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Abstract

The spread of scientific mis- and dis-001
information has motivated the development002
of datasets and models for the task of sci-003
entific claim verification. We address two004
modeling challenges associated with this task.005
First, existing claim verification systems make006
predictions by extracting an evidentiary sen-007
tence (or sentences) from a larger context,008
and then predicting whether this sentence sup-009
ports or refutes the claim in question. This010
can be problematic, since the meaning of011
the selected sentence may change when inter-012
preted outside its original context. Second,013
given the difficulty of collecting high-quality014
fact-checking annotations in expert domains,015
there is an unaddressed need for methods to016
facilitate zero / few-shot domain adaptation.017
Motivated by these challenges, we develop018
LONGCHECKER. Given a claim and evidence-019
containing abstract, LONGCHECKER predicts020
a fact-checking label and identifies eviden-021
tiary sentences in a multi-task fashion based022
on a shared encoding of all available context.023
This approach enables LONGCHECKER to per-024
form domain adaptation by leveraging weakly-025
supervised in-domain data. We show that026
LONGCHECKER achieves state-of-the-art per-027
formance on three datasets, and conduct anal-028
ysis to confirm that its strong performance is029
due to its ability to model full-abstract context.030

1 Introduction031

The task of scientific claim verification requires a032

system to assess the veracity of a scientific claim033

against a corpus of documents. The proliferation of034

mis- and dis-information on the web – particularly035

as it relates the COVID-19 pandemic (Pennycook036

et al., 2020; Naeem et al., 2020) – has motivated037

the release of a number of new datasets for this task038

(Saakyan et al., 2021; Sarrouti et al., 2021; Wadden039

et al., 2020; Kotonya and Toni, 2020), accompanied040

by advances in model performance (Pradeep et al.,041

2021; Li et al., 2021; Zhang et al., 2021).042

Ibuprofen worsens COVID-19 symptoms

Covid-19 and avoiding Ibuprofen. 
…
a potential increased risk of COVID-19 
infection was feared with ibuprofen use
...
At this time, there is no supporting evidence 
to discourage the use of ibuprofen

Claim:

Label: REFUTES

Evidence abstract:

Figure 1: A claim from the HealthVer data set, refuted
by a research abstract. The sentence in red is a ratio-
nale, which reports a finding that REFUTES the claim.
However, this finding cannot be interpreted properly
without the context in blue, which specifies that the
finding applies to ibuprofen as a potential treatment for
COVID symptoms. LONGCHECKER incorporates the
full context of the evidence-containing abstract when
predicting fact-checking labels.

One commonality among existing models is that 043

they verify claims using a pipeline approach. Given 044

a claim and an abstract that may contain evidence, 045

they first extract rationales from the abstract which 046

contain evidence sufficient to entail or contradict 047

the claim, when taken in the context of the abstract. 048

Then, they predict a fact-checking label based on 049

the selected rationales, taken out-of-context. This 050

approach has two important shortcomings. First, 051

the rationales containing evidence may lack in- 052

formation required to make a prediction out-of- 053

context; for instance, they may contain acronyms or 054

pronouns, or lack qualifiers that specify the scope 055

of the finding. Figure 1 provides an example. This 056

challenge has previously been observed in work 057

on scientific literature understanding (Nye et al., 058

2020), and more generally in the task of sentence 059

decontextualization (Choi et al., 2021). 060

Second, pipeline models require training data 061

annotated with both sentence-level rationales and 062

abstract-level labels. While sentence-level anno- 063
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tations for scientific claim verification are quite064

costly, abstract-level labels can be created cheaply065

using high-precision heuristics For instance, the066

titles of research papers often make claims that067

are supported by their abstracts. Ideally, models068

should be able to take advantage of these additional069

abstract-level labels without requiring that they be070

paired with sentence-level rationale annotations.071

Motivated by these challenges, we develop072

the LONGCHECKER system: given a claim and073

evidence-containing abstract, LONGCHECKER en-074

codes the entire claim / abstract context in a single075

long sequence. The resulting context exceeds the076

512-token window common to BERT-style (De-077

vlin et al., 2019) transformer architectures between078

12% and 43% of the time, depending on dataset. To079

accommodate this, LONGCHECKER builds on the080

Longformer model, which has been successfully081

applied to related tasks, such as question answering,082

involving long-document context (Beltagy et al.,083

2020; Pradeep et al., 2021).084

Longformer uses special sentinel tokens to con-085

struct globally-contextualized representations of086

the entire context, and each individual sentence in087

the abstract. We use the representations of these088

tokens to predict an abstract-level fact-checking089

label and sentence-level rationale labels, respec-090

tively. We find that this modeling approach im-091

proves performance on three datasets for scientific092

claim verification over two state-of-the-art base-093

lines, one of which has more than 10x the param-094

eters than our system. In addition, it is able to095

effectively leverage weakly-supervised in-domain096

data for zero/few-shot domain adaptation, outper-097

forming a state-of-the-art pipeline model trained098

using heuristically-labeled rationales.099

In summary, we make the following contribu-100

tions: (1) We introduce LONGCHECKER, a multi-101

task system for full-context scientific claim verifi-102

cation, and find that it outperforms two state-of-the-103

art baselines on three datasets. (2) We propose a set104

of simple heuristics to assign weak fact-checking105

labels to a large collection of research abstracts,106

and find that training LONGCHECKER on these107

weakly-labeled data improves average zero-shot108

performance by 24 F1 across our three datasets. (3)109

We conduct ablations and analysis confirming that110

LONGCHECKER outperforms existing systems due111

to its ability to model full-abstract context when112

making fact-checking predictions.113

2 Background: Scientific claim 114

verification 115

2.1 The scientific claim verification task 116

We will use the definition of scientific claim ver- 117

ification from the SCIFACT task (Wadden et al., 118

2020). We provide a brief review of the task 119

and refer the reader to that work for more detail. 120

Some other works have cast scientific claim ver- 121

ification as a sentence-level natural language in- 122

ference (NLI) task; in §4, we describe how we 123

process these datasets to be compatible with the 124

task as considered in this work. 125

Task definition Given a claim c and a collec- 126

tion of candidate abstracts which may contain 127

evidence relevant to c, the scientific claim veri- 128

fication task requires a system to predict a label 129

y(c, a) ∈ {SUPPORTS,REFUTES,NEI1}, which 130

indicates the relationship between c and a for each 131

candidate a. For all abstracts labeled SUPPORTS 132

or REFUTES, the system must also identify ratio- 133

nales R(c, a) = {r1(c, a), . . . , rn(c, a)}, where 134

each ri(c, a) is a sentence from a that either entails 135

or contradicts the label y(c, a)2. The rationales may 136

not be self-contained, and may require additional 137

context from elsewhere in the abstract to resolve 138

coreferential expressions or acronyms, or to deter- 139

mine qualifiers specifying experimental context or 140

study population3. Examples of this situation are 141

provided in Figure 1 and Appendix A.3. 142

Evaluation The SCIFACT task reports four eval- 143

uation metrics. We have found that two of these 144

metrics are sufficient to convey the important find- 145

ings for our experiments: (1) abstract-level label- 146

only evaluation computes the model’s F1 score in 147

identifying abstracts that SUPPORT and REFUTE 148

each claim. Predicting the correct label y(c, a) is 149

sufficient; models do not need to provide rationales. 150

(2) Sentence-level selection+label evaluation com- 151

putes the point-wise product of the model’s F1 152

score in identifying the rationales R(c, a), with the 153

model’s abstract-level label y(c, a); this rewards 154

precision in identifying exactly which sentences 155

contain the evidence justifying the label. We will 156

refer to these two metrics as “abstract” and “sen- 157

tence” evaluation, respectively. 158

1NEI stands for “Not Enough Info”.
2This rationale definition is simplified slightly from the

one presented in Wadden et al. (2020).
3This convention is consistent with related tasks in ratio-

nalized NLP for biomedical literature, such as Lehman et al.
(2019); DeYoung et al. (2020).
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Retrieval settings For open scientific claim ver-159

ification, the system must retrieve candidate ab-160

stracts from a corpus of documents. In the abstract-161

provided setting, candidate abstracts for each claim162

are given as input. We describe the retrieval set-163

tings for all datasets in §4.1.164

Supervision settings We consider three supervi-165

sion settings. In the fully-supervised setting, mod-166

els may train on all claims from the target dataset.167

In the zero-shot domain adaptation setting, mod-168

els may not train on any in-domain fact-checking169

data, though they may train on general-domain fact-170

checking data and other available scientific datasets.171

In the few-shot domain adaptation setting, models172

may train on 45 claims from the target dataset.173
Most existing work on scientific fact-checking174

examines the fully-supervised setting. An excep-175

tion is Lee et al. (2021), which uses language model176

perplexity as a measure of claim veracity.177

2.2 Datasets178

A number of datasets for scientific claim veri-179

fication have been released in roughly the past180

year. COVID-Fact (Saakyan et al., 2021) and181

HealthVer (Sarrouti et al., 2021) verify claims182

related to COVID-19 against scientific literature.183

PUBHEALTH (Kotonya and Toni, 2020) verifies184

public health claims against news and web sources.185

SCIFACT (Wadden et al., 2020) verifies claims186

made in citations in scientific papers. CLIMATE-187

FEVER (Diggelmann et al., 2020) uses Wikipedia188

to verify claims about climate change. In this work,189

our focus is on verifying claims against scientific190

research literature. We therefore perform exper-191

iments on the COVID-Fact, HealthVer, and SCI-192

FACT datasets. Additional details on these datasets193

are included in §4.1.194

2.3 Models195

Motivated in part by the SCIVER shared task (Wad-196

den and Lo, 2021) and leaderboard, a number of197

models have been developed for SCIFACT (the fo-198

cus of the shared task). The two strongest systems199

on the shared task were VERT5ERINI (Pradeep200

et al., 2021) and PARAGRAPHJOINT (Li et al.,201

2021), which we adopt as baselines and describe202

further in §4.4. More recently, ARSJOINT (Zhang203

et al., 2021) achieved performance competitive204

with these two systems.205

Pipeline claim verification Given a claim c and206

candidate abstract a, these models make predic-207

tions in two steps. First, they predict rationales208

R̂(c, a) = {r̂1(c, a), . . . , r̂n(c, a)} likely to con- 209

tain evidence. Then, they make a label prediction 210

ŷ(c, R̂(c, a)) based on the predicted rationales, ig- 211

noring the rest of the abstract a. Written another 212

way, they make label predictions by approximating 213

ŷ(c, a) with ŷ(c, R̂(c, a)). We will refer to this ap- 214

proach as the pipeline approach to scientific claim 215

verification. Figure 1 demonstrates how this ap- 216

proach can fail when a rationale does not provide 217

all the necessary context required for a prediction. 218

System details VERT5ERINI uses two separate 219

T5-3B models for the two pipeline components. 220

PARAGRAPHJOINT and ARSJOINT encode the ti- 221

tle and full abstract (truncating to 512 tokens to fit 222

within the BERT window), and perform rationale 223

selection and label prediction based on this shared 224

encoding. However, only the encodings of the pre- 225

dicted rationales are used for label prediction. 226

3 The LONGCHECKER model 227

In §3.1, we describe our modeling approach. We 228

address the problem of out-of-context rationales 229

raised in §2.3 by making a simple modeling change: 230

instead of approximating ŷ(c, a) with ŷ(c, R̂(c, a)), 231

we predict ŷ(c, a) directly based on an encoding of 232

the entire claim and abstract. In §3.2, we explain 233

how this modeling approach facilitates few-shot 234

domain adaptation using weakly-labeled scientific 235

documents. 236

3.1 Full-context claim verification 237

Long-document encoding Given a claim c and 238

candidate abstract a consisting of title t and sen- 239

tences s1, . . . , sn, we concatenate the inputs sepa- 240

rated by </s> tokens. The </s> token following 241

each sentence si is notated as </s>i : 242

<s> c </s> t </s> s1 </s>1 . . . sn </s>n 243

This model input sometimes exceeds the 512-token 244

limit common to transformer-based language mod- 245

els like BERT (Devlin et al., 2019) and RoBERTa 246

(Liu et al., 2019); see Table 1 for details on how 247

frequently this occurs. Therefore, we use the Long- 248

former model (Beltagy et al., 2020) as our encoder. 249

We assign global attention to the <s> token, as 250

well as all tokens in c and all </s> tokens. 251

Multi-task rationale selection and label predic- 252

tion Given the full-context Longformer encoding, 253

we predict whether sentence si is a rationale via a 254

binary classification head, consisting of two feed- 255

forward layers followed by a two-way softmax, on 256
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top of the globally-contextualized token </s>i .257

Sentences assigned rationale scores greater than258

0.5 are included in R̂(c, a).259
Similarly, we predict the overall fact-checking260

label ŷ(c, a) by adding a three-way classification261

head over the encoding of the <s> token. Since262

the <s> token is trained with global attention, the263

model makes predictions based on a representation264

of the entire claim and abstract, rather than only265

having access to the rationales R̂(c, a). We refer266

to the approach taken by LONGCHECKER as the267

multi-task approach to claim verification.268
During training, we compute the cross-entropy269

losses for the label and rationale predictions, and270

train to minimize the multi-task loss:271

L = Llabel + λrationaleLrationale,272

where λrationale is tuned on the dev set.273

Candidate abstract retrieval For datasets that274

require retrieval of candidate abstracts, we rely275

on the VERT5ERINI (Pradeep et al., 2021) re-276

trieval system, which achieved state-of-the-art per-277

formance on the SCIVER shared task (SCIVER278

used the SCIFACT dataset for evaluation). This279

model first retrieves abstracts using BM25 (Robert-280

son and Zaragoza, 2009), then refines the predic-281

tions using a neural re-ranker based on Nogueira282

et al. (2020), which is trained on the MS MARCO283

passage dataset (Campos et al., 2016).284

3.2 Training for domain adaptation285

Three types of training data are available to train286

scientific claim verification systems. (1) In-domain287

fact-checking annotations are the “gold standard”,288

but they are expensive to create and require ex-289

pert annotators. (2) General-domain fact-checking290

datasets like FEVER (Thorne et al., 2018) are abun-291

dantly available, but generalize poorly to scientific292

claims (see §5.1). (3) Scientific documents – ei-293

ther unlabled or labeled for different tasks – are294

abundant, and high precision heuristics can be used295

to generate document-level fact-checking labels296

y(c, a) for these data. We describe two such heuris-297

tics in §4.2.298
Given these three sources, we train299

LONGCHECKER as follows: we first pretrain on300

a combination of general-domain fact-checking301

annotations, combined with weakly-labled in-302

domain data4. Then, we finetune on the target303

4“Pretraining” is a slight abuse of terminology. We use
“pretraining” as shorthand for “training on the target task with
out-of-domain and / or weakly-supervised labels”.

scientific fact-checking dataset. The multi-task 304

architecture of LONGCHECKER is ideally suited 305

to this strategy, since the model can be trained on 306

data with or without rationale annotations. When 307

rationales are not available, we set λrationale = 0 in 308

the loss function and train as usual. By contrast, 309

training a pipeline model requires generating 310

rationale annotations R(c, a), which is relatively 311

low-precision (see §4.2). 312

4 Experimental setup 313

We describe our datasets, model training procedure, 314

and baselines. 315

4.1 Scientific claim verification datasets 316

We experiment with three scientific claim verifi- 317

cation datasets. Table 1 provides a summary of 318

important dataset characteristics. Preprocessing 319

steps and additional statistics for all datasets can be 320

found in Appendix A. HealthVer and COVID-Fact 321

were originally released in an NLI format, pairing 322

claims with (out-of-context) evidentiary sentences. 323

We convert to our task format by identifying the 324

abstracts in the CORD-19 corpus containing these 325

sentences, and label them as rationales. 326

We use the following terminology: an atomic 327

claim makes an assertion about a single property 328

of a single entity, while a complex claim may make 329

assertions about multiple properties or entities. 330

SCIFACT claims (Wadden et al., 2020) were cre- 331

ated by re-writing citation sentences occurring in 332

biomedical literature into atomic claims, which 333

were verified against the abstracts of the cited docu- 334

ments. REFUTED claims were created by manually 335

negating the original claims. Abstracts that were 336

cited but which annotators judged not to contain 337

evidence were labeled NEI. SCIFACT requires re- 338

trieval of candidate abstracts from a corpus. 339

HealthVer (Sarrouti et al., 2021) consists of 340

COVID-related claims obtained by extracting snip- 341

pets from articles retrieved to answer questions 342

from TREC-COVID (Voorhees et al., 2020), and 343

verifies them against abstracts from the CORD-19 344

corpus (Wang et al., 2020). Claims in HealthVer 345

may be complex. REFUTED claims occur naturally 346

in the article snippets. HealthVer provides candi- 347

date abstracts for each claim, but some of these 348

candidates do not contain sufficient information 349

to support a SUPPORTS/ REFUTES verdict and are 350

labeled NEI. 351
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Dataset Domain Claim source Open Has
NEI

Claim
complexity

Negation
method

Train
claims

Eval
claims

> 512
tokens

HealthVer COVID TREC-COVID 7 3 Complex Natural 1,622 230 14.9%
COVID-Fact COVID Reddit 7 7 Complex Automatic 903 313 12.4%
SCIFACT Biomed Citations 3 3 Atomic Human 1,109 300 27.4%

FEVER Wiki Wikipedia - 3 Atomic Human 130,644 - 33.2%
PUBMEDQA Biomed Paper titles - 3 Complex Automatic 58,370 - 12.1%
EVIDENCEINFERENCE Biomed ICO prompts - 3 Atomic Automatic 7,395 - 42.7%

Table 1: Summary of datasets used in experiments. The top group of datasets are scientific claim verification
datasets, and the bottom group are for pretraining. Datasets with a 3 for “Open” require that candidate abstracts
be retrieved from a corpus; those with a 7 provide candidate abstracts as input. Dataset with a 3 for “Has NEI”
require three-way (SUPPORTS/ REFUTES/ NEI) label prediction, while those with an 7 are (SUPPORTS/ REFUTES)
only. The “> 512 tokens” column indicates the percentage of claim / abstract contexts that exceed 512 tokens.

COVID-Fact (Saakyan et al., 2021) collects352

claims about COVID-19 scraped from a COVID-353

19 subreddit, and verifies them against linked sci-354

entific papers, as well as documents retrieved via355

Google search. Claims in COVID-Fact may be356

complex, and candidate abstracts for each claim357

are provided. All candidates either SUPPORT or358

REFUTE the claim. Claim negations were created359

automatically by replacing salient words in the orig-360

inal claims, and as a result the labels y(c, a) are361

somewhat noisy (see Appendix A).362

4.2 Pretraining datasets363

We briefly describe our pretraining datasets and364

the weak supervision heuristics used to construct365

them. Detailed descriptions of these heuristics can366

be found in Appendix A.1.367

FEVER (Thorne et al., 2018) consists of claims368

created by re-writing Wikipedia sentences into369

atomic claims, verified against Wikipedia articles.370

EVIDENCEINFERENCE (Lehman et al., 2019;371

DeYoung et al., 2020) was released to facilitate un-372

derstanding of clinical trial reports, which examine373

the effect of an intervention on an outcome, rela-374

tive to a comparator (“ICO” elements). The dataset375

contains ICO prompts paired with (1) labels indi-376

cating whether the outcome increased or decreased377

due to the intervention, and (2) rationales justifying378

each label. We use rule-based heuristics to convert379

these prompts into claims – for instance “[interven-380

tion] increases [outcome] relative to [comparator]”.381

PUBMEDQA (Jin et al., 2019) was released to382

facilitate question-answering over biomedical re-383

search abstracts. We use the PQA-A subset, which384

is a large collection of biomedical abstracts with385

“claim-like” titles – for instance, “Vitamin B6 sup-386

plementation increases immune responses in criti-387

cally ill patients.” We treat the paper titles as claims 388

and the matching abstracts as the evidence sources. 389
To train pipeline models on these instances, we 390

create weakly-supervised rationales by selecting 391

the sentences with highest similarity to the claim as 392

measured by cosine similarity of Sentence-BERT 393

embeddings (Reimers and Gurevych, 2019). We 394

use these annotations only when training pipeline 395

models. They are not used by LONGCHECKER. To 396

estimate the precision of rationale labeling heuris- 397

tic, we predict rationales in the same fashion for our 398

supervised datasets and compute the Precision@1 399

with which this method identifies gold rationales. 400

The scores are relatively low: 49.4, 48.8, and 43.4 401

for SCIFACT, COVID-Fact, and HealthVer respec- 402

tively. 403

4.3 Model training 404

Our fully-supervised training procedure consists 405

of pretraining on the three datasets from §4.2, fol- 406

lowed by finetuning on one of the target datasets 407

from §4.1. For zero-shot experiments, we perform 408

pretraining only. For few-shot experiments, we pre- 409

train followed by finetuning on 45 target examples. 410
We found that negative sampling was important 411

to achieve good precision on SCIFACT, which re- 412

quires document retrieval. We train with 20 neg- 413

ative samples / claim and retrieve 10 abstracts / 414

claim at inference time. For the other datsets, no 415

negative sampling was used. 416
Additional details including batch sizes, learn- 417

ing rates, number of epochs, etc. can be found in 418

Appendix B. 419

4.4 Baseline systems 420

We use PARAGRAPHJOINT and VERT5ERINI as 421

our baseline systems. When making predictions on 422

SCIFACT, we use publicly available model check- 423

points available for each system. For HealthVer and 424
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HealthVer COVID-Fact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Model Params P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

VERT5ERINI 5.6B 71.3 74.0 72.6 65.6 61.2 63.3 76.6 52.7 62.4 44.8 27.2 33.9 64.0 73.0 68.2 60.6 66.5 63.4
PARAGRAPHJOINT 360M 75.0 68.3 71.5 69.9 60.6 64.9 71.5 68.1 69.8 41.4 40.3 40.8 75.8 63.5 69.1 68.9 54.6 60.9

LONGCHECKER 440M 78.9 76.3 77.6 72.0 66.8 69.3 77.3 77.3 77.3 41.7 45.9 43.7 73.8 71.2 72.5 67.4 67.0 67.2

Table 2: Performance of LONGCHECKER and baselines in the fully-supervised setting. The number of parameters
in each model is reported in the “Params” column; VERT5ERINI is roughly 10x larger than the other two systems.
We report performance using abstract-level and sentence-level evaluation as defined in §2.1. LONGCHECKER
outperforms the baselines on all datasets.

HealthVer COVID-Fact SCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Setting Model Sci P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero-shot

PARAGRAPH
JOINT

7 66.7 3.0 5.8 33.3 0.9 1.8 73.9 5.4 10.0 39.1 1.7 3.2 59.5 11.3 18.9 48.9 6.2 11.0
3 72.3 14.4 24.0 22.9 2.7 4.9 51.3 37.9 43.6 31.5 16.0 21.3 52.9 32.4 40.2 36.4 14.9 21.1

LONG
CHECKER

7 80.0 0.7 1.3 66.7 0.4 0.7 95.8 14.5 25.2 63.5 6.2 11.2 83.8 14.0 23.9 64.9 6.5 11.8
3 60.6 20.5 30.7 25.0 4.6 7.8 48.8 45.7 47.2 32.7 18.5 23.6 49.0 44.6 46.7 39.0 21.6 27.8

Few-shot

PARAGRAPH
JOINT

7 57.2 38.2 45.9 35.0 23.3 28.0 65.7 29.6 40.9 41.1 13.8 20.7 50.0 39.6 44.2 32.1 23.2 27.0
3 62.7 41.6 50.0 46.0 29.3 35.8 73.3 60.6 66.3 44.3 30.6 36.2 44.4 51.4 47.6 33.0 35.1 34.0

LONG
CHECKER

7 56.4 50.8 53.4 35.6 28.4 31.6 74.5 74.5 74.5 39.5 45.1 42.1 72.4 43.7 54.5 48.8 32.4 39.0
3 63.6 47.9 54.7 44.0 30.7 36.1 71.3 68.1 69.7 40.5 35.1 37.6 76.4 54.0 63.3 51.7 40.3 45.3

Table 3: Performance of LONGCHECKER and PARAGRAPHJOINT in the zero-shot and few-shot settings. Rows
where “Sci” is marked 3 indicate that the model was pretrained on scientific data. Rows marked 7 indicate pretrain-
ing on FEVER only. The results show that in-domain pretraining improves performance, and that LONGCHECKER
outperforms PARAGRAPHJOINT.

COVID-Fact, we use the training code provided by425

the authors as-is, without adjusting training param-426

eters. Additional details for the baselines can be427

found in Appendix B.4. In order to compare fairly428

with the two baselines (which were designed for429

SCIFACT), we performed model development for430

LONGCHECKER on SCIFACT as well, and did not431

modify the training procedure for the other two432

datasets.433

5 Experimental results434

We present the results of our experiments. We435

find that LONGCHECKER exhibits state-of-the-art436

performance on all datasets and settings, and that437

training on weakly-supervised scientific data sub-438

stantially improves zero/few-shot performance.439

5.1 Main Results440

LONGCHECKER achieves state-of-the-art per-441

formance Table 2 shows the fully-supervised per-442

formance of LONGCHECKER and the two baselines443

on our three target datasets. A few trends are appar-444

ent. First, LONGCHECKER outperforms the base-445

lines on all datasets, supporting our hypothesis that446

full-abstract context is often helpful when making 447

labeling decisions (see §6 for further evidence of 448

this). Second, predicting the overall relationship be- 449

tween a claim and abstract is easier than identifying 450

the specific rationales supporting the relationship. 451

Finally, while all models score within roughly six 452

points of each other on HealthVer and SCIFACT, 453

variability is much greater on COVID-Fact. We sus- 454

pect that this is due to the automatically-generated 455

nature of COVID-Fact negations. 456

Weakly-labeled in-domain data facilitates few- 457

shot domain adaptation To understand the im- 458

pact of weakly-supervised in-domain data on 459

model performance in the zero/few-shot settings, 460

we compare the results of pretraining on FEVER, 461

compared to pretraining on all three datasets de- 462

scribed in §4.2. Due to the expense of pretraining 463

VERT5ERINI, we use PARAGRAPHJOINT as the 464

baseline for this experiment. 465
We observe that including scientific data during 466

pretraining substantially increases performance, for 467

both models, in both the few-shot and zero-shot set- 468

tings. For LONGCHECKER in the zero-shot setting, 469

it leads to an average improvement of 24.7 abstract- 470
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Abstract Sentence

Model Training P R F1 P R F1

Pipeline Target-only 75.3 71.3 73.2 69.5 65.3 67.4
Full 74.2 71.5 72.8 67.9 63.6 65.7

multi-task Target-only 68.8 73.5 71.0 65.9 65.9 65.9
Full 78.9 76.3 77.6 72.0 66.8 69.3

Table 4: Ablations on the HealthVer test set. The
“Pipeline” model uses two separate Longformer mod-
els for rationale selection and label prediction, while
“multi-task” denotes our final system. “Two-stage” in-
dicates pretraining followed by finetuning on the tar-
get dataset, while “Target-only” training uses the target
dataset only. Multi-task modeling with two-stage fine-
tuning leads to the best performance.

level F1. For both models, training on FEVER471

alone appears lead to under-prediction and low re-472

call, suggesting that entailment patterns learned473

on Wiki-domain text do not generalize readily to474

scientific literature.475

While the improvements are not quite as dra-476

matic in the few-shot setting, scientific data477

helps in all cases except COVID-Fact with478

LONGCHECKER. In the fully-supervised setting,479

pretraining on scientific data no longer made a no-480

ticeable difference; we omit these reults for brevity.481

LONGCHECKER outperforms PARA-482

GRAPHJOINT in both the few- and zero-shot483

settings, across all datasets. This is unsurprising,484

given the relatively low precision of our method485

for selecting weakly-supervised rtaionales (§4.2),486

and indicates that the multi-task approach taken487

by LONGCHECKER may be promising for quickly488

adapting fact-checking models to new specialized489

domains or scientific subfields.490

Finally, we observe that HealthVer appears to491

be the most challenging dataset of the three. Few-492

shot abstract-level F1 scores for COVID-Fact and493

SCIFACT are generally within 10 F1 of their fully-494

supervised values, while the gap is a bit over 20495

F1 for HealthVer. This may be due to the high496

complexity of HealthVer claims.497

5.2 Ablations498

We conduct ablations on the HealthVer dataset to499

characterize the contributions of the multi-task ar-500

chitecture and two-stage training procedure to the501

overall performance of LONGCHECKER. First, we502

compare our multi-task approach to a “pipeline”503

version of LONGCHECKER, where we use one504

Longformer model to select rationales, and a sec-505

ond one to make label predictions based on the506

Stand-
alone

Context-
dependent All

Abst Sent Abst Sent Abst Sent

VERT5ERINI 87.8 75.6 75.2 67.0 79.7 70.0
PARAGRAPHJOINT 85.0 77.4 73.1 64.0 77.3 68.8

LONGCHECKER 80.5 69.6 78.4 71.0 79.2 70.5

Count 43 85 128

Table 5: Performance of models on SCIFACT in-
stances with rationales that are “Stand-alone” (can
be interpreted correctly out-of-context) and “Context-
dependent” (require abstract context to be inter-
preted correctly). The “All” column shows per-
formance on all instances combined. “Abst” and
“Sent” indicate abstract-level and sentence-level F1.
LONGCHECKER exhibits the strongest performance on
context-dependent rationales.

selected rationales. Second, we compare the per- 507

formance of LONGCHECKER trained on the target 508

dataset only (no pretraining) with models trained 509

using the full two-stage approach described in §4.3. 510

The results are shown in Table 4. Interestingly, 511

multi-task learning and two-stage finetuning work 512

the best in combination, but they do not work well 513

separately. This is likely because label prediction 514

is a more difficult task in the multi-task setup, since 515

the model input is much longer. While the model 516

can ultimately achieve better performance, it takes 517

more data to train. 518

6 Analysis 519

We collect additional annotations on the SCIFACT 520

test set to characterize the improvements made by 521

LONGCHECKER relative to the baseline systems, 522

and to assess model performance relative to the “up- 523

per bound” set by human agreement. For this anal- 524

ysis, we evaluate models in the “abstract-provided” 525

setting. 526

LONGCHECKER outperforms baselines on in- 527

stances requiring abstract-level context To de- 528

termine whether LONGCHECKER’s stronger per- 529

formance is in fact due to its modeling of context 530

missed by previous systems, we collect annotations 531

for 128 claim / evidence pairs from the SCIFACT 532

test set5. For each pair, the annotators indicated 533

whether the rationales justifying the fact-checking 534

label were “context-dependent” – i.e. they entailed 535

(or refuted) the claim only when taken in the con- 536

text of the abstract – or “stand-alone” – i.e. they 537

5These annotations are available at [anonymized].
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also entailed the claim when taken in isolation. Ex-538

amples of “context-dependent” rationales are pro-539

vided in Figure 1 and Appendix A.3.540

The results are shown in Table 5. The major-541

ity of annotated instances (85 / 128) were judged542

to be context-dependent. LONGCHECKER per-543

forms roughly the same on stand-alone and context-544

dependent examples, whereas the two baselines545

exhibit performance drops of roughly 10 F1 on546

context-dependent examples. This provides strong547

evidence that LONGCHECKER’s improvements are,548

in fact, enabled by its multi-task approach. Inter-549

estingly LONGCHECKER performs worse than the550

two baselines on instances where no additional con-551

text is required. When a stand-alone rationale is552

available, it is apparently easier to use it and ignore553

the surrounding context.554

Fact-verification systems approach human per-555

formance in the “abstract-provided” setting556

We assign 151 claim-evidence pairs from SCIFACT557

for independent annotation by two different an-558

notators. We obtain an estimate of “human-level”559

performance by treating the first annotator’s results560

as “gold”, and the second annotator’s results as561

predictions. The results are shown in Table 6. Ex-562

isting systems already exceed human agreement563

for sentence-level evaluation, but not abstract-level,564

indicating that experts tend to agree on the overall565

relationship between claim and abstract, but may566

disagree about exactly which sentences contain the567

best evidence. This fact constitutes another rea-568

son not to rely solely on selected rationales when569

predicting a fact-checking label: the choice of ra-570

tionales is itself somewhat subjective.571

In addition, these results suggest that one key572

subtask of scientific claim verification – namely,573

predicting whether an evidence-containing sen-574

tence or short document SUPPORTS or REFUTES a575

claim – may be nearly “solved” in the setting where576

(1) the claims are atomic, and (2) roughly 1,000577

in-domain labeled claims are available for training.578

7 Related work579

Related work on scientific claim verification was580

covered in §2. We briefly discuss some other rele-581

vant work. The idea of multi-task label prediction582

and rationale selection for semi-supervised ratio-583

nale selection, similar in spirit to LONGCHECKER,584

was proposed by Pruthi et al. (2020) and applied to585

sentiment analysis and propaganda detection tasks.586

A different alternative to supervised rationale selec-587

Abstract Sentence

P R F1 P R F1

VERT5ERINI 90.7 74.3 81.7 79.6 62.2 69.8
PARAGRAPHJOINT 87.2 64.4 74.1 76.7 55.1 64.1
LONGCHECKER 87.4 75.2 80.9 80.5 70.3 75.0

Human 94.8 84.1 89.1 67.4 67.4 67.4

Table 6: Performance on SCIFACT in the “abstract-
provided” setting. Models exceed human agreement as
measured by sentence-level F1, but not abstract-level.

tion is to treat rationales as latent variables, as in 588

Lei et al. (2016); Paranjape et al. (2020). 589

Long-document encodings for fact verification 590

have been explored by Stammbach (2021), who use 591

Big Bird Zaheer et al. (2020) for full-document ev- 592

idence extraction from FEVER. Domain adapation 593

for scientific text has been studied in a number of 594

works, including Gururangan et al. (2020); Beltagy 595

et al. (2019); Lee et al. (2020); Gu et al. (2021). 596

In those works, the primary focus is on lagnuage 597

model pretraining. Here, we focus on training on 598

the target task using out-of-domain and weakly- 599

supervised data. 600

8 Conclusion and future work 601

In this work, we addressed two weaknesses of ex- 602

isting scientific claim verification systems: model- 603

ing abstract-level context, and leveraging weakly- 604

labeled in-domain data for domain adaptation. We 605

developed a modeling framework and weak super- 606

vision approach which led to state-of-the-art perfor- 607

mance on three datasets, in both the zero/few-shot 608

and fully-supervised setting, and conducted anal- 609

ysis to characterize the source of these improve- 610

ments. 611

This work points toward a number of promis- 612

ing future directions for scientific claim verifica- 613

tion. These include further research on few-shot 614

domain adaptation, characterization of the perfor- 615

mance of fact-checking models when verifying 616

claims against realistic-sized corpora of millions 617

of documents, and extending the approach devel- 618

oped here to contexts beyond scientific research 619

abstracts. Another interesting alternative to the ap- 620

proach taken here would be to explicitly “decontex- 621

tualize” evidence-containing rationales by filling in 622

missing context, and then make pipeline-style label 623

predictions based on the decontextualized evidence. 624

The reliance of the label predictor on a small col- 625

lection of decontextualized sentences could lead to 626

the model being more easily interpretable. 627
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9 Ethical considerations and broader628

impact629

One long-term goal of research on scientific claim630

verification is to build systems that can automati-631

cally identify mis- and dis-information, which we632

believe would be socially beneficial given the cur-633

rent prevalence of mis- and dis-information online.634

In the shorter term, this work presents two po-635

tential risks. First, automated systems for scientific636

fact-checking are not mature enough to inform real-637

world medical decisions. We will include a dis-638

claimer with released software to this effect. Sec-639

ond, bad actors could potentially use this work640

to develop models trained to “fool” fact-checking641

systems. While this risk cannot be ruled out, we642

believe that the benefits of publishing this work643

outweight the risks that it will be used by malicious644

actors.645
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A Data processing and statistics804

A.1 Data preprocessing805

SCIFACT We use SCIFACT in its original form,806

as it was released by the paper authors (Wadden807

et al., 2020).808

HealthVer The HealthVer (Sarrouti et al., 2021)809

data release available at https://github.com/810

sarrouti/HealthVer appears in NLI format, pair-811

ing claims with evidence-containing sentences;812

the documents from which the sentences were813

extracted are not provided. We match evidence-814

containing sentences to their abstracts in the815

CORD-19 corpus (Wang et al., 2020) using a sim-816

ple substring search, after normalizing for capital-817

ization and whitespace differences. Evidence for818

which no match was found in the corpus is dis-819

carded.820

We then segment the abstracts into sentences.821

Any sentence in the abstract with a string overlap822

of > 50% with the evidence provided in the origi-823

nal data is marked as a rationale. A small number824

of claims in HealthVer had both supporting and825

refuting evidence in the same abstract; we remove826

these claims as well to conform to our task defini-827

tion. Modeling conflicting evidence is a promising828

direction for future work.829

COVID-Fact The COVID-Fact data available830

at https://github.com/asaakyan/covidfact is831

released in a similar format to HealthVer. Like832

HealthVer, we perform string search over CORD-833

19 to identify the abstracts containing evidence,834

and use the same procedure for assigning rationale835

labels to sentences from the abstract. COVID-Fact836

also includes evidence from sources scraped from837

the web that are not contained in CORD-19, such838

as news articles. These sources are not provided839

with the data release; we discard evidence from840

non-CORD-19 sources6.841

Refuted claims in COVID-Fact are generated842

automatically by replacing words in the original843

claim. Based on a manual inspection, we found this844

process to generate a truly refuted claim roughly a845

third of the time; in most other cases, it generated846

a claim that was either ungrammatical or for which847

the provided evidence was irrelevant. A few cases848

are provided in Table 7.849

6Upon request, the paper authors did kindly provide us
with scraped evidence documents. Unfortunately, we did
not have time to re-run our experiments on these additional
sources.

Intervention

metronidazole

Comparator

placebo

Outcome

pre-term birth

Label

decreased

Treatment with metronidazole decreases pre-term 
birth relative to placebo

Figure 2: An example showing how an evidence infer-
ence prompt (top) can be converted into a claim (bot-
tom) using templates. A refuted claim could be gener-
ated by substituting “increases” for “decreases” in the
prompt text.

FEVER We use the FEVER dataset as-is. 850

EVIDENCEINFERENCE The EVIDENCEINFER- 851

ENCE dataset consists of “ICO” (intervention / com- 852

parator / outcome) prompts, paired with labels indi- 853

cating whether the intervention leads to an increase, 854

decrease, or no change in the outcome with respect 855

to the comparator. We use templates to convert 856

these prompts to claims. Figure 2 for an example. 857

Rationale annotations are provided for this dataset. 858

Additional examples of templates are below; the 859

full list will be included in the code release. Re- 860

futed claims are generated by swapping “increase” 861

and “decrease” templates. 862

• Increase: [intervention] raises [outcome] rel- 863

ative to [comparator] 864

• No change: [intervention] and [comparator] 865

have very similar effects on [outcome] 866

• Decrease: [intervention] results in a decrase 867

in [outcome], relative to [comparator] 868

PUBMEDQA We use the PQA-A subset released 869

at https://pubmedqa.github.io/, which is fil- 870

tered for “claim-like” titles. We generate negations 871

by identifying titles with the phrases “does not”, 872

“do not”, “are not”, “is not”. “Does not” and “do 873

not” are removed and the relevant verbs are mod- 874

ified to have the correct inflection; for instance 875

“smoking does not cause cancer” is convered to 876

“smoking causes cancer”. Similarly, “are not” and 877

“is not” are replaced by “are” and “is”. 878

To generate rationales needed to train pipeline 879

models on PUBMEDQA, we follow the following 880

procedure. First, we encode the claim and all ab- 881

stract sentences using the all-MiniLM-L6-v2 882

model from the Sentence-Transformers package 883

https://www.sbert.net/. Then, we rank ab- 884

stract sentences by cosine similarity with the claim 885

and label the top-k sentences as rationales, where 886
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Original claim Automatic negation Comment

Sars-cov-2 reactive t cells . . . are likely
expanded by beta-coronaviruses

Sars-cov-2 reactive t cells . . . are not
expanded by beta-coronaviruses Successful negation

Regn-cov2 antibody cocktail prevents
and treats sars-cov-2 . . .

On-cov2 antibody cocktail prevents
and treats sars-cov-2 infection . . .

Ungrammatical; “On-cov2” isn’t a real
thing.

. . . immunity is maintained at 6
months following primary infection

. . . immunity is maintained at 6 weeks
following primary infection

Not refuted; The original claim entails the
negation. Immunity at 6 months implies
immunity at 6 weeks.

Table 7: Automatic negations from COVID-Fact. Some are successful, in the sense that the attempted negation
contradicts the original claim. Others are either ungrammatical or are entailed by the original claim.

Fold Dataset SUPPORTS NEI REFUTES

Train
SCIFACT 508 485 265
COVID-Fact 299 - 641
HealthVer 2384 2384 1464

Eval
SCIFACT 113 127 109
COVID-Fact 102 - 215
HealthVer 374 304 225

Table 8: Evidence distribution by dataset.

k is randomly sampled from {1, 2, 3} with a 4:2:1887

frequency ratio (this matches the distribution of k888

in SCIFACT).889

A.2 Dataset statistics890

Table 8 provides counts showing the number of891

claim / evidence pairs with each label (SUPPORTS,892

REFUTES, NEI), in each of our target datasets.893

Note that a given claim may be (and often is) paired894

with more than one abstract containing evidence.895

HealthVer is the largest datset. COVID-Fact is the896

smallest, in part due to the aggressive evidence897

filtering described in §A.1.898

A.3 Examples of “context-dependent899

rationales”900

Table 9 provides two examples of cases where901

abstract-level context is required to understand the902

relationship between a claim and a rationale report-903

ing a relevant finding.904

A.4 Annotators905

In §6, we report an analysis based on annotations906

performed on the SCIFACT dataset. These annota-907

tions were performed by students and / or profes-908

sional annotators associated with the authors’ re-909

search institutions. Annotators were paid between910

$15 and $20 / hour.911

B Modeling details 912

B.1 Implementation 913

We implement LONGCHECKER us- 914

ing PyTorch Lightning (https://www. 915

pytorchlightning.ai/), which relies on 916

PyTorch (https://pytorch.org/). 917

B.2 Model training 918

Pretraining For pretraining, we train for 3 919

epochs on FEVER, EVIDENCEINFERENCE, and 920

PUBMEDQA, with the data randomly shuffled. We 921

train on 4 negative samples (i.e. abstracts contain- 922

ing no evidence) per claim, which we find improves 923

precision. We train on 8 NVIDIA RTX 6000 GPUs 924

with a batch size of 1 / gpu (effective batch size 925

of 8), using a learning rate of 1e − 5, using the 926

PyTorch Lighthing implementation of the AdamW 927

optimizer with default settings. We initialize from 928

a Longformer-large checkpoint pretrained on the 929

S2ORC corpus (Lo et al., 2020). 930

Finetuning For finetuning, we train for 20 931

epochs on the target dataset (SCIFACT, HealthVer, 932

or COVID-Fact). For SCIFACT, we train on 20 neg- 933

ative samples claim. To create “hard” negatives 934

– i.e. abstracts that have high lexical overlap with 935

the claim – we create a search index from 500K 936

abstracts randomly selected from the biomedical 937

subset of the S2ORC corpus. For each claim, we 938

obtain negative abstracts by using the VERT5ERINI 939

retrieval system from §3.1 to retrieve the top-1000 940

most-similar abstracts from this index, removing 941

abstracts that are annotated as containing evidence, 942

and randomly sampling 20 abstracts to be used as 943

negatives during training. 944

Since HealthVer and COVID-Fact do not have 945

a retrieval step, they do not require negative sam- 946

pling, and we train on the original datasets as-is. 947

Retrieval For SCIFACT, we performed dev set 948

experiments retrieving 10, 20, or 50 abstracts / 949
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Category Example

Context
(Acronym)

Claim: Hematopoietic stem cells segregate their chromosomes randomly.
Context: we tested these hypotheses in hematopoietic stem cells (HSCs). . .
Evidence: . . . indicated that all HSCs segregate their chromosomes randomly.
Explanation: HSCs is an acronym for Hematopoietic stem cells.

Context
(Coreference)

Claim: Errors in peripheral IV drug administration are most common during bolus administration

Context: OBJECTIVES: To determine the incidence of errors in the administration of intravenous
drugs . . .

Evidence: . . . Most errors occurred when giving bolus doses
Explanation: The evidentiary sentence reporting the finding does not specify the type of error.

Table 9: Examples from the SCIFACT dataset of instances where context from the abstract is required to correctly
interpret the rationale.

claim, and found that 10 was the best. We use950

that in our final experiments.951

B.3 Model hyperparameters952

No organized hyperparameter search was per-953

formed. We consulted with the authors of the Long-954

former paper for suggestions about good model pa-955

rameters, and generally followed their suggestions.956

The loss function in Section 3.1 requires a957

weight λrationale. This is set to 15 for all final experi-958

ments. We informally experimented with values of959

1, 5, and 15; no organized hyperparameter search960

was performed. We selected the learning rate from961

the values [9e− 5, 5e− 5, 1e− 5].962

We performed all experiments with the963

same random seed, 76, used by invoking the964

seed_everything function in PyTorch Light-965

ning.966

All reported results are from a single model run.967

B.4 Baseline training968

VERT5ERINI For SCIFACT, we use the969

checkpoint available at https://github.970

com/castorini/pygaggle/tree/master/971

experiments/vert5erini. For COVID-Fact972

and HealthVer, we follow the instructions in that973

repository to convert the data to the required974

format, and train using the available training code975

as-is, beginning from the available SCIFACT976

checkpoint. We were unable to get the code to run977

on GPU; we used a Google Cloud TPU for training978

and inference.979

PARAGRAPHJOINT We use the code980

available at https://github.com/jacklxc/981

ParagraphJointModel. For predictions on982

SCIFACT, we make predictions using the publicly983

available checkpoint. For the other two target984

datasets, we use the training code in the repo985

without modification.986

We used PARAGRAPHJOINT as our baseline for 987

zero/few-shot learning experiments, and hence also 988

performed pretraining on PARAGRAPHJOINT. The 989

repository provides code to train on the FEVER 990

dataset, which we used for pretraining with EVI- 991

DENCEINFERENCE and PUBMEDQA added to the 992

data. 993

Domain adaptation results Table 3 shows the 994

results of pretraining experiments performed on 995

LONGCHECKER and PARAGRAPHJOINT. Run- 996

ning this experiment for VERT5ERINI would have 997

involved training T5-3B on large datasets using 998

Google Cloud TPU’s. Given the compute re- 999

quired and the comparable performance of PARA- 1000

GRAPHJOINT, we decided not to run this experi- 1001

ment. 1002

C Additional experimental results 1003

We report additional results not found in the main 1004

paper. 1005

C.1 Cross-dataset generalization 1006

In §4, we discussed how the available scientific fact- 1007

checking datasets differ in a number of important 1008

respects. Here, we explore whether models trained 1009

on one system are able to generalize to another de- 1010

spite these differences. We train LONGCHECKER 1011

on each of our three datasets and then evaluate 1012

its performance on the other two. We also train a 1013

version of LONGCHECKER on all three datasets 1014

together, and evaluate on each one. Since COVID- 1015

Fact has no NEI instances, during evaluation we re- 1016

move all NEI instances from the other two datasets, 1017

and provide the model with evidence-containing 1018

abstracts (rather than requiring it to retrieve them). 1019

The results are shown in Table 10. The sentence- 1020

level evaluation results (Table 10b) indicate that 1021

none of the datasets generalize well to each other 1022
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Eval → HealthVer COVID-Fact SCIFACT

Train ↓ F1 ∆ F1 ∆ F1 ∆

HealthVer 86.1 0.0 50.2 -24.0 73.4 -15.8
COVID-Fact 50.6 -35.6 74.1 0.0 76.1 -13.1
SCIFACT 70.5 -15.7 54.6 -19.6 89.2 0.0

Combined 83.0 -3.2 64.3 -9.8 87.8 -1.3

(a) Abstract-level evaluation. SCIFACT and HealthVer general-
ize fairly well to each other. COVID-Fact generalizes well to
SCIFACT, but not HealthVer.

Eval → HealthVer COVID-Fact SCIFACT

Train ↓ F1 ∆ F1 ∆ F1 ∆

HealthVer 74.2 0.0 28.0 -12.6 39.7 -32.4
COVID-Fact 14.6 -59.5 40.6 0.0 41.6 -30.6
SCIFACT 20.5 -53.7 33.9 -6.7 72.1 0.0

Combined 71.4 -2.8 39.8 -0.9 70.5 -1.6

(b) Sentence-level evaluation. None of the datasets generalize
particularly well to each other. HealthVer generalizes better to
SCIFACT than vice versa.

Table 10: The rows and columns indicate the training and evaluation datasets, respectively. The δ values indi-
cate the loss in performance from evaluating on a dataset different from the one the model was trained on. The
“Combined” row indicates training on all datasets combined.

in their ability to identify rationales. The situation1023

is better for abstract labeling (Table 10a). SCIFACT1024

and HealthVer each generalize reasonably well to1025

each other, but not to COVID-Fact. COVID-Fact1026

generalizes well to SCIFACT, but not to HealthVer.1027

In general, SCIFACT appears the “easiest” dataset1028

to generalize to; this could be explained by the fact1029

that SCIFACT claims were written to be atomic and1030

therefore simple to verify.1031

Finally, a model trained on all datasets combined1032

manages to achieve reasonable performance across1033

all three datasets, though falling short of the per-1034

formance of models trained specifically for each1035

individual dataset.1036

C.2 Negative sampling1037

In §4.3 we described how, for SCIFACT, we trained1038

on 20 negative abstracts per claim. The effect of1039

training on these additional negative samples is1040

shown in Figure 11. In the oracle abstract setting,1041

negative sampling is not very beneficial. How-1042

ever, when the model must select evidence from1043

retrieved abstracts, precision drops off dramati-1044

cally without negative sampling. This is worth1045

noting since it suggests that performance reported1046

when models are provided with “gold” candidate1047

abstracts may not offer an accurate estimate of the1048

accuracy these systems would achieve when de-1049

ployed in a real-world setting, which could require1050

systems to verify claims over hundreds of thou-1051

sands of documents.1052

Retrieval
Neg.
sample

Abstract Sentence

P R F1 P R F1

Oracle 7 81.9 85.6 83.7 69.5 69.7 69.6
3 85.2 75.2 79.9 79.0 70.3 74.4

Open 7 38.9 80.6 52.5 35.4 65.1 45.9
3 73.8 71.2 72.5 67.4 67.0 67.2

Table 11: Effect of negative sampling on SCIFACT.
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