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ABSTRACT

We present a novel directed acyclic graph (DAG) learning method for data gener-
ated by a linear structural equation model (SEM) and apply it to learn from gene
expression data. In prior work, linear SEMs can be viewed as a linear transforma-
tion of a dense input vector of random valued root causes (as we define). In our
novel setting we further impose the assumption that the output data are generated
via a sparse input vector, or equivalently few root causes. Interestingly, this as-
sumption can be viewed as a form of Fourier sparsity based on a recently proposed
theory of causal Fourier analysis. Our setting is identifiable and the true DAG is the
global minimizer of the L0-norm of the vector of root causes. Application to the
CausalBench Challenge shows superior performance over the provided baselines.

1 INTRODUCTION

In this work we provide a novel DAG Learning method for the CausalBench challenge (Chevalley
et al., 2022), where the task is to learn a gene regulatory network from gene expression data. We
assume that the data are generated from a linear SEM, but we change the data generating process
compared to prior work in linear SEMs (Bello et al., 2022; Ng et al., 2020; Zheng et al., 2018; Shimizu
et al., 2006). In prior work, linear SEMs can be viewed as linearly transforming an i.i.d. random,
dense vector of root causes (as we will call them) associated with the DAG nodes as input and the
actual data on the DAG nodes as output. In Seifert et al. (2022a;b) the root causes are considered as a
form of spectrum of the DAG data, with the SEM playing the role of the inverse Fourier transform.
In our work we consider the spectrum to be (approximately) sparse, i.e., assume few root causes and
introduce measurement noise in the output. Intuitively, this captures the situation that the DAG data
is produced by few data-generating events whose effect percolates through the DAG.

Contributions. Towards this competition we provide the following contributions.

• We provide a closed form solution of the linear SEM equation which expresses the data as
output of a linear transform obtained by a reflexive-transitive closure of the DAG’s adjacency
matrix. In this form, prior work on linear SEMs assumed a dense, random valued input
vector of root causes, as we call them.

• We pose the new assumption of the input vector being sparse, i.e. the data are generated
from a few root causes.

• We propose a novel algorithm for learning a DAG from data with few root causes. It is
called SparseRC and based on the minimization of the L1-norm of the approximated root
causes. We provide theoretical guarantees for our method.

• We evaluate SparseRC on the CausalBench competition dataset and show that it offers
significant improvement over provided baselines.

The proofs of our theoretical claims, experimental results on synthetically generated data with few
root causes and a complete exhibition of our approach can be found in Misiakos et al. (2023).
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2 MOTIVATION

DAG. Consider a DAG G = (V,E) with |V | = d vertices, E the set of directed edges, and no
self-loops. The vertices are sorted topologically and we set accordingly V = {1, 2, ..., d}. Further,
we assume a weighted adjacency matrix A = (aij)i,j∈V of the graph, where aij = 0 if there is no
edge. A is upper triangular with zeros on the diagonal and thus Ad = 0.

Linear SEM. Linear SEMs (Peters et al., 2017) formulate a linear data-generating process for DAGs
G. A data matrix X ∈ Rn×d consisting of n data vectors (as rows) indexed by the DAG G satisfies a
linear SEM (Ng et al., 2020; Zheng et al., 2018), with independent random noise samples N, if

X = XA+N. (1)

Transitive closure. Eq. (1) can be viewed as a recurrence for computing the data values X from N.
Here, we interpret linear SEMs differently by formulating the closed form of ths recurrence. To this
end, we define A = A+A2 + ...+Ad−1, which is the Floyd-Warshall (FW) transitive closure of
A over the ring (R,+, ·) (Lehmann, 1977), and I+A the associated reflexive-transitive closure of
A. Since Ad = 0 we have (I−A)(I+A) = I and thus can isolate X in (1):
Theorem 2.1. The linear SEM (1) computes data X as

X = N
(
I+A

)
. (2)

In words, the data values in X are computed as the output of a linear transform, obtained by the
reflexive-transitive closure of A, with the noise values N as input.

This linear transform was considered a causal inverse Fourier transform Seifert et al. (2022a;b), which
makes the rows of N the spectra of the data rows in X. Since X is uniquely determined by N, we
call the latter the root causes of X.

Few root causes. The equivalence of (1) and (2) motivates us to consider a data generation process
that differs in two ways from the prior (2). First, we assume that only a few nodes produce relevant
input that we call C, up to low magnitude noise Nc. Second, we assume that the measurement of X
is subject to noise Nx. The equation of generating data X ∈ Rn×d becomes

X = (C+Nf )
(
I+A

)
+Ns ⇔ X = XA+C+Nf +Ns (I−A) . (3)

The root causes C ∈ Rn×d represent the the actual information, i.e., the relevant input data at each
node, which then propagates through the DAG as determined specified by the SEM to produce the
final output data X, whose measurement is subject to noise. Few root causes means that only a few
coefficients in C are non-zero and the noises Nf ,Ns have negligible magnitude.

Example. We assume a river network, which is naturally represented as a DAG (flow occurs only
downstream). The nodes i ∈ V represent cities, and edges are rivers connecting them. We assume
that the cities can pollute the rivers. An edge weight aij ∈ [0, 1], (i, j) ∈ E, captures what fraction
of a pollutant inserted at i reaches the neighbour j. The data X on the DAG, measure the pollution
at each node done every a day. The measurement is the accumulated pollution from all upstream
nodes. Within the model, the associated root causes C show the origin of the pollution. Sparsity in C
means that each day only a small number of cities pollute. Negligible pollution from other sources is
captured by noise Nc and Nx models the noise in the pollution measurements.

3 OUR METHOD

We briefly discuss theoretical guarantees (see Misiakos et al. (2023) for all details) and then present
our DAG learning method including the handling of interventions.

Theoretical Guarantees. Our setting based on the assumption of few root causes is identifiable as
follows:
Theorem 3.1. Assume data generated via the extended linear SEM (3). We assume that the root
causes C are independent random variables taking uniform values from [0, 1] with probability p, and
are = 0 with probability 1− p. Then (3) translates into a linear SEM with non-Gaussian noise and
thus A is identifiable due to (Shimizu et al., 2006).
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Figure 1: Wasserstein distance metric (higher is better) for the learned DAGs from the datasets K562
(left) and RPE1 (right) (Replogle et al., 2022) based on the CausalBench framework (Chevalley et al.,
2022) with varying interventions.

Given the data X we propose the following optimization problem to retrieve the DAG structure:

min
A∈Rd×d

∥X−XA∥0 s.t. A is acyclic. (4)

Theorem 3.2. Consider a DAG with weighted adjacency matrix A. Given a large enough, but
finite, number n of samples X the matrix A is, with high probability, the global minimizer of the
optimization problem (4).

SparseRC. Our method is formed as the continuous relaxation of the discrete optimization problem
(4). We substitute the L0-norm from (4) with its convex approximation (Ramirez et al., 2013), the
L1-norm. The acyclicity is then captured with the continuous constraint h (A) = tr

(
eA⊙A

)
− d

from (Zheng et al., 2018):

min
A∈Rd×d

1

2n
∥X−XA∥1 s.t. h (A) = 0. (5)

Handling interventions. The gene expression data provided by the CausalBench framework can
contain interventions, either for all or for a fraction of genes. An intervention assigns a value to
a gene which is independent to the expression data of its predecessors. Mathematically, the linear
SEM adopting the intervention scheme is formulated with the following equation (⊙ the elementwise
product):

X = XA⊙M+N. (6)
The masking matrix M ∈ Rn×d captures the intervention on gene i by removing the incoming edges
to node i. Thus, M consists of all ones, except in row i, which it is set to zero. In this case gene i is
initialized with noise according to (6), or, more generally, with some root cause value together with
noise as in (3). Since the positions of the interventions in the dataset are known the optimization
problem becomes

min
A∈Rd×d

1

2n
∥X−XA⊙M∥1 s.t. h (A) = 0. (7)

4 CONTEST EVALUATION

Our method appears to work competitively in synthetic data generated with a few root causes (see
Misiakos et al. (2023)) and also in the gene regulatory network dataset by Sachs et al. (2005). In
Fig. 1 we present our performance on the gene interaction network benchmark provided by Chevalley
et al. (2022). Our method performs better than the provided baselines Brouillard et al. (2020) and
also exhibits an upward trend which indicates that it benefits from interventions.

Implementational details. For our method, we construct a PyTorch model consisting of a linear
layer, which represents the weighted adjacency matrix A. Then, given the data X processed in
batches, and the interventional positions masking matrix M we train our model with the Adam
optimizer with learning rate λ = 10−3, to minimize the loss in (7). The final adjacency matrix is
thresholded at 0.035 which experimentally showed to result into more than thousands of edges as
required by the competition guidelines.

Conclusion. We presented a novel form of data generation with linear SEMs based on few root
causes and an associated DAG learning algorithms. Our results on CausalBench suggest that the
assumption of few root cases may be biologically relevant, which invites further investigation.
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