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Abstract001

While standard IR models are mainly designed002
to optimize relevance, real-world search often003
needs to balance additional objectives such as004
diversity and fairness. These objectives de-005
pend on inter-document interactions and are006
commonly addressed using post-hoc heuristics007
or supervised learning methods, which require008
task-specific training for each ranking scenario009
and dataset. In this work, we propose an in-010
context learning (ICL) approach that eliminates011
the need for such training. Instead, our method012
relies on a small number of example rankings013
that demonstrate the desired trade-offs between014
objectives for past queries similar to the current015
input. We evaluate our approach on four IR016
test collections to investigate multiple auxiliary017
objectives: group fairness (TREC Fairness), po-018
larity diversity (Touché), and topical diversity019
(TREC Deep Learning 2019/2020). We empiri-020
cally validate that our method enables control021
over ranking behavior through demonstration022
engineering, allowing nuanced behavioral ad-023
justments without explicit optimization.024

1 Introduction025

Modern transformer-based language models are ef-026

fective for ad-hoc ranking tasks (Karpukhin et al.,027

2020; Pradeep et al., 2023). By learning notions028

of relevance from sufficient training data, these ap-029

proaches often outperform unsupervised rankers030

(Karpukhin et al., 2020; Formal et al., 2021). How-031

ever, beyond the main objective of providing rel-032

evant content to a user, an IR system may have033

other auxiliary objectives, such as maximizing ex-034

posure fairness or topical diversity of documents035

(Carbonell and Goldstein, 2017). Different from036

relevance, which is an individual property of a doc-037

ument itself, these additional objectives, such as038

diversity (Clarke et al., 2008) or fair representation039

(Craswell et al., 2008), are instead properties of a040

top-retrieved list of documents, requiring effective041

modeling of inter-document interactions.042
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Figure 1: Proposed ICL method for reranking a set of top-
retrieved documents. An example constitutes a localized query
along with its top-retrieved arranged to satisfy a desired rank-
ing property, such as relevance, fairness, diversity, etc.

Prior work on modeling ranking properties, 043

such as diversity (Carbonell and Goldstein, 2017) 044

involved interventions often in the form of 045

ad hoc heuristic-based transformations of rank- 046

ings (Agrawal et al., 2009). More recently, su- 047

pervised approaches have been applied for learn- 048

ing neural interventions (MacAvaney et al., 2021), 049

and incorporating inter-document interactions (Sun 050

et al., 2023). A limitation of these supervised ap- 051

proaches is that they need to be trained on an ade- 052

quate number of labeled examples for each differ- 053

ent learning objective (Schlatt et al., 2024). 054

To alleviate this limitation, we explore the use 055

of instruction-tuned generative language models 056

(LLMs) for this task – the advantage being these 057

models can potentially act as universal ranking 058

controllers adjusting their behavior through prompt 059

examples alone (Brown et al., 2020). While LLMs 060

have been shown to be effective for zero-shot rank- 061

ing tasks facilitated by interpreting natural lan- 062

guage instructions (Sun et al., 2023; Pradeep et al., 063

2023), modeling listwise objectives is more chal- 064

lenging because of: firstly, the difficulty of express- 065

ing them in natural language, and secondly, op- 066

timizing a prompt instruction for each different 067

auxiliary ranking objective. Such “prompt engi- 068
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neering” is brittle (Ishibashi et al., 2023; Habba069

et al., 2025), requiring iterative refinement as ob-070

jectives evolve. In contrast, we propose to use in-071

context learning (ICL) (Wei et al., 2022; Lu et al.,072

2024), where static instructions are paired with in-073

context examples of a desired ranking behaviour074

specific to a task. For instance, a single demon-075

stration interleaving pro and con arguments could076

implicitly teach an LLM to diversify viewpoints,077

even with a task-agnostic instruction like “order by078

relevance”. This approach circumvents the need079

for task-specific prompts while accommodating080

composite or dynamic objectives (Sinhababu et al.,081

2024). As shown in Figure 1, our method reranks082

candidate documents using LLMs conditioned on:083

(1) localized (on-topic) query examples (Sinhababu084

et al., 2024) from a large query log without requir-085

ing relevance assessments (Nguyen et al., 2016;086

Reimer et al., 2023) and (2) encoding ranking prop-087

erties via list-wise demonstrations, e.g., diversity,088

fairness etc. Our main contributions are as follows:089

• A ICL-based approach that is shown to con-090

trol desirable ranking properties without any091

supervised list-wise training. We establish that092

demonstrations can change behaviour in a causal093

manner. Crucially, ablations confirm demonstra-094

tions as the causal factor: Inverting examples sig-095

nificantly degrades performance, affirming their096

role in adapting LLM behavior. These results097

provide evidence for demonstration-based model098

adaptation as a generalizable paradigm for dy-099

namic ranking control.100

• Empirical validation of significantly improv-101

ing several auxiliary objectives without sac-102

rificing relevance. Experiments on TREC DL103

(diversity) (Nguyen et al., 2016; Craswell et al.,104

2020b) and TREC Fairness 2022/Touché (fair-105

ness) (Ekstrand et al., 2022; Bondarenko et al.,106

2020) validate our approach. Unlike prior work107

that sacrifices relevance for auxiliary objec-108

tives (Zehlike and Castillo, 2020), our method109

maintains relevance while significantly improv-110

ing diversity and fairness.111

We provide our source code to facilitate future re-112

search and the reproducibility of our work1.113

2 Related Work114

Ranking Models. Traditional term-weighting115

ranking models (Robertson et al., 1994) relied on116

1https://anonymous.4open.science/r/GPT_
ranker-7099

exact lexical matches – a constraint later alleviated 117

by neural approaches that leverage contextualized 118

language representations for semantic soft match- 119

ing (Karpukhin et al., 2020; Formal et al., 2021). 120

Transformer-based architectures, such as cross- 121

encoders (which jointly process query-document 122

pairs) and bi-encoders (which map queries and doc- 123

uments to separate embeddings), emerged as domi- 124

nant paradigms (Khattab and Zaharia, 2020; Schlatt 125

et al., 2024). However, these models typically re- 126

quire task-specific fine-tuning via backpropagation 127

to accommodate new objectives beyond generic 128

relevance, limiting their adaptability. Our work 129

diverges by eliminating gradient-based updates en- 130

tirely, like other prior zero-shot neural ranking ap- 131

proaches (Li et al., 2023b; Sinhababu et al., 2024), 132

enabling a flexible framework where rankings can 133

dynamically satisfy diverse user or system-defined 134

criteria, such as fairness or diversity, without re- 135

quiring retraining. 136

Fairness. Prior work has emphasized the impor- 137

tance of balancing relevance with equitable ex- 138

posure of document groups defined by attributes 139

such as demographic origin, political stance, or 140

gender (Zehlike et al., 2017; Morik et al., 2020). 141

Biased exposure in rankings risks perpetuating 142

systemic inequities, such as amplifying majority 143

viewpoints while suppressing marginalized per- 144

spectives (Craswell et al., 2008; Ekstrand et al., 145

2019). Post-hoc fairness methods, including re- 146

ranking algorithms (Morik et al., 2020; Biega et al., 147

2018) and fairness-aware loss functions (Singh and 148

Joachims, 2018), explicitly redistribute exposure 149

across groups but often degrade relevance (Pleiss 150

et al., 2017; Corbett-Davies et al., 2017). Model- 151

based approaches face challenges in defining tar- 152

get exposure distributions and incorporating them 153

as an objective into a ranking loss (Heuss et al., 154

2022; Jänich et al., 2024). Furthermore, supervised 155

methods struggle with biased training data (Zehlike 156

and Castillo, 2020) and dependence on sensitive 157

group labels, which are often incomplete or un- 158

available (Zehlike et al., 2017; Jänich et al., 2024). 159

These limitations underscore the need for adapt- 160

able, training-free fairness mechanisms. 161

Diversity. Different from fairness, diversity in 162

IR addresses ambiguous queries, reducing redun- 163

dancy among retrieved results (Sen et al., 2022). 164

Diverse search results are useful in representing 165

multiple user intents or query subtopics (Carbonell 166

and Goldstein, 2017; Clarke et al., 2008). Similar 167
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to the fairness criteria, diversity also seeks to en-168

sure balanced representation across various groups.169

However, different from fairness, the groups in170

diversity-based IR models correspond to facets or171

interpretations of a query (Ganguly et al., 2013).172

Carbonell and Goldstein (2017) proposed maxi-173

mal marginal relevance (MMR), which is a greedy174

algorithm that balances between the two objectives175

of: i) maximizing the similarity of a document176

with a query, and ii) favoring documents that are177

dissimilar to those already ranked higher. More178

recent methods infer latent query intents to syn-179

thesize diverse result sets across query intent clus-180

ters (Agrawal et al., 2009), or employ generative181

models such as IntenT5 to produce a variety of182

plausible query interpretations (MacAvaney et al.,183

2021). However, a limitation of these approaches is184

that they depend on post-hoc aggregation of intent-185

specific sub-rankings, which not only increases186

computational complexity but also often leads to a187

decrease in precision at top ranks (Wang and Zhu,188

2009). In contrast, our method integrates diver-189

sity objectives directly into the ranking process by190

leveraging in-context examples, thereby avoiding191

the limitations of post-processing heuristics.192

Generative Rankers. Generative rankers use au-193

toregressive language models (LMs) to predict194

document permutations (Sun et al., 2023), by-195

passing traditional embedding-based or feature-196

centric paradigms. Recent advances in instruction-197

following LMs have enabled list-wise ranking,198

where models generate entire document orderings199

conditioned on a query (Sun et al., 2023; Ma et al.,200

2024). Unlike point-wise methods that score doc-201

uments independently, list-wise approaches can202

condition relevance on inter-document dependen-203

cies, potentially capturing subtler interactions, e.g.,204

topic coverage, redundancy (Schlatt et al., 2024).205

Sun et al. (2023) first demonstrated the effective-206

ness of list-wise ranking in a zero-shot setting,207

later adapted to smaller models via knowledge dis-208

tillation (Pradeep et al., 2023). We extend this209

paradigm by integrating multi-objective control210

through in-context learning.211

In-Context Learning (ICL). ICL enables task212

adaptation by conditioning models on demonstra-213

tion examples without parameter updates. Beyond214

classification and question answering (Li et al.,215

2023a; Xu et al., 2024), ICL allows for better out-216

of-distribution generalisation in pairwise (Sinhab-217

abu et al., 2024) and list-wise ranking (Li et al.,218

Sample target ranking from Touche dataset

I will provide you with 3 passages, each indicated
by number identifier [ ]. As an example, the first 3
passages are ranked based on their relevance to query:

Similar Query from MS-MARCO

What is the Illinois mandate for tenured
teacher evaluation?

[1] Teachers would be limited in doing their job︸ ︷︷ ︸
CON

for

...
[2] Tenure removes incentives for teachers︸ ︷︷ ︸

CON

to put in

...
[3] ... teachers get
special defence from most accusations.︸ ︷︷ ︸

PRO
The three passages above are ranked based on their
relevance to the search query.

Output: [2] > [3] > [1]︸ ︷︷ ︸
Example fair ordering

Figure 2: ICL Example for a Touche query. For this example,
the target objective is to achieve a uniform distribution of
the pro and the con arguments retrieved from the Touche
collection. This figure shows the MS MARCO (train set)
query - Q - which is the most similar to the current input
query - Qc. This figure shows how the documents retrieved
for Q from the Touche collection are reranked to balance the
pro:con ratio. This reranked list is added to the prompt as the
example output.

2023b). Success hinges on selecting informative ex- 219

amples that encode task semantics and context (Nie 220

et al., 2022; Sinhababu et al., 2024), with similarity- 221

based example retrieval improving generalization 222

(Xie et al., 2024). Different from existing ICL 223

rankers that focus on relevance alone (Sinhababu 224

et al., 2024), we propose reflecting other objectives, 225

such as fairness, diversity, etc. into example rank- 226

ings, thus allowing models to infer target criteria 227

without explicit group labels, post-hoc adjustments, 228

or multi-objective supervision. 229

3 ICL for Multi-Objective Ranking 230

Similar Queries from a Training Set. Given a 231

test query Qc (Figure 4 of Appendix D), the first 232

step in our proposed workflow is to use a relatively 233

large repository of existing queries Q to retrieve 234

a set of k most similar queries - Nk(Qc). For 235

our experiments, we use the MS MARCO training 236

set as our query reference set Q without labelled 237

examples. We use BM25 as the initial retrieval 238

model to obtainNk(Qc), and we set k = 1, i.e., we 239

utilize only the top-retrieved query for subsequent 240

steps; we call this query Q. 241

We then construct an example ranking to be 242

used as additional context to condition the genera- 243

tive output of an LLM. To obtain this ICL example 244

ranking, the top-retrieved query (i.e., Q) is used 245
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to retrieve a set of top-m ranked documents from246

a target collection, say T . We denote this top-247

retrieved list as θ(Q)m = {D1, . . . , Dm}, where248

θ is a retrieval model. The next step is to induce249

an ordering on the set of top-m documents θ(Q)m,250

i.e., θ(Q)m 7→ ⟨Dπ(1), . . . , Dπ(m)⟩, where ⟨·⟩ rep-251

resents a sequence, and π denotes a permutation252

function over sets of m elements.253

In the simplest case, the permutation function π254

corresponds only to the primary objective of rele-255

vance, i.e., maximizing the likelihood of position-256

ing a relevant document ahead of a non-relevant257

one in the sequence. In practice, such information258

is available for a training set of queries (e.g., the259

MSMARCO train set), and prior work has shown260

that the inclusion of these examples improves pair-261

wise ranking preferences (Sinhababu et al., 2024) -262

a special case of list-wise setting with the list size263

being 2. In addition to relevance, this permutation264

function can be designed to correspond to another265

auxiliary task thus allowing provision for a more266

general use-case, which we discuss next.267

Target Distribution based Ranking. The aux-268

iliary objective takes the general form of a cate-269

gorical distribution involving k categories. More270

formally, ∀D ∈ θ(Q)m, let A(D) ∈ Zk denote271

the value of the attribute A for document D. For272

instance, A may refer to the gender of an entity273

within a document, in which case, k = 2 and274

A(D) ∈ {‘Male’, ‘Female’}.275

For an IR task with an auxiliary objective in-276

volving an attribute A, a target distribution of these277

metadata values over the set of relevant documents278

is specified as a part of the input. For a query279

Q, we denote this distribution as τ(R(Q)) ∈ Rk280

(where k is the number of possible values). The ith281

component of this vector is given by282

τ(R(Q)i) =

∑
D∈R(Q) I(A(D) = i)

|R(Q)|
, (1)283

where (1 ≤ i ≤ k), which, in other words, repre-284

sents the relative proportion of relevant documents285

for each metadata value (I denotes the indicator286

function).287

Example 1 Let us assume that for a query “ar-288

chitect” - out of 10 relevant documents in a col-289

lection, 6 are about male architects and the rest290

are about females. The target distribution for291

this example with ‘A ≡ Gender’ is thus the 2d292

vector (0.6, 0.4) as
∑

D∈R(Q) I(Gender(D) =293

M)/|R(Q)| = 6/10.294

Grouping by metadata values. The aim is now 295

to rerank the top-m documents in a way such that 296

the aggregate of the relative proportion of the meta- 297

data values for different cutoffs 1 < m′ < m is 298

close to the target distribution. Relying on the re- 299

trieval similarity values as estimated probabilities 300

of relevance, we apply a relatively simple approach 301

to approximate this desired permutation π. 302

First, we partition the sequence of top-m docu- 303

ments (sorted in decreasing order by the retrieval 304

scores as obtained with the retrieval model θ) into 305

k different sequences: 306

θ(Q)m = ∪ki=1θ(Q)(i)m

s.t. ∀D ∈ θ(Q)(i)m A(D) = i,
(2) 307

where each θ(Q)
(i)
m denotes a subsequence of 308

θ(Q)m comprised of documents with a specific 309

category value. See Example 2 for an illustration 310

of how this step works. 311

Example 2 For the query of Example 1, assume 312

that 3 male and 2 female documents constitute 313

the top-5 list: ⟨M,M,F,M,F ⟩, where, for sim- 314

plicity, we only show the attribute values instead 315

of the cluttered notation A(D1) = M . In this 316

case, Equation 2 leads to partitioning the docu- 317

ments into two lists θ(Q)
(M)
m = ⟨D1, D2, D4⟩ and 318

θ(Q)
(F )
m = ⟨D3, D5⟩. 319

Auxiliary Objective based Rank Induction. As 320

a next step, we apply a greedy algorithm - some- 321

what similar in characteristic to maximum mar- 322

gin relevance (MMR) (Xia et al., 2015). However, 323

different from the MMR diversity objective, the 324

objective here is to maximize alignment with a 325

target distribution of metadata values. More specif- 326

ically, we consider only the yet unselected top doc- 327

uments from each group as candidates, and select 328

the one that induces the distribution closest to the 329

target distribution. Assuming that p documents 330

are already selected in the reranked list, selection 331

of the (p+ 1)th document depends on k different 332

choices - one from each group. Let si denote the 333

index of the document last selected from the ith 334

list, in which case the candidate documents avail- 335

able for selection during the (p + 1)th iteration 336

are: Cp+1 = {Ds1 , . . . , Dsk}. From these sk al- 337

ternatives, we select the document that leads to a 338

distribution of top-(p+1) documents that is closest 339

to the target distribution, an example is illustrated 340
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in Figure 2. More formally,341

Dp+1 = argmin
D∈Cp+1

KL(τ(R(Q)),

τ(⟨D1, . . . , Dp⟩ ∪D),
(3)342

where Cp+1 = {Ds1 , . . . , Dsk} is the set of candi-343

date documents available for selection during the344

(p + 1)th iteration, and KL(X,Y ) represents the345

KL divergence between two distributions X and Y ,346

with τ(R(Q)) being the target distribution as de-347

fined in Equation 1. After making a selection (say348

from the jth list, i.e., Dp+1 = Dsj ), we increment349

the corresponding index by 1 (i.e., sj ← sj + 1)350

to point to the next candidate available for selec-351

tion. See Example 3 to see an illustration of how352

this greedy selection algorithm works on the data353

shown in Examples 1 and 2.354

Example 3 After selecting the first document D1,355

the two choices available for the second selec-356

tion (shown underlined) are: ⟨D1, D2, D4⟩ and357

⟨D3, D5⟩. Selecting D2 means that the distribu-358

tion over the top-2 documents (⟨D1, D2⟩) is (2, 0),359

whereas selecting D3 (a female document) yields360

the distribution (1, 1). Since the latter is closer to361

the target distribution of (0.6, 0.4), we select D3362

as per Equation 3. After incrementing the selec-363

tion index, the candidates available for the next364

step are: ⟨D1, D2, D4⟩ and ⟨D3, D5⟩. Following365

the same argument, applying the selection func-366

tion of Equation 3 two more times, we obtain the367

desired ranking of top-5 documents that are most368

similar to the target distribution, which in this case369

is: ⟨D1, D3, D2, D5, D4⟩.370

The target distribution-driven reranked docu-371

ments obtained by an iterative application of the372

greedy selection function of Equation 3 then act as373

the ICL examples shown in the prompt of Figure 4.374

4 Evaluation375

We now provide empirical evidence for our ap-376

proach, structured around four research questions.377

4.1 Research Questions and Setup378

Our first research question explores the benefits of379

ICL examples, i.e., (RQ-1): Is our proposed ICL-380

based list-wise ranker consistently effective across381

a range of different tasks involving different types382

of attributes and target distributions?383

Our second research question contrasts our ap-384

proach with the direct prompting of a language385

model to rank by multiple objectives, as opposed to386

implicitly providing two objectives through exam- 387

ples, i.e., (RQ-2): How do ICL examples compare 388

to directly instructing a model in terms of auxiliary 389

objective effectiveness? 390

In supervised learning, the domain and distri- 391

bution of inputs should generally match our test 392

instances where possible (Gutmann and Hyväri- 393

nen, 2010). Learning-to-rank literature indicates 394

that input rankings should match the first stage at 395

test time (Macdonald et al., 2013). We look to 396

validate to what degree this statement holds for in- 397

context learning. Explicitly, (RQ-3): What are the 398

effects of ICL example ranking strategies that are 399

adversarial to a target distribution-based auxiliary 400

objective? 401

Objectives and Datasets. Our investigation is 402

conducted over two auxiliary objectives: diversity 403

and group fairness. For diversity, we aim to retrieve 404

relevant but topically diverse content to satisfy mul- 405

tiple potential information needs under ambiguity. 406

To operationalize this, we adopt the experimental 407

framework of Schlatt et al. (2024) using the MS- 408

MARCO passage corpus (Nguyen et al., 2016) and 409

TREC Deep Learning 2019–2020 (Craswell et al., 410

2020b,a) test collections. In contrast to fairness, 411

where group labels in relevance judgments inform 412

the target distribution, diversity assumes a uniform 413

distribution over latent topics, derived via cluster- 414

ing over retrieved documents. Additional details 415

on the clustering procedure are given in Appendix 416

A.2, and full dataset descriptions are provided in 417

Appendix A.1. We also evaluate group fairness in 418

the single-ranking setting using TREC Fairness 419

2022 (Ekstrand et al., 2022) and Touche (Bon- 420

darenko et al., 2020), both of which include ex- 421

plicit group attributes (gender and stance, respec- 422

tively). In the Touche setting, we reformulate the 423

task to seek balanced representation of PRO and 424

CON arguments. The motivation in both cases is 425

the promotion of equitable and unbiased outputs in 426

re-ranking models. 427

To enable test-time control of retrieval behavior, 428

we retrieve similar queries from the MSMARCO 429

training set (approx. 8× 105 entries), which serve 430

as anchors for constructing contextual examples. 431

Unlike Sinhababu et al. (2024), our approach as- 432

sumes no relevance labels during example selec- 433

tion, but following the findings of Sinhababu et al. 434

(2024), we fix k = 1 as gains beyond this value 435

were found to be minimal, so we leave further pa- 436

rameter ablations to future work in which a single 437
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example may be insufficient. Additional imple-438

mentation details, including similarity metrics and439

retrieval configurations, can be found in Appendix440

A.441

4.2 Baselines442

Prompt-based Auxiliary Objective (PAO).443

This is a 0-shot list-wise ranking baseline that uses444

explicit instructions to elicit fairness or diversity445

from the model. The prompt for fairness is: “Rank446

the passages based on their fairness, ensuring447

that ranked results do not discriminate against448

certain individuals, groups, or entities”, whereas449

for diversity, it is: “Rank the passages based on450

their topical diversity, ensuring that ranked results451

contribute to different topics uniformly”.452

Baselines for Diversity. For the diversity-453

ranking task, we employ the following baselines.454

• Max Margin Relevance (MMR) (Carbonell and455

Goldstein, 2017): Combines relevance and di-456

versity via a linear combination. Following Zhu457

et al. (2014), the mixture weight was tuned with458

5-fold cross-validation.459

• Set-Encoder (SEN) (Schlatt et al., 2024): A460

cross-encoder model trained with diversity-aware461

loss. We use set-encoder-large2, fine-tuned462

on MS MARCO.463

Baselines for Fairness. For the fair-ranking task,464

we employ the following.465

• FA*IR3 (Zehlike et al., 2017): A post-processing466

method to enforce fair exposure. The two467

hyper-parameters of FA*IR, namely a) α: the468

proportion of protected candidates, and b) p:469

the significance level, were tuned via 10-fold470

cross-validation over α ∈ [0.01, 0.13] and p ∈471

[0.4, 0.85] with step sizes of 0.01. The optimal472

values were found to be (α, p) = (0.1, 0.2).473

• DELTR (Zehlike and Castillo, 2020): A learning-474

to-rank model4 trained on fair rankings created475

using FA*IR. We use our example sets to sim-476

ulate fair supervision. We set a high value on477

the trade-off parameter γ=1, to ensure that it478

promotes fairness without impacting the overall479

ranking utility (Zehlike and Castillo, 2020).480

Measures. To evaluate ranking quality, we re-481

port nDCG@10 for relevance, AWRF and nDCG-482

2https://github.com/webis-de/set-encoder
3https://github.com/fair-search/

fairsearch-fair-python
4https://github.com/fair-search/

fairsearch-deltr-python

AWRF combination (M1) for fairness as per Ek- 483

strand et al. (2022), and αnDCG@10 with α = 1 484

and for diversity as per Clarke et al. (2008). All 485

these metrics are reported at a cutoff of 10. 486

Models. We re-rank the top 100 documents using 487

a two-stage pipeline. We apply BM25 (Robertson 488

et al., 1994) and ColBERT (Khattab and Zaharia, 489

2020) as initial rankers. The second-stage ranker 490

is our proposed ICL-based one. As re-ranking 100 491

passages directly degrades effectiveness (Schlatt 492

et al., 2025), we apply a sliding window-based 493

reranking over the top 100 documents. The win- 494

dow size was set to 20, and the stride size to 495

10 as commonly applied in literature (Sun et al., 496

2023; Pradeep et al., 2023). As the underlying 497

LLM for reranking with ICL, we experimented 498

with the larger closed-source GPT-4o-mini and 499

smaller open-weighted Llama-3.1 (7/70B). Details 500

on model configurations, hyperparameters, and im- 501

plementation are provided in Appendix A. 502

Ablations. To validate that the target distribution 503

plays an important role in our proposed ICL-based 504

reranking, we experiment with the following mech- 505

anisms of other reranking objectives. 506

• Adversarial Examples: By swapping the pro- 507

portions, we seek to maximize the KL divergence 508

from the target distribution (instead of minimiz- 509

ing it as per Equation 3), e.g., flipping a 3:2 gen- 510

der ratio to 2:3. 511

• Uniform Examples: Construct examples that 512

enforce uniform distribution across clusters or 513

attributes, ignoring relevance information. 514

• Relevant Examples: Solely make a transforma- 515

tion from a random order to an order by relevance 516

determined by a first-stage system. 517

• Static Examples: Replace similar query exam- 518

ples with a fixed example ranking used for all 519

test queries, which implies no shared topicality. 520

The purpose is to explore whether topicality is 521

important for effective ICL example rankings. 522

4.3 Findings 523

Examples allow for the modeling of multiple 524

objectives. Our experiments demonstrate that in- 525

context learning (ICL) with task-guided examples 526

enables effective optimization of auxiliary objec- 527

tives while maintaining relevance (RQ-1). For di- 528

versity modeling (Table 1), our approach signifi- 529

cantly outperforms the 0-shot baseline in topical 530

diversity (αnDCG), with improvements of up to 531

19% (e.g., compare rows 5 and 13 with those of 7 532
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Table 1: Evaluating nDCG and αnDCG performance over
TREC DL-2019 and 2020 for the Diversity objective. The
maximum score in each category is represented in bold font.
Symbols ⋆ and † indicate the statistical significance of our
proposed model with the first-stage and 0-shot baselines, re-
spectively (paired t-test with p = 0.05).

TREC DL-2019 TREC DL-2020

Type Pipeline nDCG αnDCG nDCG αnDCG

B
as

el
in

es

1 BM25 .4795 .4569 .4936 .4895
2 + PAO .6817 .6844 .6349 .6670
3 + MMR .4786 .4559 .4922 .4899
4 + 0-shot(Llama) .5977 .5695 .5971 .6357
5 + 0-shot(GPT) .6971 .6761 .6826 .7039

IC
L 6 + Diverse(Llama) .6144 .5968 .5983 .6062

7 + Diverse(GPT) .7124⋆ .7135⋆† .6844⋆ .7228⋆

B
as

el
in

es 8 ColBERT .7205 .6583 .6864 .6385
9 + PAO .6949 .6494 .6996 .6910
10 + MMR .7173 .6567 .6873 .6405
11 + SEN .7320 .6172 .7245 .6338
12 + 0-shot(Llama) .7363 .6595 .7044 .6622
13 + 0-shot(GPT) .7699 .6850 .7498 .6843

IC
L 14 + Diverse(Llama) .7116 .6527 .6976 .6443

15 + Diverse(GPT) .7601 .6891⋆ .7700 .7132⋆†

and 15). Notably, it surpasses both post-hoc diversi-533

fication (MMR) and a supervised list-wise method534

(SEN) by 8-15% in αnDCG (Rows 3, 10-11), de-535

spite relying only on heuristic examples rather than536

explicit optimization. These results indicate that537

example-based task conditioning provides a suf-538

ficient learning signal for the model to acquire539

objective-specific ranking behaviors.540

For the smaller re-ranker (LlaMA-8B), incor-541

porating ICL examples yields an improvement in542

αnDCG over the 0-shot setting on DL-19 when543

using BM25 (Rows 4 vs. 6), though it still un-544

derperforms relative to all other baselines. When545

applied to a smaller model, diversity-oriented ex-546

amples may inadvertently introduce less relevant547

or random items, negatively impacting relevance548

and diversity metrics. In contrast, larger models ap-549

pear more capable of integrating both the examples’550

diversity cues and the instructions’ relevance con-551

straints, likely due to their greater representational552

capacity.553

Table 2 shows results for the auxiliary objec-554

tive of group fairness. Our approach exceeds all555

baselines on Touche and is competitive with post-556

processing and supervised methods on Fair-2022.557

In experiments with the smaller model, we ob-558

serve a similar outcome except for Touche un-559

der ColBERT, as seen from Table 2 (Rows 13 vs560

15), suggesting that even smaller LLMs are ef-561

fective at modeling an auxiliary objective. The562

larger model, however, significantly outperforms563

Table 2: Evaluating AWRF, nDCG, and M1 over Touche-
2020 (PRO,CON) and TREC Fair-2022 (M,F) for the Fairness
objective, other details are analogous those of Table 1.

Touche-2020 Fair-2022

Type Pipeline nDCG AWRF M1 nDCG AWRF M1

B
as

el
in

es

1 BM25 .2530 .4811 .1851 .4974 .4901 .2975
2 + PAO .2258 .5218 .1589 .5667 .5312 .3332
3 + FA*IR .2452 .4620 .1660 .3735 .7215 .3989
4 + DELTR .2486 .3212 .1190 .3786 .5593 .3220
5 + 0-shot(Llama) .2388 .4821 .1748 .5658 .4895 .3228
6 + 0-shot(GPT) .2590 .5377 .1936 .5688 .5494 .3428

IC
L 7 + Fair(Llama) .2136 .5199 .1486 .5316 .5300 .3159

8 + Fair(GPT) .2608 .5800⋆† .2023⋆ .5697 .5697⋆ .3526

B
as

el
in

es

9 ColBERT .2590 .2994 .1462 .4854 .2068 .1204
10 + PAO .2234 .2388 .0956 .6565 .1837 .1411
11 + FA*IR .2500 .3598 .1698 .2111 .5896 .3320
12 + DELTR .2518 .2216 .1078 .2128 .3370 .2215
13 + 0-shot(Llama) .2344 .2588 .1169 .5870 .1247 .0917
14 + 0-shot(GPT) .2496 .2197 .1027 .6487 .2056 .1466

IC
L 15 + Fair(Llama) .2089 .2389 .0960 .5183 .2069 .1141

16 + Fair(GPT) .2508 .2602† .1216 .6606 .2272 .1628⋆

the smaller model across most scenarios. 564

Using the larger model (GPT-4o-mini), our 565

method achieves approximately a 52% improve- 566

ment in nDCG performance compared to DELTR 567

and FA*IR, as shown by comparing Rows 3 and 8 568

in Table 2. However, this gain in effectiveness is 569

accompanied by a reduction in fairness on the Fair- 570

2022 dataset. Table 2 also reveals a sensitivity to 571

the choice of first-stage retriever: BM25 yields bet- 572

ter fairness outcomes than ColBERT across evalua- 573

tion settings. Notably, under the ColBERT retriever, 574

our approach shows diminished effectiveness on 575

Touche-2022, as seen in the performance drop be- 576

tween Rows 9 and 16. This trend aligns with prior 577

findings (Tang et al., 2024; Parry et al., 2024b), 578

highlighting that weaker first-stage rankings tend 579

to impair the effectiveness of list-wise re-ranking. 580

Interestingly, under a diversity-oriented objective, 581

we observe the opposite pattern: stronger first-stage 582

rankings result in reduced diversity effectiveness. 583

We analyze these interactions, particularly the role 584

of positional bias, in detail in Appendix C. 585

Nevertheless, our approach with ICL outper- 586

forms the 0-shot setting. With BM25 as the first 587

stage ranker, we outperform all but one baseline 588

FA*IR on Fair-2022, which we parameter-tuned 589

with a grid search. Under ColBERT, we observe 590

that FA*IR is most effective across both datasets. 591

However, our approach outperforms all other base- 592

lines but is at near-parity with 0-shot, suggesting a 593

minimal change in the model’s process. The FA*IR 594

approach requires prior group information for rank- 595

ing and poses a significant trade-off in relevance, 596
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thereby limiting its practical applicability. In con-597

trast, our approach addresses these issues with a598

simple yet effective solution.599

In-context learning improves ranking perfor-600

mance over direct instructions. To address RQ-601

2, we examine the impact of prompt-based opti-602

mization on fairness and diversity objectives. As603

shown in Tables 1 and 2, our ICL approach is604

more effective than the Prompt-based Auxiliary Ob-605

jective (PAO) baseline when applied to the larger606

model. However, this improvement does not ex-607

tend to the smaller model, which fails to outperform608

PAO in most cases. These findings highlight the609

importance of model capacity in effectively lever-610

aging prompt-based optimization techniques for611

complex ranking objectives.612

Relative to the GPT 0-shot baseline, the PAO613

method exhibits a notable decline in nDCG, with614

the sole exception occurring under the ColBERT615

retriever on the Fair-2022 dataset. This reduction616

in ranking utility is likely attributable to the mod-617

ified prompt, which explicitly instructs the model618

to enhance diversity–an objective combination that619

may be out-of-distribution for the model. This620

observation further underscores the advantages621

of demonstration-based adaptation. We observe622

marginal improvements in αnDCG with PAO on623

DL-2019 under BM25 and on DL-2020 under Col-624

BERT (Table 1, Rows 2 and 9). In terms of AWRF,625

a positive gain is observed only for Touche when626

ColBERT is used as the first-stage retriever (Ta-627

ble 2, Row 10). We attribute the inconsistency in628

PAO performance to the lack of explicit contex-629

tual grounding regarding the fairness or diversity630

criteria being targeted, as opposed to the model’s631

default interpretation of these objectives.632

Example inversion largely degrades effective-633

ness. From Table 3, we see that examples mod-634

eled with relevance yield significant improvements635

in nDCG relative to both BM25 and ColBERT. This636

shows that ICL examples, in addition to modeling637

auxiliary objectives, can also effectively capture638

relevance. From Rows 4 and 10, we observe a639

consistent degradation in terms of αnDCG when640

applying a uniform example (the adversarial setting641

for the diversity task). This suggests that the target642

distribution induced ordering plays an important643

role in ranking.644

Additionally, we observe that ICL examples ex-645

hibit minimal trade-off in terms of relevance, sug-646

gesting that fine-grained control can be exerted647

Table 3: Ablations (Adv, Rel, and Static) on the diversity and
fairness tasks show that ICL examples with different objectives
have a significant impact on the ranking. The “+Target” row
corresponds to the target-distribution specific ICL re-ranking
results, which have been presented in Tables 1 and 2. Suffixes
a to e represent the statistical significance of “+Target” when
compared to the first-stage, 0-shot, Adversarial (Adv), Rel-
evant (Rel), and Static methods, respectively, computed via
paired t-test with p = 0.05.

DL-2019 DL-2020 Touche-2020 Fair-2022

Method nDCG αnDCG nDCG αnDCG nDCG AWRF nDCG AWRF

BM25 .479 .457 .494 .489 .253 .481 .497 .490
+ 0-shot .697 .676 .683 .704 .259 .537 .569 .549

+Target .712a .713abe .684a .729ac .261 .580abcde .570 .570a

+Adv .696 .688 .686 .701 .260 .520 .572 .550
+Rel .700 .685 .692 .712 .255 .524 .581 .548
+Static .704 .680 .682 .709 .251 .480 .570 .550

ColBERT .720 .658 .686 .638 .259 .299 .485 .207
+0-shot .770 .685 .750 .684 .250 .220 .649 .206

+Target .760 .689ac .770 .713abe .251 .260bcde .661 .227ce

+Adv .770 .686 .761 .706 .253 .197 .656 .185
+Rel .764 .682 .762 .710 .245 .217 .646 .185
+Static .760 .687 .755 .698 .241 .181 .648 .185

without compromising the core task except for 648

static examples as observed from Rows 6 and 12 of 649

Table 3. Static examples cause a substantial decline 650

in the evaluation scores, occasionally falling below 651

those of the base ranker. This validates that the lo- 652

cality of queries in ICL examples remains useful in 653

a list-wise setting, as was observed by Sinhababu 654

et al. (2024) in a pair-wise setting. 655

5 Conclusion and Future Work 656

We propose a novel approach to multi-objective 657

ranking leveraging demonstrations that balance rel- 658

evance and auxiliary objectives. Our experiments 659

confirm that localized examples modeled for fair- 660

ness and diversity improve the respective objec- 661

tives significantly without compromising relevance. 662

We validate each component of our approach, for 663

instance, finding that effectiveness gains can be 664

controlled with adversarial examples, degrading 665

the fairness of downstream rankings. Additionally, 666

our approach improves over directly instructing a 667

model for each objective. Our approach demon- 668

strates superior performance compared to task- 669

specific post-hoc and supervised methods, both 670

in evaluation metrics and practical applicability, 671

while effectively mitigating the potential trade-offs 672

and the need for task-specific modifications. Fur- 673

thermore, our findings present encouraging evi- 674

dence for demonstration-based model adaptation 675

as a mechanism for controlling ranking behaviour 676

beyond the objectives investigated in this work. 677
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Ethics Statement. Though our work primarily678

focuses on augmenting core ranking tasks, one679

could, in principle, use our approach to induce680

more harmful behaviour within a model. As no681

explicit instruction change occurs, this may allow682

the bypassing of guardrails, as harmful behaviour683

could be demonstrated. Nevertheless, such ap-684

proaches are common as are their mitigations, and685

our work does not explicitly facilitate such applica-686

tions more broadly.687

Limitations. We do not explore all possible688

avenues for demonstration-based multi-objective689

search in this work. Indeed, several parameter690

choices are motivated by prior work; however, due691

to our novel setting, it could be that under this new692

setting, effectiveness could be further improved.693

Our approach requires an existing query log, which694

in low information environments or low resource695

languages may present difficulties in adopting our696

approach. In future work, we look to rectify the697

need for a monolingual corpus.698
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Table 4: Statistics of the datasets used in our experiments.

Task Collection |C| Queries |Q| Name Values

Fairness TREC Fair 6.5M Fair-2022 50 Gender M, F
ToucheV2 383K Touche’20 49 Stance PRO, CON

Diversity MS MARCO 8.8M DL’19 43 Topic ZDL’20 54

A Additional Experimental Details 1074

A.1 Dataset Description 1075

The fairness task corresponds to that of the ‘single 1076

ranking’ task of TREC Fairness track (Ekstrand 1077

et al., 2022) on the ‘eval’ query set. The objective 1078

in the Touche task is to mitigate the bias towards a 1079

specific stance (Kulshrestha et al., 2017), whereas 1080

the objective in the ad-hoc search task on TREC DL 1081

topics is to maximize the topical diversity, where 1082

each topic maps to a cluster of documents. We 1083

illustrate the details of our chosen collections in 1084

Table 4. 1085

A.2 Clustering for Diversity 1086

To induce topic clusters for diversity evaluation, we 1087

apply hierarchical agglomerative clustering with 1088

complete linkage over Jaccard similarity between 1089

token sets. This is applied to the top 100 documents 1090

retrieved per query. Due to the nature of agglomer- 1091

ative clustering, the number of clusters varies with 1092

query specificity, resulting in a query-dependent 1093

target distribution. 1094

A.3 Query Similarity Retrieval 1095

Following Sinhababu et al. (2024), we retrieve sim- 1096

ilar queries from the MSMARCO training split 1097

using BM25 over query text. We retrieve the top-5 1098

most similar queries and aggregate their retrieved 1099

documents to build example sets for in-context 1100

learning. No relevance judgments are used in this 1101

process. 1102

A.4 LLM Configurations 1103

• Llama-3.1-8B-Instruct: 8B decoder-only 1104

LLM5 with 8K context length, sufficient for 1105

in-context example ranking. We use the 1106

“text-generation” pipeline with the stan- 1107

dard bfloat16 as it is the recommended 1108

way to conduct evaluations. We use the de- 1109

fault parameters for the rest of the experi- 1110

ments: do_sample=True, temperature=0.6 1111

and top_p=0.9. Additionally, we set 1112

5https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

12
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Sample test query from Touche dataset

Rank the passages based on their relevance to query:

Test Query from Touche

Should teachers get tenure?

[1] ... tenure is needed to protect academic freedom︸ ︷︷ ︸
CON...

[2] ... without tenure teachers may be fired.︸ ︷︷ ︸
CON

[3] ... it is
difficult to remove under-performing teachers.︸ ︷︷ ︸

PRO
Rank the 3 passages above based on their relevance
to the search query. The passages should be listed in
descending order using identifiers. The most relevant
passages should be listed first. The output format
should be [ ] > [ ], e.g., [1] > [2].

Figure 3: The figure shows a sample input query from the
Touche dataset. The ICL example of a related query from MS
MARCO and its example output (balancing both relevance
and pro:con parity, as shown in Figure 2) is used to control
the current query’s reranking.

seed=42 for all our experiments. We per-1113

form these experiments locally using a single1114

NVIDIA A100 (40GB) GPU.1115

• GPT-4o-mini: Used as the primary re-ranking1116

model6. During inference we set the fol-1117

lowing hyperparameters: temparature=0,1118

return_text=True and seed=42. Contam-1119

ination concerns are minimal since the model1120

is not optimized for improved test scores but1121

for behavioral modulation under auxiliary ob-1122

jectives.1123

• Llama-3.1-70B-Instruct: 70B decoder-only1124

LLM7 with 8K context length to test behavior1125

of targeted ICL with larger model size. We1126

use an API service due to hardware limitations1127

of using the full precision model locally. We1128

use the exact same parameters as detailed in1129

Llama-3.1-8B-Instruct.1130

We refrain from using rank instruction-tuned1131

models, as these models tend to exhibit greater1132

sensitivity to prompt formatting and catastrophic1133

forgetting of general task knowledge in ICL setups1134

(Mueller et al., 2024).1135

6https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

7https://deepinfra.com/meta-llama/Meta-Llama-3.1-70B-
Instruct

B Effect of LLM variations 1136

We included test results with Llama-70B alongside 1137

Llama-8B and GPT-4o-mini to answer if and how 1138

our approach is dependent on LLM size. As ob- 1139

served from Table 5, we mark that GPT-4o-mini 1140

consistently outperformed all other models when 1141

considering the target task using ICL examples, 1142

with the only exception being TREC DL-2020. 1143

Llama-8B results show that our approach works 1144

even for small models, but with limited gains both 1145

in terms of relevance and auxiliary objective. In 1146

contrast to Llama-8B, we observe that Llama-70B 1147

is strong in the relevance task; however, it does not 1148

show significant improvements in auxiliary objec- 1149

tives with the ICL examples. This suggests that our 1150

approach provides limited gains when the model is 1151

already superior in terms of diverse rankings. Nev- 1152

ertheless, under settings such as fairness, which are 1153

generally detrimental to ranking effectiveness, we 1154

can further improve and maintain nDCG. 1155

C Example ordering 1156

We initially adopted random ordering for in-context 1157

examples due to its simplicity and computational 1158

efficiency. However, prior work highlights that 1159

the ordering of both examples and test documents 1160

can critically influence model behavior, introduc- 1161

ing instability or performance degradation in tasks 1162

like ranking and generation (Sorensen et al., 2022; 1163

Parry et al., 2024a). To systematically evaluate 1164

this risk, we complement random ordering with 1165

examples ordered by first-stage ranker scores (e.g., 1166

BM25 or ColBERT relevance scores). This dual 1167

approach tests whether example ordering impacts 1168

model outputs analogously to test document order- 1169

ing—specifically, whether ordered examples pro- 1170

vide clearer task conditioning while random or- 1171

dering acts as a regularizer. By comparing these 1172

configurations, we isolate the effect of document 1173

ordering on the model’s ability to balance relevance 1174

and auxiliary objectives. 1175

We observe from Tables 6 and 7, how a ran- 1176

domly shuffled initial ordering of ICL examples 1177

compares to the ordering by the first stage. Intu- 1178

itively, one can assume that demonstrations should 1179

closely match the exact setting in which the model 1180

is used. Our results demonstrate that stage-one or- 1181

dering enhances nDCG but adversely impacts the 1182

auxiliary objective performance. 1183

However, we generally observe that random 1184

shuffling is robust and contributes positively to 1185
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Table 5: A comparison to show behavior of different LLMs to targeted ICL examples using similar details as shown in Table 1
and 2. The best score across all the categories is bold, and the second-best scores are underlined.

TREC DL-2019 TREC DL-2020 Touche-2020 Fair-2022

Type Pipeline nDCG α-nDCG nDCG α-nDCG nDCG AWRF M1 nDCG AWRF M1

Baseline

BM25 .4795 .4569 .4936 .4895 .2530 .4811 .1851 .4974 .4901 .2975
+ Llama-8B .5977 .5695 .5971 .6357 .2388 .4821 .1748 .5658 .4895 .3228
+ Llama-70B .7026 .6441 .6944 .7242 .2400 .4994 .1691 .5742 .5060 .3278
+ GPT-4o-mini .6971 .6761 .6826 .7039 .2590 .5377 .1936 .5688 .5494 .3428

ICL
+ Llama-8B .6144 .5968 .5983 .6062 .2136 .5199 .1486 .5316 .5300 .3159
+ Llama-70B .6975 .6344 .6906 .6780 .2625 .4981 .1687 .6146 .4910 .3428
+ GPT-4o-mini .7124 .7135 .6844 .7228 .2608 .5800 .2023 .5697 .5697 .3526

Baseline

ColBERT .7205 .6583 .6864 .6385 .2590 .2994 .1462 .4854 .2068 .1204
+ Llama-8B .7363 .6595 .7044 .6622 .2344 .2588 .1169 .5870 .1247 .0917
+ Llama-70B .7766 .6788 .7471 .6786 .2347 .2606 .1053 .6580 .1850 .1313
+ GPT-4o-mini .7699 .6850 .7498 .6843 .2496 .2197 .1027 .6487 .2056 .1466

ICL
+ Llama-8B .7116 .6527 .6976 .6443 .2089 .2389 .0960 .5183 .2069 .1141
+ Llama-70B .7621 .6188 .7563 .6789 .2406 .1995 .0909 .6436 .1822 .1449
+ GPT-4o-mini .7601 .6891 .7700 .7132 .2508 .2602 .1216 .6606 .2272 .1628

Table 6: Evaluating the effect of the initial ordering of example
documents and ordering with the first stage over TREC DL-
2019 and 2020.

Example TREC DL-2019 TREC DL-2020

Pipeline Ordering nDCG α-nDCG nDCG α-nDCG

BM25 + Diverse
Random .7124 .7135 .6844 .7228
BM25 .7216 .6882 .6823 .6999

ColBERT + Diverse
Random .7601 .6891 .7700 .7132
ColBERT .7784 .6991 .7670 .7074

Table 7: Measuring document order sensitivity over Touche
and TREC Fair-2022, other details are similar to the evaluation
shown in Table 6.

Example Touche-2020 Fair-2022

Pipeline Ordering nDCG AWRF M1 nDCG AWRF M1

BM25 + Fair
Random .2608 .5800 .2023 .5697 .5697 .3526
BM25 .2856 .5410 .2180 .6029 .5692 .4013

ColBERT + Fair
Random .2508 .2602 .1216 .6606 .2272 .1628
ColBERT .2444 .2028 .1010 .6554 .2260 .1593

the auxiliary objectives. We attribute this to the1186

fact that random ordering mitigates bias and en-1187

ables the system to generalize effectively across1188

diverse objectives while also enhancing the adapt-1189

ability of our approach. While document order is a1190

key factor in the robustness of supervised list-wise1191

re-rankers (Pradeep et al., 2023), this appears to1192

have a reduced negative effect on exemplar-based1193

zero-shot list-wise ranking. With likely improve-1194

ments of supervised rankers in the future, these1195

same improvements may bolster the effectiveness1196

of in-context learning methods.1197

D Prompt Template1198

Figure 4 shows the template for including the list-1199

wise examples. The sample output labeled as ‘Ex-1200

ample ordering’ (marked with green) in Figure 4 1201

refers to an ordering - a permutation map of the in- 1202

put - found by maximizing a given objective related 1203

to the distribution of the metadata values of each 1204

document of the input list ⟨D1, . . . , Dk⟩ retrieved 1205

for the query Q which is similar to Qc (the current 1206

input query). This permutation of a set of input 1207

documents retrieved for a similar query is the only 1208

mechanism to ‘control’ the output ranking for the 1209

query Qc. 1210

E Localized Queries used for ICL 1211

examples 1212

Using BM25, we retrieve five queries for each test 1213

query from the MS MARCO train query set. These 1214

similar queries are used as the query for ICL exam- 1215

ples. Sample examples of such similar queries for 1216

each test are shown in Figure 5. 1217
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Prompt header

You are RankGPT, an intelligent assistant that can
rank passages based on their relevancy to the query.

Example target ranking for the top-most similar query

I will provide you with {m} passages, each indicated
by number identifier [ ]. As an example, the first {m}
passages are ranked based on their relevance to query:
{Q}
[1] {D1}
[2] {D2}
...
[k] {Dm}
The {m} passages above are ranked based on their
relevance to the search query.
Output: [4] > [1] > ... > [6]︸ ︷︷ ︸

Example ordering

Current (Input) Query

Rank the passages based on their relevance to query:
{Qc}
[1] {Dc

1}
[2] {Dc

2}
...
[k] {Dc

m}
Rank the {m} passages above based on their rele-
vance to the search query. The passages should be
listed in descending order using identifiers. The most
relevant passages should be listed first. The output
format should be [ ] > [ ], e.g., [1] > [2].

Figure 4: The prompt template used in our work with the
header identical to that of (Sun et al., 2023). Different from
Sun et al. (2023) our prompt allows provision to include a
target ranking for a similar query. In the figure, Qc denotes the
current input query, and Dc

i denotes the document at position
i of the input ranked list, which is to be re-ranked.

Localized Queries from TREC DL-2019

Test Query

Do goldfish grow?

Similar Query from MS-MARCO

1. How to grow goldfish faster?
2. How big do shubunkin goldfish grow?
3. How fast do baby goldfish grow?
4. How big can goldfish grow?
5. What is a goldfish?

Localized Queries from TREC DL-2020

Test Query

Why is pete rose banned from hall of
fame?

Similar Query from MS-MARCO

1. Why is pete rose banned from mlb?
2. Where does pete rose do autographs?
3. How old is pete rose?
4. When was pete rose born?
5. How many catchers are in the hall of

fame?

Localized Queries from Touche-2020

Test Query

Should teachers get tenure?

Similar Query from MS-MARCO

1. How many years does it take to get tenure
as a teacher?

2. What is the illinois mandate for tenured
teacher evaluation?

3. What are tenure protections?
4. What is tenure mean?
5. Greenspan tenure?

Localized Queries from Fair-2022

Test Query

Architecture

Similar Query from MS-MARCO

1. What do you do in architecture?
2. What is it architecture?
3. What is an architecture do?
4. What is architectural?
5. How roman architecture influenced mod-

ern architecture?

Figure 5: An example showing five localized queries that are
retrieved for a test query in each test collection.
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