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ABSTRACT

Several properties of raw data exhibit significant potential for enhancing images
under extremely low-light conditions. Recently, many deep-learning methods
for raw-based low-light image enhancement (LLIE) have demonstrated excellent
performance. However, deploying them on resource-limited devices is restricted
by high computational and storage demands. In this work, we propose a novel
low-bit quantization method for raw-based LLIE model to improve their efficiency.
Nevertheless, directly adopting existing quantizers for LLIE networks leads to
obvious performance drop due to two main reasons. i) The U-Net model, com-
monly employed in LLIE, faces challenges in identifying a suitable quantization
range due to disparities in distribution between the encoder and decoder features.
ii) Low-bit quantized LLIE networks struggle to restore clear details in low-light
images because their features have a constraint capacity. We address these issues
by introducing a novel low-bit quantization method, the Distribution-Separative
Asymmetric Quantizer (DSAQ), designed specifically for U-Net architectures used
in LLIE. In order to accurately determine the quantization intervals, DSAQ sepa-
rates the distribution of encoder and decoder features before they are concatenated
by the skip connection. We also make the quantizer asymmetric with trainable
scale and offset parameters to suit skewed activation ranges caused by non-linear
functions. To further enhance performance, we propose a uniform feature distil-
lation technique, which allows the low-bit student model to effectively assimilate
knowledge from the full-precision teacher model, bridging the gap in representa-
tion capability. Extensive experiments show that our approach not only greatly
reduces the memory and computational requirements of raw-based LLIE models
but also has a promising performance. Our low-bit quantized model can achieve
comparable or superior results to full-precision counterparts.

1 INTRODUCTION

Capturing high-quality images under extremely low-light conditions is important for night surveillance
and various downstream computer vision tasks Hong et al. (2021); Chen et al. (2023). However, the
degradations including low signal-to-noise ratio (SNR) and obvious color cast caused by limited
photon count make it challenging. Low-light image enhancement (LLIE) methods provide a post-
capture solution that prevents noise amplification at high ISO settings and motion blur due to long
exposure time.

Recently, deep-learning LLIE methods trained with paired datasets Chen et al. (2018); Dong et al.
(2022); Wei et al. (2018) have shown outstanding performance. In this work, we focus on enhancing
low-light raw images because of their inherent advantages for LLIE Wei et al. (2022); Huang et al.
(2022). On the one hand, they maintain a linear relationship with photon counts and a tractable noise
distribution before passing through the image signal processing (ISP) pipeline. On the other hand,
they have a higher bit-depth that can distinguish subtle low-intensity details. Although deep-learning
models for raw-based LLIE Chen et al. (2018); Zhu et al. (2020); Jin et al. (2023) have achieved
promising results, the deployment of these neural networks on edge devices like mobile phones or
embedded cameras is hindered by their high computational and storage demands.

A potential solution to this problem lies in the technique of network quantization Zhou et al. (2016);
Li et al. (2020); Qin et al. (2023). Quantization involves converting the continuous weights and
activations (features) of a neural network into discrete low-bit representations, significantly reducing
the model’s memory footprint and accelerating its inference speed. In this work, we intend to quantize
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the LLIE model to a range of 2-4 bits to achieve a higher compression ratio. Despite its benefits in
terms of efficiency, low-bit network quantization may lead to a deterioration in model performance.

For raw-based LLIE methods, we recognize two main reasons for this performance degradation.
Firstly, many of raw LLIE networks are based on U-Net Ronneberger et al. (2015) structure Chen
et al. (2018); Dong et al. (2022); Huang et al. (2022). In the U-Net architecture, we observe that
the features from the encoder and decoder, concatenated through skip connections, show notable
differences in distribution. Moreover, the use of non-linear activation functions, such as LeakyReLU
Chen et al. (2018); Lamba & Mitra (2021), results in asymmetric distributions of positive and negative
values. These factors pose challenges in accurately determining the quantization range. Secondly,
features in low-bit quantized networks exhibit a representation capability gap compared to those in
full-precision networks. Therefore, existing knowledge distillation schemes Li et al. (2020); Zhong
et al. (2022), which directly impose constraints on normalized features, cannot fully transfer intrinsic
semantic information from full-precision teacher model to the low-bit quantized student model.

In this paper, we present a novel low-bit quantization method for raw-based LLIE to solve the above
problems. Specifically, we propose a Distribution-Separative Asymmetric Quantizer (DSAQ) that is
tailored for U-Net based LLIE method. It quantizes the encoder and decoder features respectively
before concatenation to facilitate the learning of quantization interval. In order to mitigate the
influence of non-linear functions on the distribution of activations, we introduce trainable scale and
offset parameters to implement the asymmetric quantizer. We further introduce a uniform feature
distillation that maps features of quantized student model and full-precision teacher model into
a uniform latent feature space. So low-bit network can better obtain intrinsic information from
teacher model and restore clearer details from low-light images. Through extensive experiments, we
demonstrate that our quantization method surpasses previous quantizers in raw LLIE and the low-bit
network achieves comparable enhancement results to their full-precision counterparts. Our main
contributions can be summarized as follows:

• We propose a compact low-bit quantized model for low-light raw image enhancement, which
can achieve satisfactory results with low memory and computation.

• We build a Distribution-Separative Asymmetric Quantizer (DSAQ) for U-Net structure. It
separately determines the quantizer of different features before concatenation and introduces
asymmetric quantization for activations with skewed distribution.

• We design a uniformed feature distillation that reduces capacity difference between features
in quantized and full-precision models. So the knowledge from teacher model can be easily
transferred to student model.

2 RELATED WORK

In this section, we first review deep-learning methods for raw-based LLIE. We then review some
quantization techniques for efficient neural network inference.

2.1 RAW-BASED LOW-LIGHT IMAGE ENHANCEMENT

Because of the merits of raw images discussed in Section 1, they are commonly used for LLIE in
extremely dark environments. The pioneering work Chen et al. (2018) builds a large-scale paired
short/long exposure raw image dataset for LLIE, dubbed See-in-the-Dark (SID). A U-Net is employed
for restoring noisy low-light raw input into bright RGB images. A parallel work DeepISP Schwartz
et al. (2019) uses an end-to-end neural network to process low-light raw images, which achieves
better visual quality than manufactured ISP. Based on the SID dataset, following work also introduces
residual learning Maharjan et al. (2019), self-guidance strategy Gu et al. (2019) and multi-criterion
loss Zamir et al. (2021) for single-stage raw to RGB LLIE.

Another line of methods decompose the problem of raw-based LLIE into different aspects and design
multi-stage networks. EEMEFN Zhu et al. (2020) sequentially performs multi-exposure fusion and
edge enhancement for LLIE. LDC Xu et al. (2020) enhances the low-frequency part and reconstructs
the high-frequency details of the low-light images in two consecutive stages. MCR Dong et al.
(2022) first learns to synthesize monochrome images with additional supervision. Then a dual-branch
network is leveraged to fuse generated monochrome and color images to produce enhanced RGB
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results. Huang et al. Huang et al. (2022) proposes a raw-guiding exposure enhancement network,
which consist of three cascaded U-Nets for unprocessing, denoising and processing. DNF Jin et al.
(2023) decouples raw-based LLIE into raw image denoising stage and RGB image color correction
stage to mitigate the domain ambiguity. A feedback module enables feature interaction across two
stages to reduce error accumulation.

The power of these neural networks to see in the dark relies on their model depth and computational
complexity. Some work Lamba & Mitra (2021); Lamba et al. (2020) also improves efficiency of
LLIE models by designing lightweight network architectures. In this work, we resort to network
quantization to achieve efficient LLIE.

2.2 NEURAL NETWORK QUANTIZATION

Neural network quantization involves reducing the precision of weights and activations in a neural
network, representing them with a lower-bit (usually 2-8 bits) discrete representation Nagel et al.
(2021). This process can effectively reduce the model size and computation cost, and it can be
incorporated with other network compression techniques like parameter pruning Zhang et al. (2022);
Wang & Fu (2023) and knowledge distillation Zhu et al. (2023); Li et al. (2020). There are two
primary paradigms for network quantization: Post-Training Quantization (PTQ) Hubara et al. (2021);
Li et al. (2021) and Quantization Aware Training (QAT) Zhou et al. (2016); Choi et al. (2018); Li
et al. (2022; 2023); Esser et al. (2020). PTQ methods allow for the efficient quantization of pre-
trained neural networks with minimal data and no retraining. However, they suffer from sub-optimal
performance due to fixed parameters and limited fine-tuning capabilities. In this paper, we adopt
QAT that retrain the network parameters with simulated quantization and full training data to achieve
a better performance in low-bit (i.e., less than 4 bits) quantization. Additionally, 1-bit quantization
methods (also known as binary neural networks) are not discussed because they often rely on specific
designs to avoid severe performance degradation Liu et al. (2018); Cai et al. (2023) and have different
hardware implementations Qin et al. (2023).

Low-bit network quantization with QAT has been widely applied to various computer vision tasks,
with early efforts primarily focusing on the quantization of classification models Choi et al. (2018);
Jacob et al. (2018); Gong et al. (2019); Jung et al. (2019); Esser et al. (2020); Bhalgat et al. (2020).
These methods incorporate either a learnable quantization interval Choi et al. (2018) or a learnable
step size Esser et al. (2020) within the quantizer, optimizing these parameters along with network
weights to minimize task-specific loss Jung et al. (2019). In low-level vision, much work has explored
low-bit quantization for super-resolution networks, which typically consist of a head, main body,
and upsample tail Qin et al. (2023); Li et al. (2020); Wang et al. (2021). PAMS Li et al. (2020)
introduces a trainable clamp function and proposes a structured knowledge transfer strategy, enabling
the learning of high-level representations from the full-precision model. FQSR Wang et al. (2021)
fully quantizes all the layers including head and upsample tail in super-resolution networks. DDTB
Zhong et al. (2022) adopts trainable upper and lower bounds for the highly asymmetric activations.
DAQ Hong et al. (2022) uses a distribution-aware quantization that defines a quantize function for
each channel. QuantSR Qin et al. (2023) leverages a redistribution-driven learnable quantizer to
diversify the low-bit quantized representation. A depth-dynamic quantized architecture is designed to
achieve resource adaptive inference. In this work, we aim to quantize a U-Net-based model, which is
widely used in raw LLIE.

3 METHOD

In this section, we first provide an overview of the process of low-bit quantization for U-Net style
raw-based LLIE networks, along with the limitations of existing quantizers. Then, we present our
Distribution-Separative Asymmetric Quantizer (DSAQ), which is specifically designed for U-Net-
structured LLIE models. Finally, we introduce uniform feature distillation for low-bit quantization.

3.1 LOW-BIT QUANTIZED LLIE U-NET

Overall Network Architecture. We utilize the U-Net architecture in SID Chen et al. (2018) as
the full-precision model and follow the same pipeline to process raw data. Given a low-light raw
image IB ∈ RH×W in Bayer array format, we pack each 2× 2 pattern into four channels to ensure
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Figure 1: The architecture of our low-bit quantized LLIE model. The overall U-Net structure is
illustrated on the left. The details of the distribution-separative asymmetric quantizer (DSAQ) and
the uniform feature distillation are shown on the right.

each channel represents the same color. The packed raw image, denoted as IP ∈ RH
2 ×W

2 ×4, is then
multiplied with a pre-defined amplification ratio r. Finally, the packed and amplified image is fed
into the network to restore a bright and clean RGB output image O ∈ RH×W×3.

The overall U-Net architecture is shown in Figure 1, it contains four levels of encoders and decoders.
The encoder features are concatenated with upsampled decoder features from the previous level
through skip connection. Convolution blocks of the encoders and decoders consist of two convolutions
and are activated with LeakyReLU non-linear function. We apply quantization to all convolutional
layers in the encoders and decoders, except for the first and last convolutional layers, which are kept
at full precision. This approach helps prevent information loss in the input raw images and ensures a
higher fidelity in the final enhanced images. We use maxpooling for downsampling and quantized
transposed convolution for upsampling.

Formulation of Network Quantization. The common quantization scheme first maps real-valued
vectors in the network into integer representation, then performs a de-quantization step to approximate
the original value. The quantizer Qb can be formulated as

x̂ = Qb(x) =
⌊
clip(

x

s
,Qn, Qp)

⌉
× s, (1)

where x represents full-precision weights (e.g. kernels in convolution) or activations (e.g. feature
maps in convolution), s denotes the scaling factor that converts real values to the quantization range
and de-quantizes integers back to original value range. Qn and Qp represent the quantization range
that Qn = 0, Qp = 2b − 1 for unsigned quantizers and Qn = −2b−1, Qp = 2b−1 − 1 for signed
quantizers, where b is the bit-width of the quantizer. The function clip(·, Qn, Qp) limits the scaled
values to the quantization range, and ⌊·⌉ rounds the real value to its nearest integer. x̂ is the low-bit
discrete representation of the full-precision vector x.

3.2 DISTRIBUTION-SEPARATIVE ASYMMETRIC QUANTIZER

Asymmetric Activation Quantizer. The symmetric quantizer defined in Equation 1 allocates an
equal number of bins for both positive and negative values. Despite its efficiency, this approach may
exhibit suboptimal suitability for vectors with asymmetric distributions. In the LLIE model, two
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Figure 2: (a) Skewness of activations and weights in each quantized convolution layer. (b) Unfitness
of symmetric quantizer for asymmetric-distributed activations.

main factors result in the asymmetric distribution of activations. First, batch normalization layers are
often removed in LLIE networks because they smooth the features, resulting in blurred enhancement
images Li et al. (2020). Second, LeakyReLU is commonly used as the activation function Chen et al.
(2018); Lamba & Mitra (2021), which compresses the range of negative values in features.

We analyze the skewness to measure the asymmetry of the activations and weights in quantized
convolutions. The skewness of a vector x with n values can be estimated by Joanes & Gill (1998)

Skewness(x) =
1
n

∑n
i=1(xi − µ)3

σ3
, (2)

where µ is the sample mean and σ is the sample standard deviation. As illustrated in Figure 2(a),
the skewness of convolution kernel weights is near zero as they follow a symmetric bell-shaped
distribution Hong et al. (2022). However, a large positive skewness of activations shows their
distributions are right-skewed. As shown in Figure 2(b), some quantization bins in the negative range
are wasted when applying symmetric quantizer for right-skewed activations. For this reason, we use
the symmetric quantizer defined in Equation 1 for the weights and the asymmetric quantizer for the
activations. The asymmetric quantizer AQb is defined as

â = AQb(a) =

⌊
clip(

a− β

s
, 0, 2b − 1)

⌉
× s+ β, (3)

where â is the low-bit representation for asymmetric activation a, s and β are learnable param-
eters that represent scaling factor and offset respectively. We first initialize the scaling factor s
to 2mean(|a|)/

√
Qp, which is calculated from the first batch of activations, then the offset β is

initialized to sQn. In order to preserve more information during back-propagation, we utilize the soft
gradient transformation function Qin et al. (2023) instead of the straight-through estimation (STE).

Distribution-Separative Quantization. The key of preserving the performance of full-precision
after quantization is to find a proper scaling factor s for each activation. Existing QAT methods Choi
et al. (2018); Esser et al. (2020) treat s as a learnable parameter and jointly optimize it with network
weights. However, we observe that the distribution range of features concatenated through the skip
connection exhibits significant differences. As illustrated in Figure 3, features upsampled from the
former decoder have a larger value range than the encoder features. Therefore, learning a single
scaling factor for the concatenated features may lead to quantization unfitness for the activations.
Figure 3 shows two typical situations of the quantization unfitness in the quantizer. In the first row, the
quantizer learns a small scaling factor and the activations with large absolute values are scaled out of
the quantization range and clipped by the clip(·, Qn, Qp) function, which causes the information loss
of decoder features. In the second row, the quantizer learns a large scaling factor and the activations
with small absolute values are quantized to zero, which leads to information loss of encoder features.

In order to preserve the information of both encoder and decoder features in the skip connec-
tion, we propose a simple yet effective distribution-separative quantization. Specifically, let
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Figure 3: Distribution of activations after concatenation through skip connection.

a ∈ RH×W×2C be the concatenated feature through skip connection and a = Concat(au,ae),
where au,ae ∈ RH×W×C are upsampled decoder feature and encoder feature. Our distribution-
separative asymmetric quantization (DSAQ) for activations is defined as

DSAQb(a) = Concat(AQb
1(a

u),AQb
2(a

e)), (4)

where AQb
1 and AQb

2 are quantizers that learn two different sets of quantization parameters (i.e.
scaling factors and offsets) for au and ae respectively. Compared with channel-wise quantizers Hong
et al. (2022) that learn parameters for each channel of the activations, our DSAQ is a more efficient
approach as only one additional set of quantization parameters is introduced to handle the distribution
mismatch.

3.3 UNIFORM FEATURE DISTILLATION

Inspired by previous work Li et al. (2020); Zhong et al. (2022), incorporating network quantization
with knowledge distillation can achieve a better performance. Full-precision networks can learn
more representative features, which provide abundant details and high-level semantic information
for low-bit quantized networks. The structured knowledge transfer Li et al. (2020); Zhong et al.
(2022) used in previous quantized super-resolution networks directly minimize pixel-wise distance of
normalized features from full-precision teacher model and low-bit student model. However, there is
great capability gap between features from quantized models and their full-precision counterparts,
which makes it challenging for low-bit features to mimic float-point features. Existing work Zhu et al.
(2023) also leverages the quantized feature from the full-precision model for knowledge distillation
in the classification task. Although it makes low-bit models easier to learn the feature representation,
quantizatied float-point features lose the detailed information for enhancing low-light images. In
this work, we propose a uniform feature distillation for feature alignment and knowledge transfer.
Specifically, we introduce a full-precision feature uniform module (FUM) to process features from
the quantized network, which can be excluded during inference. The FUM projects the low-precision
feature to a uniform space with the full-precision features and mitigates the capability disparity.
Therefore, our uniform feature distillation facilitates the knowledge transfer from the teacher model
to the low-bit student model without losing essential details in the full-precision features, which is
represented as

Ldistill = ∥ F
′

US

∥F ′
US∥2

− F
′

T

∥F ′
T ∥2

∥2, (5)

where FUS = FUM(FS) is the processed uniformed feature, FS ,FT ∈ RH×W×C are the features
of student model and teacher model, F

′
=

∑C
i=1 |Fi|2 ∈ RH×W represents the spatial mapping Li
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Method Bits
(w/a)

SID-Sony MCR Params
(M)

FLOPs
(G)PSNR SSIM PSNR SSIM

SID Chen et al. (2018) 32/32 29.02 0.7866 29.43 0.9076 7.76 48.45
LLPack Lamba et al. (2020) 32/32 27.76 0.7675 24.53 0.8240 1.17 7.21
RRT Lamba & Mitra (2021) 32/32 28.54 0.7743 26.17 0.8438 0.78 5.17
Dorefa Zhou et al. (2016) 4/4 27.80 0.7677 27.18 0.8745
PACT Choi et al. (2018) 4/4 27.65 0.7634 25.32 0.8558

0.97 6.51
PAMS Li et al. (2020) 4/4 28.03 0.7527 25.20 0.8291
LSQ Esser et al. (2020) 4/4 28.62 0.7790 28.61 0.8925
LLT Wang et al. (2022) 4/4 24.54 0.7170 20.61 0.5887
QuantSR Qin et al. (2023) 4/4 28.73 0.7814 28.64 0.8923
Ours 4/4 28.81 0.7823 29.00 0.8987
Dorefa Zhou et al. (2016) 3/3 27.48 0.7502 25.76 0.8479
PACT Choi et al. (2018) 3/3 26.82 0.7324 24.21 0.8257

0.73 3.64
PAMS Li et al. (2020) 3/3 27.35 0.7437 22.26 0.7669
LSQ Esser et al. (2020) 3/3 28.33 0.7722 27.45 0.8756
LLT Wang et al. (2022) 3/3 20.87 0.5870 20.25 0.6970
QuantSR Qin et al. (2023) 3/3 28.53 0.7741 27.60 0.8810
Ours 3/3 28.66 0.7772 28.39 0.8866
Dorefa Zhou et al. (2016) 2/2 26.50 0.7173 23.67 0.7768
PACT Choi et al. (2018) 2/2 25.96 0.7069 21.83 0.7335

0.49 2.2
PAMS Li et al. (2020) 2/2 23.57 0.6008 18.65 0.6584
LSQ Esser et al. (2020) 2/2 27.79 0.7586 25.02 0.8197
LLT Wang et al. (2022) 2/2 17.74 0.5518 - -
QuantSR Qin et al. (2023) 2/2 28.10 0.7617 25.62 0.8413
Ours 2/2 28.14 0.7637 26.00 0.8430

Table 1: Quantitative results on SID dataset and MCR dataset. LLT Wang et al. (2022) fails to
converge on the MCR dataset in 2-bit setting so the results are denoted by ‘-’.

et al. (2020). We choose the output feature from convolution block of the last decoder for distillation.
The overall training loss is defined as

L = λ1L1 + λ2Ldistill, (6)

where λ1, λ2 are hyperparameters and we set λ1 = 1, λ2 = 100.

4 EXPERIMENTS

In this section, we evaluate our low-bit quantized U-Net network on two raw-based LLIE datasets.
We also provide a comprehensive analysis of our DSAQ and uniform feature distillation.

4.1 EXPERIMENT SETTINGS

Datasets. We adopt two LLIE datasets with raw input images to evaluate our low-bit quantization
method. The SID Chen et al. (2018) dataset comprises 5094 RAW images captured in extremely
low-light conditions, along with their corresponding normal-light reference images. These images
were taken using two different cameras: Sony A7S2 (Bayer sensor with a resolution of 4240 ×
2832) and Fuji X-T2 (Bayer sensor with a resolution of 6000 × 4000). The exposure time for the
low-light images in the dataset ranges from 0.1s to 0.033s, which are 100 to 300 times shorter than
the corresponding reference images. The MCR Dong et al. (2022) dataset contains 3984 low-light
raw images with a resolution of 1280 × 1024 captured from 498 indoor and outdoor scenes. Each
scene includes one RGB reference image and 8 low-light raw images with exposure time ranging
from 1/4096s to 3/8s.
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Figure 4: Visual comparison of different raw-based LLIE methods on SID datasets.

Training Details. We use the U-Net model in SID Chen et al. (2018) as the full-precision backbone
for low-bit quantization. The weights in low-bit quantized model is initialized with the corresponding
parameters in the pretrained full-precision U-Net. During training, the batch size is set to 1 and the
size of input raw patch is set to 1024 × 1024. We train the low-bit quantized model for 300 epochs on
these two raw LLIE datasets. We adopt the Adam optimizer Kingma & Ba (2015) with the learning
rate set to 10−4 and the cosine annealing scheduler for network optimization. All the networks are
implemented with PyTorch Paszke et al. (2019) and trained on one NVIDIA RTX 3090 GPU.

Evaluation Metrics. We calculate average peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM) with enhanced RGB output images and their reference images to evaluate the performance
of all the methods. A higher PSNR and SSIM indicate a better restoration quality. We follow previous
work Xu et al. (2023) to add { 1

32 ,
1
16 ,

1
8} of the number of { 1

2 ,
1
3 ,

1
4}-bit operations with respective

number of FLOPs to estimate the computational complexity of quantized neural networks.

4.2 COMPARE WITH STATE-OF-THE-ARTS

Comparison Methods. We first give the performance of the full-precision pretrained SID Chen et al.
(2018) U-Net. We then compare our low-bit quantization method with state-of-the-art quantization
methods including Dorefa Zhou et al. (2016), PACT Choi et al. (2018), PAMS Li et al. (2020), LSQ
Esser et al. (2020), LLT Wang et al. (2022) and QuantSR Qin et al. (2023). In addition, we also
compare the low-bit quantization methods with some lightweight full-precision raw-based LLIE
methods, including LLPack Lamba et al. (2020) and RRT Lamba & Mitra (2021).

Quantitative Results. As shown in Table 1, our low-bit quantized model achieves promising results
with low computational cost and memory overhead. Compared with the state-of-the-art quantization
methods, our methods yields the best performance in all the 2-bit to 4-bit settings. On the MCR
dataset, our method outperforms LSQ Esser et al. (2020) in PSNR/SSIM metrics by 0.39dB/0.0062,
0.94dB/0.0110, and 0.98dB/0.0233 for 2-bit, 3-bit, and 4-bit network quantization. Compared
with lightweight raw-based LLIE methods, our 4-bit quantized model achieves 1.05dB/0.0148 and
4.47dB/0.0549 higher PSNR/SSIM than LLPack Lamba et al. (2020) on the SID and MCR datasets,
respectively. Additionally, our 3-bit quantized model surpasses RRT Lamba & Mitra (2021) on
both datasets with fewer parameters and computations. Regarding the compression ratio, our 4-
bit quantized SID U-Net Chen et al. (2018) reduces the model size by 87.5% and the FLOPs by
86.6% relative to the full-precision counterpart, while maintaining comparable enhancement results.
The compression ratio can achieve 93.7% for parameters and 95.5% for computational costs when
quantize the full-precision model to 2-bit.

Visual Comparison. The qualitative results on the SID dataset and MCR dataset are illustrated in
Figures 4 and 5, respectively. The input is amplifed with the ratio and post-processed for visualization.
As shown in Figure 4, our 4-bit quantized U-Net yields enhanced images with high visual quality,
comparable to those produced by the full-precision counterpart. Compared to other methods, our
approach effectively suppresses severe noise while preserving clear details and textures in the
enhanced image. Additionally, our method exhibits better color fidelity and consistency in flat areas.
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Input Dorefa/3-bit PACT/3-bit PAMS/3-bit LSQ/3-bit

LLT/3-bit QuantSR/3-bit Ours/3-bit SID/fp32 GT

Input Dorefa/2-bit PACT/2-bit PAMS/2-bit LSQ/3-bit

Not
Available

LLT/2-bit QuantSR/2-bit Ours/2-bit SID/fp32 GT

Figure 5: Visual comparison of different raw-based LLIE methods on MCR datasets.

Method Bits (w/a)

DSQ Asym UFD
4/4 3/3 2/2

PSNR SSIM PSNR SSIM PSNR SSIM
% % % 28.62 0.7790 28.33 0.7722 27.79 0.7586
! % % 28.73 0.7813 28.52 0.7741 27.77 0.7599
% ! % 28.62 0.7784 28.54 0.7765 27.98 0.7609
! ! % 28.72 0.7819 28.61 0.7761 28.14 0.7637
! ! ! 28.81 0.7823 28.66 0.7772 27.90 0.7603

Table 2: Ablation study of proposed DSAQ and UFD on SID-Sony dataset.

As shown in Figure 5, our quantization method also demonstrates better perceived quality than
state-of-the-art quantization methods in the 2-bit and 3-bit settings.

4.3 ABLATION STUDY

We conduct the ablation study to validate the effect of DASQ and uniform feature distillation on
the SID dataset. The result is shown in Table 2, where DSQ, Asym and UFD represent whether
to use distribution-separative quantization, asymmetric activation quantizer and uniform feature
distillation respectively. We can observe from the fourth row that using DSAQ achieves better low-bit
quantization performance on U-Net compared to the vanilla symmetric quantizer. It can also be
found from the second and third rows that the distribution-separative strategy is more effective with
relatively more quantization bins, while the asymmetric quantizer is more useful in lower-bit settings.
From the last two rows, we find that the low capacity of 2-bit model limits knowledge transfer even
with the feature uniformity module. So we empirically exclude the distillation loss in the 2-bit setting.
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Distillation Scheme
Bits (w/a)

4/4 3/3 2/2
PSNR SSIM PSNR SSIM PSNR SSIM

Feature Distillation Li et al. (2020) 28.66 0.7804 28.61 0.7761 27.85 0.7600
UFD 28.81 0.7823 28.66 0.7772 27.90 0.7603

Table 3: Ablation study of the distillation scheme on SID-Sony dataset.

Device CPU GPU NPU
Bits (w/a) 32/32 32/32 16/16 16/16 4/8
Time (ms) 190.4 56.3 18.3 3.7 1.7

Table 4: Comparison of inference time on Qualcomm Snapdragon 8 Gen 3.

In order to prove the effectiveness of the uniform feature distillation (UFD) scheme, we campare
it with the vanilla feature distillation in PAMS Li et al. (2020), which directly uses the normalized
feature for distillation. The experiment results in Table 3 proves that the proposed feature uniform
module (FUM) can mitigrate the representation gap between the features from low-bit strudent
models and full-precision teacher model.

4.4 ON-CHIP LATENCY

We compare the latency of the floating-point SID U-Net model with the low-bit quantized one on
Qualcomm Snapdragon 8 Gen 3, which supports 4w/8a quantization on the NPU and is widely used
in smartphones. The resolution of the testing image patch is set to 256 × 256 and the inference
time is shown in Table 4. The 4w/8a quantized U-Net model is about 2.2× faster than the 16-bit
floating-point model on NPU and 33× faster than the 32-bit floating-point model running on GPU.
Although most devices currently do not support 3-bit or 2-bit, we believe the lower-bit model will be
more practical in the future. And our method may be useful for efficiently processing high-resolution
images on smartphones or other edge devices.

5 CONCLUSION

In this paper, we propose a low-bit quantization method for raw-based LLIE networks. First, we
present a novel low-bit quantizer DSAQ for the U-Net architecture. In order to match the distribution
range of the features concatenated via skip connections, DSAQ employs two sets of quantization
parameters to separately quantize the two parts of the activations, thereby better fitting these two
different distributions. It also exploits the asymmetric activation quantizer for the skewed features
activated by LeakyReLU non-linear function. Second, we introduce uniform feature distillation,
which employs a feature uniform module to reduce the capability gap between low-bit features
and full-precision features, facilitating knowledge transfer from the teacher model. However, it
shows limitations in the 2-bit setting, which is worth to explore in the future work. Extensive
experiments demonstrate that our low-bit quantized LLIE model can yield satisfactory results with
low computational and memory costs.
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