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ABSTRACT

The motion planning problem involves finding a collision-free path from a robot’s
starting to its target configuration. Recently, self-supervised learning methods
have emerged to tackle motion planning problems without requiring expensive
expert demonstrations. They solve the Eikonal equation for training neural net-
works and lead to efficient solutions. However, these methods struggle in com-
plex environments because they fail to maintain key properties of the Eikonal
equation, such as optimal value functions and geodesic distances. To overcome
these limitations, we propose a novel self-supervised temporal difference metric
learning approach that solves the Eikonal equation more accurately and enhances
performance in solving complex and unseen planning tasks. Our method enforces
Bellman’s principle of optimality over finite regions, using temporal difference
learning to avoid spurious local minima while incorporating metric learning to
preserve the Eikonal equation’s essential geodesic properties. We demonstrate that
our approach significantly outperforms existing self-supervised learning methods
in handling complex environments and generalizing to unseen environments, with
robot configurations ranging from 2 to 12 degrees of freedom (DOF). The imple-
mentation code repository is available at https://github.com/ruiqini/
ntrl-demo.

1 INTRODUCTION

Robot motion planning is a well-established problem focused on finding a collision-free path be-
tween a robot’s initial and target configurations. In recent years, learning-based methods have
emerged as promising tools using function approximators to generate paths at runtime efficiently.
These methods, capable of handling high-dimensional configuration spaces (C-space), are typically
categorized into supervised (Ichter et al., 2018; Kumar et al., 2019; Qureshi & Yip, 2018; Ichter &
Pavone, 2019; Qureshi et al., 2019; 2020; Huh et al., 2021; Li et al., 2022; Fishman et al., 2023) and
self-supervised (Ni & Qureshi, 2023a;b; 2024; Yang et al., 2023) learning approaches.

Supervised learning methods rely on expert demonstration trajectories for training. Expert data is of-
ten generated by classical planning algorithms, which are slow and inefficient in high-dimensional,
cluttered C-spaces. As a result, these methods can have limited scalability to the cost and complexity
of data acquisition (Karaman & Frazzoli, 2011; Janson et al., 2015; Gammell et al., 2015). In con-
trast, self-supervised learning methods eliminate the need for expert data. However, many of these
approaches focus more on short-horizon local planning and workspace navigation problems (Wi-
jmans et al., 2019; Yang et al., 2023). Recently, innovative self-supervised learning approaches,
Neural Time Fields (NTFields) (Ni & Qureshi, 2023a;b), have been proposed to solve the Eikonal
equation for planning problems. The Eikonal equation solution indicates the shortest travel time and
defines the minimum path between two locations (Sethian, 1996). These methods avoid the need for
costly expert demonstrations while offering scalable and data-efficient alternatives.

While NTFields offer promising self-supervised planning solutions, they encounter significant chal-
lenges when scaling to complex, cluttered environments and generalizing to new, unseen scenarios.
This is due to their inability to fully preserve the critical properties of the Eikonal equation’s so-
lution, which should simultaneously function as an optimal value function and a geodesic distance
representing the cost-to-go from start to goal configurations in the C-space.
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To address the limitations of prior works, we present a novel approach that efficiently solves the
Eikonal equation through temporal difference metric learning, enabling accurate solutions for the
Eikonal equation in complex, cluttered environments. Our key contributions are as follows:

• We introduce temporal difference (TD) learning into physics-informed methods to solve the
Eikonal equation as an optimal value function, enforcing Bellman’s principle of optimality over a
finite time step. By integrating TD loss with the Eikonal loss, we significantly enhance training
convergence, resulting in more accurate solutions.

• We propose a novel network architecture for metric learning over the solution space of the Eikonal
equation, preserving the fundamental properties of geodesic distance. Our approach ensures that
the learned metric adheres to essential characteristics such as triangle inequality, symmetry, and
non-negativity. By parameterizing the network within a metric space, the learning process is
constrained to adhere to these properties, which improves training efficiency and stability.

• During runtime inference, we utilize a sampling-based Model Predictive Control (MPC) (Williams
et al., 2016; Bharadhwaj et al., 2020) to minimize the learned value function. This approach
eliminates the need for gradient computation, improving runtime efficiency. Additionally, the
inherent randomness in sampling helps the system escape poorly learned regions and supports
multimodal solutions, enhancing robustness in complex environments.

We evaluate our framework on complex planning tasks with C-space ranging from 2-12 DOF and
demonstrate its scalability to complex scenes and generalization ability to multiple and unseen en-
vironments. Our results show that our proposed approach significantly outperformed prior state-of-
the-art learning-based planning methods. Additionally, we compare our proposed metric learning
approach with other metrics commonly used in Reinforcement Learning (RL) for the value function
learning. Our results demonstrate that our metric better captures the key properties of the Eikonal
equation, leading to a more accurate approximation of its solution.

2 RELATED WORK

The prior work in robot motion planning can be categorized into classical sampling or search-based
approaches, trajectory optimization (TO), and learning-based methods. The classical approaches
(Sethian, 1996; Karaman & Frazzoli, 2011; Janson et al., 2015; Gammell et al., 2015) suffer from
poor computational efficiency in high dimensional problems as they rely on C-space discretization
or collision-free sampling to find a path. The optimization-based techniques (Ratliff et al., 2009;
Kalakrishnan et al., 2011) convert hard constraints into soft constraints and solve them via opti-
mization, leading to robot paths that are often prone to local minima. In view of these pitfalls,
supervised and self-supervised learning-based methods have emerged as promising alternatives that
learn function generators and quickly infer robot paths at run times.

Supervised learning-based approaches learn by imitating expert demonstration data (Ichter &
Pavone, 2019; Yonetani et al., 2021; Bency et al., 2019; Chaplot et al., 2021; Saha et al., 2024;
Zang et al., 2023; Huh et al., 2021; Qureshi et al., 2019; 2020; Fishman et al., 2023; Ichter et al.,
2018). They can learn a path generator (Qureshi et al., 2019; 2020; Fishman et al., 2023), C-space
sampler for sampling-based methods (Qureshi & Yip, 2018; Ichter et al., 2018), or prior distribu-
tion for optimization-based techniques (Saha et al., 2024). Although these learning-based methods
infer robot trajectories orders of magnitude faster than classical techniques, they are bottlenecked
by their need for expert demonstration data, which is gathered by running computationally intensive
classical planners at a large scale.

Unlike expert-driven methods, self-supervised learning eliminates the need for labeled data. Re-
inforcement learning (RL) approaches (Sutton, 2018) learn through trial-and-error interactions but
struggle with sparse rewards, often relying on expert demonstrations (Vecerik et al., 2017). More
recently, physics-informed neural motion planners (Ni & Qureshi, 2023a;b; 2024; Li et al.; Liu et al.,
2024; Shen et al., 2024) have emerged, solving the Eikonal equation for motion planning by mini-
mizing equation loss on offline-sampled points. This can be viewed as offline goal-conditioned RL.
A key yet overlooked aspect of these methods is that the Eikonal equation defines both an optimal
value function and a geodesic distance on a Riemannian manifold. Failing to capture these properties
hinders scalability in complex, cluttered, and unseen environments.
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Our approach frames the travel time field as a metric space, drawing from Quasimetric Reinforce-
ment Learning (QRL) (Schaul et al., 2015; Zhang et al., 2020; Bellemare et al., 2019; Wang et al.,
2023), which enforces properties like non-negativity and the triangle inequality. However, existing
QRL methods focus on short-horizon tasks and overlook collision avoidance in complex settings.
In contrast, our method scales to long-horizon tasks in high-dimensional C-spaces while integrating
complex collision constraints. We further show that Eikonal equation solutions form true metrics,
supporting multiple shortest paths in multi-connected regions, and introduce novel metric functions
to capture these properties.

3 BACKGROUND

In this section, we formalize the general robot motion planning problem and then review the physics-
informed neural motion planner proposed by (Ni & Qureshi, 2023a;b), which is the basis of our
method.

3.1 ROBOT MOTION PLANNING

We denote by X ⊂ Rm the robot’s workspace, where m ∈ N corresponds to the space’s physical
dimensions. The C-space is represented as Q ⊂ Rd, where d ∈ N reflects the robot’s degrees of
freedom. The workspace consists of both the obstacle-occupied region, denoted by Xobs ⊂ X , and
the obstacle-free region, denoted as Xfree = X \ Xobs. We assume environment obstacles Xobs are
known a prior. In the C-space, the obstacle and obstacle-free regions are given by Qobs ⊂ Q and
Qfree = Q \ Qobs, respectively. The motion planning problem involves finding a trajectory that
connects a given start point qs to a goal point qg , such that the entire trajectory lies within Qfree.

3.2 PHYSICS-INFORMED NEURAL MOTION PLANNER

Our approach is based on the recently proposed NTFields (Ni & Qureshi, 2023a). This method
builds on the theory of the Eikonal equation, which models the wave propagation from a start point
qs to the entire obstacle-free C-space. The solution of the Eikonal equation can be represented by the
time for the wavefront starting from qs to reach qg , with the shortest path being traced by following
the negative gradient of the travel time (Sethian, 1996). This time field is represented as a learnable
travel-time function T (qs, qg) from qs to qg . Specifically, to ensure that the travel-time is always
positive and symmetric, i.e., T (qs, qg) = T (qg, qs), NTFields parameterize the travel-time function
by distorting the Euclidean distance as follows: T (qs, qg) = ∥qs − qg∥/τ(qs, qg), with τ(qs, qg)
being the distance distortion function parameterized using a neural network. They also show that
the travel speed of the wavefront is inversely proportional to the gradient norm of travel time, i.e.:

1/S(qg) = ∥∇qgT (qs, qg)∥ 1/S(qs) = ∥∇qsT (qs, qg)∥, (1)

where S(q) is the wavefront’s travel speed. To ensure that the robot moves in the free space Qfree,
and stops in the obstacle space Qobs, NTFields introduced a ground truth speed S⋆(q) based on the
truncated distance between q and Xobs as follows:

S⋆(q) = clip(dobs(q,Xobs)/dmax, dmin/dmax, 1). (2)

Here, dobs(q,Xobs) represents the minimal distance between workspace robot geometry at configu-
ration q, computed using forward kinematics, and the workspace obstacles Xobs. We further assume
dobs is differentiable in q using differentiable forward kinematics (Villegas et al., 2018). The param-
eters dmin, and dmax are the minimum and maximum distance thresholds, respectively. NTFields
are then trained by minimizing the following Eikonal loss between the ground truth speed S⋆(q) and
the speed S(q) predicted by the neural network parametrized T (qs, qg) and Eq. 1:

LE = (
√

S⋆(qs)/S(qs)− 1)2 + (
√

S⋆(qg)/S(qg)− 1)2. (3)

Intuitively, the Eikonal equation seeks to approximate the optimal value function T (qs, qg) with
the desirable gradient norm, and the gradient of value function gives the desirable motion direction
during inference. The subsequent work, P-NTFields (Ni & Qureshi, 2023b) introduced curriculum
learning and viscosity Eikonal equation to enhance the training process. However, local minima
persist, leading to incorrect solutions that hinder success in complex environments. More recently,
PC-Planner (Shen et al., 2024) incorporated monotonicity and optimality constraints to refine results
further. However, it does not explicitly leverage the Eikonal equation’s role as an optimal value
function and geodesic distance, which are crucial for global consistency and optimal path planning.
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4 METHODS

In this section, we present our novel approach that efficiently approximates the solution of the
Eikonal equation via temporal difference metric learning for robot motion planning in complex, clut-
tered environments. We observe two key properties of the Eikonal equation that can be utilized to
enhance the effectiveness of self-supervised learning. First, we show that the solution of the Eikonal
equation can be interpreted as the optimal value function in an optimal control problem. Therefore,
the Bellman optimality principle can be applied both at infinitesimal and finite time scales. While
prior works only apply the infinitesimal perspective to formulate their loss function, we propose that
combining the infinitesimal and finite time-scale perspectives can effectively avoid local overfitting
(Sec. 4.1). Second, we highlight that the travel-time function can be understood as the geodesic dis-
tance on a Riemannian manifold. As a result, we propose a novel network architecture compatible
with generalizable metric learning (Sec. 4.2).

4.1 THE OPTIMAL CONTROL PERSPECTIVE

We highlight that the solution of the Eikonal equation and that of an optimal control problem coin-
cide. Let us consider a fully actuated d-DOF robot with configuration q(t) and control signal u(t)
at time instant t. The robot is governed by the trivial dynamics, q̇ = u, such that ∥u(t)∥ = 1. From
qs to qg , we have by the classical optimal control theory that the optimal travel time satisfies:

T (qs, qg) =min
u(t)

∫ tg

ts

∥q̇(t)∥/S⋆(q(t))dt

s.t. q(ts) = qs, q(tg) = qg, ∥u(t)∥ = 1.

(4)

Note that the above formulation inherently avoids obstacles due to the definition of S⋆(q(t)) tending
to zero as the configuration tends to Qobs. In our Appendix. A, we show that the optimal solution
of Eq. 4 under optimal actions, u⋆

s = −∇qsT (qs, qg)/∥∇qsT (qs, qg)∥, also satisfies Eq. 1 by an
infinitesimal perturbation analysis. Such analysis also shows that the Eikonal equation captures the
Bellman optimality principle at an infinitesimal time scale.

4.1.1 TEMPORAL DIFFERENCE LOSS

q1
q1−d

Figure 1: The plots
depict the solution to
the Eikonal equation
|∇qT (q)| = 1, T (0) = 0
with sampled green points
as training data. In the top
plot, the desired solution
T (q) = |q| is shown.
In contrast, the bottom
plot demonstrates that the
green points also satisfy
|∇qT (q)| = 1, but without
proper constraints, the
solution deviates. The
TD loss LTD ensures cor-
rectness by enforcing, for
example, that for q1 > 0,
T (q1) − T (q1 − d) = d.
Therefore, LTD is more
capable of finding the
ground truth solution.

We observe that the value function trained using only LE (Eq. 3) strug-
gles to capture the broader, globally optimal structures of the value func-
tion, limiting its performance in more complex environments. This is
because relying solely on loss functions, such as LE , at an infinitesimal
time scale can cause overfitting problems as they only regulate the gra-
dient of the network, acting as a tangent matching term (Simard et al.,
2002). However, since our network only takes a sparse set of samples
to evaluate LE , the tangent function’s landscape between these samples
is uncontrolled and can significantly deviate from the ground truth. Fur-
thermore, such local, erroneous tangent landscapes will be reflected as a
global error in the value function’s landscapes.

To address the above-mentioned issues, we introduce the discrete Bell-
man loss, resembling the TD loss widely used in RL (Sutton, 2018) to
complement the Eikonal loss LE . TD learning approximates the value
function by considering the differences between successive state values
over a small but finite time step, effectively contrasting the value func-
tions at two nearby spots. Specifically, our TD loss LTD is derived using
a Taylor expansion of the value function along the optimal policy u⋆ with
a small time step ∆t:

LTD =
[
T (qs, qg)−∆t/S⋆(qg)− T (qs, qg + u⋆

g∆t)
]2

+

[T (qs, qg)−∆t/S⋆(qs)− T (qs + u⋆
s∆t, qg)]

2
,

(5)

where we define u⋆
g = −∇qgT (qs, qg)/∥∇qgT (qs, qg)∥ by its symmetry

with u⋆
s . Please refer to Appendix. A for a derivation of our TD loss
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function. The TD loss can be understood as an upwind scheme for the value function, ensuring
that the value of a given state equals the local cost plus the value of the next state after following
the optimal policy. Essentially, it ensures proper value propagation, maintaining consistency with
the optimal policy. In Fig. 1, we show that a suboptimal solution can have a zero LE on sampled
points but a large LTD. TD loss also serves as a finite difference approximation of the Eikonal loss
LE . Thus two loss terms, LE and LTD, are complementary. The TD loss captures the optimal sub-
structure over a finite region—providing a coarse-grained view of value propagation—the Eikonal
loss focuses on the optimal substructure at an infinitesimal scale, offering a fine-grained, continuous
perspective. By combining these two losses, we achieve both global and local consistency in the
value function’s landscapes, leading to more accurate results.

4.1.2 OBSTACLE-AWARE NORMAL ALIGNMENT

Our method of training value function is an instance of differential dynamic programming, where
the correct value function propagates from start to goal. Therefore, when the network makes a local
mistake in the value function, such propagation can exaggerate the consequence. We find such an
effect particularly detrimental at an early stage of training, especially when the network predicts a
non-zero velocity inside the obstacle Xobs. In this case, a shortcut is created through the obstacle,
and the downstream value functions are significantly underestimated. Fortunately, we know how
the policy should behave when the robot is near obstacles. In such cases, the desired velocity u⋆

should naturally align with the normal direction of the obstacle’s surface to avoid collisions. As the
robot moves farther away from obstacles, this alignment becomes less relevant, and the influence
of the normal direction diminishes. Based on such observation, we introduce the following normal
alignment loss:

LN =(1− S⋆(qs))∥S⋆(qs)∇qsT (qs, qg) +∇qsS
⋆(qs)/∥∇qsS

⋆(qs)∥∥2+
(1− S⋆(qg))∥S⋆(qg)∇qgT (qs, qg) +∇qgS

⋆(qg)/∥∇qgS
⋆(qg)∥∥2,

(6)

where ∇qsS
⋆(qs)/∥∇qsS

⋆(qs)∥ computes the normal direction in C-space, and the weight term
1 − S⋆(qs) ensures the loss only takes effect near the obstacles. Note that evaluating LN relies on
the differentiable assumption of the function dobs discussed in Sec. 3.2.

4.1.3 CAUSALITY PRESERVATION

The importance of causality has been noticed since the invention of the fast sweeping
method (Van Trier & Symes, 1991) for solving the Eikonal equation. Specifically, the TD loss
should propagate the value in the ascending direction of travel time but not the other way around.
Although TD loss LTD encourages this propagation, the random batch training in neural networks
does not maintain the required one-way information flow. To avoid this issue and preserve causal-
ity when using neural approximation, we use the following causality weight recently introduced by
(Wang et al., 2024b):

LC = exp(−λCT (qs, qg)) (7)
LC encourages the optimizer to prioritize learning smaller values associated with closer-to-start
states before tackling larger value functions associated with more distant states. By gradually learn-
ing in this manner, the model follows the desirable unilateral information-propagation direction,
which ensures smoother convergence. Put together, our final loss function is formulated as:

L = (λELE + λTDLTD + λNLN )LC , (8)

where λE , λTD, λN , λC are hyper-parameters that control the contribution of the respective losses.
Please refer to Appendix. C for details on the choice of these hyperparameters.

To summarize, we enhance the value function’s convergence in three ways. First, we enforce Bell-
man’s principle of optimality under infinitesimal and finite time scales using LE and LTD, re-
spectively. Further, our normal alignment loss LN mitigates policy misalignment near obstacles,
providing a strong prior at an early stage of training. Finally, the causality weight LC ensures
a natural direction of information propagation in learning, prioritizing smaller values first. These
contributions ensure the performance of learned value functions under complex environments.
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4.2 GENERALIZABLE METRIC LEARNING

In the previous section, we demonstrated that a properly designed loss function can train more
accurate value functions. In this section, we show that performance can be further enhanced by
employing a carefully designed network architecture that constrains the solution within a metric
space. Specifically, we introduce a network architecture compatible with metric learning and an
attention mechanism that allows our method to generalize to unseen environments.

4.2.1 METRIC LEARNING

We notice that the travel-time function T (qs, qg) can be understood as a geodesic distance on the Rie-
mannian manifold with a metric of I/S⋆(q). Under such a setting, the optimal curve q(t) represents
the geodesic curve on the manifold, with the corresponding geodesic distance given in Eq. 4. Clearly,
the metric T (qs, qg) should satisfy the three fundamental properties: (Non-negativity) For qs ̸= qg ,
T (qs, qg) > 0; and for qs = qg , T (qs, qg) = 0; (Symmetry) T (qs, qg) = T (qg, qs); (Triangle
inequality) For any intermediate point qm, T (qs, qg) ≤ T (qs, qm) + T (qm, qg). While previous
works (Ni & Qureshi, 2023a;b) have preserved the properties of non-negativity and symmetry, they
often break the triangle inequality by using the factorized form T (qs, qg) = ∥qs − qg∥/τ(qs, qg).
This allows for situations where an indirect path between two points may be computed as shorter
than the direct path. Instead, we employ metric learning using a network fθ(·) to map the start and
goal to a high-dimensional latent space and then define:

T (qs, qg) = D(fθ(qs), fθ(qg)), (9)

L1L2
A

B

Figure 2: The figure
shows the geodesics
of points A and B on
a circle under differ-
ent embeddings. With
L2, the distance col-
lapses into a line,
causing overlap and
ambiguity. In con-
trast, L1 transforms it
into a diamond, pre-
serving the geodesic
structure and resolv-
ing ambiguity.

with D(·, ·) being some metric function satisfying the three aforementioned
properties.

The definition of metric function D is crucial to the performance of our
method. Due to the invariance of metric properties under transformation fθ,
our travel-time function will also retain those desirable properties. Several
prior works used the Euclidean distance (Carroll & Arabie, 1998; Panozzo
et al., 2013). However, the geodesic distance in low-dimensional space cannot
always be embedded as an Euclidean distance in high-dimensional space after
nonlinear transformations according to (Pitis et al., 2020; Pang et al., 2023).
Euclidean distance corresponds to a single shortest path, while geodesic dis-
tance can represent multiple shortest paths in multi-connected regions. To
accommodate this property, we propose using the L1 distance, which permits
multiple latent paths to share the same distance. Empirically, we combine the
merit of L∞ and L1 distance. Specifically, we define the latent space to have
a dimension of a × b, i.e. fθ : Rd → Ra×b. Our proposed distance metric is
then computed as follows:

D(x, y) =

a∑
i=1

[
max
1≤j≤b

|xi,j − yi,j |
]
, (10)

where the maximum along one dimension computes the L∞ distance, while the summation along
the other dimension computes the L1 distance. We further motivate our distance metirc through
illustration in Fig. 2. The two half-circle paths between points A and B are better captured by our
distance metric than Euclidean distance as it transforms the circle into a 2D diamond to preserve
multipath solutions.

4.2.2 ATTENTION MECHANISM

Prior physics-informed neural motion planners (Ni & Qureshi, 2023a;b) can only represent the solu-
tion of the Eikonal equation for a given environment. In other words, they are unable to scale or gen-
eralize to multiple environments. In contrast, with our more accurate training techniques, we enable
a generalizable neural Eikonal equation solver by conditioning our feature encoder, f(·), on the en-
vironment shape Xobs. To this end, we assume that all the environments are represented using a point
cloud, also denoted as Xobs. As a result, we can use the state-of-the-art PointNext encoder (Qian
et al., 2022) to compute a global latent feature z = PointNext(Xobs). Next, given a configuration
point q, we first compute a fixed random positional encoding γ(q) = [sin(2πbT q), cos(2πbT q)],
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where b is a fixed random Gaussian matrix. Finally, we treat γ(q) as the query and z as the keys and
values and compute the conditioned feature using the attention mechanism (Vaswani, 2017; Rebain
et al., 2022). The attention mechanism enables the network to selectively focus on relevant parts
of the environment, dynamically adjusting its output based on the spatial context provided by the
point cloud. Let the attention mechanism be denoted as att(·) providing conditional features as
att(γ(q), z), we feed the resulting attention output into the PirateNets structure g(·) (Wang et al.,
2024a), which integrates a modified MLP (Wang et al., 2021) with the residual gate (Savarese &
Figueiredo, 2017; He et al., 2016) for enhanced performance and stability. Put together, we have the
conditional feature representation fθ(q,Xobs) = g(att(γ(q), z)). Finally, we compute the geodesic
distance conditioned on point cloud Xobs as T (qs, qg,Xobs) = D(fθ(qs,Xobs), fθ(qg,Xobs)). This
formulation allows our model to approximate Eikonal solutions for unseen environments. Moreover,
we train our model by minimizing the loss (Eq. 8), please refer to Appendix. C for more details.

4.3 SAMPLING-BASED MPC FOR PATH INFERENCE

After training our value function T (qs, qg), we use it as a cost-to-go function in a sampling-based
MPC (Williams et al., 2016; Bharadhwaj et al., 2020) framework for path planning. We begin by
randomly sampling actions u from a zero-mean normal distribution, which modifies the current
configuration to q(t + 1) = q(t) + u. The distribution’s mean is updated after each iteration to the
last selected action. Each sampled action leads to the next configuration and is assigned a value
from the cost-to-go function. A softmax function is then applied to favor actions with lower travel
times, allowing us to calculate a weighted average of the sampled actions. We use a receding horizon
approach to sample additional actions for a fixed horizon and generate multiple rollouts, selecting
the trajectory with the lowest cost-to-go. This process is repeated until we find a path between the
starting and goal configurations or until we hit a time limit. Unlike prior methods (Ni et al., 2021; Ni
& Qureshi, 2023b) that rely on gradient descent for path inference, our approach eliminates the need
for gradient computations, enhancing efficiency and allowing the system to escape local minima in
the value function. We should also highlight that our cost-to-go function can also be integrated with
other downstream planning approaches, such as T-RRT with completeness-guarantees (Jaillet et al.,
2010), providing a more robust framework for planning.

5 EXPERIMENTS AND ANALYSIS

This section presents our experiments and their analysis. We begin with an ablation study to demon-
strate the effectiveness of our loss function and metric representation. Next, we provide scalability
and generalization analysis to showcase our method’s ability to scale and perform well in complex,
high-dimensional, and unseen environments. To evaluate our method, we compare it against the
following baselines from prior planning methods.

• Traditional Methods: For the search-based approach, we employ the Fast Marching Method
(FMM) (Sethian, 1996), which solves the Eikonal equation but is limited to 3D environments
due to the curse of dimensionality. For sampling-based planner (SMP), we use RRTConnect
(RRTC) (Kuffner & LaValle, 2000) and LazyPRM (L-PRM) (Bohlin & Kavraki, 2000), followed
by path smoothing, to find paths in tasks ranging from 3 to 12 degrees of freedom (DOF). These
methods are probabilistically complete and we allow a maximum of 30 seconds for each algorithm
to find solutions.

• Supervised Learning: We use MPNet (Qureshi et al., 2019) for our 3D environments. For 7D
manipulation tasks, we use MPiNet (Fishman et al., 2023) instead of MPNet. Note that MPiNet is
specifically designed for robot manipulators and has been shown to perform better than MPNet in
these tasks. Both methods learn by imitating the data collected by the expert classical methods.

• Self-supervised Learning: We consider NTFields (NTF) (Ni et al., 2021) and P-NTFields (P-
NTF) (Ni & Qureshi, 2023a) for all presented tasks. Since their original neural architecture cannot
scale across multiple environments, we enhance them with our proposed attention-based environ-
ment encoding to evaluate their generalization and scalability. In a 2D maze, we also compare our
TD learning with several metric representations considered in the RL literature.

For performance metrics, we evaluate the success rate (SR), path length, and computational times.
SR shows the proportion of planning cases solved by a motion planner. Path length refers to the
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total configuration-space Euclidean distance between the waypoints on the path found by a planner.
Lastly, computational time represents wall clock time taken by a CPU-based execution of a planner.

5.1 ABLATION ANALYSIS

This section ablates our loss functions L and its components, including Eikonal loss LE , temporal
difference loss LTD, obstacle alignment loss LN , and causality-based prioritization LC . Addition-
ally, we assess our metric formulation and compare it with other metrics commonly used in RL
literature for value function learning. To conduct these evaluations, we set up complex 2D maze
environments. One of the maze setups is shown in Fig. 3, and more scenarios are available in Ap-
pendix. B. We chose FMM as an expert baseline for comparison. We present the error as the mean
absolute difference between the travel time of each method and the ground truth FMM, measured at
grid points. However, we should highlight that these results are better understood with the illustra-
tion of contours in Fig. 3. In the figure, the contour lines show the travel time from various points to
a specific point in the maze. By following the negative gradient of the travel time, a global path can
be efficiently determined. Additionally, the colors represent the speed field within the maze, with
yellow indicating free space and dark blue marking obstacle regions.

Ours FMM NTF P-NTF

−LE −LTD −LN −LC

IQE PQE MRN DN
Figure 3: First row: We compare our
method with FMM, NTF, and P-NTF. Mid-
dle row: We ablate our method by removing
−LE , −LTD , −LN , and −LC . Third row:
We replace our distance metric D with IQE,
PQE, MRN, and DN.

The first row in Fig. 3 presents our method, FMM, NT-
Fields, and P-NTFields. NTFields and P-NTFields show
significant distortion, failing to generate valid paths in
cluttered environments. Our method, with a small error
of 0.08 compared to 0.58 for NTFields and P-NTFields.
Besides their contour lines also are incorrect, resulting in
no path solution to some points in the environment.

The second row in Fig. 3 shows the results of our method
without LE , LTD, LN , and LC . The errors for these vari-
ations are 1.13, 0.21, 0.13, and 0.12, respectively, com-
pared to 0.08 for our full method. The contour features
show that results are incorrect with LE alone. Without
LTD, the value function develops incorrect contours at
some corners of the maze. Without LN or LC , our train-
ing starting from random initialization leads to incorrect
convergence to local minima. These results highlight that
LTD and LE are complementary to each other while LN

and LC facilitate in correct convergence of those loss
functions when starting from random initialization.

The third row in Fig. 3 presents the results of our method using alternative metric formulations
commonly used in RL for value function learning. Specifically, we replace our metric (Eq. 10)
with Interval Quasimetric Embeddings (IQE) (Wang & Isola, 2022a; Wang et al., 2023), Poisson
Quasimetric Embeddings (PQE) (Wang & Isola, 2022b), Metric Residual Networks (MRN) (Liu
et al., 2023), and Deep Norm (DN) (Pitis et al., 2020) while keeping rest of our method same as
presented for fairness. The errors for IQE, PQE, MRN, and DN are 0.32, 0.46, 0.19, and 0.29,
respectively, compared to 0.08 for our method. These results demonstrate that existing RL metric
formulations struggle to capture the optimal value function, while our method effectively captures
this through a combination of L∞ and L1 distance.

In conclusion, the contour lines produced by our method align well with those from the FMM, while
other methods display noticeable artifacts. The second row shows a greater emphasis on the Eikonal
loss LE , but it’s important to note that the loss function assesses contour line accuracy across the
entire C-space, whereas spurious local minima are localized issues. Consequently, improvements
in loss may not seem significant despite the inclusion of additional loss terms LTD, LN , and LC .
Nonetheless, these differences in contour lines matter, as even a single spurious local minimum
can trap the robot, preventing it from reaching the true goal configuration, as also indicated by red
circles in Fig. 3. Finally, our results also highlight that standard offline RL using only TD loss
is inadequate. The first plot in the second row shows that without Eikonal loss LE , the method
produces inaccurate results. Eikonal loss is essential and must work together with TD and other loss
functions to accurately infer value functions and represent geodesic distance.
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(a) Gibson (b) C3D

(c) Manipulator

Figure 4: Depiction of our (a) Gibson, (b) Cluttered 3D (C3D), and (c) 7-DOF Manipulator environments. We
also illustrate multiple trajectories planned by our method between different start and goal pairs. It can be seen
that our method finds smooth trajectories while avoiding collisions.

5.2 SCALABILITY TO COMPLEX AND HIGH-DIMENSIONAL ENVIRONMENTS

We demonstrate our method’s ability to handle complex indoor home-like environments and high-
dimensional tasks.

(a) Indoor Gibson
Method Time (s) Length SR(%)

Ours 0.056 ± 0.037 5.39 ± 3.25 95.1
Ours-G 0.074 ± 0.057 7.10 ± 5.03 92.6
NTF 0.074 ± 0.068 8.12 ± 9.45 68.1
P-NTF 0.057 ± 0.051 7.13 ± 7.43 81.2
FMM 0.74 ± 0.11 4.96 ± 2.83 86.4
RRTC 2.14 ± 1.92 4.92 ± 1.72 99.7
L-PRM 0.47 ± 0.31 5.02 ± 1.15 97.8

(b) Cluttered 3D (C3D)
Method Time (s) Length SR(%)

Ours 0.025 ± 0.011 0.69 ± 0.29 99.4
NTF 0.029 ± 0.012 0.64 ± 0.26 93.8
P-NTF 0.031 ± 0.025 0.66 ± 0.27 93.4
MPNet 0.22 ± 0.30 0.68 ± 0.31 97.0
FMM 0.76 ± 0.09 0.65 ± 0.25 100
RRTC 0.16 ± 0.13 0.65 ± 0.26 100
L-PRM 0.13 ± 0.11 0.68 ± 0.31 100

(c) 7-DOF Manipulator
Method Time (s) Length SR(%)

Ours 0.074 ± 0.029 1.95 ± 0.82 87.0
NTF 0.063 ± 0.017 1.63 ± 0.64 74.3
P-NTF 0.061 ± 0.017 1.68 ± 0.68 73.3
MPiNet 0.57 ± 0.21 2.57 ± 1.16 91.0
RRTC 0.42 ± 0.30 2.04 ± 1.06 97.7
L-PRM 0.25 ± 0.51 2.01 ± 1.04 97.7

Table 1: Performance comparison on Gib-
son, C3D, and 7-DOF manipulator datasets.

Indoor 3D home-like environments: We selected ten
environments from the Gibson dataset (Li et al., 2021),
with room counts ranging from 7 to 16 and dimensions
between 90 and 430 square meters. An example Gibson
environment is depicted in Fig. 4, and more examples
are available in the Appendix. B. In each environment,
we evaluated 100 unseen start and goal pairs. Table 1 (a)
presents the results for all methods in these environments.

Our method consistently achieves a high SR and the low-
est computational planning times. While classical meth-
ods also exhibit high SR, they are significantly slower in
terms of computational time. Among the learning-based
methods, NTFields and P-NTFields have lower compu-
tational times but poor SR. Since our method uses MPC
in contrast to travel time gradients for path inference, we
have included a variant, denoted as Our-G, that incorpo-
rates gradients instead of MPC for path inference, simi-
lar to NTFields and P-NTFields. The results show that
MPC improves both planning times and SR. Even with
gradient-based path inference, our method outperforms
NTFields and P-NTFields, indicating more accurate con-
vergence to the Eikonal solution.

In summary, our method scales well to complex 3D
home-like environments, delivering high success rates
and extremely low planning times, validating its ability to solve motion planning more accurately
than previous self-supervised learning methods.

12-DOF dual-arm in real-world confined cabinet: In this experiment, we demonstrate the ability
of our method to scale to a high-dimensional 12-DOF C-space and exhibit sim2real generalization.
Our real-world environment is depicted in Fig. 5. We randomly sampled 100 start and goal pairs in
this environment for the testing. In this task, our method achieves a high SR of 91% with signifi-
cantly low planning times of about 0.09 seconds on average. Fig. 5 depicts a demo trajectory from
our method. We also include another demo trajectory in the Appendix. B. Note that these demon-
strations are to exhibit the sim2real generalization of our method in high-dimensional tasks. We
should also highlight that the prior self-supervised methods, i.e., NTFields and P-NTFields failed to
converge in these high-DOF tasks with confined narrow passages.

5.3 GENERALIZATION TO NOVEL ENVIRONMENTS

This section presents the ability of our method to generalize to multiple seen and unseen environ-
ments in the following scenarios. We present the commutative results of all methods on both seen
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Start Intermediate Goal

Figure 5: Demontration of a path planned by our method to navigate real-world cabinet environment using a
12-DOF dual-arm robot. This particular trajectory was planned in 0.11 seconds.

and unseen environments, while Appendix. B details performances on seen and unseen tasks sepa-
rately.

3D Cluttered Environments: These environments are taken from the C3D dataset (Qureshi et al.,
2019; 2020) and consist of 10 cubes of varying sizes randomly placed in a 3D space. An example
scenario is shown in Fig. 4. For these tasks, we selected 100 seen and 100 unseen environments.
The models were trained on the seen environments. For testing, we chose 500 random start and goal
pairs across both seen and unseen environments. Table 1 (b) summarizes the results of all methods.

In this setting, our method achieves an SR of 99.4%, with an extremely low average planning time
of 0.025 seconds. NTF and P-NTF show relatively lower SR with similar inference time. MPNet
shows a similar SR but is about 10 times slower than our method and requires expert data. Classical
methods, though reliable with a 100% SR, are at least 5 times slower than our approach. These
results demonstrate that our method exhibits strong generalization to unseen tasks while maintaining
our computational performance and a high SR.

7-DOF Robot Arm Motion among Obstacle Clutters: These tasks, adopted from the MPiNet
dataset (Fishman et al., 2023), require a 7-DOF robot arm to navigate among multiple obstacle
blocks on a tabletop. An example scene is depicted in Fig. 4. We choose 150 seen and 150 unseen
environments and train neural models on the seen environment. For testing, we select 300 start and
goal pairs in both seen and unseen environments. The performance is summarized in Table 1 (c).
It can be viewed that our method persistently retains low computational times compared to other
methods. Our SR is also considerably high, i.e., 87%, and closer to MPiNet’s 91%. NTF and P-
NTF show relatively lower SR with similar inference time as ours. MPiNet learned from expert
data whereas our method, despite being self-supervised, exhibits high performance. The classical
methods, similar to their prior experiments, demonstrate high SR but slower planning times.

6 CONCLUSIONS AND FUTURE WORKS

This paper introduces a new, scalable, self-supervised neural approach for solving the Eikonal equa-
tion in robot motion planning. In this paper, we highlight that the solution to the Eikonal equation
can be expressed as the value function of an optimal control problem, as well as the geodesic dis-
tance of a Riemannian manifold. These perspectives have led to our novel temporal difference
metric learning approach for solving the Eikonal equation more accurately. By combining this with
sampling-based MPC for path inference, our method has achieved a higher success rate and lower
computational cost for path inference than prior approaches. Additionally, our attention mechanism
enables us to solve the Eikonal equation for unseen environments, which was previously not possible
with prior self-supervised learning methods in robot motion planning.

In our future work, we aim to further enhance the generalization ability of our method. Currently,
in our approach, we still observe some failure cases when generalizing to unseen environments.
Specifically, our method struggles to generalize effectively to multiple, unseen environments in
complex Gibson datasets. We plan to mitigate this issue by experimenting with more expressive
neural encoders for the environment, such as the point transformer (Zhao et al., 2021). Lastly, we
also aim to extend our approach to tackle motion planning tasks under partial observability and
kinodynamic constraints.
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APPENDIX

This appendix provides the derivation of our TD loss, additional visualization of results, and imple-
mentation details of our method, along with the training procedure.

A TD LOSS DERIVATION

This section provides the derivations connecting the optimal control problem with the Eikonal equa-
tion and the TD loss. To solve the following optimal control problem:

T (qs, qg) = min
q(t)

∫ tg

ts

1

S⋆(q(t))
∥q̇(t)∥dt, q(ts) = qs, q(tg) = qg, ∥u∥ = 1, (11)

We begin with the Taylor expansion of optimal value function T (qs, qg) along the optimal policy
direction u⋆

s with a small step ∆t:

T (qs + u⋆
s∆t, qg) = T (qs, qg) + ⟨∇qsT (qs, qg), u

⋆
s⟩∆t+ o(∆t), (12)

where ⟨·, ·⟩ denotes the inner product. Furthermore, according to Bellman’s principle of optimality,
with the optimal policy, the updated value function remains optimal, i.e.:

T (qs + u⋆
s∆t, qg) +

∫ ts+∆t

ts

1

S⋆(q(t))
dt = T (qs, qg) + o(∆t). (13)

We then compare the two equations above and tending ∆t → 0 to yield:

1

S⋆(qs)
+ ⟨∇qsT (qs, qg), u

⋆
s⟩ = 0. (14)
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Note that the optimal policy u⋆
s is a unit vector aligned with the negative gradient −∇qsT (qs, qg).

Thus, we find that the optimal policy is u⋆
s = −∇qsT (qs, qg)/∥∇qsT (qs, qg)∥. Plugging u⋆

s into
Eq. 14 and we arrive at:

1

S⋆(qs)
− ∥∇qsT (qs, qg)∥ = 0, (15)

which leads to our Eikonal loss LE at infinitesimal time scale. Additionally, we derive the TD loss
as follows:

T (qs + u⋆
s∆t, qg) = T (qs, qg) + ⟨∇qsT (qs, qg), u

⋆
s⟩∆t+ o(∆t)

= T (qs, qg)− ∥∇qsT (qs, qg)∥∆t+ o(∆t)

= T (qs, qg)−∆t/S⋆(qs) + o(∆t),

(16)

and our TD loss is derived by dropping the o(∆t) and taking L2 norm.

B ADDITIONAL RESULTS

Ours FMM NTF P-NTF

−LE −LTD −LN −LC

IQE PQE MRN DN

Ours FMM NTF P-NTF

−LE −LTD −LN −LC

IQE PQE MRN DN

Figure 6: Additonal two mazes results. First row: We compare our method with FMM, NTF, and P-NTF.
Middle row: We ablate our method by removing −LE , −LTD , −LN , and −LC . Third row: We replace our
distance metric D with IQE, PQE, MRN, and DN.

In Fig. 6, we present results for two additional maze environments. For the left maze, our method
maintains consistent contour lines without significant artifacts, while NTF and P-NTF fail to re-
cover correct results. All four ablation models exhibit incorrect contour line directions, and other
metric formulations also display noticeable artifacts. In the right maze, while our method success-
fully recovers most of the value function with fewer artifacts compared to the ablations, it struggles
to maintain accuracy in the bottom-right corner. Addressing this limitation could be an interesting
avenue for future exploration. Finally, Table 2 shows the error of each method to the ground truth so-
lution in the maze scenarios shown in Figs. 3 and 6. The quantitative results confirm that for the left
maze, our method achieves lower errors compared to others, as it avoids explicit artifacts present in
other approaches. For the right maze, where our method also exhibits some artifacts, the difference
is less pronounced but still demonstrates better performance than ablations and comparable results
to competing metrics.

In Table 3, we present generalization statistics for both seen and unseen environments. The results
indicate that the SR for unseen environments is a little lower compared to seen environments. Ad-
ditionally, the superiority of our method over existing self-supervised learning approaches is less
pronounced than in scalability tasks, primarily due to the increased complexity of the scalability
tasks. The drop in SR for self-supervised learning methods further highlights that while gener-
alization is feasible for simpler problems, it becomes significantly more challenging for complex
planning problems. As noted earlier, achieving robust generalization to intricate environments, such
as those in the Gibson dataset, remains an open research question.

Fig. 7 and 8 provide additional visualizations of paths inferred by our method in Gibson and 12-DOF
dual-arm real-world settings.

15



Published as a conference paper at ICLR 2025

Error of Maze
Maze Ours NTF P-NTF −LE −LTD −LN −LC IQE PQE MRN DN

Fig. 3 0.08 0.58 0.58 1.13 0.21 0.13 0.12 0.32 0.46 0.19 0.29
Fig. 6 (Left) 0.31 1.53 1.67 7.28 0.49 0.60 0.51 0.79 0.72 0.89 0.56
Fig. 6 (Right) 0.11 0.56 0.86 42.06 0.13 0.15 0.21 0.21 0.20 0.11 0.13

Table 2: The error of all methods, including ours, on maze environments. The error denotes the mean absolute
difference between the travel time of each method and the ground truth FMM, measured at grid points.

Figure 7: Visualization of Gibson environments, including multiple trajectories planned by our method be-
tween various start and goal pairs. It can be observed that our method generates smooth, collision-free trajec-
tories, effectively navigating through the environments while avoiding obstacles.

Seen

(b) Cluttered 3D (C3D)
Method Time (s) Length SR(%)

Ours 0.026 ± 0.011 0.71 ± 0.28 99.6
NTF 0.029 ± 0.010 0.68 ± 0.26 94.7
P-NTF 0.033 ± 0.032 0.69 ± 0.27 93.9
MPNet 0.21 ± 0.15 0.70 ± 0.31 96.3
FMM 0.70 ± 0.09 0.68 ± 0.25 100
RRTC 0.17 ± 0.15 0.68 ± 0.26 100
L-PRM 0.14 ± 0.12 0.70 ± 0.29 100

(c) 7-DOF Manipulator
Method Time (s) Length SR(%)

Ours 0.074 ± 0.029 1.87 ± 0.80 88.2
NTF 0.067 ± 0.018 1.63 ± 0.60 74.6
P-NTF 0.063 ± 0.016 1.62 ± 0.55 73.3
MPiNet 0.54 ± 0.30 2.59 ± 1.09 92.7
RRTC 0.42 ± 0.32 2.02 ± 1.02 98.0
L-PRM 0.23 ± 0.46 1.97 ± 0.93 98.0

Unseen

(b) Cluttered 3D (C3D)
Method Time (s) Length SR(%)

Ours 0.025 ± 0.011 0.67 ± 0.30 99.2
NTF 0.027 ± 0.011 0.62 ± 0.27 92.1
P-NTF 0.029 ± 0.013 0.64 ± 0.27 92.5
MPNet 0.20 ± 0.17 0.65 ± 0.31 97.6
FMM 0.73 ± 0.08 0.63 ± 0.26 100
RRTC 0.15 ± 0.12 0.62 ± 0.26 100
L-PRM 0.13 ± 0.11 0.65 ± 0.30 100

(c) 7-DOF Manipulator
Method Time (s) Length SR(%)

Ours 0.075 ± 0.030 1.95 ± 0.85 84.0
NTF 0.068 ± 0.020 1.62 ± 0.69 74.0
P-NTF 0.066 ± 0.021 1.73 ± 0.78 73.3
MPiNet 0.53 ± 0.19 2.55 ± 1.22 90.0
RRTC 0.41 ± 0.28 2.02 ± 1.07 97.3
L-PRM 0.28 ± 0.57 2.08 ± 1.20 97.3

Table 3: Performance comparison on C3D, and 7-DOF manipulator datasets for seen and unseen environments
for our, NTF, and P-NTF methods, while other learning-based methods are not configured for this setting. It
can be seen that our method exhibits high SR compared with existing self-supervised learning methods and low
planning times.

C IMPLEMENTATIONS DETAILS

This section summarizes our implementation details, including the training procedure and hyper-
parameters, as well as details on the data generation and training times of our neural models. In
addition to the following details, we aim to publicly release our code on GitHub with the final
version of our paper, with which we will also provide our model architectures and facilitate the
reproducibility of our method. Furthermore, all experiments and evaluations were conducted on a
system with a 3.50GHz × 8 Intel Core i9 processor, 32 GB RAM, and GeForce RTX 3090 GPU.
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Start Intermediate Goal

Figure 8: Another path planned by our method to navigate real-world cabinet environment using a 12-DOF
dual-arm robot. This trajectory is inferred in 0.1 seconds.

C.1 TRAINING DETAILS

This section summarizes our training procedure. Our training data comprises randomly sampled
robot configurations, their ground truth speed values S⋆, and environment point cloud Xobs. The
ground truth speed values are computed based on the configurations’ distance to obstacles using
Equation 2. Thus, our method, similar to NTFields, requires only robot configurations and their
distance to obstacles, which can be obtained very quickly compared to robot motion trajectories
required by supervised learning methods. Next, we randomly from the start, qs, and goal, qg , pairs
from the sampled configurations in a given environment. These pair-conditioned latent encodings
fθ(qs,Xobs) and fθ(qg,Xobs) are then obtained followed by the computation of their distance metric
D(fθ(qs,Xobs), fθ(qg,Xobs)) (Equation 10). This distance represents the travel time T (qs, qg) and
its gradient with respect to qs and qg parameterizes the Eikonal equation (Equation 1) to predict
the speed S(qs) and S(qg), respectively. The predicted travel-time T (qs, qg), its gradients, and
corresponding predicted speeds S(qs) and S(qg), along with the ground truth speeds S⋆(qs) and
S⋆(qg), are utilized to compute the loss L (Eq. 8). Finally, we minimize that loss over the sampled
data set to train the parameters θ of our attention-based latent encoders.

C.2 HYPERPARAMETERS

In 3D environment, we choose λE = 10−2, λTD = 10−3, λN = 10−3, λC = 0.5 as the hyper-
parameters, and we choose TD step ∆t = 0.02. However, for manipulator environments, the free
space is much smaller than 3D space, and large TD step and normal direction can lead to the wrong
place, so we reduce to ∆t = 0.005, and λN = 2 × 10−4. We select hyperparameters with the
following considerations:

• Eikonal Loss (LE): Since LE involves no approximation, it is expected to be the primary loss
term and is assigned the highest weight.

• Temporal Difference Loss (LTD): LTD utilizes a Taylor expansion around the start and goal
points. Its weight is lower than that of LE to emphasize its complementary role. The choice of
∆t is crucial; if the value is too large, it may lead to incorrect collision detections in the next
state, while a value that is too small diminishes the influence of LTD. We determine ∆t based on
the level of clutter in the environment, particularly in narrow passages, to ensure effective value
propagation where accurate state transitions are essential. In more cluttered environments, the
value of ∆t needs to be smaller compared to less cluttered ones.

• Obstacle Alignment Loss (LN ): LN serves as a guidance loss, encouraging the planning di-
rection to move away from obstacles. However, the true optimal direction should consider both
avoiding obstacles and moving toward the goal, which LN does not fully capture. As such, LN is
assigned a small weight. In narrow-passage environments, where pure obstacle avoidance might
conflict with the correct planning direction, a lower weight ensures that LN does not dominate the
loss function.

• Causality Loss (LC): For LC , if λC is too small, its impact on the overall loss is minimal.
Conversely, if λC is too large, it can cause the value function T (qs, qg) to grow excessively. We
select λC via cross-validation to ensure stable training.
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C.3 DATA GENERATION AND TRAINING TIMES

Table 4 provides our data generation and training time. It can be seen that the data generation times
for our self-supervised method range from a few seconds to minutes. It should be noted that the data
generation times for supervised learning methods such as MPNet can take several hours compared
to our few minutes.

Env Data Generation Time Training Time

Maze 2.9s 500 epochs 94s

Gibson 3s 5000 epochs 9min

Dual UR5 200s 9500 epochs 32min

Cluttered 3D 100×2s 2000 epochs 40min

Franka 150×20s 2000 epochs 46min

Table 4: Data generation and training time
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