoETextCNN variant further elevates performance by ef-
fectively replacing the MLP with the TextCNN, resulting in more robust and accurate predictions.
This variant achieves performance levels that rival the top-performing RNA models while maintain-
ing lower computational complexity. The enhanced ability to capture intricate patterns within the
genomic data without a significant increase in model parameters underscores the effectiveness of the
CodonMoE module in optimizing both performance and efficiency.

Additionally, we provide detailed parameters for the primary frameworks under comparison, in-
cluding HyenaDNA-CodonMoE, HyenaDNA-CodonMoECNN, and HyenaDNA, evaluated for both
performance and parameter efficiency, alongside the top-performing RNA-specific model Codon-
BERT.

Overall, the updated evaluations confirm that the integration of the CodonMoE module is a robust
strategy for enhancing model performance across different DNA backbones. The introduction of
the HyenaDNA-CodonMoETextCNN framework, in particular, sets a new standard by balancing high
performance with computational efficiency. These advancements demonstrate the potential of our
proposed modifications in developing more scalable and effective language models for genomic
research, offering improved tools for understanding and manipulating genetic information with re-
duced computational overhead.
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Table 8: Evaluation of computational complexity and Spearman’s rank correlation metrics across
RNA and DNA language models: CodonMoE suffix indicates models enhanced with our proposed
CodonMoE module. Each data set is split into training, validation, and testing with a 0.7, 0.15, and
0.15 ratio, using the same split set as in the CodonBERT (Li et al., 2024). The metric is Spearman’s
rank Correlation.

Method Modality Time Complexity Model Parameters Vaccine Degradation mRFP Expression

RNA Models

CodonBERT RNA quadratic 81.7M 0.77 0.85
DNA Models

GPN-MSA DNA quadratic 85.7M 0.55 0.33
GPN-MSA-CodonMoE DNA quadratic 161.9M 0.77 0.79
GPN-MSA-CodonMoETextCNN DNA quadratic 115.0M 0.82 0.81
HyenaDNA DNA subquadratic 4.1M 0.69 0.44
HyenaDNA-CodonMoE DNA subquadratic 12.7M 0.81 0.84
HyenaDNA-CodonMoETextCNN DNA subquadratic 7.5M 0.84 0.85

A.8 ADDITIONAL EXPERIMENTS OF COMPARATIVE ANALYSIS OF CODONOPERATOR
VARIANTS: CODONMOETEXTCNN

As shown in Table 9 and Table 10, building upon CodonMoE, we introduced an additional variant,
CodonMoETextCNN, which replaces the MLP layers within CodonMoE with a Text Convolutional
Neural Network (TextCNN). The TextCNN configuration was adapted from RNAFMTextCNN and
RNABERTTextCNN, aiming to better capture local sequence patterns and enhance the model’s ability
to discern complex codon-level dependencies.

By replacing the MLP layers with TextCNN, CodonMoETextCNN leverages convolutional opera-
tions to effectively model local sequence patterns, a strategy adapted from RNAFMTextCNN and
RNABERTTextCNN. This architectural modification enhances the model’s ability to detect and utilize
fine-grained codon interactions, thereby improving overall predictive performance.

Table 9: CodonOperator variant comparison (including CodonMoETextCNN) on mRFP expression
dataset.

GPN-MSA HyenaDNA

CodonMean 0.740 0.765
CodonMoE 0.790 0.837
CodonMoETextCNN 0.808 0.851

Table 10: CodonOperator variant comparison (including CodonMoETextCNN) on SARS-CoV-2 vac-
cine degradation dataset.

GPN-MSA HyenaDNA

CodonMean 0.729 0.789
CodonMoE 0.770 0.812
CodonMoETextCNN 0.823 0.844

A.9 ADDITIONAL EXPERIMENTS ON EVALUATION OF DNA PRETRAINED MODEL FEATURE
EFFECTIVENESS

In this section, we explore the ability of DNA-pretrained backbones, specifically Caduceus and
HyenaDNA, to effectively generalize to mRNA-related tasks using a TextCNN framework. The
tasks evaluated include predictions on the SARS-CoV-2 vaccine degradation dataset and the mRFP
expression dataset. The scatter plots in Figure 6 provide a visual representation of the alignment
between actual and predicted values, with a trendline indicating overall correlation.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The SARS-CoV-2 vaccine degradation dataset serves as a proxy for evaluating the potential of DNA-
pretrained features to capture complex biological dependencies related to RNA sequence stability
and degradation. Both models demonstrate a clear trend of alignment between actual and predicted
values, reflecting the potential of DNA-derived features to transfer effectively to mRNA stability
prediction. Despite the inherent challenges of modeling degradation, as indicated by a wider spread
in predictions, the performance reflects the potential of pretrained DNA models to generalize beyond
their training domain to tasks with overlapping biological mechanisms, such as RNA stability. The
effectiveness of these features suggests that key structural and sequence-specific attributes learned
from DNA datasets are applicable to mRNA-related degradation tasks.

The mRFP expression dataset focuses on the predictability of gene expression levels based on un-
derlying sequence features. Both models achieve a closer alignment of predicted values to the actual
values compared to the degradation dataset. This suggests that the DNA-pretrained features can
be potentially effective at tasks involving expression prediction, where sequence features such as
promoter regions, codon optimization, and untranslated regions are critical. The high clustering
around the trendline demonstrates that these DNA backbones successfully capture sequence motifs
and structural patterns that are transferable to mRNA-related tasks. This finding aligns with the
hypothesis that DNA and RNA share significant overlapping biological motifs, enabling effective
transfer learning.

(a) Caduceus pretrained model feature effec-
tiveness on SARS-CoV-2 vaccine degradation
dataset.

(b) Caduceus pretrained model feature effective-
ness on mRFP expression dataset.

(c) HyenaDNA pretrained model feature effec-
tiveness on SARS-CoV-2 vaccine degradation
dataset.

(d) HyenaDNA pretrained model feature effec-
tiveness on mRFP expression dataset.

Figure 6: Evaluation of DNA pretrained model feature effectiveness on mRFP expression and
SARS-CoV-2 vaccine degradation dataset using TextCNN.

A.10 UPDATED ABLATION STUDIES (INCLUDING TEXTCNN)

In this section, we present the updated ablation studies (Table 12 and Table 11) that incorporate the
TextCNN architecture alongside the previously evaluated MLP and XGBoost models. These studies
assess the effectiveness of features extracted from DNA pretrained models—namely GPN-MSA,
HyenaDNA, and Caduceus—on two proposed datasets.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11 evaluates the performance of MLP, XGBoost, and TextCNN on the mRFP expression
dataset using features extracted from the DNA pretrained models. The results indicate that TextCNN
significantly outperforms both MLP and XGBoost across all three models, achieving the highest
Spearman’s rank correlation scores. Specifically, TextCNN exhibits a marked improvement in cor-
relation metrics, suggesting its superior ability to capture and leverage the intricate patterns within
the feature representations derived from the DNA models.

Similarly, Table 12 presents the evaluation on the SARS-CoV-2 vaccine degradation dataset. While
XGBoost remains the top performer for GPN-MSA, TextCNN surpasses XGBoost for HyenaDNA
and Caduceus, achieving the highest correlation scores. This indicates that TextCNN not only excels
in tasks where XGBoost previously dominated but also provides consistent performance improve-
ments across different DNA backbones. The ability of TextCNN to handle sequential and spatial
dependencies more effectively than traditional regression models like MLP and XGBoost highlights
its potential as a superior architecture for downstream genomic tasks.

The updated ablation studies conclusively demonstrate that the inclusion of TextCNN within the
CodonMoE module significantly enhances the performance of DNA pretrained models on relevant
genomic tasks. These findings highlight the importance of architectural choices in model design
and support the efficacy of our proposed CodonMoE enhancements in achieving a balance between
performance and computational efficiency.

Table 11: Evaluation of DNA pretrained model feature effectiveness on mRFP expression dataset
using MLP, XGBoost and TextCNN.

GPN-MSA HyenaDNA Caduceus

MLP 0.330 0.439 0.490
XGBoost 0.479 0.512 0.476
TextCNN 0.758 0.755 0.785

Table 12: Evaluation of DNA pretrained model feature effectiveness on SARS-CoV-2 vaccine degra-
dation dataset using MLP, XGBoost and TextCNN.

GPN-MSA HyenaDNA Caduceus

MLP 0.572 0.695 0.560
XGBoost 0.750 0.711 0.737
TextCNN 0.717 0.757 0.801

A.11 ADDITIONAL ABLATION STUDIES

To further evaluate the effectiveness of the CodonMoE architecture, we conducted additional ex-
periments comparing its performance with a dense baseline model. The results are summarized in
Table 13. The dense baseline replaces the CodonMoE module with standard dense layers while
maintaining an equivalent number of trainable parameters and identical training hyperparameters,
ensuring a controlled setup for fair ablation studies. This approach isolates the contribution of the
CodonMoE architecture to the overall performance.

The consistent performance gains across both datasets indicate that CodonMoE’s specialized design
provides superior modeling capabilities compared to standard dense layers under matched parameter
constraints. This reinforces the potential of CodonMoE as a plug-and-play module for adapting
DNA-based models to mRNA tasks, offering both computational efficiency and improved predictive
performance.
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Table 13: Performance comparison between the standard dense baseline and HyenaDNA-
CodonMoETextCNN (equivalent parameters) on SARS-CoV-2 vaccine degradation dataset and RFP
expression dataset.

Model Vaccine Degradation mRFP Expression
HyenaDNA-DensebaselineTextCNN 0.80 0.82
HyenaDNA-CodonMoETextCNN 0.84 0.85

A.12 ADDITIONAL INTRODUCTION OF DNA BACKBONES

A.12.1 RNABERT

RNABERT is a nucleotide-based RNA large language model trained on non-coding RNAs (ncR-
NAs) to provide effective embeddings of RNA bases. It integrates context-sensitive nucleotide in-
formation with secondary structural features to enhance its understanding of RNA functionality.
Trained on 76,237 non-coding RNA sequences from RNAcentral using masked language modeling
and structural alignment learning, RNABERT excels in capturing both nucleotide-level interactions
and higher-order structural similarities that underpin RNA functionality. The architecture of RN-
ABERT, comprising 6 Transformer layers with a hidden dimension of 120.

A.12.2 RNA-FM

RNA-FM is a nucleotide-based foundational RNA language model specifically designed for large-
scale RNA structure and function prediction. RNA-FM employs a 12-layer bidirectional Trans-
former encoder to capture intricate long-range interactions and evolutionary signals within RNA
sequences. Trained on 23 million unannotated ncRNA sequences from RNAcentral using self-
supervised learning, RNA-FM generates highly expressive embeddings that represent both struc-
tural and functional characteristics. Despite its larger architecture, RNA-FM demonstrates high ef-
ficiency, offering robust generalization across diverse RNA datasets while requiring less fine-tuning
for new tasks. Its flexibility and precision make RNA-FM a cornerstone model for advancing RNA
research across multiple domains.

A.12.3 CODONBERT

CodonBERT is a codon-based RNA language model built on the BERT architecture, featuring a
12-layer bidirectional Transformer encoder with 12 self-attention heads per layer and a hidden di-
mension of 768 at each position. It is pre-trained on 10 million mRNA coding sequences (CDS)
sourced from NCBI, covering mammals, bacteria, and human viruses across 13 evolutionary cate-
gories. Input sequences are split into codons (triplets of nucleotides) and encoded through a combi-
nation of codon embeddings, positional embeddings, and segment embeddings, resulting in context-
aware codon representations for downstream tasks. In addition to the Masked Language Modeling
(MLM) task, CodonBERT incorporates Homologous Sequence Prediction (HSP), where pairs of
mRNA sequences are classified to determine their evolutionary relationships, aiding in the learning
of sequence homology. The sequences are preprocessed to ensure lengths are multiples of three,
beginning with the start codon (AUG) and ending with stop codons (UAA, UAG, or UGA). Com-
pared to RNABERT and RNA-FM, which focus on nucleotide-based embeddings and non-coding
RNA, CodonBERT leverages codon-level inputs, providing a deeper understanding of translation-
related features and evolutionary information, making it particularly effective for tasks like mRNA
optimization and protein expression prediction.

A.12.4 GPN-MSA

GPN-MSA is a DNA language model optimized for genome-wide variant effect prediction, utilizing
a multiple-sequence alignment (MSA) of 100 vertebrate species. These alignment blocks are then
stitched together using the multiz utility maf2fasta, ensuring that any columns with gaps in the
human reference are removed, and excluding the 10 primate species closest to humans to avoid
bias from excessive similarity. Additionally, associated conservation scores from phastCons and
phyloP, which provide important information about evolutionary conservation across species, are
downloaded and integrated into the training data.
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The GPN-MSA model architecture leverages masked language modeling techniques, using a 128-
bp multiple-sequence alignment (MSA) window. In this setup, 15% of the positions within the
human reference sequence are masked randomly during training, and the model learns to predict
these nucleotides based on the contextual information provided by both the positions and species
represented in the MSA. The sequence of MSA columns is processed through a Transformer neural
network named RoFormer (Su et al., 2024), which results in a high-dimensional contextual embed-
ding for each position, and a final layer outputs the probabilities for four nucleotides at each masked
position.

To optimize the learning process, the model downweights repetitive elements and upweights con-
served elements, ensuring that incorrect predictions in neutral regions are penalized less severely. A
smoothed version of phastCons, referred to as phastConsM, is used to emphasize highly conserved
regions and those immediately adjacent to them. As part of data augmentation in non-conserved
regions, the reference nucleotide is replaced by a random nucleotide with a certain probability, guid-
ing the model to assign more neutral scores in these less conserved areas. This strategic integration
of evolutionary conservation and species diversity, along with sophisticated neural modeling tech-
niques, allows GPN-MSA to effectively learn from a rich and complex set of genomic data, making
it a powerful tool for predicting variant effects across the genome.

A.12.5 HYENADNA

HyenaDNA is a genomic foundation model that addresses the challenges of long-range dependencies
and single-nucleotide resolution in DNA sequence analysis. Unlike traditional Transformer-based
approaches constrained by the quadratic scaling of attention mechanisms, HyenaDNA employs the
Hyena operator, which enables ultralong context lengths of up to 1 million tokens. This represents a
500x improvement in context length over previous dense-attention genomic models. Pretrained on
the human reference genome using next-nucleotide prediction, HyenaDNA excels in capturing both
the intricate long-range interactions within genomic sequences and the subtle single-nucleotide vari-
ations that drive biological functions. Its architecture is highly efficient, scaling sub-quadratically
in sequence length and training up to 160x faster than Transformers for similar tasks. Despite using
significantly fewer parameters and less pretraining data, HyenaDNA achieves state-of-the-art per-
formance across 20+ genomic benchmarks, including enhancer identification and chromatin profile
prediction. Moreover, its innovative use of soft prompting and in-context learning allows for rapid
adaptation to new genomic tasks without fine-tuning model weights, showcasing its flexibility and
broad utility in genomic research.

A.12.6 CADUCEUS

Caduceus is a DNA language model that combines novel architectural innovations to address criti-
cal challenges in genomic sequence modeling, including long-range dependencies, bi-directionality,
and reverse complement (RC) equivariance. Unlike traditional genomic models, Caduceus lever-
ages the MambaDNA block, a powerful extension of the Mamba module, to process sequences bi-
directionally while incorporating RC-equivariant processing as an inductive bias. This ensures that
predictions remain invariant under strand reversal, a critical requirement for accurate DNA sequence
modeling.

Pretrained on the human reference genome with a masked language modeling (MLM) objective,
Caduceus is specifically designed to handle sequences extending to hundreds of thousands of nu-
cleotides, surpassing the limitations of unidirectional models or those reliant on quadratic scaling
attention mechanisms. Its RC-equivariant embeddings and prediction heads enhance its ability to
capture the symmetry of DNA, making it particularly effective in tasks involving regulatory annota-
tions, enhancer prediction, and variant effect analysis.

The model achieves exceptional performance across a broad range of genomic tasks, including vari-
ant effect prediction and enhancer classification, often outperforming significantly larger models
such as Nucleotide Transformer v2 (Dalla-Torre et al., 2023) and other Transformer-based architec-
tures.
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A.13 UPDATED DATASET INTRODUCTION

The Tc-riboswitch dataset (Groher et al., 2018) was developed to optimize the dynamic range (DR)
and basal expression (BE) of tetracycline (Tc)-responsive synthetic riboswitches. These constructs
consist of tandem Tc aptamers inserted into the 5′ untranslated region (UTR) of a GFP reporter gene,
regulating expression in response to Tc ligand binding.

Using Saccharomyces cerevisiae RS453 as the host, GFP fluorescence was quantified with and with-
out Tc induction via flow cytometry. Through machine learning-guided optimization, including
random forest classifiers and convolutional neural networks, sequence and structural features in-
fluencing DR and BE were systematically explored. The curated dataset includes constructs with
optimized biophysical properties, providing a foundation for understanding riboswitch function and
advancing ML-driven design frameworks.

A.14 UPDATED MAIN TABLE WITH A NEW DATASET

Additional experiments were conducted on the Tc-Riboswitches dataset, as presented in Ta-
ble 14. The selected datasets—mRFP expression, SARS-CoV-2 vaccine degradation, and Tc-
Riboswitches—were chosen for their relevance and diversity in capturing critical aspects of mRNA
functionality, such as protein expression levels, structural stability, and regulatory mechanisms. To-
gether, these tasks provide a robust framework for evaluating CodonMoE’s capability to address
diverse challenges associated with mRNA analysis.

Table 14: Evaluation of computational complexity and Spearman’s rank correlation metrics across
RNA and DNA language models on Tc-riboswitches dataset. Each data set is split into training, val-
idation, and testing with a 0.7, 0.15, and 0.15 ratio, using the same split set as in the CodonBERT (Li
et al., 2024). The metric is Spearman’s rank Correlation.

Method Modality Time Complexity Model Parameters Tc-Riboswitch
RNA Models

RNABERT+TextCNN RNA quadratic 0.48M 0.47
RNA-FM+TextCNN RNA quadratic 100M 0.58
CodonBERT RNA quadratic 81.7M 0.56

DNA Models
HyenaDNA DNA subquadratic 4.1M 0.40
HyenaDNA-CodonMoETextCNN DNA subquadratic 7.5M 0.56
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