LONGCHECKER: Improving scientific claim verification
by modeling full-abstract context

Anonymous ACL submission

Abstract

The spread of scientific mis- and dis-
information has motivated the development
of datasets and models for the task of sci-
entific claim verification. We address two
modeling challenges associated with this task.
First, existing claim verification systems make
predictions by extracting an evidentiary sen-
tence (or sentences) from a larger context,
and then predicting whether this sentence sup-
ports or refutes the claim in question. This
can be problematic, since the meaning of
the selected sentence may change when inter-
preted outside its original context. Second,
given the difficulty of collecting high-quality
fact-checking annotations in expert domains,
there is an unaddressed need for methods to
facilitate zero / few-shot domain adaptation.
Motivated by these challenges, we develop
LONGCHECKER. Given a claim and evidence-
containing abstract, LONGCHECKER predicts
a fact-checking label and identifies eviden-
tiary sentences in a multi-task fashion based
on a shared encoding of all available context.
This approach enables LONGCHECKER to per-
form domain adaptation by leveraging weakly-
supervised in-domain data. We show that
LONGCHECKER achieves state-of-the-art per-
formance on three datasets, and conduct anal-
ysis to confirm that its strong performance is
due to its ability to model full-abstract context.

1 Introduction

The task of scientific claim verification requires a
system to assess the veracity of a scientific claim
against a corpus of documents. The proliferation of
mis- and dis-information on the web — particularly
as it relates the COVID-19 pandemic (Pennycook
et al., 2020; Naeem et al., 2020) — has motivated
the release of a number of new datasets for this task
(Saakyan et al., 2021; Sarrouti et al., 2021; Wadden
et al., 2020; Kotonya and Toni, 2020), accompanied
by advances in model performance (Pradeep et al.,
2021; Li et al., 2021; Zhang et al., 2021).

Claim:

{ Ibuprofen worsens COVID-19 symptoms }

Evidence abstract:

Covid-19 and avoiding Ibuprofen.

a potential increased risk of COVID-19
infection was feared with ibuprofen use

At this time, there is no supporting evidence
to discourage the use of ibuprofen

Label: REFUTES

Figure 1: A claim from the HealthVer data set, refuted
by a research abstract. The sentence in red is a ratio-
nale, which reports a finding that REFUTES the claim.
However, this finding cannot be interpreted properly
without the context in blue, which specifies that the
finding applies to ibuprofen as a potential treatment for
COVID symptoms. LONGCHECKER incorporates the
full context of the evidence-containing abstract when
predicting fact-checking labels.

One commonality among existing models is that
they verify claims using a pipeline approach. Given
a claim and an abstract that may contain evidence,
they first extract rationales from the abstract which
contain evidence sufficient to entail or contradict
the claim, when taken in the context of the abstract.
Then, they predict a fact-checking label based on
the selected rationales, taken out-of-context. This
approach has two important shortcomings. First,
the rationales containing evidence may lack in-
formation required to make a prediction out-of-
context; for instance, they may contain acronyms or
pronouns, or lack qualifiers that specify the scope
of the finding. Figure 1 provides an example. This
challenge has previously been observed in work
on scientific literature understanding (Nye et al.,
2020), and more generally in the task of sentence
decontextualization (Choi et al., 2021).

Second, pipeline models require training data
annotated with both sentence-level rationales and
abstract-level labels. While sentence-level anno-



tations for scientific claim verification are quite
costly, abstract-level labels can be created cheaply
using high-precision heuristics For instance, the
titles of research papers often make claims that
are supported by their abstracts. Ideally, models
should be able to take advantage of these additional
abstract-level labels without requiring that they be
paired with sentence-level rationale annotations.

Motivated by these challenges, we develop
the LONGCHECKER system: given a claim and
evidence-containing abstract, LONGCHECKER en-
codes the entire claim / abstract context in a single
long sequence. The resulting context exceeds the
512-token window common to BERT-style (De-
vlin et al., 2019) transformer architectures between
12% and 43% of the time, depending on dataset. To
accommodate this, LONGCHECKER builds on the
Longformer model, which has been successfully
applied to related tasks, such as question answering,
involving long-document context (Beltagy et al.,
2020; Pradeep et al., 2021).

Longformer uses special sentinel tokens to con-
struct globally-contextualized representations of
the entire context, and each individual sentence in
the abstract. We use the representations of these
tokens to predict an abstract-level fact-checking
label and sentence-level rationale labels, respec-
tively. We find that this modeling approach im-
proves performance on three datasets for scientific
claim verification over two state-of-the-art base-
lines, one of which has more than 10x the param-
eters than our system. In addition, it is able to
effectively leverage weakly-supervised in-domain
data for zero/few-shot domain adaptation, outper-
forming a state-of-the-art pipeline model trained
using heuristically-labeled rationales.

In summary, we make the following contribu-
tions: (1) We introduce LONGCHECKER, a multi-
task system for full-context scientific claim verifi-
cation, and find that it outperforms two state-of-the-
art baselines on three datasets. (2) We propose a set
of simple heuristics to assign weak fact-checking
labels to a large collection of research abstracts,
and find that training LONGCHECKER on these
weakly-labeled data improves average zero-shot
performance by 24 F1 across our three datasets. (3)
We conduct ablations and analysis confirming that
LONGCHECKER outperforms existing systems due
to its ability to model full-abstract context when
making fact-checking predictions.

2 Background: Scientific claim
verification

2.1 The scientific claim verification task

We will use the definition of scientific claim ver-
ification from the SCIFACT task (Wadden et al.,
2020). We provide a brief review of the task
and refer the reader to that work for more detail.
Some other works have cast scientific claim ver-
ification as a sentence-level natural language in-
ference (NLI) task; in §4, we describe how we
process these datasets to be compatible with the
task as considered in this work.

Task definition Given a claim c and a collec-
tion of candidate abstracts which may contain
evidence relevant to ¢, the scientific claim veri-
fication task requires a system to predict a label
y(c,a) € {SUPPORTS, REFUTES, NEI'}, which
indicates the relationship between ¢ and a for each
candidate a. For all abstracts labeled SUPPORTS
or REFUTES, the system must also identify ratio-
nales R(c,a) = {ri(c,a),...,rp(c,a)}, where
each 7;(c, a) is a sentence from a that either entails
or contradicts the label y/(c, a)?. The rationales may
not be self-contained, and may require additional
context from elsewhere in the abstract to resolve
coreferential expressions or acronyms, or to deter-
mine qualifiers specifying experimental context or
study population®. Examples of this situation are
provided in Figure 1 and Appendix A.3.

Evaluation The SCIFACT task reports four eval-
uation metrics. We have found that two of these
metrics are sufficient to convey the important find-
ings for our experiments: (1) abstract-level label-
only evaluation computes the model’s F1 score in
identifying abstracts that SUPPORT and REFUTE
each claim. Predicting the correct label y(c, a) is
sufficient; models do not need to provide rationales.
(2) Sentence-level selection+label evaluation com-
putes the point-wise product of the model’s F1
score in identifying the rationales R(c, a), with the
model’s abstract-level label y(c, a); this rewards
precision in identifying exactly which sentences
contain the evidence justifying the label. We will
refer to these two metrics as “abstract” and “sen-
tence” evaluation, respectively.

'NEI stands for “Not Enough Info”.

This rationale definition is simplified slightly from the
one presented in Wadden et al. (2020).

3This convention is consistent with related tasks in ratio-

nalized NLP for biomedical literature, such as Lehman et al.
(2019); DeYoung et al. (2020).



Retrieval settings For open scientific claim ver-
ification, the system must retrieve candidate ab-
stracts from a corpus of documents. In the abstract-
provided setting, candidate abstracts for each claim
are given as input. We describe the retrieval set-
tings for all datasets in §4.1.

Supervision settings We consider three supervi-
sion settings. In the fully-supervised setting, mod-
els may train on all claims from the target dataset.
In the zero-shot domain adaptation setting, mod-
els may not train on any in-domain fact-checking
data, though they may train on general-domain fact-
checking data and other available scientific datasets.
In the few-shot domain adaptation setting, models

may train on 45 claims from the target dataset.
Most existing work on scientific fact-checking

examines the fully-supervised setting. An excep-
tion is Lee et al. (2021), which uses language model
perplexity as a measure of claim veracity.

2.2 Datasets

A number of datasets for scientific claim veri-
fication have been released in roughly the past
year. COVID-Fact (Saakyan et al., 2021) and
HealthVer (Sarrouti et al., 2021) verify claims
related to COVID-19 against scientific literature.
PUBHEALTH (Kotonya and Toni, 2020) verifies
public health claims against news and web sources.
SCIFACT (Wadden et al., 2020) verifies claims
made in citations in scientific papers. CLIMATE-
FEVER (Diggelmann et al., 2020) uses Wikipedia
to verify claims about climate change. In this work,
our focus is on verifying claims against scientific
research literature. We therefore perform exper-
iments on the COVID-Fact, HealthVer, and ScCI-
FACT datasets. Additional details on these datasets
are included in §4.1.

2.3 Models

Motivated in part by the SCIVER shared task (Wad-
den and Lo, 2021) and leaderboard, a number of
models have been developed for SCIFACT (the fo-
cus of the shared task). The two strongest systems
on the shared task were VERTSERINI (Pradeep
et al., 2021) and PARAGRAPHJOINT (Li et al.,
2021), which we adopt as baselines and describe
further in §4.4. More recently, ARSJOINT (Zhang
et al., 2021) achieved performance competitive
with these two systems.

Pipeline claim verification Given a claim c and
candidate abstract a, these models make predic-
tions in two steps. First, they predict rationales

~

R(c,a) = {ri(c,a),...,mn(c,a)} likely to con-
tain evidence. Then, they make a label prediction
7(c, R(c, a)) based on the predicted rationales, ig-
noring the rest of the abstract a. Written another
way, they make label predictions by approximating
7(c, a) with §(c, R(c, a)). We will refer to this ap-
proach as the pipeline approach to scientific claim
verification. Figure 1 demonstrates how this ap-
proach can fail when a rationale does not provide
all the necessary context required for a prediction.

System details VERTSERINI uses two separate
T5-3B models for the two pipeline components.
PARAGRAPHJOINT and ARSJOINT encode the ti-
tle and full abstract (truncating to 512 tokens to fit
within the BERT window), and perform rationale
selection and label prediction based on this shared
encoding. However, only the encodings of the pre-
dicted rationales are used for label prediction.

3 The LONGCHECKER model

In §3.1, we describe our modeling approach. We
address the problem of out-of-context rationales
raised in §2.3 by making a simple modeling change:
instead of approximating (¢, a) with (¢, R(c, a)),
we predict y(c, a) directly based on an encoding of
the entire claim and abstract. In §3.2, we explain
how this modeling approach facilitates few-shot
domain adaptation using weakly-labeled scientific
documents.

3.1 Full-context claim verification

Long-document encoding Given a claim c and
candidate abstract a consisting of title ¢ and sen-
tences sy, ..., Sp, We concatenate the inputs sepa-
rated by </ s> tokens. The </ s> token following
each sentence s; is notated as </s>; :

<s>c</s>t</s>81</8>1 ...8,</s>,

This model input sometimes exceeds the 512-token
limit common to transformer-based language mod-
els like BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019); see Table 1 for details on how
frequently this occurs. Therefore, we use the Long-
former model (Beltagy et al., 2020) as our encoder.
We assign global attention to the <s> token, as
well as all tokens in c and all </s> tokens.

Multi-task rationale selection and label predic-
tion Given the full-context Longformer encoding,
we predict whether sentence s; is a rationale via a
binary classification head, consisting of two feed-
forward layers followed by a two-way softmax, on



top of the globally-contextualized token </s>; .
Sentences assigned rationale scores greater than
0.5 are included in R(c, a).

Similarly, we predict the overall fact-checking
label y(c, a) by adding a three-way classification
head over the encoding of the <s> token. Since
the <s> token is trained with global attention, the
model makes predictions based on a representation
of the entire claim and abstract, rather than only
having access to the rationales R(c,a). We refer
to the approach taken by LONGCHECKER as the
multi-task approach to claim verification.

During training, we compute the cross-entropy
losses for the label and rationale predictions, and
train to minimize the multi-task loss:

L= Llabel + ArationaleLrationalea
where Apationale 18 tuned on the dev set.

Candidate abstract retrieval For datasets that
require retrieval of candidate abstracts, we rely
on the VERTSERINI (Pradeep et al., 2021) re-
trieval system, which achieved state-of-the-art per-
formance on the SCIVER shared task (SCIVER
used the SCIFACT dataset for evaluation). This
model first retrieves abstracts using BM25 (Robert-
son and Zaragoza, 2009), then refines the predic-
tions using a neural re-ranker based on Nogueira
et al. (2020), which is trained on the MS MARCO
passage dataset (Campos et al., 2016).

3.2 Training for domain adaptation

Three types of training data are available to train
scientific claim verification systems. (1) In-domain
fact-checking annotations are the “gold standard”,
but they are expensive to create and require ex-
pert annotators. (2) General-domain fact-checking
datasets like FEVER (Thorne et al., 2018) are abun-
dantly available, but generalize poorly to scientific
claims (see §5.1). (3) Scientific documents — ei-
ther unlabled or labeled for different tasks — are
abundant, and high precision heuristics can be used
to generate document-level fact-checking labels
y(c, a) for these data. We describe two such heuris-
tics in §4.2.

Given these three sources, we train
LONGCHECKER as follows: we first pretrain on
a combination of general-domain fact-checking
annotations, combined with weakly-labled in-
domain data*. Then, we finetune on the target

““Pretraining” is a slight abuse of terminology. We use

“pretraining” as shorthand for “training on the target task with
out-of-domain and / or weakly-supervised labels”.

scientific fact-checking dataset. The multi-task
architecture of LONGCHECKER is ideally suited
to this strategy, since the model can be trained on
data with or without rationale annotations. When
rationales are not available, we set Ationale = 0 in
the loss function and train as usual. By contrast,
training a pipeline model requires generating
rationale annotations R(c, a), which is relatively
low-precision (see §4.2).

4 Experimental setup

We describe our datasets, model training procedure,
and baselines.

4.1 Scientific claim verification datasets

We experiment with three scientific claim verifi-
cation datasets. Table 1 provides a summary of
important dataset characteristics. Preprocessing
steps and additional statistics for all datasets can be
found in Appendix A. HealthVer and COVID-Fact
were originally released in an NLI format, pairing
claims with (out-of-context) evidentiary sentences.
We convert to our task format by identifying the
abstracts in the CORD-19 corpus containing these
sentences, and label them as rationales.

We use the following terminology: an atomic
claim makes an assertion about a single property
of a single entity, while a complex claim may make
assertions about multiple properties or entities.

ScCIFACT claims (Wadden et al., 2020) were cre-
ated by re-writing citation sentences occurring in
biomedical literature into atomic claims, which
were verified against the abstracts of the cited docu-
ments. REFUTED claims were created by manually
negating the original claims. Abstracts that were
cited but which annotators judged not to contain
evidence were labeled NEI. SCIFACT requires re-
trieval of candidate abstracts from a corpus.

HealthVer (Sarrouti et al.,, 2021) consists of
COVID-related claims obtained by extracting snip-
pets from articles retrieved to answer questions
from TREC-COVID (Voorhees et al., 2020), and
verifies them against abstracts from the CORD-19
corpus (Wang et al., 2020). Claims in HealthVer
may be complex. REFUTED claims occur naturally
in the article snippets. HealthVer provides candi-
date abstracts for each claim, but some of these
candidates do not contain sufficient information
to support a SUPPORTS/ REFUTES verdict and are
labeled NEI.



Dataset Domain  Clai o Has Claim Negation Train  Eval >512

atase omarn aim source PeN NEI complexity method claims claims tokens
HealthVer COVID TREC-COVID X v/ Complex Natural 1,622 230 14.9%
COVID-Fact COVID  Reddit X X Complex Automatic 903 313 12.4%
ScIFACT Biomed  Citations v v Atomic Human 1,109 300 27.4%
FEVER Wiki Wikipedia - v Atomic Human 130,644 - 332%
PUBMEDQA Biomed  Paper titles - v/ Complex Automatic 58,370 - 12.1%
EVIDENCEINFERENCE Biomed  ICO prompts - v/ Atomic Automatic 7,395 - 427%

Table 1: Summary of datasets used in experiments. The top group of datasets are scientific claim verification
datasets, and the bottom group are for pretraining. Datasets with a v for “Open” require that candidate abstracts
be retrieved from a corpus; those with a X provide candidate abstracts as input. Dataset with a v for “Has NEI”
require three-way (SUPPORTS/ REFUTES/ NEI) label prediction, while those with an X are (SUPPORTS/ REFUTES)
only. The “> 512 tokens” column indicates the percentage of claim / abstract contexts that exceed 512 tokens.

COVID-Fact (Saakyan et al., 2021) collects
claims about COVID-19 scraped from a COVID-
19 subreddit, and verifies them against linked sci-
entific papers, as well as documents retrieved via
Google search. Claims in COVID-Fact may be
complex, and candidate abstracts for each claim
are provided. All candidates either SUPPORT or
REFUTE the claim. Claim negations were created
automatically by replacing salient words in the orig-
inal claims, and as a result the labels y(c, a) are
somewhat noisy (see Appendix A).

4.2 Pretraining datasets

We briefly describe our pretraining datasets and
the weak supervision heuristics used to construct
them. Detailed descriptions of these heuristics can
be found in Appendix A.1.

FEVER (Thorne et al., 2018) consists of claims
created by re-writing Wikipedia sentences into
atomic claims, verified against Wikipedia articles.

EVIDENCEINFERENCE (Lehman et al., 2019;
DeYoung et al., 2020) was released to facilitate un-
derstanding of clinical trial reports, which examine
the effect of an intervention on an outcome, rela-
tive to a comparator (“ICO” elements). The dataset
contains ICO prompts paired with (1) labels indi-
cating whether the outcome increased or decreased
due to the intervention, and (2) rationales justifying
each label. We use rule-based heuristics to convert
these prompts into claims — for instance “[interven-
tion] increases [outcome] relative to [comparator]”.

PUBMEDQA (Jin et al., 2019) was released to
facilitate question-answering over biomedical re-
search abstracts. We use the PQA-A subset, which
is a large collection of biomedical abstracts with
“claim-like” titles — for instance, ‘“Vitamin B6 sup-
plementation increases immune responses in criti-

cally ill patients.” We treat the paper titles as claims
and the matching abstracts as the evidence sources.

To train pipeline models on these instances, we
create weakly-supervised rationales by selecting
the sentences with highest similarity to the claim as
measured by cosine similarity of Sentence-BERT
embeddings (Reimers and Gurevych, 2019). We
use these annotations only when training pipeline
models. They are not used by LONGCHECKER. To
estimate the precision of rationale labeling heuris-
tic, we predict rationales in the same fashion for our
supervised datasets and compute the Precision@1
with which this method identifies gold rationales.
The scores are relatively low: 49.4, 48.8, and 43.4
for SCIFACT, COVID-Fact, and HealthVer respec-
tively.

4.3 Model training

Our fully-supervised training procedure consists
of pretraining on the three datasets from §4.2, fol-
lowed by finetuning on one of the target datasets
from §4.1. For zero-shot experiments, we perform
pretraining only. For few-shot experiments, we pre-

train followed by finetuning on 45 target examples.
We found that negative sampling was important

to achieve good precision on SCIFACT, which re-
quires document retrieval. We train with 20 neg-
ative samples / claim and retrieve 10 abstracts /
claim at inference time. For the other datsets, no

negative sampling was used.
Additional details including batch sizes, learn-

ing rates, number of epochs, etc. can be found in
Appendix B.

4.4 Baseline systems

We use PARAGRAPHJOINT and VERTSERINI as
our baseline systems. When making predictions on
SCIFACT, we use publicly available model check-
points available for each system. For HealthVer and



HealthVer COVID-Fact ScIFACT
Abstract Sentence Abstract Sentence Abstract Sentence
Model Params P R FlI p R Fl p R FI p R Fl p R FI p R Fl
VERTSERINI 5.6B 713 740 72.6 656 612 63.3 766 527 62.4 448 272 339 640 73.0 68.2 60.6 665 63.4
PARAGRAPHJOINT 360M 750 683 71.5 69.9 60.6 64.9 715 68.1 69.8 41.4 403 40.8 758 63.5 69.1 689 546 60.9
LONGCHECKER 440M 789 763 77.6 720 668 69.3 773 773 77.3 417 459 43.7 738 712 72.5 674 670 67.2

Table 2: Performance of LONGCHECKER and baselines in the fully-supervised setting. The number of parameters
in each model is reported in the “Params” column; VERTSERINT is roughly 10x larger than the other two systems.
We report performance using abstract-level and sentence-level evaluation as defined in §2.1. LONGCHECKER
outperforms the baselines on all datasets.

HealthVer COVID-Fact ScCIFACT
Abstract Sentence Abstract Sentence Abstract Sentence

Setting  Model Sei p R F1 p R Fl p R FlI p R Fl p R FI p R Fl

PARAGRAPH X 667 30 5.8 333 09 1.8 739 54 10.0 391 1.7 3.2 595 113 18.9 489 62 11.0

JOINT v 723 144 240 229 27 49 513 379 43.6 315 160 21.3 529 324 40.2 364 149 21.1
Zero-shot

LoNG X 800 07 13 667 04 0.7 958 145 252 635 62 11.2 838 140 239 649 65 11.8

CHECKER v 606 205 30.7 250 46 7.8 488 457 47.2 327 185 23.6 490 446 46.7 39.0 216 27.8

PARAGRAPH X 572 382 45.9 350 233 28.0 657 29.6 40.9 41.1 138 20.7 500 39.6 44.2 32.1 232 27.0

JOINT v 627 416 50.0 46.0 293 35.8 733 60.6 06.3 443 306 36.2 444 514 47.6 330 351 34.0
Few-shot

LONG X 564 508 53.4 356 284 31.6 745 745 74.5 395 451 42.1 724 437 54.5 488 324 39.0

CHECKER v 63.6 479 54.7 440 307 36.1 713 68.1 69.7 405 35.1 37.6 764 540 63.3 51.7 403 45.3

Table 3: Performance of LONGCHECKER and PARAGRAPHJOINT in the zero-shot and few-shot settings. Rows
where “Sci” is marked v/ indicate that the model was pretrained on scientific data. Rows marked X indicate pretrain-
ing on FEVER only. The results show that in-domain pretraining improves performance, and that LONGCHECKER

outperforms PARAGRAPHJOINT.

COVID-Fact, we use the training code provided by
the authors as-is, without adjusting training param-
eters. Additional details for the baselines can be
found in Appendix B.4. In order to compare fairly
with the two baselines (which were designed for
SCIFACT), we performed model development for
LONGCHECKER on SCIFACT as well, and did not
modify the training procedure for the other two
datasets.

S Experimental results

We present the results of our experiments. We
find that LONGCHECKER exhibits state-of-the-art
performance on all datasets and settings, and that
training on weakly-supervised scientific data sub-
stantially improves zero/few-shot performance.

5.1 Main Results

LONGCHECKER achieves state-of-the-art per-
formance Table 2 shows the fully-supervised per-
formance of LONGCHECKER and the two baselines
on our three target datasets. A few trends are appar-
ent. First, LONGCHECKER outperforms the base-
lines on all datasets, supporting our hypothesis that

full-abstract context is often helpful when making
labeling decisions (see §6 for further evidence of
this). Second, predicting the overall relationship be-
tween a claim and abstract is easier than identifying
the specific rationales supporting the relationship.
Finally, while all models score within roughly six
points of each other on HealthVer and SCIFACT,
variability is much greater on COVID-Fact. We sus-
pect that this is due to the automatically-generated
nature of COVID-Fact negations.

Weakly-labeled in-domain data facilitates few-
shot domain adaptation To understand the im-
pact of weakly-supervised in-domain data on
model performance in the zero/few-shot settings,
we compare the results of pretraining on FEVER,
compared to pretraining on all three datasets de-
scribed in §4.2. Due to the expense of pretraining
VERTSERINI, we use PARAGRAPHJOINT as the

baseline for this experiment.
We observe that including scientific data during

pretraining substantially increases performance, for
both models, in both the few-shot and zero-shot set-
tings. For LONGCHECKER in the zero-shot setting,
it leads to an average improvement of 24.7 abstract-



Abstract Sentence Stand- Context- Al
Model  Training P R Fl p R FI alone dependent
Pipeline Target-only 753 713 73.2 695 653 67.4 Abst Sent Abst Sent Abst Sent
p Full 742 715 72.8 679 636 65.7 VERTSERINI 878 75.6 752 67.0 79.7 70.0
PARAGRAPHIJOINT 85.0 774 73.1 640 77.3 68.8
multi-task Target-only 688 735 71.0 659 659 65.9
Full 789 763 77.6 720 668 69.3 LONGCHECKER 80.5 69.6 784 71.0 79.2 70.5
Count 43 85 128
Table 4: Ablations on the HealthVer test set. The
“Pipeline” model uses two separate Longformer mod-  myple 5. Performance of models on SCIFACT in-

els for rationale selection and label prediction, while
“multi-task” denotes our final system. ‘“Two-stage” in-
dicates pretraining followed by finetuning on the tar-
get dataset, while “Target-only” training uses the target
dataset only. Multi-task modeling with two-stage fine-
tuning leads to the best performance.

level F1. For both models, training on FEVER
alone appears lead to under-prediction and low re-
call, suggesting that entailment patterns learned
on Wiki-domain text do not generalize readily to
scientific literature.

While the improvements are not quite as dra-
matic in the few-shot setting, scientific data
helps in all cases except COVID-Fact with
LONGCHECKER. In the fully-supervised setting,
pretraining on scientific data no longer made a no-
ticeable difference; we omit these reults for brevity.

LONGCHECKER outperforms PARA-
GRAPHJOINT in both the few- and zero-shot
settings, across all datasets. This is unsurprising,
given the relatively low precision of our method
for selecting weakly-supervised rtaionales (§4.2),
and indicates that the multi-task approach taken
by LONGCHECKER may be promising for quickly
adapting fact-checking models to new specialized
domains or scientific subfields.

Finally, we observe that HealthVer appears to
be the most challenging dataset of the three. Few-
shot abstract-level F1 scores for COVID-Fact and
SCIFACT are generally within 10 F1 of their fully-
supervised values, while the gap is a bit over 20
F1 for HealthVer. This may be due to the high
complexity of HealthVer claims.

5.2 Ablations

We conduct ablations on the HealthVer dataset to
characterize the contributions of the multi-task ar-
chitecture and two-stage training procedure to the
overall performance of LONGCHECKER. First, we
compare our multi-task approach to a “pipeline’
version of LONGCHECKER, where we use one
Longformer model to select rationales, and a sec-
ond one to make label predictions based on the

)

stances with rationales that are “Stand-alone” (can
be interpreted correctly out-of-context) and “Context-
dependent” (require abstract context to be inter-
preted correctly). The “All” column shows per-
formance on all instances combined. “Abst” and
“Sent” indicate abstract-level and sentence-level Fl1.
LONGCHECKER exhibits the strongest performance on
context-dependent rationales.

selected rationales. Second, we compare the per-
formance of LONGCHECKER trained on the target
dataset only (no pretraining) with models trained
using the full two-stage approach described in §4.3.

The results are shown in Table 4. Interestingly,
multi-task learning and two-stage finetuning work
the best in combination, but they do not work well
separately. This is likely because label prediction
is a more difficult task in the multi-task setup, since
the model input is much longer. While the model
can ultimately achieve better performance, it takes
more data to train.

6 Analysis

We collect additional annotations on the SCIFACT
test set to characterize the improvements made by
LONGCHECKER relative to the baseline systems,
and to assess model performance relative to the “up-
per bound” set by human agreement. For this anal-
ysis, we evaluate models in the “abstract-provided”
setting.

LONGCHECKER outperforms baselines on in-
stances requiring abstract-level context To de-
termine whether LONGCHECKER’s stronger per-
formance is in fact due to its modeling of context
missed by previous systems, we collect annotations
for 128 claim / evidence pairs from the SCTIFACT
test set’. For each pair, the annotators indicated
whether the rationales justifying the fact-checking
label were “context-dependent” — i.e. they entailed
(or refuted) the claim only when taken in the con-
text of the abstract — or “stand-alone” —i.e. they

SThese annotations are available at [anonymized].



also entailed the claim when taken in isolation. Ex-
amples of “context-dependent” rationales are pro-
vided in Figure 1 and Appendix A.3.

The results are shown in Table 5. The major-
ity of annotated instances (85 / 128) were judged
to be context-dependent. LONGCHECKER per-
forms roughly the same on stand-alone and context-
dependent examples, whereas the two baselines
exhibit performance drops of roughly 10 F1 on
context-dependent examples. This provides strong
evidence that LONGCHECKER’s improvements are,
in fact, enabled by its multi-task approach. Inter-
estingly LONGCHECKER performs worse than the
two baselines on instances where no additional con-
text is required. When a stand-alone rationale is
available, it is apparently easier to use it and ignore
the surrounding context.

Fact-verification systems approach human per-
formance in the ‘“abstract-provided” setting
We assign 151 claim-evidence pairs from SCIFACT
for independent annotation by two different an-
notators. We obtain an estimate of “human-level”
performance by treating the first annotator’s results
as “gold”, and the second annotator’s results as
predictions. The results are shown in Table 6. Ex-
isting systems already exceed human agreement
for sentence-level evaluation, but not abstract-level,
indicating that experts tend to agree on the overall
relationship between claim and abstract, but may
disagree about exactly which sentences contain the
best evidence. This fact constitutes another rea-
son not to rely solely on selected rationales when
predicting a fact-checking label: the choice of ra-
tionales is itself somewhat subjective.

In addition, these results suggest that one key
subtask of scientific claim verification — namely,
predicting whether an evidence-containing sen-
tence or short document SUPPORTS or REFUTES a
claim — may be nearly “solved” in the setting where
(1) the claims are atomic, and (2) roughly 1,000
in-domain labeled claims are available for training.

7 Related work

Related work on scientific claim verification was
covered in §2. We briefly discuss some other rele-
vant work. The idea of multi-task label prediction
and rationale selection for semi-supervised ratio-
nale selection, similar in spirit to LONGCHECKER,
was proposed by Pruthi et al. (2020) and applied to
sentiment analysis and propaganda detection tasks.
A different alternative to supervised rationale selec-

Abstract Sentence

P R F1 P R F1
VERTSERINI 9.7 743 81.7 796 622 69.8
PARAGRAPHIJOINT 872 644 74.1 767 551 64.1
LONGCHECKER 874 752 80.9 805 703 75.0
Human 948 841 89.1 674 674 674

Table 6: Performance on SCIFACT in the “abstract-
provided” setting. Models exceed human agreement as
measured by sentence-level F1, but not abstract-level.

tion is to treat rationales as latent variables, as in
Lei et al. (2016); Paranjape et al. (2020).

Long-document encodings for fact verification
have been explored by Stammbach (2021), who use
Big Bird Zaheer et al. (2020) for full-document ev-
idence extraction from FEVER. Domain adapation
for scientific text has been studied in a number of
works, including Gururangan et al. (2020); Beltagy
et al. (2019); Lee et al. (2020); Gu et al. (2021).
In those works, the primary focus is on lagnuage
model pretraining. Here, we focus on training on
the target task using out-of-domain and weakly-
supervised data.

8 Conclusion and future work

In this work, we addressed two weaknesses of ex-
isting scientific claim verification systems: model-
ing abstract-level context, and leveraging weakly-
labeled in-domain data for domain adaptation. We
developed a modeling framework and weak super-
vision approach which led to state-of-the-art perfor-
mance on three datasets, in both the zero/few-shot
and fully-supervised setting, and conducted anal-
ysis to characterize the source of these improve-
ments.

This work points toward a number of promis-
ing future directions for scientific claim verifica-
tion. These include further research on few-shot
domain adaptation, characterization of the perfor-
mance of fact-checking models when verifying
claims against realistic-sized corpora of millions
of documents, and extending the approach devel-
oped here to contexts beyond scientific research
abstracts. Another interesting alternative to the ap-
proach taken here would be to explicitly “decontex-
tualize” evidence-containing rationales by filling in
missing context, and then make pipeline-style label
predictions based on the decontextualized evidence.
The reliance of the label predictor on a small col-
lection of decontextualized sentences could lead to
the model being more easily interpretable.



9 Ethical considerations and broader
impact

One long-term goal of research on scientific claim
verification is to build systems that can automati-
cally identify mis- and dis-information, which we
believe would be socially beneficial given the cur-
rent prevalence of mis- and dis-information online.

In the shorter term, this work presents two po-
tential risks. First, automated systems for scientific
fact-checking are not mature enough to inform real-
world medical decisions. We will include a dis-
claimer with released software to this effect. Sec-
ond, bad actors could potentially use this work
to develop models trained to “fool” fact-checking
systems. While this risk cannot be ruled out, we
believe that the benefits of publishing this work
outweight the risks that it will be used by malicious
actors.
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A Data processing and statistics

A.1 Data preprocessing

SCIFACT We use SCIFACT in its original form,
as it was released by the paper authors (Wadden
et al., 2020).

HealthVer The HealthVer (Sarrouti et al., 2021)
data release available at https://github.com/
sarrouti/Healthver appears in NLI format, pair-
ing claims with evidence-containing sentences;
the documents from which the sentences were
extracted are not provided. We match evidence-
containing sentences to their abstracts in the
CORD-19 corpus (Wang et al., 2020) using a sim-
ple substring search, after normalizing for capital-
ization and whitespace differences. Evidence for
which no match was found in the corpus is dis-
carded.

We then segment the abstracts into sentences.
Any sentence in the abstract with a string overlap
of > 50% with the evidence provided in the origi-
nal data is marked as a rationale. A small number
of claims in HealthVer had both supporting and
refuting evidence in the same abstract; we remove
these claims as well to conform to our task defini-
tion. Modeling conflicting evidence is a promising
direction for future work.

COVID-Fact The COVID-Fact data available
athttps://github.com/asaakyan/covidfact is
released in a similar format to HealthVer. Like
HealthVer, we perform string search over CORD-
19 to identify the abstracts containing evidence,
and use the same procedure for assigning rationale
labels to sentences from the abstract. COVID-Fact
also includes evidence from sources scraped from
the web that are not contained in CORD-19, such
as news articles. These sources are not provided
with the data release; we discard evidence from
non-CORD-19 sources®.

Refuted claims in COVID-Fact are generated
automatically by replacing words in the original
claim. Based on a manual inspection, we found this
process to generate a truly refuted claim roughly a
third of the time; in most other cases, it generated
a claim that was either ungrammatical or for which
the provided evidence was irrelevant. A few cases
are provided in Table 7.

%Upon request, the paper authors did kindly provide us
with scraped evidence documents. Unfortunately, we did
not have time to re-run our experiments on these additional
sources.
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| Outcome o _Label |

pre-term birth  decreased

Treatment with
birth relative to

decreases pre-term

Figure 2: An example showing how an evidence infer-
ence prompt (top) can be converted into a claim (bot-
tom) using templates. A refuted claim could be gener-
ated by substituting “increases” for “decreases” in the
prompt text.

FEVER We use the FEVER dataset as-is.

EVIDENCEINFERENCE The EVIDENCEINFER-
ENCE dataset consists of “ICO” (intervention / com-
parator / outcome) prompts, paired with labels indi-
cating whether the intervention leads to an increase,
decrease, or no change in the outcome with respect
to the comparator. We use templates to convert
these prompts to claims. Figure 2 for an example.
Rationale annotations are provided for this dataset.
Additional examples of templates are below; the
full list will be included in the code release. Re-
futed claims are generated by swapping “increase”
and “decrease” templates.

e Increase: [intervention] raises [outcome] rel-
ative to [comparator]

* No change: [intervention] and [comparator]
have very similar effects on [outcome]

* Decrease: [intervention] results in a decrase
in [outcome], relative to [comparator]

PUBMEDQA We use the PQA-A subset released
at https://pubmedga.github.io/, Which is fil-
tered for “claim-like” titles. We generate negations
by identifying titles with the phrases “does not”,
“do not™, “are not”, “is not”. “Does not” and “do
not” are removed and the relevant verbs are mod-
ified to have the correct inflection; for instance
“smoking does not cause cancer” is convered to
“smoking causes cancer”. Similarly, “are not” and
“is not” are replaced by “are” and “is”.

To generate rationales needed to train pipeline
models on PUBMEDQA, we follow the following
procedure. First, we encode the claim and all ab-
stract sentences using the a11-MiniIM-L6-v2
model from the Sentence-Transformers package
https://www.sbert.net/. Then, we rank ab-
stract sentences by cosine similarity with the claim
and label the top-k sentences as rationales, where


https://github.com/sarrouti/HealthVer
https://github.com/sarrouti/HealthVer
https://github.com/sarrouti/HealthVer
https://github.com/asaakyan/covidfact
https://pubmedqa.github.io/
https://www.sbert.net/

Original claim Automatic negation

Comment

Sars-cov-2 reactive t cells ... are likely Sars-cov-2 reactive t cells ... are not
expanded by beta-coronaviruses

expanded by beta-coronaviruses

Successful negation

Regn-cov2 antibody cocktail prevents On-cov2 antibody cocktail prevents
and treats sars-cov-2 infection . ..

and treats sars-cov-2 ...

Ungrammatical; “On-cov2” isn’t a real
thing.

...immunity is maintained at 6
months following primary infection

...immunity is maintained at 6 weeks
following primary infection

Not refuted; The original claim entails the
negation. Immunity at 6 months implies
immunity at 6 weeks.

Table 7: Automatic negations from COVID-Fact. Some are successful, in the sense that the attempted negation
contradicts the original claim. Others are either ungrammatical or are entailed by the original claim.

Fold Dataset SUPPORTS NEI REFUTES
SCIFACT 508 485 265
Train COVID-Fact 299 - 641
HealthVer 2384 2384 1464
SCIFACT 113 127 109
Eval COVID-Fact 102 - 215
HealthVer 374 304 225

Table 8: Evidence distribution by dataset.

k is randomly sampled from {1, 2, 3} with a 4:2:1
frequency ratio (this matches the distribution of k
in SCIFACT).

A.2 Dataset statistics

Table 8 provides counts showing the number of
claim / evidence pairs with each label (SUPPORTS,
REFUTES, NEI), in each of our target datasets.
Note that a given claim may be (and often is) paired
with more than one abstract containing evidence.
HealthVer is the largest datset. COVID-Fact is the
smallest, in part due to the aggressive evidence
filtering described in §A.1.

A.3 Examples of “context-dependent
rationales”

Table 9 provides two examples of cases where
abstract-level context is required to understand the
relationship between a claim and a rationale report-
ing a relevant finding.

A.4 Annotators

In §6, we report an analysis based on annotations
performed on the SCIFACT dataset. These annota-
tions were performed by students and / or profes-
sional annotators associated with the authors’ re-
search institutions. Annotators were paid between
$15 and $20 / hour.
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B Modeling details

B.1 Implementation

We implement LONGCHECKER us-
ing  PyTorch  Lightning (https://www.
pytorchlightning.ai/), which relies on

PyTOI‘Ch (https://pytorch.org/).

B.2 Model training

Pretraining For pretraining, we train for 3
epochs on FEVER, EVIDENCEINFERENCE, and
PUBMEDQA, with the data randomly shuffled. We
train on 4 negative samples (i.e. abstracts contain-
ing no evidence) per claim, which we find improves
precision. We train on 8 NVIDIA RTX 6000 GPUs
with a batch size of 1 / gpu (effective batch size
of 8), using a learning rate of le — 5, using the
PyTorch Lighthing implementation of the AdamW
optimizer with default settings. We initialize from
a Longformer-large checkpoint pretrained on the
S20RC corpus (Lo et al., 2020).

Finetuning For finetuning, we train for 20
epochs on the target dataset (SCIFACT, HealthVer,
or COVID-Fact). For SCIFACT, we train on 20 neg-
ative samples claim. To create “hard” negatives
—1i.e. abstracts that have high lexical overlap with
the claim — we create a search index from 500K
abstracts randomly selected from the biomedical
subset of the S20ORC corpus. For each claim, we
obtain negative abstracts by using the VERTSERINI
retrieval system from §3.1 to retrieve the top-1000
most-similar abstracts from this index, removing
abstracts that are annotated as containing evidence,
and randomly sampling 20 abstracts to be used as
negatives during training.

Since HealthVer and COVID-Fact do not have
a retrieval step, they do not require negative sam-
pling, and we train on the original datasets as-is.

Retrieval For SCIFACT, we performed dev set
experiments retrieving 10, 20, or 50 abstracts /


https://www.pytorchlightning.ai/
https://www.pytorchlightning.ai/
https://www.pytorchlightning.ai/
https://pytorch.org/

Category Example
Claim: Hematopoietic stem cells segregate their chromosomes randomly.
Context . ; —
(Acronym) Context: we tested these hypotheses in hematopoietic stem cells (HSCs). . .
Evidence: ... indicated that all HSCs segregate their chromosomes randomly.
Explanation:  HSCs is an acronym for Hematopoietic stem cells.
Claim: Errors in peripheral IV drug administration are most common during bolus administration
OBJECTIVES: To determine the incidence of errors in the administration of intravenous
Context Context: drugs
Coreference —
( ) Evidence: ... Most errors occurred when giving bolus doses
Explanation:  The evidentiary sentence reporting the finding does not specify the type of error.

Table 9: Examples from the SCIFACT dataset of instances where context from the abstract is required to correctly

interpret the rationale.

claim, and found that 10 was the best. We use
that in our final experiments.

B.3 Model hyperparameters

No organized hyperparameter search was per-
formed. We consulted with the authors of the Long-
former paper for suggestions about good model pa-
rameters, and generally followed their suggestions.

The loss function in Section 3.1 requires a
weight Aratonale- This is set to 15 for all final experi-
ments. We informally experimented with values of
1, 5, and 15; no organized hyperparameter search
was performed. We selected the learning rate from
the values [9e — 5, be — 5, 1e — 5].

We performed all experiments with the
same random seed, 76, used by invoking the
seed_everything function in PyTorch Light-
ning.

All reported results are from a single model run.

B.4 Baseline training

VERTS5ERINI we use the

checkpoint

For ScCIFACT,
available at
com/castorini/pygaggle/tree/master/
experiments/vertSerini. For COVID-Fact
and HealthVer, we follow the instructions in that
repository to convert the data to the required
format, and train using the available training code
as-is, beginning from the available SCIFACT
checkpoint. We were unable to get the code to run
on GPU; we used a Google Cloud TPU for training
and inference.

PARAGRAPHJOINT We use the code
available at https://github.com/jacklxc/
ParagraphJointModel. For predictions on
SCIFACT, we make predictions using the publicly
available checkpoint. For the other two target
datasets, we use the training code in the repo
without modification.

https://github.
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We used PARAGRAPHJOINT as our baseline for
zero/few-shot learning experiments, and hence also
performed pretraining on PARAGRAPHJOINT. The
repository provides code to train on the FEVER
dataset, which we used for pretraining with EVI-
DENCEINFERENCE and PUBMEDQA added to the
data.

Domain adaptation results Table 3 shows the
results of pretraining experiments performed on
LONGCHECKER and PARAGRAPHJOINT. Run-
ning this experiment for VERTSERINT would have
involved training T5-3B on large datasets using
Google Cloud TPU’s. Given the compute re-
quired and the comparable performance of PARA-
GRAPHJOINT, we decided not to run this experi-
ment.

C Additional experimental results

We report additional results not found in the main
paper.

C.1 Cross-dataset generalization

In §4, we discussed how the available scientific fact-
checking datasets differ in a number of important
respects. Here, we explore whether models trained
on one system are able to generalize to another de-
spite these differences. We train LONGCHECKER
on each of our three datasets and then evaluate
its performance on the other two. We also train a
version of LONGCHECKER on all three datasets
together, and evaluate on each one. Since COVID-
Fact has no NEI instances, during evaluation we re-
move all NEI instances from the other two datasets,
and provide the model with evidence-containing
abstracts (rather than requiring it to retrieve them).

The results are shown in Table 10. The sentence-
level evaluation results (Table 10b) indicate that
none of the datasets generalize well to each other


https://github.com/castorini/pygaggle/tree/master/experiments/vert5erini
https://github.com/castorini/pygaggle/tree/master/experiments/vert5erini
https://github.com/castorini/pygaggle/tree/master/experiments/vert5erini
https://github.com/castorini/pygaggle/tree/master/experiments/vert5erini
https://github.com/castorini/pygaggle/tree/master/experiments/vert5erini
https://github.com/jacklxc/ParagraphJointModel
https://github.com/jacklxc/ParagraphJointModel
https://github.com/jacklxc/ParagraphJointModel

Eval — HealthVer COVID-Fact SCIFACT Eval — Health Ver COVID-Fact SCIFACT

Train | F1 A F1 A F1 A Train | F1 A F1 A F1 A
HealthVer 86.1 0.0 50.2 -24.0 73.4 -15.8 HealthVer 742 0.0 28.0 -12.6 39.7 -324
COVID-Fact 50.6 -35.6 74.1 0.0 76.1 -13.1 COVID-Fact 14.6 -59.5 406 0.0 41.6 -30.6
SCIFACT 70.5 -15.7 54.6 -19.6 89.2 0.0 ScIFACT 20.5 -53.7 339 -6.7 72.1 0.0
Combined 83.0 -32 643 -9.8 87.8 -1.3 Combined 714 2.8 39.8 -09 70.5 -1.6

(a) Abstract-level evaluation. SCIFACT and HealthVer general- (b) Sentence-level evaluation. None of the datasets generalize
ize fairly well to each other. COVID-Fact generalizes well to particularly well to each other. HealthVer generalizes better to
SCIFACT than vice versa.

SCIFACT, but not Health Ver.

Table 10: The rows and columns indicate the training and evaluation datasets, respectively. The § values indi-
cate the loss in performance from evaluating on a dataset different from the one the model was trained on. The
“Combined” row indicates training on all datasets combined.

in their ability to identify rationales. The situation
is better for abstract labeling (Table 10a). SCIFACT
and HealthVer each generalize reasonably well to
each other, but not to COVID-Fact. COVID-Fact
generalizes well to SCIFACT, but not to HealthVer.
In general, SCIFACT appears the “easiest” dataset
to generalize to; this could be explained by the fact
that SCTIFACT claims were written to be atomic and
therefore simple to verify.

Finally, a model trained on all datasets combined
manages to achieve reasonable performance across
all three datasets, though falling short of the per-
formance of models trained specifically for each
individual dataset.

C.2 Negative sampling

In §4.3 we described how, for SCIFACT, we trained
on 20 negative abstracts per claim. The effect of
training on these additional negative samples is
shown in Figure 11. In the oracle abstract setting,
negative sampling is not very beneficial. How-
ever, when the model must select evidence from
retrieved abstracts, precision drops off dramati-
cally without negative sampling. This is worth
noting since it suggests that performance reported
when models are provided with “gold” candidate
abstracts may not offer an accurate estimate of the
accuracy these systems would achieve when de-
ployed in a real-world setting, which could require
systems to verify claims over hundreds of thou-
sands of documents.
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Neg.
Retrieval Saen% . Abstract Sentence
P P R F1 P R F1
Oracle X 819 856 83.7 695 69.7 69.6
v 852 752 79.9 790 703 74.4
Oven X 389 806 52.5 354 651 459
P v 738 712 725 674 670 67.2

Table 11: Effect of negative sampling on SCIFACT.



