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ABSTRACT

Partial label learning is a weakly supervised learning problem in which an instance
is annotated with a set of candidate labels, among which only one is the correct
label. However, in practice the correct label is not always in the candidate label
set, leading to the noisy partial label learning (NPLL) problem. In this paper,
we theoretically prove that the generalization error of the classifier constructed
under NPLL paradigm is bounded by the noise rate and the average length of the
candidate label set. Motivated by the theoretical guide, we propose a novel NPLL
framework that can separate the noisy samples from the normal samples to reduce
the noise rate and reconstruct the shorter candidate label sets for both of them.
Extensive experiments on multiple benchmark datasets confirm the efficacy of the
proposed method in addressing NPLL. For example, on CIFAR100 dataset with
severe noise, our method improves the classification accuracy of the state-of-the-art
one by 11.57%. The code is available at: https://github.com/pruirui/PLRC.

1 INTRODUCTION

Partial label learning (PLL) (Cour et al., 2011; Nguyen & Caruana, 2008; Jiang et al., 2024; Yang
et al., 2024) is a weakly supervised learning paradigm (Zhou, 2018) that allows samples to be
associated with a set of candidate labels, of which only one is the ground-truth label. Due to the low
annotation cost of collecting partial label dataset in real-world scenarios, PLL has attracted significant
attention from the community with many applications, such as automatic face annotation (Chen et al.,
2018), web mining (Luo & Orabona, 2010), and face age estimation (Panis & Lanitis, 2014). A
variety of methods have been developed to tackle the PLL problem, including average-based methods
(Hüllermeier & Beringer, 2006; Cour et al., 2009; Jin & Ghahramani, 2002), graph-based methods
(Wang et al., 2022a; Jia et al., 2023b; Xu et al., 2019; Zhang et al., 2016) and pseudo-labeling-based
methods (Lv et al., 2020; Wen et al., 2021; Jia et al., 2023a; 2024), etc.

Despite the promise, these PLL methods have been driven by the assumption that the ground-truth
label must lay in the candidate label set (CLS), which may not hold in practice due to the existence of
the non-expert annotators (Li et al., 2020; Hossain & Kauranen, 2015; Shi et al., 2023). Recently,
some researchers have turned their attention to a more practical setting called noisy partial label
learning (NPLL) (Lv et al., 2024). In NPLL, the ground-truth label of some instances may not lie in
the CLS. For ease of description, in this article, samples whose ground-truth label is not included in
the CLS are referred as noisy samples, and those that do include the ground-truth label are termed as
normal samples. To address the NPLL task, APLLS (Lv et al., 2024) proposes a family of robust

∗Corresponding author.

1



Published as a conference paper at ICLR 2025

average losses to against the existence of label noise. PiCO+ (Wang et al., 2024) and UPLLRS
(Shi et al., 2023) detect noisy samples and treat them as unlabeled samples and exploit them by a
semi-supervised learning approach. ALIM (Xu et al., 2023) incorporates non-candidate labels into
candidate labels through dynamic weighting to combat the noise problem. Although these methods
have achieved commendable results, they have not theoretically elucidated the essence of the NPLL
problem.

To this end, we first theoretically construct the generalization error bound of NPLL, where we
find that two key issues may help solve the NPLL problem: i) a lower noise rate and ii) a smaller
candidate label set. The noise rate is defined as the proportion of noisy samples to the overall samples.
In NPLL, the key to reducing the noise rate is correctly detecting noisy samples from the NPLL
dataset, because noisy samples can be easily converted into normal ones by exchanging the CLS with
non-CLS (ground-truth label must locate at non-CLS for noisy samples). To achieve this goal, we
propose a metric called ECK to distinguish normal samples and noisy samples. Considering that
the model’s output in the early stages of training is not reliable for hard samples, we employ the ECK
metric to partition samples into three parts: highly reliable normal samples, highly reliable noisy
samples, and uncertain samples. As the performance of model improves, we gradually decrease the
proportion of uncertain samples to achieve a clearer separation between normal samples and noisy
samples. Apart from reducing the noise rate, it is also necessary to decrease the size of the CLS. To
achieve this target, we propose to reconstruct the CLS for each instance. The restructured CLS
aims to achieve two objectives: reducing its size and containing ground-truth label. We propose
an instance-adaptive parameter to balance these two objectives, thereby reconstructing a faithful
shorter CLS for each instance. Through sample separation and CLS reconstruction, we can reduce the
generalization bound, and accordingly promote the classification performance. Our method serves as
a plug-in for PLL methods to enhance their performance on NPLL datasets. We extensively evaluate
our method on several benchmarks, which validates the efficacy of our method. Our contributions
can be summarized as follows:

• For the first time, we provide the generalization error bound of the classifier constructed
under NPLL, where we find that lower noise rate and smaller candidate label are two key
factors to solve the NPLL problem.

• With insights drawn from the theoretical findings, we propose a novel NPLL method which
includes two components: progressive sample separation and CLS reconstruction. Based
on those two novel components, our method can effectively reduce the noise rate while
simultaneously decreasing the size of CLS.

• Our method can serve as a plug-in for existing PLL methods to enhance their performance
on NPLL datasets. Extensive experimental results validate that our method outperforms the
current state-of-the-art (SOTA) methods by a large margin, e.g., a 11.57% improvement on
CIFAR100 with extreme noise and ambiguity level.

2 PROBLEM SETUP

Let X = Rd be the input space of d dimensions and Y = {1, · · · , C} be the label space, and C
be the number of classes. We denote D = {(xi, Yi)}ni=1 the training dataset with n samples, and
each tuple in D comprises of a vector xi ∈ X and a CLS Yi ⊂ Y . Let Y i = Y − Yi represents the
non-CLS of xi. In traditional PLL, the ground-truth label yi is concealed in CLS i.e. yi ∈ Yi (Wang
et al., 2022b; Chen et al., 2018), while NPLL allows some samples of which the ground-truth label
yi locates outside the candidate set Yi, that is yi ∈ Y i (Lv et al., 2024; Xu et al., 2023). Let f(x; θ)
denote a deep neural network parameterized by θ, which transforms x to into a probability prediction
vector p. Our goal is to train a multi-class classifier f(x; θ) using the NPLL dataset D.

3 THEORETICAL ANALYSIS

Here, we provide a generalization error bound for NPLL problem to analyze the factors that can
enhance the generalization ability of the model. The true risk with respect to the classification model
f(x; θ) is

R(f) = E(x,y)[L(f(x), y)].
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Let R̂(f) = 1
n

∑n
i=1 L(f(xi), yi) denote the corresponding empirical risk. However, in NPLL, we

cannot minimize the empirical risk directly as the ground-truth label y is inaccessible. Therefore, we
need to train the model with R̂′(f) = 1

n

∑n
i=1 LPLL(f(xi), Yi), where Yi denotes the CLS of the

instance xi. Let f̂ = argminf∈F R̂′(f) be the empirical risk minimizer, and f∗ = argminf∈F R(f)
be the true risk minimizer. Let LPLL(f(xi), Yi) =

1
|Yi|

∑
c∈Yi
L(f(xi), c) be the loss for PLL. Let

n′ =
∑n

i=1 I(yi ∈ Yi) be the number of normal samples. Let ϵ represent the noise rate in the NPLL
dataset which is defined as the proportion of instances whose ground-truth label does not belong to
CLS, i.e., ϵ = n−n′

n and let α = 1
n′

∑n
i=1,yi∈Yi

|Yi| be the mean size of CLS for normal samples.
Besides, we define the function space Hy for the label y ∈ Y as {h : x 7→ fy(x)|f ∈ F} where
fy(x) represents the predicted probability of the y-th class for x. Let Rn(Hy) be the expected
Rademacher complexity (Bartlett & Mendelson, 2002) ofHy with sample size n. Then we have the
following theorem.
Theorem 1. Assume the loss function L(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ Y
and uppper-bounded by M . For noise rate 0 < ϵ < 1 and mean CLS size for normal samples
1 < α < C, for any δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 2(1− 1− ϵ

α
)M + 4

√
2ρ

C∑
y=1

Rn(Hy) + 2M

√
log 2

δ

2n
.

The proof of Theorem 1 is provided in Appendix A.1. It can be observed that the generalization
performance of f̂ is primarily influenced by three factors: the noise rate ϵ, the mean CLS size α of
normal samples, and the sample size n. As n→∞, ϵ→ 0 and α→ 1, Theorem 1 shows that the
generalized error bound will be reduced, and the empirical risk minimizer f̂ will get closer to the true
risk minimizer f∗. Obviously, a smaller noise rate ϵ and a smaller CLS size α will bring better
generalization performance.

4 PROPOSED METHOD

Based on the theoretical analyses above, we can find that the key to solving the NPLL problem lies in
reducing the noise rate in the dataset and minimizing the size of the CLS. To achieve these goals, our
method comprises two components. First, we try to separate the samples into highly reliable normal
samples, highly reliable noisy samples, and uncertain samples. Second, based on the above sample
separation, we separately perform CLS reconstruction with an instance-adaptive parameter for these
samples. As the model is trained on reconstructed CLS, its performance improves progressively,
which in turn promotes the aforementioned processes, ultimately leading to a reduction in noise rate
while simultaneously decreasing the size of the CLS. The pseudo-code is summarized in Algorithm 1.
The framework of our method is showed in Fig. 4.

4.1 PROGRESSIVE SAMPLE SEPARATION

We first propose a metric, the consistency error between CLS-based and KNN-based pseudo-label
(ECK), to distinguish normal samples and noisy samples. Considering that the model output is not
reliable in the early stages of training for some hard samples, we divide the samples into three
parts based on the ECK metric: highly reliable normal samples, highly reliable noisy samples, and
uncertain samples. As the performance of model improves, we gradually increase the proportion of
highly reliable samples to achieve an accurate separation between normal samples and noisy samples.

According to the smooth assumption (Wang et al., 2022a), similar samples tend to share the same
label. For each sample xi, we select its K-nearest neighbor samples Ni with cosine distance to
construct a KNN-based pseudo-label:

qi = Normalize

∑
j∈Ni

sij · pj

 , (1)

where sij is cosine similarity of features between sample xi and xj , pj = f(xj ; θ) is the probability
prediction vector of xj , and Normalize(·) is a normalization function that ensures the sum of vector
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Algorithm 1 Training Process of the Proposed Method
Input: NPLL training dataset D = {(xi, Yi)}ni=1, classifier f , PLL method LPLL, warm-up epoch
ew, uncertainty-end epoch eend, number of epoch emax hyper-parameters λ, β.
Output: The optimized muti-class classifier f .

1: for epoch = 1, 2, · · · , ew do
2: Warm-up training f by LPLL with Dataset D = {(xi, Yi)}ni=1
3: end for
4: for epoch = 1, 2, · · · , emax do
5: Calculate percentage rl and ru by Eq. (5)
6: Calculate ECK Ei for each instance xi by Eq. (3)
7: u← Eru // Eru is ru-percentile of Ei

8: l← Erl // Erl is rl-percentile of Ei

9: Calculate vi for each instance xi by Eq. (4) // Sample Separation
10: Calculate Ŷ by Eqs. (8) (9) (10) // CLS Reconstruction
11: Train f by LPLL with Dataset D = {(xi, Ŷi)}

n

i=1
12: end for

equal to 1. For each sample xi, we further construct a CLS-based pseudo label by normalizing the
model’s prediction to the candidate labels:

q̃i = Normalize (pi ⊙ S(Yi)) , (2)

where S(·) transfers CLS to a vector where the i-th element equal to 1 if the i-th label is in the CLS,
and 0 otherwise. Operation ⊙ is Hadamard product, i.e., element-wise multiplication. Then, we
calculate the ECK of each sample xi using the cross entropy between q̃i and qi, i.e.,

Ei = −
C∑

j=1

q̃ij log qij , (3)

where q̃ij and qij are the j-th elements of the vectors q̃i and qi, respectively. When the ground-truth
label of a sample is included in the candidate labels, the CLS-based pseudo-labels and KNN-based
pseudo-labels tend to be similar, resulting in a relatively small value of ECK. However, when the
the ground-truth label of a sample locates at the non-candidate labels, there will be a significant
discrepancy between the CLS-based pseudo-label and KNN-based pseudo-label, leading to a larger
value of ECK.

We employ a dual-threshold approach to separate the samples into three distinct groups: highly
reliable normal samples, highly reliable noisy samples, and uncertain samples. Then, we use a ternary
variable vi to denote the group to which the i-th sample xi belongs. Specifically, when vi is 1, 0, and
−1, it indicates that the i-th sample belongs to the normal samples, uncertain samples, and noisy
samples, respectively. Consequently, we have

vi =


1, Ei ≤ l,

0, l < Ei ≤ u,

−1, Ei > u,

(4)

where the thresholds l and u are used to balance the quality and quantity of sample separation. As
shown in Fig. 4, with model training, the value of l increases while the value of u decreases, until l
equals u and all samples will be separated into noisy samples and normal samples. In practice, as
the ECK changes across different epochs, l and u are assigned the rl and ru percentiles of ECK,
respectively, to ensure stability during training. Due to the typically lower proportion of noisy samples
compared to normal ones, we employ the hyper-parameter λ = |∆ru|

|∆rl| , (0 < λ ≤ 1) to regulate the
rate of percentile change between rl and ru. We linearly ramp up rl and taper off ru, i.e.,

rl =
1

1 + λ
∗max(

epoch− ew
eend − ew

, 1), ru = 1− λ

1 + λ
∗max(

epoch− ew
eend − ew

, 1) (5)

where epoch is the current training epoch, ew is the warm up epoch and the eend denotes the epoch
where all samples are separated, i.e., rl = ru. So far, we have partitioned the samples into three
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groups: normal samples {xi|vi = 1,∀i}, noisy samples {xi|vi = −1,∀i}, and uncertain samples
{xi|vi = 0,∀i}. As the model iterates, the model is better trained and accordingly the number of
uncertain samples will gradually decrease.

Difference with the previous noisy sample separation methods. The previous methods, PiCO+
(Wang et al., 2024) and UPLLRS (Shi et al., 2023), also employ a partitioning strategy for noisy
samples. However, different with our method, they overlook the existence of the uncertain samples
during the training process. Directly partitioning uncertain samples as noisy samples or normal ones
will inevitably lead to more errors, especially in the early stages of model training when the model’s
capability is weak. Our proposed dual-threshold strategy gradually increases the partitioning degree
as the model’s capability improves, and the experimental results in Table 5 and Table 7 demonstrate
its superiority over the previous methods. Additionally, these methods just treat the partitioned noisy
samples as unlabeled samples, ignoring the prior that ground-truth label of noisy samples locates in
the non-CLS. In contrast, the CLS reconstruction method we propose in the next section will utilize
this important prior.

4.2 RECONSTRUCTION OF CANDIDATE LABEL SET

In the previous section, we have identified a subset of normal and noisy samples. A straightforward
approach to handle noisy samples is treating their non-CLS as their new CLS (ground-truth must
locate at non-CLS for noisy samples). Although this approach can reduce the noise rate, it will
increase the size of CLS for samples (the size of CLS is usually smaller than that of the non-CLS),
thereby violating the conclusion in Theorem 1. Therefore, we propose to reconstruct the CLS for
all instances, which aims to reduce the size of the CLS while ensuring that the ground-truth label
is included in the CLS. To achieve those two goals simultaneously, we formulate the following
optimization problem :

min
Ŷ

n∑
i=1

I(vi ̸= 0)
(
|Ŷi| − β⟨qi,S(Ŷi)⟩

)
, (6)

s.t. ∀i, if vi = 1, Ŷi ̸= ∅, Ŷi ⊆ Yi,

∀i, if vi = −1, Ŷi ̸= ∅, Ŷi ⊆ Y − Yi,

where Ŷi is reconstructed CLS of xi and S(Ŷi) transfers the reconstructed CLS Ŷi to a vector of
that the j-th element equal to 1 if the label j is in Ŷi, and 0 otherwise. | · | is the cardinality of a set
and ⟨·, ·⟩ denote the inner product of two vectors. I(·) is an indicator function which outputs 1 if the
condition holds, 0 otherwise. qi is the KNN-based pseudo label of xi obtained by Eq. (1).

Minimizing |Ŷi| in the optimization objective aims to reduce the CLS size, while minimizing
−⟨qi,S(Ŷi)⟩ is designed to select more reliable labels to reconstruct the CLS. The hyper-parameter
β balances these two objectives. The solution is showed on Appendix A.2, i.e., Ŷi = {j|j ∈ Yi, qij >
1
β } if xi is a normal sample (vi = 1) while Ŷi = {j|j ∈ Y − Yi, qij > 1

β } if xi is a noisy sample
(vi = −1). Considering the various learning states of samples, for samples with high confidence,
we can intensify the reduction of CLS with a lower value of β. Conversely, for samples with low
confidence, it is appropriate to set higher β to ensure the ground-truth label within the CLS. Therefore,
we transform the hyper-parameter β into an instance-adaptive parameter. Specifically, for the sample
xi, the instance-adaptive parameter is

βi = τ(qi), (7)

where τ(·) is a function, and the output of τ(·) is inversely proportional to the pseudo-label confidence.
In practice, we use the maximum value in the pseudo-label to represent the confidence of the sample,
i.e. τ(qi) = β

max(qi)
, where β is the hyper-parameter in Eq. (6). Finally, the reconstructed CLS is as

follows:

Ŷi = {j|j ∈ Yi, qij >
1

βi
}, if vi = 1, (8)

Ŷi = {j|j ∈ Y − Yi, qij >
1

βi
}, if vi = −1. (9)
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In the early stages of training, there are fewer selected reliable samples. Directly excluding uncertain
samples {xi|vi = 0,∀i} from training will slow down the convergence to some extent. Therefore,
for these uncertain samples, we choose to add the label with the highest pseudo-label probability
from the non-CLS to the CLS, and remove the label with the lowest pseudo-label probability from
the CLS, i.e.,

Ŷi = Yi ∪ {c} \ {c′}, if vi = 0, (10)

where c = argmaxj∈Y−Yi
qij and c′ = argminj∈Yi

qij .

Remark. Driven by theoretical analyses in Section 3, we propose a CLS reconstruction method that
corrects noisy labels while reducing the size of the CLS. Note that all the previous methods do not
consider the impact of CLS size on generalization performance. The experimental results in Table 5
validate the effectiveness of the proposed reconstruction method.

4.3 ITERATIVE IMPROVEMENT

Utilizing the CLS-reconstructed dataset obtained from the previous section, we optimize the model
by

min
θ

1

n

n∑
i=1

LPLL(f(xi; θ), Ŷi), (11)

where LPLL can be any PLL method. Eq. (11) can be solved by applying the stochastic gradient
decent (SGD) method. As the performance of the model improves, it will in turn enhance the effect
of sample separation and CLS reconstruction. By alternating optimization, the model thus achieves
the excellent performance on NPLL dataset. As LPLL can be any PLL method, our approach serves
as a plug-in to enhance the performance of traditional PLL methods on NPLL datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Following the previous works (Wang et al., 2024; Xu et al., 2023; Qiao et al., 2023), we
first evaluated our method on two benchmark datasets, CIFAR10 and CIFAR100 (Krizhevsky et al.,
2009). Following the same dataset generation process of the previous works (Wang et al., 2024), for
each benchmark dataset, we manually corrupted its training dataset into NPLL dataset. Specifically,
we first constructed the candidate label set for each sample by manually flipping incorrect labels
y ̸= y to candidate labels with probability η = P (y ∈ Yi|y ̸= y). Then, each sample has a probability
γ of being the noisy sample, i.e., the probability of that CLS do not contain ground-truth label y
is γ. We denote the probability η as the ambiguity level and the probability γ as the noise level.
We consider η ∈ {0.3, 0.4, 0.5} for CIFAR10 and η ∈ {0.03, 0.05, 0.1} for CIFAR100. We choose
noise level γ ∈ {0.2, 0.3, 0.4}. Considering that similar categories are more likely to be added to
the candidate set, partial label annotations are prone to arise from fine-grained image scenarios. We
conducted experiments on three fine-grained datasets CIFAR100H, CUB200 (Welinder et al., 2010)
and Flower (Nilsback & Zisserman, 2008). We further evaluated our method on two real-world
crowdsourced datasets Treeversity and Benthic (Schmarje et al., 2022) to confirm the effectiveness of
the our method in real-world applications. The detailed information of these datasets is presented in
Appendix A.6.

Baselines. We compared our method with four recent PLL methods including PRODEN (Lv et al.,
2020), CC (Feng et al., 2020), CRDPLL (Wu et al., 2022), and PaPi (Xia et al., 2023) and four SOTA
NPLL methods including FREDIS (Qiao et al., 2023), PiCO+ (Wang et al., 2024) and ALIM (Xu
et al., 2023) (two variants: ALIM-Onehot and ALIM-Scale). It is noteworthy that ALIM can also
serve as a plug-in applied to other PLL methods.

Implementation Details. Following the experimental setup (Xu et al., 2023), we splited a
clean validation set from the training set to determine hyper-parameters. Then, we transformed the
validation set back to its NPLL form and incorporated them into the training set to retrain the model.
Due to our approach is a plug-in method, we default to combining our method with PaPi (Xia et al.,
2023) for NPLL unless specifically stated. More experimental details are showed in Appendix A.3.
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Table 1: Accuracy comparisons on CIFAR10 and CIFAR100 under various ambiguity levels η and noise levels γ.
Bold indicates the best result. Accuracies are presented in percentage (%) form. All experiments were conducted
three times under the same three distinct random seeds.

Method
CIFAR10

η = 0.3 η = 0.4 η = 0.5
γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4

PRODEN [ICML’20] 77.74 ± 0.53 67.20 ± 0.99 57.74 ± 0.56 71.43 ± 0.54 59.28 ± 0.82 46.87 ± 1.40 63.94 ± 0.75 49.38 ± 1.13 32.03 ± 1.33
CC [NeurIPS’20] 75.09 ± 0.37 63.48 ± 1.72 54.42 ± 0.34 68.08 ± 0.94 54.46 ± 0.36 42.24 ± 1.31 58.22 ± 0.24 44.38 ± 1.60 28.57 ± 1.67

CRDPLL [IMCL’23] 84.61 ± 0.19 80.12 ± 0.46 71.43 ± 0.93 81.60 ± 0.46 72.79 ± 0.39 53.24 ± 2.30 76.92 ± 1.04 56.78 ± 0.76 32.60 ± 1.04
PaPi [CVPR’23] 89.80 ± 0.36 86.36 ± 1.06 78.45 ± 0.61 86.71 ± 0.65 81.78 ± 0.52 59.02 ± 1.67 86.34 ± 0.67 73.06 ± 1.16 47.16 ± 1.35

FREDIS [ICML’23] 92.09 ± 0.29 87.91 ± 1.74 84.15 ± 0.19 89.25 ± 2.18 84.78 ± 2.50 77.74 ± 0.70 88.10 ± 0.59 79.73 ± 2.70 52.68 ± 1.22
PiCO+ [TPAMI’24] 94.12 ± 0.35 94.22 ± 1.19 89.56 ± 0.52 93.84 ± 0.96 92.96 ± 0.92 85.94 ± 1.48 92.21 ± 0.66 89.63 ± 1.47 75.59 ± 1.32

ALIM-Scale [NeurIPS’23] 94.97 ± 0.27 94.10 ± 0.16 93.31 ± 0.27 94.38 ± 0.24 93.41 ± 0.25 89.62 ± 0.66 93.92 ± 0.09 90.10 ± 0.56 69.78 ± 1.07
ALIM-Onehot [NeurIPS’23] 95.13 ± 0.10 94.39 ± 0.23 93.68 ± 0.14 94.64 ± 0.08 94.17 ± 0.04 88.88 ± 0.30 94.07 ± 0.15 90.71 ± 0.73 65.57 ± 2.04

Ours 96.91 ± 0.17 96.80 ± 0.14 96.47 ± 0.19 96.78 ± 0.10 96.23 ± 0.66 96.03 ± 0.56 96.55 ± 0.02 94.54 ± 1.84 82.63 ± 1.70

Method
CIFAR100

η = 0.03 η = 0.05 η = 0.1
γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4

PRODEN [ICML’20] 57.83 ± 0.49 48.66 ± 0.31 40.10 ± 0.37 55.39 ± 0.61 45.36 ± 1.16 36.11 ± 0.40 50.88 ± 1.12 40.02 ± 1.40 28.81 ± 0.89
CC [NeurIPS’20] 57.73 ± 0.70 48.66 ± 0.28 38.26 ± 1.31 55.93 ± 0.70 45.41 ± 1.23 35.31 ± 0.07 51.81 ± 0.36 40.69 ± 0.65 28.56 ± 0.29

CRDPLL [IMCL’23] 63.91 ± 0.53 59.16 ± 0.14 55.16 ± 0.36 63.02 ± 0.52 57.77 ± 0.48 53.64 ± 0.29 61.43 ± 0.21 54.77 ± 0.05 48.50 ± 0.36
PaPi [CVPR’23] 69.83 ± 0.57 61.99 ± 0.24 59.71 ± 0.68 68.64 ± 0.61 62.72 ± 0.95 58.63 ± 0.25 67.64 ± 0.56 61.98 ± 0.70 55.60 ± 0.51

FREDIS [ICML’23] 66.94 ± 0.10 61.85 ± 0.41 57.99 ± 0.35 67.48 ± 0.57 62.72 ± 0.77 57.19 ± 0.68 66.09 ± 0.42 57.60 ± 0.64 45.09 ± 0.72
PiCO+ [TPAMI’24] 74.32 ± 0.43 72.68 ± 0.28 67.31 ± 0.58 73.33 ± 0.48 70.17 ± 0.62 65.01 ± 0.48 62.67 ± 0.46 56.25 ± 0.84 47.75 ± 1.08

ALIM-Scale [NeurIPS’23] 76.39 ± 0.71 75.40 ± 0.60 74.58 ± 0.25 76.02 ± 0.31 75.33 ± 0.14 74.49 ± 0.69 75.27 ± 0.22 71.06 ± 1.41 64.61 ± 2.37
ALIM-Onehot [NeurIPS’23] 76.29 ± 0.19 74.83 ± 0.12 73.39 ± 1.14 74.92 ± 0.48 74.40 ± 0.06 71.49 ± 1.02 61.24 ± 0.57 58.01 ± 1.03 47.27 ± 1.82

Ours 81.74 ± 0.16 80.73 ± 0.16 79.95 ± 0.20 80.76 ± 0.08 80.17 ± 0.20 78.89 ± 0.41 79.98 ± 0.23 79.21 ± 0.88 76.18 ± 1.67

Table 2: Accuracy comparisons when the methods are used as a plug-in on CIFAR10 and CIFAR100 under
various ambiguity levels η and noise levels γ. Bold indicates the best result. Accuracies are presented in
percentage (%) form.

Method
CIFAR10

η = 0.3 η = 0.4 η = 0.5
γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4

PRODEN 78.00 67.57 57.75 71.31 60.22 48.38 64.62 49.95 31.93
PRODEN + ALIM-Onehot 90.83 88.64 84.87 89.15 84.95 77.71 86.63 79.89 42.83
PRODEN + ALIM-Scale 92.05 89.83 83.22 90.58 85.78 71.27 87.10 66.34 38.14

PRODEN + Ours 94.35 94.10 93.30 94.21 93.80 90.48 94.00 93.27 62.29
CRDPLL 84.40 79.61 71.46 81.97 72.43 55.06 76.93 56.40 31.96

CRDPLL + ALIM-Onehot 88.30 83.64 74.21 86.12 77.04 56.58 80.75 60.72 32.95
CRDPLL + ALIM-Scale 92.06 90.42 85.86 90.81 85.36 73.85 87.06 68.57 40.50

CRDPLL + Ours 95.29 95.25 94.86 95.17 94.44 90.43 94.28 83.40 54.66
PaPi 69.83 61.99 59.71 68.64 62.72 58.63 67.64 61.98 55.60

PaPi + ALIM-Onehot 95.64 94.88 92.57 95.67 94.26 91.01 94.45 90.50 66.50
PaPi + ALIM-Scale 95.11 94.40 92.32 95.94 94.15 90.25 93.24 88.41 58.92

PaPi + Ours 96.74 96.67 96.41 96.84 95.47 95.39 96.53 95.41 81.85

Method
CIFAR100

η = 0.03 η = 0.05 η = 0.1
γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.2 γ = 0.3 γ = 0.4

PRODEN 58.10 48.98 40.30 54.89 46.60 35.85 51.87 41.63 29.84
PRODEN + ALIM-Onehot 74.07 71.18 68.26 72.47 69.76 66.36 68.17 62.33 53.44
PRODEN + ALIM-Scale 74.98 73.50 69.05 74.49 72.14 66.88 70.64 64.17 55.10

PRODEN + Ours 75.66 74.59 72.29 75.08 73.68 70.19 74.74 69.93 61.47
CRDPLL 64.36 59.01 55.20 62.45 58.26 53.37 61.26 54.72 48.69

CRDPLL + ALIM-Onehot 68.31 63.70 57.20 67.21 64.24 55.37 67.09 62.28 50.19
CRDPLL + ALIM-Scale 70.93 67.99 58.60 70.09 67.30 57.43 68.24 63.03 53.74

CRDPLL + Ours 74.46 72.93 69.96 73.58 72.39 68.19 72.27 69.55 66.16
PaPi 69.83 61.99 59.71 68.64 62.72 58.63 67.64 61.98 55.60

PaPi + ALIM-Onehot 80.37 79.20 77.58 79.64 78.14 76.08 77.77 74.04 58.63
PaPi + ALIM-Scale 81.50 80.23 78.77 80.51 78.79 77.11 79.16 75.86 63.02

PaPi + Ours 81.70 80.69 80.08 80.85 79.88 79.29 79.78 78.23 78.10

5.2 MAIN RESULTS

Our method achieves SOTA classification accuracy. As shown in Table 1, on the CIFAR10
and CIFAR100 datasets with different ambiguity levels η and different noise levels γ, our method
outperforms all the compared methods by a large margin. For example, on CIFAR100 with η = 0.1,
our method improves the best compared method by 4.71%, 8.15% and 11.57% on three different
noise levels γ = 0.2, 0.3 and 0.4 respectively. On CIFAR10 with η = 0.5, our method performs
2.48%, 3.83% and 7.04% better than the best compared method.

Our method can promote the performance of different PLL methods on NPLL dataset. Since
our method is a plug-in approach, we combine it with various existing PLL methods and compare the
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(a) varying PLL methods (b) varying noise level (c) varying ambiguity level

Figure 1: The mean accuracy on CIFAR10 of our method and the ALIM across different PLL methods, ambiguity
levels, and noise levels. The results are derived from the statistics presented in Table 2. The results on CIFAR100
is showed in Appendix A.5.

results with that of ALIM (Xu et al., 2023) in Table 2. It can be observed that our method significantly
enhances the performance of different PLL methods across various ambiguity levels and noise levels
and outperforms ALIM in all cases. For example, on CIFAR100 (η = 0.1, γ = 0.4), integrated
with PRODEN, CRDPLL and PaPi, our method performs 6.37%, 12.42% and 15.08% better than
the ALIM. Fig. 1 shows the mean accuracy of our method and that of ALIM across different PLL
methods, ambiguity levels, and noise levels. As the difficulty of the problem increases (with higher
levels of noise and ambiguity), our method demonstrates a more pronounced enhancement in the
performance of the PLL model compared to the current SOTA method.

Table 3: Accuracies (%) on fine-grained datasets.

Method
CIFAR100H
η = 0.5
γ = 0.2

CUB-200
η = 0.03
γ = 0.3

Flower
η = 0.05
γ = 0.2

PaPi 63.94 43.56 74.95
PaPi + ALIM-Onehot 69.29 48.58 76.07
PaPi + ALIM-Scale 74.34 51.44 78.47

PaPi + Ours 76.93 52.78 81.72

Our method remains effectiveness on fine-grained
datasets for NPLL task. Partial label annotations
are easily arisen from fine-grained image scenarios
as annotators are more likely to confuse similar cate-
gories. Therefore we further conduct experiments on
fine-grained datasets, CIFAR100H (Krizhevsky et al.,
2009), CUB200 (Welinder et al., 2010) and Flower
(Nilsback & Zisserman, 2008). The results in Table 3
demonstrate that our method significantly improves
PLL method PaPi on fine-grained NPLL task by 6.77%, 9.22% and 12.99% on Flower (η = 0.05,
γ = 0.2), CUB200 (η = 0.03, γ = 0.3) and CIFAR100H (η = 0.5, γ = 0.2). And our method, as
expected, also outperforms the current SOTA NPLL method ALIM. This results further substantiate
the efficacy of our method.

Table 4: Accuracies (%) on real-world datasets.

Method\Dataset Treeversity2 Treeversity3 Benthic2#
Papi 81.07 82.55 80.90

PaPi + ALIM-Scale 82.72 83.47 81.46
PaPi + ALIM-Onehot 84.54 86.01 82.24

PaPi + Ours 86.41 86.67 83.47

Our method is skilled in real-world datasets for
NPLL task. To further verify the superiority of
our method, we evaluated different methods on real-
world crowdsourced datasets: Treeversity and Ben-
thic. The details of those datasets and the experimen-
tal settings are showed in Appendix A.6. As indicated
in Table 4, our method still significantly outperforms
the current SOTA methods in realistic experiment.
Especially, in more challenging scenarios like Treeversity2, the performance gap is even more
significant.

Our method is capable of effectively segregating the reliable samples. We validated the
rationality of the progressive sample separation in Fig. 2 which visualizes the distribution of ECK and
the boundary values l and u. It can be observed that as the training epoch increases, ECK increasingly
distinguishes between normal samples and noisy samples. Meanwhile, the boundary values l and u
can effectively separate highly reliable normal samples from highly reliable noisy samples. Moreover,
the number of the highly reliable samples gradually increases with the training of the model until
all samples are selected. Fig. 3(a) illustrates the trends in separation accuracy and the number of
selected highly reliable samples as the model training, where we find that with the model training,
the highly reliable selection quantities of both normal and noisy samples increase, while the quality
maintains at a high level. We further evaluated separation accuracy of normal and noisy samples for
different NPLL method in Appendix A.7. We can observe that our method outperforms other NPLL
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(a) 100 epoch (b) 140 epoch (c) 180 epoch (d) 500 epoch

Figure 2: Distribution of the ECK in Eq. (3) for real normal and noisy samples with increasing training iterations.
The experiment is conducted on CIFAR10 ( η = 0.5, γ = 0.3 ). The term "ratio" on the graph represents the
proportion of each selected subset of samples relative to the total number of samples. The results on CIFAR100
are showed are Appendix A.5.

(a) Separation quantity vs Separation quality (b) Ground-truth hit rate vs Mean CLS size (c) The first term of Theorem 1

Figure 3: The experiment is conducted on CIFAR10 (η = 0.5, γ = 0.3). (a) demonstrates that with the
progression of training iterations, the selection quantities of both normal and noisy samples increase, while the
quality (accuracy) is able to be sustained at a high level. (b) reflects that, as training iterations continue, the
reconstructed CLS size consistently decreases (green curve) while ensuring a high ground-truth label hit rate (the
rate of samples that ground-truth label locates in the reconstructed CLS). There are no uncertain samples after
200 epoch, because we set eend = 200. (c) indicates that, as the model training progresses, the value of 1− 1−ϵ

α
is continuously decreasing. Note this value is positively related to generalization error bound in Theorem 1. The
results on CIFAR100 are showed in Appendix A.5.

methods with a substantial gap especially when the noise level is high, which validates the superiority
of ECK and dual-thresholds approach on sample separation.

Our method achieves excellent reconstruction of the CLS. The objective of CLS reconstruction
is to ensure the ground-truth label is retained within the CLS while minimizing the size of the CLS.
We conducted experiments on CIFAR10 (η = 0.5, γ = 0.3) to validate this in Fig. 3(b), where we
can find the reconstructed CLS size decreases while ensuring a high ground-truth label hit rate with
the progression of training iterations. The above observation validates the effectiveness of our CLS
reconstruction method.

Table 5: Ablation study of our
method (%).

Method
CIFAR10
η = 0.5
γ = 0.3

CIFAR100
η = 0.05
γ = 0.3

Ours 95.41 79.88
Ours v1 94.09 78.68
Ours v2 95.39 75.16
Ours v3 81.32 74.62

Papi 61.98 62.72

Our method narrows generalization error bound. Our approach
is motivated by the generalization error bound in Theorem 1. From The-
orem 1, the generalization error bound of NPLL is positively correlated
with factor 1− 1−ϵ

α . Fig. 3(c) indicates the factor 1− 1−ϵ
α is continu-

ously decreasing as the model training progresses which confirms the
proposed approach can narrow the generalization error bound.

All the components contribute to the proposed model. We con-
ducted experiments to assess the effectiveness of each component.
Specifically, we tested Ours v1 by discarding the selected uncertainty
samples in model training; Ours v2 by separating normal samples and
noisy samples in an one-off manner, i.e., by maintaining l = u through-
out the training process; Ours v3 by removing CLS reconstruction and using non-CLS as CLS
for noisy samples. From Table 5, we can see that all the ingredients of our method contribute to
the performance improvement. Comparing Ours v2 with Ours, it is evident that the two-thresholds
separation strategy is important for more challenging datasets, as the performance decreases 4.72% on
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CIFAR100. Comparing Ours v3 with Ours on CIFAR-10 and CIFAR-100 datasets, the performance
decreased by 14.09% and 5.26% respectively, indicating that CLS reconstruction is significantly
effective in NPLL task.

6 RELATED WORK

6.1 PARTIAL LABEL LEARNING (PLL)

In PLL, an instance is associated with a candidate label set in which the ground-truth label is concealed.
PLL aims to learn a multi-class classifier from the ambiguous candidate label set (CLS) (Hüllermeier
& Beringer, 2006; Nguyen & Caruana, 2008). The key to PLL is disambiguation, i.e., finding the
correct label from the CLS. The average-based PLL methods (Hüllermeier & Beringer, 2006; Cour
et al., 2011) treat all the candidate labels as ground-truth labels equally, while the identification based
PLL methods (Zhang et al., 2022; Jia et al., 2023b) treat the ground-truth label as latent variable
and try to find it from the candidate labels. Graph-based PLL methods (Wang et al., 2022a; Jia
et al., 2023b) use the similarity (or dissimilarity) relationship of features and candidate labels to
achieve label disambiguation. Recently, deep learning-based PLL methods (Feng et al., 2020; Wen
et al., 2021) have become popular due to their excellent classification performance. For instance,
(Lv et al., 2020; Feng et al., 2020; Wen et al., 2021; Zhang et al., 2022) perform disambiguation
by dynamically adjusting the confidence of the candidate labels as pseudo-labels to guide model
training. PiCO (Wang et al., 2022b) introduces contrastive learning into PLL and disambiguates
CLS through class prototypes. CRDPLL (Wu et al., 2022) performs disambiguation on CLS with a
consistency regularization. PaPi (Xia et al., 2023) adopts the model outputs for disambiguation and
utilizes the results of disambiguation to guide the learning of representations. However, the above
PLL methods all assume that the ground-truth label must locate in the candidate set, which may not
hold in real-world scenarios as the non-expert annotators may make erroneous judgments.

6.2 NOISY PARTIAL LABEL LEARNING (NPLL)

Recently, some researchers have turned their attention to a more practical setting called Noisy Partial
Label Learning (Lv et al., 2024) which allows the CLS of some instances do not contain the ground-
truth label. The problem is also referred to as Unreliable Partial label learning (UPLL) (Shi et al.,
2023; Lv et al., 2024) in some researches. UPLLRS (Shi et al., 2023) proposes a recursive separation
strategy to first regard the noisy sample as unlabeled data. Then UPLLRS employs a semi-supervised
learning approach to train the model for these unlabeled data, while other PLL samples are tackled
by PLL loss. PiCO+ (Wang et al., 2024) detects the noisy samples with KNN and then employs
semi-supervised methods to handle these noisy samples. FREDIS (Qiao et al., 2023) not only moves
labels from non-CLS to CLS for handling label noise, but also performs disambiguation by moving
incorrect labels from CLS to non-CLS. ALIM (Xu et al., 2023) trades off the initial candidate set
and model prediction with an adjusting label importance mechanism. However, these methods are
designed based on empirical experience without theoretical support. Through our theoretical analysis
in Theorem 1, we are able to identify the shortcomings of the above empirically designed methods.
Moreover, PiCO+, UPLLRS and FREDIS do not take into account sample uncertainty in separating
noisy samples, which easily cause separation errors leading to large noise rate. ALIM incorporates
the initial candidate set with model outputs for eliminating label noise, which expands the size of the
CLS.

7 CONCLUSION

In this work, we have presented a novel method to solve the NPLL problem. Specifically, we
theoretically prove that a smaller noise rate and a shorter length of the average candidate label set
will reduce the generalization error bound constructed under the NPLL paradigm. To optimize these
two factors, we propose a sample separation strategy to segregate highly reliable normal samples,
highly reliable noisy samples, and uncertain samples. Based on the sample separation, we perform
distinct partial label set reconstructions for these three kinds of samples to reduce the average size of
the candidate label set. Our model can act as a plug-in to promote different PLL methods in NPLL,
and extensive experiments suggest the salient performance advantage of our method. Furthermore,
the ablation study indicates that all the components contribute to the proposed method.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem. Assume the loss function L(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ Y and
uppper-bounded by M . For noise rate 0 < ϵ < 1 and mean CLS size for normal samples 1 < α < C,
for any δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 2(1− 1− ϵ

α
)M + 4

√
2ρ

C∑
y=1

Rn(Hy) + 2M

√
log 2

δ

2n
.

Proof. Before proving the theorem, we first provide two useful lemmas as follows.

We primarily derive the uniform deviation bound between R(f) and R̂(f), which is simple extension
of result in muti-class setting (Xie et al., 2023).
Lemma 1. Suppose that the loss function L(f(x), y) is ρ-Lipschitz with respect to f(x) for all
y ∈ Y and uppper-bounded by M . For any δ > 0, with probability at least 1− δ, we have∣∣∣R(f)− R̂(f)

∣∣∣ ≤ √2ρ k∑
y=1

Rn(Hy) +M

√
log 2

δ

2n
, (12)

where the function spaceHy for the label y ∈ Y is {h : x 7→ fy(x)|f ∈ F}.
Proof. We first define the Rademacher complexity of L and F with n training instances as follows:

Rn(L ◦ F)

= Ex,y,σ

[
sup
f∈F

n∑
i=1

σi(L(f(xi), yi)

]

≤
√
2ρ

C∑
y=1

Rn(Hy). (13)

We apply the Rademacher vector contraction inequality (Maurer, 2016) in the second line.

Then, we proceed the proof by showing that the one direction supf∈F R(f)− R̂(f) is bounded with
probability at least 1− δ/2, and the other direction can be proved similarly. Note that replacing an
example (xi, yi) leads to a change of supf∈F R(f)− R̂(f) at most M

n due to the L is bounded by
M . According to McDiarmid’s inequality (McDiarmid, 1989), for any δ > 0, with probability at
least 1− δ/2, we have

sup
f∈F

R(f)− R̂(f) ≤ E

[
sup
f∈F

R(f)− R̂(f)

]
+M

√
log 2

δ

2n
. (14)

According to the result in (Maurer, 2016) that shows E[sup
f∈F

R(f)− R̂(f)] ≤ 2Rn(F), and further

taking the other direction sup
f∈F

R̂(f)−R(f) into account. With probability at least 1− δ, we have

∣∣∣R(f)− R̂(f)
∣∣∣ ≤ 2

√
2ρ

k∑
y=1

Rn(Hy) +M

√
log 2

δ

2n
, (15)

which completes the proof.
Lemma 2. Assume the loss function L(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ Y and
uppper-bounded by M . For noise rate 0 < ϵ < 1 and mean CLS size for normal samples 1 < α < C,
we have ∣∣∣R̂′(f)− R̂(f)

∣∣∣ ≤ (1− 1− ϵ

α
)M. (16)
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Proof. Let’s first expand R̂′(f):

R̂′(f) =
1

n

n∑
i=1

L(f(xi),yi)

+
1

n

n∑
i=1

I(yi ∈ Yi)

 ∑
c∈Yi,c̸=yi

1

|Yi|
L(f(xi), c)−

|Yi| − 1

|Yi|
L(f(xi),yi)


+

1

n

n∑
i=1

I(yi /∈ Yi)

[∑
c∈Yi

1

|Yi|
L(f(xi), c)− L(f(xi),yi)

]
.

(17)

Define m =
∑n

i=1 I(yi ∈ Yi), which implies the noise rate ϵ = n−m
n . Define the function

f(|Y |) = |Y |−1
|Y | , which is concave. By Jensen’s inequality (Abramovich et al., 2004) and the

definition of α (α = 1
m

∑m
j=1 |Yj |), we have

1

m

m∑
j=1

f(|Yj |) ≤ f

 1

m

m∑
j=1

|Yj |

 = f(α). (18)

Then, we prove its lower bound:

R̂′(f) ≥ R̂(f)− 1

n

n∑
i=1

I(yi ∈ Yi)
|Yi| − 1

|Yi|
L(f(xi),yi)−

1

n

n∑
i=1

I(yi /∈ Yi)L(f(xi),yi)

≥ R̂(f)− 1

n

n∑
i=1

I(yi ∈ Yi)
|Yi| − 1

|Yi|
M − 1

n

n∑
i=1

I(yi /∈ Yi)M

≥ R̂(f)− m

n
· 1
m

m∑
j=1

|Yj | − 1

|Yj |
M − n−m

n
M

≥ R̂(f)− (1− ϵ)
α− 1

α
M − ϵM

≥ R̂(f)− (1− 1− ϵ

α
)M,

(19)

where the second line holds because L(f(x), y) is upper-bounded by M (L(f(x), y) ≤M ) and the
fourth line holds by Eq. (18).

Then, we prove its upper bound:

R̂′(f) ≤ R̂(f) +
1

n

n∑
i=1

I(yi ∈ Yi)
∑

c∈Yi,c ̸=yi

1

|Yi|
L(f(xi), c) +

1

n

n∑
i=1

I(yi /∈ Yi)
∑
c∈Yi

1

|Yi|
L(f(xi), c)

≤ R̂(f) +
1

n

n∑
i=1

I(yi ∈ Yi)
∑

c∈Yi,c ̸=yi

1

|Yi|
M +

1

n

n∑
i=1

I(yi /∈ Yi)
∑
c∈Yi

1

|Yi|
M

≤ R̂(f) +
1

n

n∑
i=1

I(yi ∈ Yi)
|Yi| − 1

|Yi|
M +

1

n

n∑
i=1

I(yi /∈ Yi)M

≤ R̂(f) +
m

n
· 1
m

m∑
j=1

|Yj | − 1

|Yj |
M +

n−m

n
M

≤ R̂(f) + (1− ϵ)
α− 1

α
M + ϵM

≤ R̂(f) + (1− 1− ϵ

α
)M,

(20)
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where the second line holds because L(f(x), y) is upper-bounded by M (L(f(x), y) ≤M ) the fifth
line holds by Eq. (18).

By combining these two sides, we can obtain the following result:∣∣∣R̂′(f)− R̂(f)
∣∣∣ ≤ (1− 1− ϵ

α
)M, (21)

which concludes the proof.

For any δ > 0, with probability at least 1− δ, we have:

R(f̂) ≤ R̂(f̂) + 2
√
2ρ

C∑
y=1

Rn(Hy) +M

√
log 2

δ

2n

≤ R̂′(f̂) + (1− 1− ϵ

α
)M + 2

√
2ρ

C∑
y=1

Rn(Hy) +M

√
log 2

δ

2n

≤ R̂′(f∗) + (1− 1− ϵ

α
)M + 2

√
2ρ

C∑
y=1

Rn(Hy) +M

√
log 2

δ

2n

≤ R̂(f∗) + 2(1− 1− ϵ

α
)M + 2

√
2ρ

C∑
y=1

Rn(Hy) +M

√
log 2

δ

2n

≤ R(f∗) + 2(1− 1− ϵ

α
)M + 4

√
2ρ

C∑
y=1

Rn(Hy) + 2M

√
log 2

δ

2n
,

(22)

where the first and fifth lines are based on Lemma 1, and second and fourth lines holds due to Lemma
2. The third line hold by the definition of f̂ . At this point, we have proven the Theorem 1.

A.2 SOLUTION OF EQUATION 6

min
Ŷ

n∑
i=1

I(vi ̸= 0)
(
|Ŷi| − β⟨qi,S(Ŷi)⟩

)
,

s.t. ∀i, if vi = 1, Ŷi ̸= ∅, Ŷi ⊆ Yi,

∀i, if vi = −1, Ŷi ̸= ∅, Ŷi ⊆ Y − Yi,

We denote Sij the j-th element of vector S(Ŷi). Then the original optimization objective can be
writed as

n∑
i=1

I(vi ̸= 0)

C∑
j=1

Sij − β

n∑
i=1

I(vi ̸= 0)

C∑
j=1

qijSij

=

n∑
i=1

I(vi ̸= 0)

C∑
j=1

(1− βqij)Sij .

Considering Sij ∈ {0, 1}, we can obtain that Sij = 1 if qij > 1
β and Sij = 0 otherwise. The inclusion

constraint: the ground-truth label of the normal sample (vi = 1) is in the CLS (Ŷi ̸= ∅, Ŷi ⊆ Yi),
while the ground-truth label of the noisy sample (vi = −1) is in the non-CLS (Ŷi ̸= ∅, Ŷi ⊆ Y − Yi).
Therefore we can get the solution that

Ŷi = {j|j ∈ Yi and qij >
1

β
}, if vi = 1,

Ŷi = {j|j ∈ Y − Yi and qij >
1

β
}, if vi = −1.
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A.3 IMPLEMENTATION DETAILS

There are four hyper-parameters in our method: ew, eend, λ and β. Since our approach is a plug-in
method, the number of warm-up rounds ew is related to the training rounds of the original method.
For the CIFAR-10 dataset, we used 0.25 times the number of training rounds of the original method,
and used 0.1 times for Treeversity and Benthic ,while for CIFAR-100 and other fine-grained datasets,
we used 0.4 times. The uncentainty-end epoch eend equals 0.6 times the number of training rounds
of original method. We selected λ from {0.2, 0.3, 0.4, 0.5} and β from {1.5, 2, 2.5, 3.0}. We used
the softmax function as the Normalize(·). Following the standard experimental setup (Xu et al.,
2023), we splited a clean validation set from the training set to determine hyper-parameters. Then,
we transformed the validation set back to its NPLL form and incorporated them into the training
set to optimize the model. Following previous research (He et al., 2024), we employed BLIP-2 (Li
et al., 2023b) as the feature extractor based on the open-source library LAVIS (Li et al., 2023a),
thereby securing a more reliable K-neighbor relationship. For KNN searching, the number of chosen
neighbors was set to 5 for all experiments and we employed Faiss (Johnson et al., 2019), a library for
efficient similarity search and clustering of dense vectors. For all the methods, we employed the same
backbone. For the CIFAR dataset, we utilized ResNet18, while for the fine-grained datasets CUB200
and Flower and the real-world datasets Treeversity and Benthic, we employed ResNet34 and loaded
the pre-trained weights from ImageNet for the feature extractor to enhance training efficiency. For all
methods, the SGD was used as the optimizer with momentum of 0.9 and weight decay of 0.001. We
set the initial learning rate to 0.01 and adjusted it using the cosine scheduler. Due to our approach is a
plug-in method, we default to combining our method with PaPi (Xia et al., 2023) for NPLL unless
specifically stated. All experiments were implemented with PyTorch (Paszke et al., 2019) and carried
out with 6 NVIDIA RTX 3090 GPUs and 8 NVIDIA RTX 4090 GPUs.

A.4 THE FRAMEWORK OF OUR METHOD

: Candidate label
Highly reliable
normal samples

Highly reliable
noisy samples

Uncertain samples

𝒀𝒂 1 1 1 0 0

𝒀𝒃 1 0 1 0 0

𝒀𝒄 1 1 0 0 0

𝒀"𝒃 1 1 0 0 0

𝒀"𝒄 0 0 0 0 1

𝒀"𝒂 1 1 0 0 0

: Ground-truth label 1 0 : Non-candidate label

Reconstruction𝑙

𝑢

Figure 4: The framework of our method. We employed a dual-threshold approach (l and u) to separate the
samples into three parts, based on that we proposed CLS reconstruction for faithful shorter CLS for each instance.

A.5 OTHER RESULTS ON CIFAR100

(a) varying PLL methods (b) varying noise level (c) varying ambiguity level

Figure 5: The mean accuracy on CIFAR100 of our method and the ALIM across different PLL
method, ambiguity levels, and noise levels. The results are derived from the statistics presented in
Table 2.
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(a) 200 epoch (b) 240 epoch (c) 280 epoch (d) 500 epoch

Figure 6: Distribution of the ECK for real normal and noisy samples with increasing training iterations.
The experiment is conducted on CIFAR100 (η = 0.05, γ = 0.3).

(a) Separation quantity vs Separation quality (b) Ground-truth hit rate vs Mean CLS size (c) The factor of generalization error

Figure 7: The experiment is conducted on CIFAR100 (η = 0.05, γ = 0.3). (a) demonstrates that
with the progression of training iterations, the selection quantity of both normal and noisy samples
increases, while the quality is able to be sustained at a high level. (b) reflects that, as training iterations
continue, the reconstructed CLS size consistently decreases while ensuring a high ground-truth label
hit rate. There are no uncertain samples after 200 epoch, i.e., eend = 300. (c) indicates that, as the
model training progresses, the generalization error bound is continuously decreasing, with 1− 1−ϵ

α
being an important factor derived from Section 3 for the generalization error bound.

A.6 REAL-WORLD DATASETS

We further evaluate our method on two the real-world crowdsourced datasets Treeversity and Benthic.
In these datasets, each image is annotated by multiple individuals. For our study, we randomly
selected 2 annotations to serve as a sample’s CLS to construct a dataset Treeversity2, and randomly
selected 3 annotations to construct a dataset Treeversity3. Given the limited number of annotations
per sample in the Benthic dataset, we randomly selected 1 annotation for 60% of the samples and
2 annotations for the remaining samples, resulting in the Benthic2# dataset. Below is the detailed
information about these datasets:

Table 6: The detailed information of real-world datasets.

Real-world Datasets Noise rate Avg. of CLS size Sample num Classes Input size
Treeversity3 0.07 1.72 9826 6 224 * 224
Treeversity2 0.14 1.45 9826 6 224 * 224
Benthic2# 0.12 1.12 4867 8 112 * 112

We used the ResNet34 as the backbone for all methods and loaded the pre-trained weights from
ImageNet to enhance training efficiency. The experimental results in the Table 4 indicate that our
method still significantly outperforms the current SOTA methods on real-world datasets. Especially,
in more challenging scenarios like Treeversity2, the performance gap is even more significant.

A.7 SEPARATION ACCURACY COMPARISONS TO CURRENT NPLL METHODS

The γ is noise level and η is the ambiguity level in Table 7. Our method outperforms other NPLL
methods with a substantial gap especially when noise level is high, which validates the superiority
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Table 7: The separation accuracy of normal/noisy samples for each NPLL method.

Method\Dataset CIFAR10 (γ=0.2, η=0.5) CIFAR10 (γ=0.3, η=0.5) CIFAR10 (γ=0.4, η=0.5)
PiCO+ 99.21%/48.90% 96.25%/69.14% 83.92%/76.11%

ALIM-Onehot 98.53%/94.44% 97.31%/93.36% 86.80%/79.33%
Ours 99.35%/97.85% 98.91%/97.08% 92.68%/88.05%

of ECK on sample separation and demonstrates that our method is more robust against label noise
compared to other NPLL methods.

A.8 LIMITATION

While our method has achieved superior performances in handling NPLL tasks, it still has short-
coming. Due to our method being applied during the training process of a given PLL model, it
necessitates additional computations for sample separation and CLS reconstruction which incurs
extra computational and space costs. However, correspondingly, as our method gradually reduces
the length of the CLS during reconstruction, it can accelerate the disambiguation process of the
PLL methods, thereby decreasing the number of training iterations. This can mitigate the issue of
increased training time per iteration to a certain extent.

A.9 PARAMETER SENSITIVITY ANALYSIS

In this section, we perform parameter sensitivity analysis on four hyper-parameters: the warm-up
epoch (ew), the rate of percentile change between rl and ru (λ), the trade-off of two objectives on
CLS Reconstruction (β), and the KNN parameter (K). Figure 8 presents the results of the hyper-
parameters sensitivity study conducted on various hyper-parameters on CIFAR10 (η = 0.5, γ = 0.3)
and CIFAR100 (η = 0.05, γ = 0.3). To investigate the influence of noise on hyper-parameter
sensitivity, we further conducted sensitivity analyses at higher noise level on CIFAR100 (η = 0.05,
γ = 0.4) on Figure 9. The results show that β has stable performance across a range of values, with
CIFAR10 (η = 0.5, γ = 0.3) achieving the best accuracy (95.46%) at β = 1.5, and CIFAR100
(η = 0.05, γ = 0.3) peaking at 80.39% when β = 2.0. The KNN parameter K shows stable results
with CIFAR10 (η = 0.5, γ = 0.3) achieving 95.55% at K = 7 and CIFAR100 (η = 0.05, γ = 0.3)
reaching 80.11% at K = 5. The comparison between Figures 8 and 9 reveals that the hyperparameters
β and K demonstrate robustness against noise. The model achieves optimal performance when β is
set between 1.5 and 2 and K is set between 5 and 7 across different noise levels. For λ, CIFAR10
(η = 0.5, γ = 0.3) and CIFAR100 (η = 0.05, γ = 0.3) reach their highest accuracy (95.13% and
80.46%) at λ = 0.4, with performance declining at lower or higher values. Its selection is influenced
by the noise rate in the dataset, as λ controls the percentile change rate between normal and noisy
samples during the separation process. Therefore, we recommend increasing λ under high noise
conditions and reducing it under low noise scenarios. The warm-up epoch ew is crucial for training
stability. The insufficient pretraining with a small ew may lead to poor discrimination, hindering the
generation of reliable pseudo-labels. Conversely, an excessively large ew can result in overfitting to
noisy samples, reducing the model’s ability to correct errors in later stages. Nonetheless, setting ew
within the range of 100 to 200 consistently yields satisfactory performance across different datasets
and noise levels. For instance, on CIFAR10 (η = 0.5, γ = 0.3), the best accuracy (96.23%) is
achieved at ew = 150, while CIFAR100 (η = 0.05, γ = 0.3) peaks at 80.19% with ew = 150.
Overall, while β and K are robust, tuning of λ and ew is necessary.
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(f) β on CIFAR100
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(g) K on CIFAR10
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Figure 8: Parameter sensitivity analysis on CIFAR10 (η = 0.5, γ = 0.3) and CIFAR100 (η = 0.05,
γ = 0.3).
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Figure 9: Parameter sensitivity analysis on CIFAR100 (η = 0.05, γ = 0.4).
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