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Abstract

In this paper, we explore the universal properties underlying causal infer-
ence by formulating it in terms of a topos. More concretely, we introduce
topos causal models (TCMs), a strict generalization of the popular structural
causal models (SCMs). A topos category has several properties that make
it attractive: a general theory for how to combine local functions that
define “independent causal mechanisms" into a consistent global function
building on the theory of sheaves in a topos; a generic way to define causal
interventions using a subobject classifier in a topos category; and finally,
an internal logical language for causal and counterfactual reasoning that
emerges from the topos itself. A striking characteristic of subobject classi-
fiers is that they induce an intuitionistic logic, whose semantics is based
on the partially ordered lattice of subobjects. We show that the underlying
subobject classifier for causal inference is not Boolean in general, but forms
a Heyting algebra. We define the internal Mitchell-Bénabou language, a
typed local set theory, associated with causal models, and its associated
Kripke-Joyal intuitionistic semantics. We prove a universal property of
TCM, namely that any causal functor mapping decomposable structure to
probabilistic semantics factors uniquely through a TCM representation.

1 Introduction

In recent years, there has been significant interest in categorical models of causality, based on
symmetric monoidal categories [Fong, 2012, Fritz and Klingler, 2023, Cho and Jacobs, 2019,
Jacobs et al., 2018], as well as simplicial sets and higher-order categories [Mahadevan, 2023].
Markov categories [Fritz, 2020] define a broad unifying framework for probabilistic inference
and statistics using symmetric monoidal categories, where each object is additionally
equipped with a comonoidal “copy-delete" operation. It enables carrying out rigorous
proofs using an elegant string diagrammatic language [Selinger, 2010]. Any causal model
based on graphs [Pearl, 2009, Forré and Mooij, 2017, Spirtes et al., 2000] or other algebraic
formalisms, such as integer-valued multisets [Studeny, 2010], can be translated into a string
diagram over a symmetric monoidal category, or a simplicial set. Operations on causal
models, such as interventions, can be modeled as functors on the objects of the associated
symmetric monoidal category or simplicial set. Categorical approaches to causality also
extend to the potential outcomes counterfactual framework [Imbens and Rubin, 2015].

Categorical approaches fundamentally differ from past work in causality in their focus on
the elucidation of universal properties. In our previous work [Mahadevan, 2023, 2025c], we
introduced the framework of universal causality based on the notion of universal properties
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Figure 1: Topos causal models (TCMs) are defined as a category CTCM whose objects
c ∈ CTCM are causal models, and whose arrows CTCM(c, c′) are commutative diagrams
between models c and c′. A specific object c defining a model can be conceptualized as a
DAG (left, where information flows from top to bottom), or a string diagram in a Markov
category (middle, where information flows from bottom to top), or in terms of its induced
unique “blackbox" function mapping exogenous variables to endogenous variables (right).

in category theory [Riehl, 2017]: a causal property is universal if it can be defined in
terms of an initial or final object in a category of causal diagrams, or in terms of a causal
representable functor using the Yoneda Lemma. For example, a structural causal model
(SCM) [Pearl, 2009] is defined as a (deterministic) mapping from a collection of exogenous
variables into a collection of endogenous variables, derived by “collating" local functions
that serve as independent causal mechanisms [Galles and Pearl, 1988, Parascandolo et al.,
2017]. However, SCMs can be further analyzed in terms of their universal properties, such
as categorical product, coproduct, limits and colimits, equalizers and coequalizers etc. These
latter properties can be shown formally to be initial or final objects in a category of diagrams
[Riehl, 2017], or as representable functors through the Yoneda Lemma [MacLane, 1971].

Our main contribution in this paper is to present a topos-theoretic view of causality, and
in particular, introduce topos causal models (TCMs) that strictly generalize structural
causal models (SCMs) [Pearl, 2009]. A topos is a type of category [MacLane, 1971], which
is particularly well-suited to modeling operations that are “set-like" [MacLane and leke
Moerdijk, 1994]. It also features an internal logical language [Goldblatt, 2006]. We claim that
a topos provides three universal properties that make it natural as a category to do causal
inference in: it provides a general theory for how to combine local functions, which can be
viewed as “independent causal mechanisms" [Parascandolo et al., 2017], into a consistent
global function building on the theory of sheaves in a topos [Mac Lane and Moerdijk, 1992].
It enables a generic way to define causal interventions using a subobject classifier in a topos
category [Johnstone, 2014]. Finally, it gives an internal logical language for causal and
counterfactual reasoning [Bell, 1988].

As Figure 1 illustrates, the objects in a TCM category can be conceptualized in multiple ways.
First, each object can be a causal graphical model [Pearl, 1989, Spirtes et al., 2000]. Each object
can also be a functor: for example, directed graphs form a topos functor category [Vigna,
2003]. TCMs can also be defined in terms of string diagrams in a symmetric monoidal Markov
category [Fritz, 2020], where we restrict ourselves to the Markov subcategory defined through
deterministic morphisms. For example, the arrow h : Traffic⊗Agricultural Fires→ Pollution
defines a deterministic mapping specifying the two potential causes of Pollution. For
exogenous variables, the arrowψ : I→ Overpopulation defines the marginal distribution on
Overpopulation, where I is the terminal object in the Markov category. Finally, we can view
a TCM object as a “blackbox" function that maps some collection of exogenous variables
(e.g., “Overpopulation", or "Farming Practices" into some set of endogenous variables, e.g.,
“Asthma" or “Pollution").
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2 Principles of Universal Causality

We give a brief overview of the fundamentals of universal causality (UC) [Mahadevan, 2023,
2025c] before delving into the specific details of the TCM framework. As with other work
in categorical causality [Fong, 2012, Jacobs et al., 2018, Fritz and Klingler, 2023], UC uses
category theory [MacLane, 1971] to define causality. A category C is a collection of abstract
objects c ∈ C. Anything technically can count as an object, from a variable in a causal model
to an entire model itself. Each category C is additionally specified by a set of arrows or
morphisms C(c, d) between each pair of objects c and d. There is an identity arrow 1c ∈ C(c, c).
Arrows compose in the obvious way, inducing a function C(c, d) × C(d, e) → C(c, e). An
initial object c in category C defined as one inducing a unique arrow from c to every object in
category C. A terminal object, usually denoted by 1, is one that defines a unique arrow from
every object c in category C into 1. An object c is isomorphic to another object d, denoted
c ≃ d, if two arrows f : c → d and g : d → c exist, such that g ◦ f = 1c, and f ◦ g = 1d.
A functor F : C → D between two categories C and D is specified by an object function
mapping each c ∈ C to Fc ∈ D, and an arrows function mapping each arrow f ∈ C(c, d) to
F f ∈ D(Fc, Fd). Functors come in two varieties – covariant and contravariant – the latter acts
on the domain category by reversing the arrows. Given any two functors F : C→ D and
G : C→ D between the same pair of categories, we can define a mapping between F and
G that is referred to as a natural transformation. These are defined through a collection of
mappings, one for each object c of C, thereby defining a morphism in D for each object in C.

Fc Gc

Fc′ Gc′

αc

F f

αc′

G f

2.1 Yoneda Lemma and the Causal Reproducing Property

UC rests on the Yoneda Lemma – any object in a category can be defined by the interactions
it makes with other objects (upto isomorphism). In the setting of causal inference, it means
that objects in a TCM category can be ascribed “meaning" through studying the arrows of
the category, without having to “look inside" the object. The Yoneda Lemma states that the
set of all morphisms into an object d in a category C, sometimes denoted as HomC(−, d), or
as C(−, d), denoted as the presheaf, is sufficient to define d up to isomorphism. The category
of all presheaves forms a category of functors, and is denoted Ĉ = SetCop

. This category forms
a topos, and will be fundamental to the TCM framework.
Lemma 1. [MacLane, 1971, Riehl, 2017] Yoneda lemma: For any functor F : C→ Set, whose
domain category C is “locally small" (meaning that the collection of morphisms between each pair of
objects forms a set), and any object c in C, there is a bijection Hom(C(−, c), F) ≃ Fc that associates a
natural transformation α : C(−, c)⇒ F to the element αc(1c) ∈ Fc. This correspondence is natural
in both c and F.
Definition 1. [Riehl, 2017] A universal property of an object c ∈ C in a category C is expressed by
a representable functor F together with a universal element x ∈ Fc that defines a natural isomorphism
C(−, c) ≃ F. The collection of morphisms C(−, c) into an object c is called the presheaf, and from the
Yoneda Lemma, forms a universal representation of the object.

2.2 Diagrams and Universal Constructions

A key distinguishing feature of category theory is the use of diagrammatic reasoning.
However, diagrams are also viewed more abstractly as functors mapping from some
indexing category to the actual category. Diagrams are useful in understanding universal
constructions, such as limits and colimits. Briefly, a diagram F : J → C is a functor F from
some finite category J into a category of interest, C. For example, J = • → • ← • is an
example of a “pullback" diagram. Here the • refer to abstract objects that are mapped into
concrete objects in C by the functor F. What we want to know whether a particular diagram
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F or an entire class of diagrams is “solvable". What this means is whether its limit or colimit
exists, that is, is the category complete or co-complete? For any object c ∈ C and any category
J, the constant functor c : J → C maps every object j of J to c and every morphism f in J to
the identity morphisms 1c. We can define a constant functor embedding as the collection
of constant functors ∆ : C → CJ that send each object c in C to the constant functor at c
and each morphism f : c → c′ to the constant natural transformation, that is, the natural
transformation whose every component is defined to be the morphism f .
Definition 2. [Riehl, 2017] A cone over a diagram F : J → C with the summit or apex c ∈ C
is a natural transformation λ : c⇒ F whose domain is the constant functor at c. The components
(λ j : c→ Fj) j∈J of the natural transformation can be viewed as its legs. Dually, a cone under F
with nadir c is a natural transformation λ : F⇒ c whose legs are the components (λ j : F j → c) j∈J.

c Fj Fk

Fj Fk c

λ j λk

F f

F f

λ j λk

Cones under a diagram are referred to usually as cocones. Using the concept of cones and
cocones, we can now formally define the concept of limits and colimits more precisely.
Definition 3. [Riehl, 2017] For any diagram F : J→ C, there is a functor Cone(−, F) : Cop

→ Set,
which sends c ∈ C to the set of cones over F with apex c. Using the Yoneda Lemma, a limit of
F is defined as an object lim F ∈ C together with a natural transformation λ : lim F → F, which
can be called the universal cone defining the natural isomorphism C(−, lim F) ≃ Cone(−, F).
Dually, for colimits, we can define a functor Cone(F,−) : C → Set that maps object c ∈ C to
the set of cones under F with nadir c. A colimit of F is a representation for Cone(F,−). Once
again, using the Yoneda Lemma, a colimit is defined by an object ColimF ∈ C together with a
natural transformation λ : F→ colimF, which defines the colimit cone as the natural isomorphism
C(colimF,−) ≃ Cone(F,−).

Limit and colimits of diagrams over arbitrary categories can often be reduced to the case of
their corresponding diagram properties over sets.

2.3 The Universality of Diagrams and the Causal Reproducing Property

We state two key results that underly UC [Mahadevan, 2023]. While both these results follow
directly from basic theorems in category theory, their significance for causal inference is
what makes them particularly noteworthy. The first result pertains to the notion of diagrams
as functors, and shows that for the functor category of presheaves, which is a universal
representation of causal inference, every presheaf object can be represented as a colimit of
representables through the Yoneda Lemma. This result can be seen as a generalization of the
very simple result in set theory that each set is a union of one element sets. The second result
is the causal reproducing property, which shows that the set of all causal effects between
two objects is computable from the presheaf functor objects defined by them. Both these
results are abstract, and apply to any category representation of a causal model.
Theorem 1. [MacLane and leke Moerdijk, 1994, Mahadevan, 2023] Universality of Diagrams in
UC: In the functor category of presheaves SetCop , every functor object F is the colimit of a diagram of
representable objects, in a canonical way.

To explain the significance of this result for causal inference, note that UC represents causal
diagrams as functors from an indexing category of diagrams to an actual causal model. The
theorem above tells us that every presheaf object can be represented as a colimit of (simple)
representable objects, namely functor objects of the form HomC(−, c).
Theorem 2. [MacLane, 1971, Mahadevan, 2023] Causal Reproducing Property: All causal
influences between any two objects c and d can be derived from its presheaf functor objects, namely

HomC(c, d) ≃ Nat(HomC(−, c),HomC(−, d))
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Any causal influence of an object c upon any other object d can be represented as a natural
transformation (a morphism) between two functor objects in the presheaf category Ĉ.

3 Topos Causal Models

A topos [Johnstone, 2014] is a “set-like" category which generalizes all common operations
on sets. Thus, the generalization of subset is a subobject classifier in a topos. To help build
some intuition, consider how to define subsets without “looking inside" a set. Essentially,
a subset S of some larger set T can be viewed as a “monic arrow" (an injective function).
Monic arrows generalize injective functions.
Definition 4. [Goldblatt, 2006] An arrow f : a → b in a category C is called monic if given
any parallel arrows g, h : c →→ a, the equality f ◦ g = f ◦ h implies that g = h, namely f is

“left-cancellable".

Our approach builds on this abstraction to define a category CTCM whose objects are causal
models, such as SCMs or Markov categories, and a submodel Mx of an SCM M is simply a
monic arrow fx : Mx ↪→M.
Definition 5. A category C has binary products if for every pair of objects, c and d, there exists a
third object, e ≃ c × d, along with two projection arrows, p1 : e→ c and p2 : e→ d, such that for
any other object a and arrows f : a→ c and g : a→ d, there exists a unique morphism u : a→ e
satisfying p1 ◦ u = f and p2 ◦ u = g.
Definition 6. [MacLane and leke Moerdijk, 1994] A category C with binary products has exponen-
tial objects if for each pair of objects c, d in C, there exists an object cd that defines the following
bijection:

C(e × d, c) ≃ C(e, cd)
Definition 7. [MacLane and leke Moerdijk, 1994] A category C is Cartesian closed if it has binary
products, a terminal object 1, and exponential objects.
Definition 8. [MacLane and leke Moerdijk, 1994] In a category C with finite limits, a subobject
classifier is a C-object Ω, and a C-arrow true : 1→ Ω, such that to every monic arrow S ↪→ X in
C, there is a unique arrow ϕ that forms the following pullback square:

S 1

X Ω

m true

ϕ

This commutative diagram enforces the constraint that every monic arrow m (i.e., every
1 − 1 function) that maps a subobject S to an object X must be characterizable in terms of
a “pullback", a particular type of universal property that is a special type of a limit. In the
special case of the category of sets, subobject classifiers are defined through the characteristic
(Boolean-valued) functionϕ that defines subsets. In general, as we show below, the subobject
classifier Ω for causal models is not Boolean-valued, and requires using intuitionistic logic
through a Heyting algebra. This definition can be rephrased as saying that the subobject
functor is representable. In other words, a subobject of a causal model X in category CTCM
is an equivalence class of monic arrows m : S ↪→ X.
Definition 9. MacLane and leke Moerdijk [1994] An elementary topos is a category C that is
Cartesian closed and has a subobject classifier.

For example, the category of sets forms a topos. Limits exist because one can define
Cartesian products of sets, and colimits correspond to forming set unions. Exponential
objects correspond to the set of all functions between two sets. Finally, the subobject classifier
is simply the subset function, which induces a boolean-valued characteristic function.
Definition 10. The category CTCM of topos causal models is defined as a collection of objects
c ∈ CTCM, each of which is a triple ⟨U,V,F⟩ where V = {V1, . . . ,Vn} is a set of endogenous
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variables, U is a set of exogenous variables, and F is a function from U to V. The arrows CTCM(c, d)
are defined through commutative diagrams as illustrated below, where f and f ′ are the global
functions induced by the TCM objects c and d, respectively.

U U′

V V′

h

f f ′

g

A submodel c′ = ⟨U′,V′, F′⟩ of c is any subobject of c. The effect of an intervention on c is given
by some submodel c′. Finally, let Y be a variable in V, and let X be a subset of V. The potential
outcome in response to an intervention on X modeled by a submodel c′ ↪→ c is the solution of Y in
the submodel c′.

A commutative diagram, as the term suggests, is a structure showing the equivalence of
two paths. Here, the diagram asserts that g ◦ f = f ′ ◦ h. In the context of our category CSCM,
the arrow f : U → V is simply an SCM M, and f is its induced mapping from exogenous
to endogenous variables. Similarly, f ′ is also the induced function mapping exogenous to
endogenous variables for another SCM M′. The morphisms h and g are functions on SCMs,
which transform one causal model into another. In the specific case we are interested in,
these functions define causal interventions, but in general, they may be arbitrary functions.

For completeness, we define a category CSCM whose objects are indeed SCMs.
Definition 11. The category CSCM of structural causal models is defined as a collection of objects,
each of which is a triple ⟨U,V,F⟩ where V = {V1, . . . ,Vn} is a set of endogenous variables, U is a
set of exogenous variables, F is a set { f1, . . . , fn} of “local functions" fi : U ∪ (V \ Vi)→ Vi whose
composition induces a unique function F from U to V. Let X be a subset of variables in V, and x be a
particular realization of X. A submodel Mx = ⟨U,V,Fx⟩ of M is the causal model Mx = ⟨U,V,Fx⟩,
where Fx = { fi : Vi < X} ∪ {X = x}. The effect of an action do(X = x) on M is given by the submodel
Mx. Finally, let Y be a variable in V, and let X be a subset of V. The potential outcome of Y in
response to an action do(X = x), denoted Yx(u), is the solution of Y for the set of equations Fx.

The set of arrows or morphisms between two objects c and d in the category CSCM, denoted
CSCM(c, d), represent ways of transitioning from SCM object c to d. For example, if d is a
submodel of c, then the arrow defines a do calculus causal intervention.

4 Causal Inference in a Topos Category

We show in this section that a TCM category whose objects are defined as SCMs, and whose
arrows correspond to commutative diagrams defining operations on causal models does
define a topos. In the next section, we generalize from SCMs to consider more complex
causal models over functor categories. Now, we can state the first key result of this paper.
Theorem 3. The category CSCM forms a topos.

Proof: Since we have previously defined the objects and arrows of the CSCM category,
to show it forms a topos, we need to construct its subobject classifier. First, we need to
define what a “subobject" is in the category CSCM. Since SCMs can abstractly be defined
as functions, let us assume that the SCM c that defines f is a submodel of the SCM c′ that
induces g. We can denote that by defining a commutative diagram as shown below. Let
us stress the difference between the commutative diagram shown below Definition 10 for
arbitrary functions g and h vs. the one below, where i and j are monic arrows.

U U′

V V′

i

f g

j
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Figure 2: Left: diagram showing that CSCM has pullbacks. Right: The subobject classifier Ω
for the topos category CSCM is displayed on the bottom face of this cube.

An element x ∈ U′, which is a particular realization of the exogenous variables in U′, can be
classified in three ways by defining a characteristic function ψ:

1. x ∈ U – here we set ψ(x) = 1.

2. x < U but g(x) ∈ V – here we set ψ(x) = 1
2 .

3. x < U and g(x) < V – we denote this by ψ(x) = 0.

The subobject classifier is illustrated as the bottom face of the cube shown on the right in
Figure 2:

• true(0) = t′(0) = 1

• t : {0, 1
2 , 1} → {0, 1}, where t(0) = 0, t(1) = t( 1

2 ) = 1.

• χV is the characteristic function of the exogenous variable set V.

• The base of the cube in Figure 2 displays the subobject classifier T : 1→ Ω, where
T = ⟨t′, true⟩ that maps 1 = id{0} to Ω = t : {0, 1

2 , 1} → {0, 1}.

This proves that the subobject classifier for the category CSCM does not have Boolean
semantics, but intuitionistic semantics as its subobject classifier Ω has multiple degrees of
“truth", corresponding to the three types of classifications of monic arrows (in regular set
theory, there are only two classifications). Moving on to show the other properties of a topos
are satisfied, note that the terminal object is simply the identity function id0 : {0} → {0}.
Now, it remains to show that CSCM has pullbacks and exponential objects.

Pullbacks in CSCM: Consider the cube shown on the left in Figure 2. Here, f , g, and h can
be interpreted as three SCMs, each mapping some exogenous variables to some endogenous
variables. The arrows i, j ensure that the bottom face of the cube is a commutative diagram,
and the arrows p, q ensures the right face of the cube is a commutative diagram. The arrow
from P to Q exists because looking at the front face of the cube, Q is the pullback of i
and q, which must exist because we are in the category of Sets, which has all pullbacks.
Similarly, the back face of the cube is a pullback of j and p, which is again a pullback in Sets.
Summarizing, ⟨u, v⟩ and ⟨m,n⟩ are the pullbacks of ⟨i, j⟩ and ⟨p, q⟩.

Exponential objects inCSCM: Now it only remains to check that the category has exponential
objects. Let f : U → V and g : U′ → V′ be two functions induced by SCM models M
and N. Then, we need to define the meaning of g f in CSCM, which we can define as
g f : X→ Y, where Y = V′V, which must exist since Sets is a Cartesian closed category that
has exponential objects (i.e., Y is simply the set of all functions from V to V′). Also, X is the
set of all arrows in CSCM from SCM M to SCM N, which is the pair of functions ⟨h, k⟩ in the
commutative diagram shown below. This finally proves that CSCM is a topos. □
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5 Causal Models Over a Topos of Sheaves

We now describe a more general categorical framework for defining causal models as a
topos by using the property that Yoneda embeddings of presheaves forms a topos [MacLane
and leke Moerdijk, 1994]. To ensure consistent extension into a unique global function,
we build on the theory of sheaves [Mac Lane and Moerdijk, 1992], which ensures local
functions can be “collated" together to yield a unique global function. In our setting, we
will construct sheaves from categories over causal models through the Yoneda embedding
よ(x) : C → SetsCop

and impose a Grothendieck topology.

5.1 Grothendieck Topology on Sites

Definition 12. A sieve for any object x in any (small) category C is a subobject of its Yoneda
embeddingよ(x) = C(−, x). If S is a sieve on x, and h : y→ x is any arrow in category C, then

h∗(S) = {g | cod(g) = D, hg ∈ S}

Definition 13. [Mac Lane and Moerdijk, 1992] A Grothendieck topology on a category C is a
function J which assigns to each object x of C a collection J(x) of sieves on x such that

1. the maximum sieve tx = { f |cod( f ) = x} is in J(x).

2. If S ∈ J(x) then h∗(S) ∈ J(y) for any arrow h : y→ x.

3. If S ∈ J(x) and R is any sieve on x, such that h∗(R) ∈ J(y) for all h : y→ x, then R ∈ J(C).

We can now define categories with a given Grothendieck topology as sites.
Definition 14. A site is defined as a pair (C, J) consisting of a small category C and a Grothendieck
topology J on C.

Definition 15. The subobject classifier Ω is defined on any topos SetsCop
as subobjects of the

representable functors:
Ω(x) = {S|S is a subobject of C(−, x)}

and the morphism true : 1→ Ω is true(x) = x for any representable x.

5.2 Universal Property of TCM over Functor Categories

Causal models, like SCMs, must represent both decomposable structure and (probabilistic)
semantics. To capture this richer structure, we define TCM over functor categories, where
every object is a functor that maps structure to semantics. For example, the category of
Bayesian networks can be modeled as a functor category [Jacobs et al., 2018, Fritz and
Klingler, 2023] from a Markov category to the category FinStoch of finite stochastic processes.
Theorem 4. Given a causal functor A : C → E, such as the Bayesian network functor FCDU, from a
small category C (e.g., a symmetric monoidal category such as a Markov category) to a cocomplete
category E (e.g., the category Prob of probability spaces (see Theorem 6)), the functor R from E to
presheaves, given by (where c ∈ C and E ∈ E)

R(E) : c 7→ HomE(A(c),E)

has a left adjoint L : SetsC
op
→ E defined for each presheaf P in Cop as the colimit

L(P) = Colim
(∫
C

P
πP
−−→ C

A
−→ E

)
where

∫
C

P is the category of elements, whose objects are pairs (c, p), where c is an object of C and p is
an element of P(C) (recall P is a presheaf, i.e., a set-valued functor that maps each element c into a
set), and its arrows are (c′, p′)→ (c, p) for any morphism f : c′ → c such that pc = p′.

Proof: Essentially, Theorem 4 is stating that there is a pair of adjoint functors L ⊢ R, defined
as:

L : SetsC
op →
← E : R

8



As defined earlier, a natural transformation between two functors τ : P→ R(E) is a family
{τc} of maps indexed by the objects c ∈ C, where each map τc is defined as the mapping:

τc : P(C) 7→ HomE(A(C),E)
which is natural in c. τ can also be defined as a set of arrows of E as {τc(p) : A(c) → E}(c,p)

that is indexed by the objects (c, p) of the category
∫
C

P of elements of P. This fact implies
that there is a bijection

Nat(P,R(E)) ≃ HomE(LP,E)
This bijection being natural in P and in E proves that L is a left adjoint functor to R. □

Now, let us define a general causal functor as mapping from a decomposable symmetric
monoidal category (e.g., a Markov category) to the symmetric monoidal category of
probability spaces.
Definition 16. A causal functor F : C → Prob maps from a general symmetric monoidal category
C with a comonoidal “copy-delete" structure (e.g., a CDU category [Jacobs et al., 2018] or a Markov
category [Fritz, 2020]) to the category of probability spaces Prob, where each object (Ω,F ,P)
is a probability space, and the arrows are measure-preserving maps, namely Prob(c, d), where
c = (Ωc,Fc,Pc) and d = (Ωd,Fd,Pd), where f ∈ Prob(c, d) is such that Pc( f−1(A)) = Pd(A) for all
A ∈ Fd.
Theorem 5. For each causal functor A : C → E from a small category C defining the structure of a
causal model to a cocomplete category E defining its (probabilistic) semantics, there exists a colimit
preserving functor L : SetsC

op
→ E such that A = L ◦よ, whereよ is the Yoneda embedding.

Proof: The proof is just a special case of Corollary 4 on page 43 in [MacLane and leke
Moerdijk, 1994]. To emphasize the importance of the co-completeness condition on E, we
use the following result from [van Belle, 2024] that the category of probability spaces is
co-complete. □
Theorem 6. [van Belle, 2024] The symmetric monoidal category Prob has all colimits of non-empty
diagrams.

Proof: The proof, given in [van Belle, 2024], shows that Prob has coproducts and coequalizers.
Thus, we can choose Prob as our cocomplete category E in Theorem 4. □

We can finally state the two central results of our paper, the first (Theorem 7) establishes
the universal property underlying TCMs, and the second (Theorem 8) shows that causal
interventions define a Heyting algebra whose logic is intuitionistic.
Theorem 7. Any causal functor F : C → E from a structural causal category C (such as a Markov
category) to a semantic cocomplete category E (such as Prob) factors uniquely through a TCM
structure defined by the Yoneda embedding, as given in Theorem 5.

Proof: The proof follows directly from Theorem 4, Theorem 5, Theorem 6, and Definition 16.
□
Definition 17. A Heyting algebra is a poset with all finite products and coproducts, which is
Cartesian closed. That is, a Heyting algebra is a lattice, including bottom and top elements, denoted
by 0 and 1, respectively, which associates to each pair of elements x and y an exponential yx. The
exponential is written x⇒ y, and defined as an adjoint functor:

z ≤ (x⇒ y) if and only if z ∧ x ≤ y

In other words, x⇒ y is a least upper bound for all those elements z with z ∧ x ≤ y. As a
concrete example, for a topological space X the set of open sets O(X) is a Heyting algebra.
The “law of the excluded middle", meaning ¬x∨x = true, does not always hold in a Heyting
algebra.
Theorem 8. For any TCM category defined as Ĉ = SetsC

op
by the Yoneda embeddingよ(c) of a small

causal category C, the partially ordered set Sub
Ĉ

(P) of subobjects generated by causal interventions
on any causal functor defined by the presheaf P is a Heyting algebra.

Proof: This result follows directly from the corresponding result for any category of
presheaves (see [MacLane and leke Moerdijk, 1994]), and is based on constructing the
complete lattice Sub(P) of all subfunctions of P using a pointwise operation for each object
c ∈ C, which can be shown to satisfy an infinite distributive law. □
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6 Causal Mitchell-Bénabou Language and its Kripke-Joyal Semantics

The Causal Mitchell-Bénabou language (CMBL) is a typed local set theory [Bell, 1988] whose
syntax and semantics is defined using the arrows of the CTCM topos. The types of CMBL as
causal model objects M of CTCM. For each type M, we assume the existence of variables
xM, yM, . . ., where each such variable has as its interpretation the identity arrow 1 : M→M.
We can construct product objects, such as A × B × C, where terms like σ that define arrows
are given the interpretation σ : A × B × C→ D.

• Each variable xM of type M is a term of type M, and its interpretation is the identity
xM = 1 : M → M, Here, M may represent an entire SCM, an individual variable
such as Overpopulation in Figure 1, or a causal functor mapping a Markov category
to the cocomplete Prob category.

• Terms σ and τ of types C and D that are interpreted as σ : A → C and τ : B → D
can be combined to yield a term ⟨σ, τ⟩ of type C ×D, whose joint interpretation is
given as ⟨σp, τq⟩ : X→ C ×D, where X has the required projections p : X→ A and
q : X → B. A causal intervention modeled as an arrow f : X → Y in CTCM can be

composed with a term σ : U→ X to yield a term of type Y as f ◦ σ : U σ
−→ X

f
−→ Y.

• Terms of type Ω are defined as formulae of CMBL and can be combined with the
usual logical connectives ∧, ∨,⇒, ¬ and quantifiers ∀, ∃ to obtain further terms
again of type Ω. An expression such as ∀x ψ(x, y) is interpreted by an arrow Y→ Ω
(since x is not a free variable). A formula ψ(x, y) in the topos CTCM is defined to be
universally valid in the topos if the corresponding arrow ψ(x, y) : X × Y→ Ω factors
through true : 1→ Ω. A formula ψwithout free variables is interpreted as an arrow
ψ : 1→ Ω and is valid if it coincides with the arrow true : 1→ Ω.

• Indirect proofs (i.e., reductio ad absurdum) cannot be used in CMBL because the rule
of the excluded middle ψ ∨ ¬ψ is not in general valid, nor is the axiom of choice
generally true. Instead, the rules of intuitionistic predicate calculus need to be used,
as illustrated by de Araujo Fernandes and Haeusler [2009].

• The Kripke-Joyal semantics for CMBL is specified using generalized elements. We
define an element of a causal model by the morphism x : 1→M. Thus, a generalized
element α : N→M represents the “stage of definition" of M by N. We specify the
semantics of how an TCM model N supports any formula ϕ(α), denoted by N ⊩ ϕ(α)
by N ⊩ ϕ(α) if and only if Im α ≤ {x|ϕ(x)}. Stated in the form of a commutative
diagram, this “forcing" relationship holds if and only if α factors through {x|ϕ(x)}.
See [MacLane and leke Moerdijk, 1994, Bell, 1988] for additional details.

{x|ϕ(x)} 1

N M Ω

true

α

ϕ(x)

7 Limitations and Future Work

There are significant limitations of our TCM framework, which we are currently investigating.
We have recently developed an intuitionistic generalization of Pearl’s do-calculus termed
j-stable causal inference, which uses the Lawvere-Tierney topology on a topos defined
by a modal operator j on the subobject classifier Ω [Mahadevan, 2025a]. In this paper,
we define an intuitionistic logic called j-do-calculus, where we replace global truth with
local truth defined by Kripke-Joyal semantics. We are currently working on another paper
[Mahadevan, 2025b] that implements j-do-calculus with well-known causal discovery
procedures (e.g., score-based and constraint-based methods) [Zanga and Stella, 2023], and
will include experimental results on how to (i) form data-driven j-covers (via regime/section
constructions), (ii) compute chartwise conditional independences after graph surgeries, and
(iii) glue them to certify the premises of the j-do rules in practice.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed and confirmed that the research conducted
in the paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code

of Ethics.
• If the authors answer No, they should explain the special circumstances that

require a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [Yes]
Justification: We include the broader impacts discussion in the paper in Section F.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness
considerations (e.g., deployment of technologies that could make decisions
that unfairly impact specific groups), privacy considerations, and security
considerations.
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• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in
addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not include experiments and poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can
help determine the license of a dataset.

17

paperswithcode.com/datasets
paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part

of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.
• At submission time, remember to anonymize your assets (if applicable). You

can either create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor

research with human subjects.
• Including this information in the supplemental material is fine, but if the main

contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection,

curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor

research with human subjects.
• Depending on the country in which research is conducted, IRB approval (or

equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between
institutions and locations, and we expect authors to adhere to the NeurIPS
Code of Ethics and the guidelines for their institution.
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• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original,
or non-standard component of the core methods in this research? Note that if
the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs
as any important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does

not involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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Appendix: Category Theory Background
We give an introduction to categories and functors in Section A. Section B gives a brief
overview of the theory of sheaves over toposes. Section C defines local set theories, another
way to characterize the internal language of a topos. Section E contains an overview of affine
CDU and Markov categories, which have been previously studied as categorical models of
causality and probability [Jacobs et al., 2018, Fritz and Klingler, 2023].

A Categories and Functors

Category
Category

Functor

Figure 3: Categories are collections of objects, with a collection of arrows defined between
each pair. A functor must map both objects and arrows from a domain category into a
co-domain category.

Category theory is perhaps the most transformative rethinking of mathematics since antiquity.
Rather than focus on the internals of an object, like the elements of a set, it focuses on the
arrows or morphisms that define the interactions between objects. Applied to causal models,
it suggests that we can construct languages where individual causal models can be defined
as variables in a logical language with intuitionistic semantics. The Yoneda Lemma, one
of the most celebrated results in pure mathematics of the 20th century, states that objects
are completely defined up to isomorphism purely in terms of their interactions. Applied
to SCMs, its implications are nonetheless startling. SCMs in effect can be defined not just
in terms of their internal structure, but in terms of how they interact with other SCMs in
a category of such objects. Being conditioned to think in terms of internal structure, this
statement may seem counterintuitive. But, as category theory has shown in numerous
cases, such as in algebraic topology May [1992], we can often understand deep properties of
complex objects such as topological spaces by modeling them as combinatorial objects and
analyzing their interactions. Our framework builds on the theory of categories, functors,
and natural transformations [MacLane, 1971, Riehl, 2017] (see Figure 3 and Figure 4). Many
common mathematical structures – groups, rings, modules, measurable spaces, topological
spaces etc. – form categories. More interesting categories for AI are those associated with
compositional machine learning models, such as deep learning [Fong et al., 2019], where a
symmetric monoidal category Learn is defined that combines an Implement routine that
maps an input A into some output B parameterized by some parameter P, and an Update
routine that given an input-output pair A,B and a parameter P, returns a new parameter P.
Causal models, such as DAGs, structural equation models etc. can be straightforwardly
mapped into categories.

More formally, a category C is a collection of abstract objects c ∈ C. Anything technically can
count as an object, from a variable in a causal model to an entire model itself. Each category
C is additionally specified by a set of arrows or morphisms C(c, d) between each pair of
objects c and d. There is an identity arrow 1c ∈ C(c, c). Arrows compose in the obvious way,
inducing a function C(c, d) × C(d, e)→ C(c, e). An initial object c in category C defined as one
inducing a unique arrow from c to every object in category C. A terminal object, usually
denoted by 1, is one that defines a unique arrow from every object c in category C into 1. An
object c is isomorphic to another object d, denoted c ≃ d, if two arrows f : c→ d and g : d→ c
exist, such that g ◦ f = 1c, and f ◦ g = 1d. A functor F : C → D between two categories C and
D is specified by an object function mapping each c ∈ C to Fc ∈ D, and an arrows function
mapping each arrow f ∈ C(c, d) to F f ∈ D(Fc, Fd). Functors come in two varieties – covariant
and contravariant – the latter acts on the domain category by reversing the arrows. Given
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Set theory Topos theory
set object

subset subobject
truth values {0, 1} subobject classifier Ω

power set P(A) = 2A power object P(A) = ΩA

bijection isomorphims
injection monic arrow

surjection epic arrow
singleton set {∗} terminal object 1

empty set ∅ initial object 0
elements of a set X morphism f : 1→ X

- functors, natural transformations
- limits, colimits, adjunctions

Figure 4: A topos is a category that generalizes set theory: subsets become subobjects and
the characteristic function for a subset, which is Boolean, turns into a subobject classifier
that may have multiple “degrees of truth".

any two functors F : C → D and G : C → D between the same pair of categories, we can
define a mapping between F and G that is referred to as a natural transformation. These
are defined through a collection of mappings, one for each object c of C, thereby defining a
morphism in D for each object in C.

Fc Gc

Fc′ Gc′

αc

F f

αc′

G f

The celebrated Yoneda Lemma [MacLane, 1971] states that any set-valued functor F :
C → Sets can be modeled in terms of natural transformations between F and the Yoneda
embedding C(x,−) (or C(−, x)) of a representable functor. In essence the action of a set valued
functor F on an object x is completely determined by its natural transformations with C(−, x).
What are natural transformations? These specify how functors interact, much like how
objects interact through arrows. A remarkable property of category theory is that the set of
all sets is not a set, but the category of all categories is indeed a category, where the arrows
are functors, and the objects are categories.

Definition 18. Given categories C and D, and functors F,G : C→ D, a natural transformation
α : F⇒ G is defined by the following data:

• an arrow αc : Fc→ Gc in D for each object c ∈ C, which together define the components of
the natural transformation.

• For each morphism f : c→ c′, the following commutative diagram holds true:

Fc Gc

Fc′ Gc′

αc

F f

αc′

G f

A natural isomorphism is a natural transformation α : F⇒ G in which every component αc is an
isomorphism.
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A.1 Yoneda Lemma

The Yoneda Lemma states that the set of all morphisms into an object d in a category C,
denoted as HomC(−, d) and called the contravariant functor (or presheaf), is sufficient to
define d up to isomorphism. The category of all presheaves forms a category of functors, and
is denoted Ĉ = SetCop

. The Yoneda lemma plays a crucial role in this paper because it defines
the concept of a universal representation in category theory. We first show that associated
with universal arrows is the corresponding induced isomorphisms between Hom sets of
morphisms in categories. This universal property then leads to the Yoneda lemma.

D(r, r) C(c, Sr)

D(r, d) C(c, Sd)

D(r, f ′)

ϕr

C(c,S f ′)

ϕd

As the two paths shown here must be equal in a commutative diagram, we get the property
that a bijection between the Hom sets holds precisely when ⟨r, u : c→ Sr⟩ is a universal arrow
from c to S. Note that for the case when the categories C and D are small, meaning their
Hom collection of arrows forms a set, the induced functor HomC(c, S−) to Set is isomorphic
to the functor HomD(r,−). This type of isomorphism defines a universal representation, and
is at the heart of the causal reproducing property (CRP) defined below.
Lemma 2. Yoneda lemma: For any functor F : C→ Set, whose domain category C is “locally
small" (meaning that the collection of morphisms between each pair of objects forms a set), any object
c in C, there is a bijection

Hom(C(c,−),F) ≃ Fc

that defines a natural transformation α : C(c,−)⇒ F to the element αc(1c) ∈ Fc. This correspondence
is natural in both c and F.

There is of course a dual form of the Yoneda Lemma in terms of the contravariant functor
C(−, c) as well using the natural transformation C(−, c)⇒ F. A very useful way to interpret
the Yoneda Lemma is through the notion of universal representability through a covariant
or contravariant functor.
Definition 19. A universal representation of an object c ∈ C in a category C is defined as a
contravariant functor F together with a functorial representation C(−, c) ≃ F or by a covariant
functor F together with a representation C(c,−) ≃ F. The collection of morphisms C(−, c) into an
object c is called the presheaf, and from the Yoneda Lemma, forms a universal representation of the
object.

A.2 Universal Properties in Categories

A fundamental principle of category theory is to characterize objects by universal properties.
Take the Cartesian product of two sets. The conventional way to define this product of two
sets is as the set of ordered pairs, one drawn from each set. But this definition does not
specify its universal property. We explain how to define universal properties below, which
will be essential to understanding a topos. A key distinguishing feature of category theory
is the use of diagrammatic reasoning. However, diagrams are also viewed more abstractly
as functors mapping from some indexing category to the actual category. Diagrams are
useful in understanding universal constructions, such as limits and colimits of diagrams. To
make this somewhat abstract definition concrete, let us look at some simpler examples of
universal properties, including co-products and quotients (which in set theory correspond
to disjoint unions). Coproducts refer to the universal property of abstracting a group of
elements into a larger one.

Before we formally the concept of limit and colimits, we consider some examples. These
notions generalize the more familiar notions of Cartesian products and disjoint unions in the
category of Sets, the notion of meets and joins in the category Preord of preorders, as well
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as the least upper bounds and greatest lower bounds in lattices, and many other concrete
examples from mathematics.
Example 1. If we consider a small “discrete” categoryD whose only morphisms are identity arrows,
then the colimit of a functor F : D→ C is the categorical coproduct of F (D) for D, an object of
category D, is denoted as

ColimitDF =
⊔

D

F (D)

In the special case when the category C is the category Sets, then the colimit of this functor is simply
the disjoint union of all the sets F(D) that are mapped from objects D ∈ D.
Example 2. Dual to the notion of colimit of a functor is the notion of limit. Once again, if we
consider a small “discrete” categoryD whose only morphisms are identity arrows, then the limit of a
functor F : D→ C is the categorical product of F (D) for D, an object of category D, is denoted as

limitDF =
∏

D

F (D)

In the special case when the category C is the category Sets, then the limit of this functor is simply
the Cartesian product of all the sets F(D) that are mapped from objects D ∈ D.

Category theory relies extensively on universal constructions, which satisfy a universal
property. One of the central building blocks is the identification of universal properties
through formal diagrams. Before introducing these definitions in their most abstract form,
it greatly helps to see some simple examples. We can illustrate the limits and colimits in
diagrams using pullback and pushforward mappings.

Z X

Y X ⊔ Y

R

p

q f
h

g

i

r

An example of a universal construction is given by the above commutative diagram, where
the coproduct object X ⊔ Y uniquely factorizes any two mappings h : X→ R and i : Y→ R,
such that any mapping i : Y→ R, so that h = r ◦ f , and furthermore i = r ◦ g. Co-products
are themselves special cases of the more general notion of co-limits. Figure 5 illustrates
the fundamental property of a pullback, which along with pushforward, is one of the core
ideas in category theory. The pullback square with the objects U,X,Y and Z implies that
the composite mappings g ◦ f ′ must equal g′ ◦ f . In this example, the morphisms f and g
represent a pullback pair, as they share a common co-domain Z. The pair of morphisms f ′, g′
emanating from U define a cone, because the pullback square “commutes” appropriately.
Thus, the pullback of the pair of morphisms f , g with the common co-domain Z is the
pair of morphisms f ′, g′ with common domain U. Furthermore, to satisfy the universal
property, given another pair of morphisms x, y with common domain T, there must exist
another morphism k : T → U that “factorizes” x, y appropriately, so that the composite
morphisms f ′ k = y and g′ k = x. Here, T and U are referred to as cones, where U is the limit
of the set of all cones “above” Z. If we reverse arrow directions appropriately, we get the
corresponding notion of pushforward. So, in this example, the pair of morphisms f ′, g′
that share a common domain represent a pushforward pair. For any set-valued functor
δ : S→ Sets, the Grothendieck category of elements

∫
δ can be shown to be a pullback in

the diagram of categories. Here, Set∗ is the category of pointed sets, and π is a projection
that sends a pointed set (X, x ∈ X) to its underlying set X.

We can now proceed to define limits and colimits more generally. We define a diagram F of
shape J in a category C formally as a functor F : J → C. We want to define the somewhat
abstract concepts of limits and colimits, which will play a central role in this paper in defining
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T

U X

Y Z

x

y

k
g′

f ′ f

g

T

∫
δ Set∗

S Set

x

y

k

δ′

πδ π

δ

Figure 5: (Left) Universal Property of pullback mappings. (Right) The Grothendieck
category of elements

∫
δ of any set-valued functor δ : S→ Set can be described as a pullback

in the diagram of categories. Here, Set∗ is the category of pointed sets (X, x ∈ X), and π is
the “forgetful" functor that sends a pointed set (X, x ∈ X) into the underlying set X.

a topos. A convenient way to introduce these concepts is through the use of universal cones
that are over and under a diagram.

For any object c ∈ C and any category J, the constant functor c : J→ C maps every object j of
J to c and every morphism f in J to the identity morphisms 1c. We can define a constant
functor embedding as the collection of constant functors ∆ : C→ CJ that send each object
c in C to the constant functor at c and each morphism f : c → c′ to the constant natural
transformation, that is, the natural transformation whose every component is defined to be
the morphism f .

Definition 20. A cone over a diagram F : J → C with the summit or apex c ∈ C is a natural
transformation λ : c⇒ F whose domain is the constant functor at c. The components (λ j : c→ Fj) j∈J
of the natural transformation can be viewed as its legs. Dually, a cone under F with nadir c is a
natural transformation λ : F⇒ c whose legs are the components (λ j : F j → c) j∈J.

c Fj Fk

Fj Fk c

λ j λk

F f

F f

λ j λk

Cones under a diagram are referred to usually as cocones. Using the concept of cones and
cocones, we can now formally define the concept of limits and colimits more precisely.

Definition 21. For any diagram F : J→ C, there is a functor

Cone(−, F) : Cop
→ Set

which sends c ∈ C to the set of cones over F with apex c. Using the Yoneda Lemma, a limit of F is
defined as an object lim F ∈ C together with a natural transformation λ : lim F→ F, which can be
called the universal cone defining the natural isomorphism

C(−, lim F) ≃ Cone(−,F)

Dually, for colimits, we can define a functor

Cone(F,−) : C→ Set

that maps object c ∈ C to the set of cones under F with nadir c. A colimit of F is a representation
for Cone(F,−). Once again, using the Yoneda Lemma, a colimit is defined by an object ColimF ∈ C
together with a natural transformation λ : F → colimF, which defines the colimit cone as the
natural isomorphism
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C(colimF,−) ≃ Cone(F,−)

Limit and colimits of diagrams over arbitrary categories can often be reduced to the case
of their corresponding diagram properties over sets. One important stepping stone is to
understand how functors interact with limits and colimits.
Definition 22. For any class of diagrams K : J→ C, a functor F : C→ D

• preserves limits if for any diagram K : J→ C and limit cone over K, the image of the cone
defines a limit cone over the composite diagram FK : J→ D.

• reflects limits if for any cone over a diagram K : J→ C whose image upon applying F is a
limit cone for the diagram FK : J→ D is a limit cone over K

• creates limits if whenever FK : J → D has a limit in D, there is some limit cone over FK
that can be lifted to a limit cone over K and moreoever F reflects the limits in the class of
diagrams.

To interpret these abstract definitions, it helps to concretize them in terms of a specific
universal construction, like the pullback defined above c′ → c← c′′ in C. Specifically, for
pullbacks:

• A functor F preserves pullbacks if whenever p is the pullback of c′ → c← c′′ in C,
it follows that Fp is the pullback of Fc′ → Fc← Fc′′ in D.

• A functor F reflects pullbacks if p is the pullback of c′ → c← c′′ in C whenever Fp
is the pullback of Fc′ → Fc← Fc′′ in D.

• A functor F creates pullbacks if there exists some p that is the pullback of c′ → c← c′′
in C whenever there exists a d such that d is the pullback of Fc′ → Fc← Fc′′ in F.

A.3 Symmetric Monoidal Categories

Categorical models of causality [Fong, 2012, Fritz and Klingler, 2023, Jacobs et al., 2018,
Mahadevan, 2023] are usually defined over symmetric monoidal categories, which we
briefly review now [MacLane, 1971, Richter, 2020].
Definition 23. A monoidal category is a category C together with a functor ⊗ : C × C → C, an
identity object e of C and natural isomorphisms α, λ, ρ defined as:

αC1,C2,C3 : C1 ⊗ (C2 ⊗ C3) � (C1 ⊗ C2) ⊗ C2,

λC : e ⊗ C � C,
ρ : C ⊗ e � C,

The natural isomorphisms must satisfy coherence conditions called the “pentagon" and
“triangle" diagrams [MacLane, 1971]. An important result shown in [MacLane, 1971] is that
these coherence conditions guarantee that all well-formed diagrams must commute. There
are many natural examples of monoidal categories, the simplest one being the category of
finite sets, termed FinSet in [Fritz, 2020], where each object C is a set, and the tensor product
⊗ is the Cartesian product of sets, with functions acting as arrows. Deterministic causal
models can be formulated in the category FinSet. Other examples include the category of
sets with relations as morphisms, and the category of Hilbert spaces [Heunen and Vicary,
2019]. Markov categories [Fritz and Klingler, 2023] are monoidal categories, where the
identity element e is also a terminal object, meaning there is a unique “delete" morphism
de : X→ e associated with each object X. [Fritz, 2020] shows they form a unifying foundation
for probabilistic and statistical reasoning.
Definition 24. A symmetric monoidal category is a monoidal category (C,⊗, e, α, λ, ρ) together
with a natural isomorphism

τC1,C2 : C1 ⊗ C2 � C2 ⊗ C1, for all objects C1,C2

where τ satisfies the additional conditions: for all objects C1,C2 τC2,C1 ◦ τC1,C2 � 1C1⊗C2 , and for all
objects C, ρC = λC ◦ τC,e : C ⊗ e � C.
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An additional hexagon axiom is required to ensure that the τ natural isomorphism is
compatible with α. The τ operator is called a “swap" in Markov categories [Fritz, 2020].
In most cases of interest in AI, the symmetric monoidal categories are enriched over some
convenient base categoryV, including vector spaces, or preorders such as the unit interval
[0, 1], where the unique morphism from a→ b exists if and only if a ≤ b. 5

Definition 25. A V-enriched category consists of a regular category C, such that for each pair of
objects x and y in C, the morphisms C(x, y) ∈ V, often referred to as aV-hom object. For the case
when (calV,≤,⊗, 1) is a commutative monoidal preorder, we have the following conditions

• 1 ≤ C(x, x)

• C(y, z) ⊗ C(x, y) ≤ C(x, z)

A.4 Topos Category

To help build intuition for a topos, let’s understand why sets are special as a category. They
have all limits and colimits, meaning that one can always construct the categorical product
of two sets as the Cartesian product, and the disjoint union as the coproduct. They have all
pullbacks, which are commutative diagrams that define in essence a categorical definition of
products and coproducts. In terms of the Yoneda Lemma, a universal property is either an
initial or final property in a category of diagrams (functors). The product is the final object
in a category of diagrams, and the coproduct is the initial object. Every concept in category
theory essentially reduces down to these simple notions. Sets also have exponential objects:
the set of all functions between two sets is once again a set! They also have a subobject
classifier: each set has subsets, defining its parts, which correspond to a characteristic
function that evaluates to true for elements in the subset. Topos theory generalizes all these
properties to categories. It is important to causal inference because a causal intervention
defines a subobject of an arbitrary object. A causal intervention on an SCM produces a
subobject of that SCM object.

To define a topos, we need to go through a few more definitions.

Definition 26. An object x in a category C is called initial if there is a unique morphism f : x→ y
to every other object y in the category. Dually, an object is called final if there is a unique morphism
f : y→ x into x.

In the category Sets, the null or empty set ∅ is the initial and the single element set {∗} is the
final object. From an empty set, there is only one function possible to any other set, namely
the empty function. From any set there is exactly one function into the single element set.
A topos generalizes the property of subobject classifiers in Sets. Given any subset S ⊂ X,
we can define S as the monic arrow S ↪→ X defined by the inclusion of S in X, or as the
characteristic function ϕS that is equal to 1 for all elements x ∈ X that belong to S, and takes
the value 0 otherwise. We can define the set 2 = {0, 1} and treat true as the inclusion {1} in 2.
The characteristic function ϕS can then be defined as the pullback of true along ϕS.

S 1

X 2

m true

ϕS

We can now define subobject classifiers in a category C as follows.

Definition 27. In a category C with finite limits, a subobject classifier is a monic arrow
true : 1 → Ω, such that to every other monic arrow S ↪→ X in C, there is a unique arrow ϕ that
forms the following pullback square:
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S 1

X Ω

m true

ϕ

This definition can be rephrased as saying that the subobject functor is representable. In
other words, a subobject of an object x in a category C is an equivalence class of monic
arrows m : S ↪→ x.

Definition 28. A topos is a category E with

1. A pullback for every diagram X→ B← Y.

2. A terminal object 1.

3. An objectΩ and a monic arrow true : 1→ Ω such that any monic m : S ↪→ B, there is a
unique arrow ϕ : B→ Ω in E for which the following square is a pullback:

S 1

X Ω

m true

ϕ

4. To each object x an object Px and an arrow ϵx : x × Px → Ω such that for every arrow
f : x × y → Ω, there is a unique arrow g : y → Px for which the following diagrams
commute:

y x × y Ω

Px x × Px Ω

g

f

ϵx

1×g

Let us understand these definitions in the category of Sets. Clearly, the single point set {•}
is a terminal object for Sets, because there is a unique function from any set S to a single
element set •, and the categorical product of two sets A × B is just the Cartesian product.
Furthermore, given two sets A and B, we can define BA as the exponential object representing
the set of all functions f : A→ B. We can define exponential objects in any category more
generally as follows.

Definition 29. Given any category C with products, for a fixed object x in C, we can define the
functor

x × − :→ C

If this functor has a right adjoint, which can be denoted as

(−)x : C → C

then we say x is an exponentiable object of C.
Definition 30. A category C is Cartesian closed if it has finite products (which is equivalent to
saying it has a terminal object and binary products) and if all objects in C are exponentiable.
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E

Figure 6: Causal models over arbitrary directed graphs define a topos. The subobject
classifier is illustrated on the right.

A.5 The Topos of Causal Graphs

To begin with a relatively elementary construction involving sheaves, Figure 6 illustrates
how directed graphs, widely used in causal modeling, can be modeled as a topos that only
has two objects: a generic “vertex" object V, representing an abstract causal variable, and a
generic “edge" object E, denoting an abstract causal path. Any actual graph, such as the two
shown in the figure, are covariant functors from CΓ, the graph topos, to the actual graphs
(we can treat graphs equivalently as contravariant functors by reversing the edges from V
to E). Sample object mappings of V for the two graphs are shown. For the topos category
CΓ, the “representable functor" is defined as the presheaf CΓ(−, c) for each object c in the
category Γ, which means the set of all morphisms going into object c. Let us calculate the
representable functors for the topos of graphs CΓ. Since CΓ has only two objects, V and E,
the representable functors are given as the sets:

CΓ(−,V), CΓ(−,E)

Since CΓ has no arrows from object E to object V, we can easily check that the representable
functor CΓ(−,V) is given as:

CΓ(V,V) = {1V}, CΓ(E,V) = ∅

where 1V is the self-loop arrow that maps object V to itself. On the other hand, the
representable functor CΓ(−,E) is defined as:

CΓ(V,E) = {s, t}, CΓ(E,E) = {1E}

Additional details, like constructing exponential objects HG for the CΓ category, are given
in [Vigna, 2003]. For the subobject classifier, the idea is as follows. For any causal model
N represented as a submodel of a more complex causal model M, defined by a monic
arrow m : N ↪→M, the generalization of the usual set-theoretic characteristic function is the
classifying map χm : N→ Ω. As in Theorem 3, Ω is not Boolean, but has multiple “degrees
of truth" (see Figure 6):

1. Causal variables not in N are mapped to OV.
2. Causal variables in N are mapped to V.
3. If an edge is not in N, four cases emerge:

(a) An arc whose source and target are not in N is mapped to 0E.
(b) An arc whose source is in N, but target is not, is mapped to an edge s.
(c) An arc whose target is in N, but source is not, is mapped to an edge t.
(d) An arc having both source and target in N is mapped to

(s
t
)
.2

B Sheaves and Toposes: Categories of Functors

A general way to construct a topos category is through covariant Yoneda embeddings
よ : C → SetC, or contravariant Yoneda embeddings よ : C → SetC

op
. In simpler terms,

2(s
t

)
: V + V → E is a map defined by the universal property of coproducts.
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each object x in the category C is either mapped to the functor C(x,−) : C → Sets or
C(−, x) : Cop

→ Sets. These structures are called presheaves or copresheaves. To construct
a proper sheaf, we need to include an additional condition that is illustrated in Figure 7.
The sheaf condition plays an important role in many applications of machine learning,
from dimensionality reduction [McInnes et al., 2018] to causal inference [Mahadevan, 2023].
Mac Lane and Moerdijk [1992] provides an excellent overview of sheaves and topoi, and
how remarkably they unify much of mathematics, from geometry to logic and topology. For
causal inference, the structure of causality shapes the arrows in a causal model, such as a
Markov category, and that imposes a Grothendieck topology with an associated internal
logic. Logic and causality are interwoven in ths sense.

Figure 7: Two applications of sheaf theory in AI: (top) minimizing travel costs in weighted
graphs satisfies the sheaf principle, one example of which is the Bellman optimality principle
in reinforcement learning [Bertsekas, 2019] (bottom): Approximating a function over a
topological space must satisfy the sheaf condition.
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F(A)
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Figure 7 gives two concrete examples of sheaves (in both cases, these are enriched sheaves).
In a minimum cost transportation problem, say reinforcement learning [Bertsekas, 2019], any
optimal solution has the property that any restriction of the solution must also be optimal.
In RL, this sheaf principle is codified by the Bellman equation, and leads to the fundamental
principle of dynamic programming [Bertsekas, 2019]. Consider routing candy bars from
San Francisco to New York city. If the cheapest way to route candy bars is through Chicago,
then the restriction of the overall route to the (sub) route from Chicago to New York City
must also be optimal, otherwise it is possible to find a shortest overall route by switching
to a lower cost route. Similarly, in function approximation with real-valued functions
F : C → R, where C is the category of topological spaces, the (sub)functions F(A), F(B) and
F(C) restricted to the open sets A, B and C must agree on the values they map the elements
in the intersections A ∩ B, A ∩ C, A ∩ B ∩ C and so on.

Sheaves can be defined over arbitrary categories, and we introduce the main idea by focusing
on the category of sheaves over Sets.

Definition 31. [Mac Lane and Moerdijk, 1992] A sheaf of sets F on a topological space X is a
functor F : Oop

→ Sets such that each open covering U =
⋃

i Ui, i ∈ I of an open set O of X yields
an equalizer diagram
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Figure 8: Sieves are subobjects of of よ(x) Yoneda embeddings of a category C, which
generalizes the concept of sheaves over sets in Figure 7.
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q

∏
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F(Ui ∩U j)

The above definition succinctly generalizes the idea in SCMs of combining local functions to
get a unique global function.
Definition 32. The category Sh(X) of sheaves over a space X is a full subcategory of the functor
category SetsO(X)op

.

B.1 Grothendieck Topologies

We can generalize the notion of sheaves to arbitrary categories using the Yoneda embedding
よ(x) = C(−, x). We explain this generalization in the context of a more abstract topology
on categories called the Grothendieck topology defined by sieves. A sieve can be viewed as a
subobject S ⊆よ(x) in the presheaf SetsC

op
, but we can define it more elegantly as a family of

morphisms in C, all with codomain x such that

f ∈ S =⇒ f ◦ g ∈ S

Figure 8 illustrates the idea of sieves. A simple way to think of a sieve is as a right ideal. We
can define that more formally as follows:
Definition 33. If S is a sieve on x, and h : D→ x is any arrow in category C, then

h∗(S) = {g | cod(g) = D, hg ∈ S}

Definition 34. [Mac Lane and Moerdijk, 1992] A Grothendieck topology on a category C is a
function J which assigns to each object x of C a collection J(x) of sieves on x such that

1. the maximum sieve tx = { f |cod( f ) = x} is in J(x).

2. If S ∈ J(x) then h∗(S) ∈ J(D) for any arrow h : D→ x.

3. If S ∈ J(x) and R is any sieve on x, such that h∗(R) ∈ J(D) for all h : D→ x, then R ∈ J(C).

We can now define categories with a given Grothendieck topology as sites.
Definition 35. A site is defined as a pair (C, J) consisting of a small category C and a Grothendieck
topology J on C.

An intuitive way to interpret a site is as a generalization of the notion of a topology on a
space X, which is defined as a set X together with a collection of open sets O(X). The sieves
on a category play the role of “open sets".
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B.2 Mitchell-Bénabou Language

We define the Mitchell-Bénabou language (MBL), a typed local set theory (see Section C)
associated with a causal topos. Given the topos category CΩ, we define the types of MBL as
causal model objects M of CΩ. For each type M (e.g., an SCM), we assume the existence of
variables xM, yM, . . ., where each such variable has as its interpretation the identity arrow
1 : M → M. We can construct product objects, such as A × B × C, where terms like σ that
define arrows are given the interpretation σ : A × B × C→ D. We can inductively define the
terms and their interpretations in a topos category as follows (see [Mac Lane and Moerdijk,
1992] for additional details):

• Each variable xM of type M is a term of type M, and its interpretation is the identity
xM = 1 : M→M (e.g., M may be an SCM or a causal model on a Markov category).

• Terms σ and τ of types C and D that are interpreted as σ : A→ C and τ : B→ D can
be combined to yield a term ⟨σ, τ⟩ of type C ×D, whose joint interpretation is given
as

⟨σp, τq⟩ : X→ C ×D

where X has the required projections p : X→ A and q : X→ B.
• Terms σ : A → B and τ : C → B of the same type B yield a term σ = τ of type Ω,

interpreted as

(σ = τ) : W
⟨σp,τq⟩
−−−−→ B × B

δB
−→ Ω

where δB is the characteristic map of the diagonal functor ∆B → B × B. These
diagonal maps correspond to the “copy" procedure in Markov categories [Fritz,
2020].

• Arrows f : A→ B and a term σ : C→ A of type A can be combined to yield a term
f ◦ σ of type B, whose interpretation is naturally a composite arrow:

f ◦ σ : C σ
−→ A

f
−→ B

• For exponential objects, terms θ : A → BC and σ : D → C of types BC and C,
respectively, combine to give an “evaluation" map of type B, defined as

θ(σ) : W → BC
× C e
−→ B

where e is the evaluation map, and W defines a map ⟨θp, σq⟩, where once again
p : W → A and q : W → D are projection maps.

• Terms σ : A→ B and τ : D→ ΩB combine to yield a term σ ∈ τ of type Ω, with the
following interpretation:

σ ∈ τ : W
⟨σp,τq⟩
−−−−→ B ×ΩB e

−→ Ω

• Finally, we can define local functions as λ objects, such as

λxCσ : A→ BC

where xC is a variable of type C and σ : C × A→ B.

We combine terms α, β etc. of type Ω using logical connectives ∧,∨,⇒,¬, as well as
quantifiers, to get composite terms, where each of the logical connectives is now defined
over the subobject classifier Ω.

• ∧ : Ω ×Ω→ Ω is interpreted as the meet operation in the partially ordered set of
subobjects (given by the Heyting algebra).

• ∨ : Ω ×Ω → Ω is interpreted as the join operation in the partially ordered set of
subobjects (given by the Heyting algebra). This operation gives the definition of a
disjunction of two properties.
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• ⇒: Ω × Ω → Ω is interpreted as an adjoint functor, as defined previously for a
Heyting algebra. Thus, the property of implication over SCMs is modeled as an
adjoint functor.

We can combine these logical connectives with the term interpretation as arrows, relegating
some details to [Mac Lane and Moerdijk, 1992]. We now turn to the Kripke-Joyal semantics
of this language.

B.3 Kripke-Joyal Semantics for a Causal Topos

We now define the Kripke-Joyal semantics for the Mitchell-Bénabou language of a causal
topos. Any free variable x must have some causal model X of CΩ as its type. For any causal
model M in CΩ, define a generalized element as a morphism α : N→M. To understand this
definition, note that we can define an element of a causal model by the morphism x : 1→M.
Thus, a generalized element α : N→M represents the “stage of definition" of M by N. We
specify the semantics of how an SCM N supports any formula ϕ(α), denoted by N ⊩ ϕ(α),
as follows:

N ⊩ ϕ(α) if and only if Im α ≤ {x|ϕ(x)}
Stated in the form of a commutative diagram, this “forcing" relationship holds if and only if
α factors through {x|ϕ(x)}, where x is a variable of type M (recall that objects M of a topos
form its types), as shown in the following commutative diagram. 3

{x|ϕ(x)} 1

N M Ω

True

α

ϕ(x)

This diagram provides an interesting way to define causal interventions in a causal topos,
because it defines submodels of M. Building on this definition, if α, β : N→M are parallel
arrows, we can give semantics to the formula α = β by the following statement:

N
⟨α,β⟩
−−−→M ×M

δM
−−→ Ω

following the definitions in the previous section for the composite ⟨α, β⟩ and δX in the
Mitchell-Bénabou language. We can extend the previous commutative diagram to show
that U ⊩ α = β holds if and only if ⟨α, β⟩ factors through the diagonal map ∆:

M 1

N M ×M Ω

∆ True

⟨α,β⟩

δM

• Monotonicity: If U ⊩ ϕ(x), then we can pullback the interpretation
through any arrow f : U′ → U in a topos C to obtain U′ ⊩ ϕ(α ◦ f ).

{x|ϕ(x)} 1

U′ U X Ω

True

f
α

ϕ(x)

• Local character: Analogously, if f : U′ → U is an epic arrow, then from U′ ⊩ ϕ(α◦ f ),
we can conclude U ⊩ ϕ(x).

3The concept of “forcing" is generalized from set theory [Mac Lane and Moerdijk, 1992].
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Theorem 9. If α : N → M is a generalized element of causal model M, and ϕ(x) and ψ(x) are
formulas with a free variable x of type M, we can conclude that

1. N ⊩ ϕ(α) ∧ ψ(α) holds if N ⊩ ϕ(α) and N ⊩ ψ(α).

2. N ⊩ ϕ(x) ∨ ψ(x) holds if there are morphisms p : O → N and q : P → N such that
p + q : N +O→M is an epic arrow, and N ⊩ ϕ(αp) and O ⊩ ϕ(αq).

3. N ⊩ ϕ(α) ⇒ ψ(α) if it holds that for any morphism p : N → M, where N ⊩ ϕ(αp), the
assertion N ⊩ ϕ(αp) also holds.

4. N ⊩ ¬ϕ(α) holds if whenever the morphism p : M→ N satisfies the property N ⊩ ϕ(αp),
then N � 0.

5. M ⊩ ∃ϕ(x, y) holds if there exists an epic arrow p : N → M and generalized elements
β : V → Y such that M ⊩ ϕ(αp, β).

6. M ⊩ ∀yϕ(x, y) holds if for every structural causal model N, and every arrow p : N→M,
and every generalized element β : N→ O, it holds that V ⊩ ϕ(αp, β).

Proof: The proof follows readily from the general result on Kripke-Joyal semantics for the
Mitchell-Bénabou languages of any topos [Mac Lane and Moerdijk, 1992] The Kripke-Joyal
semantics takes on a simpler form when using a Grothendieck topology on a topos, and we
postpone the details to the Supplementary Materials. □

B.4 Kripke-Joyal Semantics for Sheaves

In the main paper, we introduced Kripke-Joyal semantics for any topos. These semantics
can be specialized to a topos equipped with a Grothendieck topology, that is a site. This
specialized structure captures how causal inference is woven in the fabric of the internal
logic of a causal topos. Define Sh(C,J) be a topos of sheaves with a specified Grothendieck
topology J , defined by the following diagram:

C
よ
−→ P(C) a

−→ Sh(C,J) � C
where we know that the Yoneda embedding よ creates a full and faithful copy of the
original category C. Let us define the semantics for a sheaf element α ∈ X(C), where
X(C) = Sh(C, J)(C(−,C),X)). Since we know that {x|ϕ(x)} is a subsheaf, and given an arrow
f : D → C of C, and α ∈ X(C), then if α is one of the elements that satisfies the property
that {x|ϕ(x)}, the monotonicity property stated above implies that α ◦ f ∈ {x|ϕ(x)}(D) ⊆ X(D).
Also, the local character condition stated above implies that if { fi : Ci → C} is a cover in the
Grothendieck topology J such that Ci| ⊩ ϕ(α ◦ fi) for all i, then C ⊩ ϕ(α).

With these assumptions, we can restate the Kripke-Joyal semantics for the topos category of
sheaves as follows:

1. C ⊩ ϕ(α) ∧ ψ(α) if it holds that C ⊩ ϕ(α) and C ⊩ ψ(α).
2. C ⊩ ϕ(α)∨ψ(α) if there is a covering { fi : Ci → C} such that for each i, either Ci ⊩ ϕ(α)

or Ci ⊩ ψ(α).
3. C ⊩ ϕ(α)→ ψ(α) if for all f : D→ C, and D ⊩ ϕ(α ◦ f ), it holds that D ⊩ ψ(α ◦ f ).
4. C ⊩ ¬ϕ(α) holds if for all arrows f : D → C in C, if D ⊩ ϕ(α ◦ f ) holds, then the

empty family is a cover of D.
5. C ⊩ ∃y ϕ(x, y) holds if there is a covering { fi : Ci → C} and elements βi ∈ Y(Ci) such

that Ci ⊩ ϕ(α ◦ fi, βi) holds for each i.
6. Finally, for universal quantification, C ⊩ ∀y ϕ(x, y) holds if for all arrows f : D→ C

in the category C, and all β ∈ Y(D), it holds that D ⊩ ϕ(α ◦ f , β).

C Local Set Theory

The Mitchell-Bénabou language is an example of a “local set theory" Bell [1988]. Formally,
the Mitchell-Bénabou language for the Generalized Do-Calculus is a local set theory, defined
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by a set of types that correspond to each structural causal model M object in CΩ. A local set
theory [Bell, 1988] is defined as a language L specified by the following classes of symbols:

1. Symbols 1 and Ω representing the unity type and truth-value type symbols.
2. A collection of symbols A,B,C, . . . called ground type symbols.
3. A collection of symbols f, g,h, . . . called function symbols.

To instantiate this definition for our paper, the ground types will be SCMs, each of which
will be interpreted as a primitive type in Section B.2. We will use the topos-theoretical
constructions to construct composite types. We can use an inductive procedure to recursively
construct type symbols of L as follows:

1. Symbols 1 and Ω are type symbols (the terminal object and the subobject classifier
in a causal topos).

2. Any ground type symbol is a type symbol. For a causal topos, each SCM is a ground
type symbol.

3. If A1, . . . ,An are type symbols, so is their product A1 × . . .An, where for n = 0, the
type of

∏n
i=1 Ai is 1. The product A1 × . . .An has the product type symbol. These

constructs allow defining an algebra of causal models.

4. If A is a type symbol, so is PA. The type PA is called the power type. 4 We thus can
give meaning to concept of a “powerset" of a causal model, where we interpret the
subobject classifier as defining the abstract semantics of a powerset for each SCM.

Thus, a product of SCMs will define product types. Given an SCM M, we can define its
power type as well, which is an abstract notion of the “power set" of a causal model (if you
interpret this in the context of subobject classifiers, it means that we are defining a family of
submodels). For each type symbol A, the languageL contains a set of variables xA, yA, zA, . . ..
In addition, L contains the distinguished ∗ symbol. Each function symbol in L is assigned a
signature of the form A→ B. 5 We can define the terms of the local set theory language L
recursively as follows:

• ∗ is a term of type 1.
• for each type symbol A, variables xA, yA, . . . are terms of type A.
• if f is a function symbol with signature A→ B, and τ is a term of type A, then f(τ) is

a term of type B.
• If τ1, . . . , τn are terms of types A1, . . . ,An, then ⟨τ1, . . . τn⟩ is a term of type A1× . . .An,

where if n = 0, then ⟨τ1, . . . τn⟩ is of type ∗.
• If τ is a term of type A1 ×An, then for 1 ≤ i ≤ n, (τ)i is a term of type Ai.
• if α is a term of type Ω, and xA is a variable of type A, then {xA : α} is a term of type

PA.
• if σ, τ are terms of the same type, σ = τ is a term of type Ω.
• if σ, τ are terms of the types A,PA, respectively, then σ ∈ τ is a term of type Ω.

A term of type Ω is called a formula. The language L does not yet have defined any logical
operations, because in a typed language, logical operations can be defined in terms of the
types, as illustrated below.

• α⇔ β is interpreted as α = β.
• true is interpreted as ∗ = ∗.
• α ∧ β is interpreted as ⟨α, β⟩ = ⟨true, false⟩.
• α⇒ β is interpreted as (α ∧ β)⇔ α

4Note that in a topos, these will be interpreted as power objects, generalizing the concept of power
sets.

5In a topos, these will correspond to arrows of the category.
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• ∀x α is interpreted as {x : α} = {x : true}
• false is interpreted as ∀ω ω.
• ¬α is interpreted as α⇒ false.
• α ∨ β is interpreted as ∀ω [(α⇒ ω ∧ β⇒ ω)⇒ ω]
• ∃x α is interpreted as ∀ω[∀x(α⇒ ω)⇒ ω]

Finally, we have to specify the inference rules, which are given in the form of sequents. We
will just sketch out a few, and the rest can be seen in [Bell, 1988]. A sequent is a formula
Γ : α where α is a formula, and Γ is a possibly empty finite set of formulae. The basic axioms
include α : α (tautology), : x1 = ∗ (unity), a rule for forming projections of products, a rule for
equality, and another for comprehension. Finally, the inference rules are given in the form:

• Thinning:
Γ : α
β, Γ : α

• Cut:

Γ : α, α, Γ : β

Γ : β

• Equivalence:

α, Γ : β β, Γ : α

Γ : α⇔ β

A full list of inference rules with examples of proofs is given in [Bell, 1988]. Now that we
have the elements of a local set theory defined as shown above, we need to connect its
definitions with a causal topos. That is the topic of the next section.

C.1 Counterfactuals using Topos Categories

de Araujo Fernandes and Haeusler [2009] describe an intuitionistic logic for Lewis’ [Lewis,
1973] theory of counterfactuals, where the neighborhood system of possible worlds is
governed by the graph topos CΓ illustrated in Figure 6. However, as Galles and Pearl
[1988] argued, many counterfactuals have causal meaning. For example, the well-known
counterfactual “If Kangaroos had no tails, they would fall over" attains causal meaning as
the logic of counterfactuals proposed by Lewis evaluates its truth in the nearest possible
worlds, where the laws of physics are the same as our world, except for a “kangaroo surgery".
Lewis introduces two counterfactual connectives, and we illustrate how to model one of
them in our framework:

• α� β is true in a world u according to a neighborhood system CΩ, if either for no
world w in CΩ(u), |=w α, or there is some neighborhood N in CΩ(u) that has a world
w such that |=w α and |=v α⇒ β in every world v of N.

Crucially, unlike the case for de Araujo Fernandes and Haeusler [2009], our TCM framework
imposes a causal structure on the neighborhood system.

D Intuitionistic j-Do-Calculus on Sites

In a recent paper, we have developed an intuitionistic generalization of Pearl’s do-calculus
on sites [Mahadevan, 2025a]. A site (C,J) is a small category Cwhose objects index regimes
(e.g., labs, contexts) and a Grothendieck topology J that specifies which families {ui → u}
“cover” a stage u. The topos SJ (C) ofJ-sheaves behaves like a universe of sets varying over
regimes. A formula φ is J-stable at u iff it holds on a cover of u (Kripke–Joyal semantics).
Intuitively: truth is verified locally and then glued. Random variables and probabilities live
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internally (as objects/morphisms of ShJ (C)). When J is trivial, these reduce to the classical
notions.

Pearl’s do-calculus [Pearl, 2009] is a complete axiom system for interventional identification
in acyclic causal models under classical (Boolean) logic. In [Mahadevan, 2025a], we
generalize it to j-stable causal inference inside a topos of sheaves ShJ (C), where regimes
form a site (C,J) and observations/interventions are sheaves on that site. We define j-
stability for conditional independences and interventional claims as local truth in the internal
logic of ShJ (C). We give three inference rules that mirror Pearl’s insertion/deletion and
action/observation exchange, and we characterize their soundness using the Kripke–Joyal
semantics. In a companion paper [Mahadevan, 2025b], which is currently in preparation, we
provide concrete algorithms for j-stable causal discovery on sites, and compare a number of
popular causal discovery procedures (score-based and constraint-based) [Zanga and Stella,
2023] with their j-stable variants.

E Affine CDU and Markov Categories

In this section, we review previous work on affine CDU (“copy-delete-uniform") categories
[Cho and Jacobs, 2019] and Markov categories [Fritz, 2020], which have been proposed
as a unifying categorical model for causal inference, probability and statistics. They are
symmetric monoidal categories, which we reviewed above, combined with a comonoidal
structure on each object. Importantly, Markov categories are semi-Cartesian because they
do not use uniform copying, but contain a Cartesian subcategory defined by deterministic
morphisms (see below). We give a brief review of Markov categories, and significant
additional details that are omitted can be found in [Cho and Jacobs, 2019, Fritz, 2020, Fritz
and Klingler, 2023]. The equations are written in the diagrammatic language of string
diagrams, which can be shown to represent a formal language that is equivalent to writing
down algebraic equations [Selinger, 2010].
Definition 36. A Markov category C [Fritz, 2020] is a symmetric monoidal category in which
every object X ∈ C is equipped with a commutative comonoid structure given by a comultiplication
copyX : X→ X ⊗ X and a counit delX : X→ I, depicted in string diagrams as

== delXcopyX (1)

and satisfying the commutative comonoid equations,

= (2)

== = (3)

as well as compatibility with the monoidal structure,

=

X ⊗ Y

X ⊗ Y X
=

Y

X ⊗ Y

X ⊗ Y

X Y X Y

X Y

(4)

and naturality of del, which means that

=f (5)

for every morphism f .
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Let us briefly explain these definitions. The delX : X→ I is essentially like integrating over a
probability distribution, which always yields 1. Hence, I, the unit of the tensor product, is the
terminal object in affine CDU and Markov categories. Bayes rule turns into a disintegration
rule [Cho and Jacobs, 2019], which is only available in Markov categories with conditionals
(i.e., where one can categorically refine P(y|x) conditional distributions). Note that in the
continuous case of random variables defined as measurable functions on real numbers, one
has to take considerable care in defining conditioning [Halmos, 1974]. The copyX procedure
is uniform, and deterministic, meaning if you take the tensor product of two variables X ⊗Y
and then copy the resulting object, that’s exactly the same as first copying X into X ⊗ X
and Y into Y ⊗ Y, and then taking the tensor product, along with a swap operation (see
Equation 4). Only delX acts “uniformly", meaning that if you process a variable X using
some function f and then delete f (X) (meaning marginalize it), that’s equivalent to simply
deleting X. However, copyX is not defined this way, and we discuss that subtlety below, as it
will be important in understanding why Markov categories are semi-Cartesian. To convert
them into a topos, we need the result to be Cartesian closed, which is why we need to use
the Yoneda Lemma to construct the category of presheaves to guarantee obtaining a topos.

E.1 Cartesian Structure in Markov Categories

We now discuss a subcategory of Cartesian categories within Markov that involves uniform
copyX and delX morphisms. One fundamental property of Markov categories is that they
are semi-Cartesian, as the unit object is also a terminal object. But, a subtlety arises in how
these copy and delete operators are modeled, as we discuss below.
Definition 37. A symmetric monoidal category C is Cartesian if the tensor product ⊗ is the
categorical product.

If C andD are symmetric monoidal categories, then a functor F : C → D is monoidal if the
tensor product is preserved up to coherent natural isomorphisms. F is strictly monoidal
if all the monoidal structures are preserved exactly, including ⊗, unit object I, symmetry,
associative and unit natural isomorphisms. Denote the category of symmetric monoidal
categories with strict functors as arrows as MON. Let us review the basic definitions given
by Heunen and Vicary [2019], which will give some further clarity on the Cartesian structure
in affine CDU and Markov categories.
Definition 38. The subcategory of comonoids coMON in the ambient category MON of all
symmetric monoidal categories is defined for any specific category C as a collection of “coalgebraic"
objects (X, copyX, delX), where X is in C, and arrows defined as comonoid homomorphisms from
(X, copyX, delX) to (Y, copyY, delY) that act uniformly, in the sense that if f : X→ Y is any morphism
in C, then:

( f ⊗ f ) ◦ copyX = copyY ◦ f
delY ◦ f = delX

Heunen and Vicary [2019] define the process of “uniform copying and deleting" in the
category coMON, which we now relate to Markov categories. A subtle difference worth
emphasizing with Definition 36 is that in Markov categories, only delX is “uniform", but not
copyX in the sense defined by Heunen and Vicary [2019]. This distinction can be modeled in
a cPROP category that is semi-Cartesian like Markov categories by suitably modifying the
definition of the associated PROP map for copying.
Definition 39. [Heunen and Vicary, 2019] A symmetric monoidal category C admits uniform
deleting if there is a natural transformation eX : X

eX
−→ I for all objects in the subcategory CcoMON of

comonoidal objects, where eI = idI, as shown in Equation 5.

This condition was referred to by Cho and Jacobs [2019] as a causality condition on the arrow
eX. Essentially, it states that if you process some object and then discard it, it’s equivalent to
discarding it without processing.
Theorem 10. [Heunen and Vicary, 2019] A symmetric monoidal category C has uniform deleting if
and only if I is terminal.
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This property holds for Markov categories, as noted in [Fritz, 2020], and a simple diagram
chasing proof is given in [Heunen and Vicary, 2019].
Definition 40. [Heunen and Vicary, 2019] A symmetric monoidal category C has uniform copying
if there is a natural transformation copyX : X→ X ⊗ X such that delI = ρ−1

I satisfying Equation 2
and Equation 3.

We can now state an important result proved in [Heunen and Vicary, 2019] (Theorem 4.28),
which relates to the more general results shown earlier by Fox [1976].
Theorem 11. [Fox, 1976, Heunen and Vicary, 2019] The following conditions are equivalent for a
symmetric monoidal category C.

• The category C is Cartesian with tensor products ⊗ given by the categorical product and
the tensor unit is given by the terminal object.

• The symmetric monoidal category C has uniform copying and deleting, and Equation 2
holds.

As noted by Fritz [2020], not all Markov categories are Cartesian, because their copyX
is not uniform, but only delX is. For example, consider the category FinStoch, where a
joint distribution is specified by the morphism ψ : I → X ⊗ Y. In this case, the marginal
distributions can be formed as the composite morphisms

I
ψ
−→ X ⊗ Y

delY
−−−−→ X

I
ψ
−→ X ⊗ Y

delX
−−−−→ Y

But to require that in this case ⊗ is the categorical product implies that the marginal
distributions defined as the above composites must be in bijection with the joint distribution.

F Social Impact

Causal inference addresses real-world problems with significant social impact, including
healthcare, education, climate change, and economics. Discovering causal models has
enormous potential for improving human lives in all these areas. However, our paper is
largely a theoretical study of the universal properties that underlie causality. It does not
address concrete algorithmic questions, and is complementary to the empirical literature in
the field.
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