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How much can language models memorize?

Abstract
Due to the inherent structure of language, prior
studies of language model memorization have
struggled to disentangle memorization from gen-
eralization. We formally separate memorization
into two components: unintended memorization,
the information a model contains about a spe-
cific dataset, and generalization, the information
a model contains about the true data-generation
process. Our framework allows us to cleanly sepa-
rate memorization and generalization in a variety
of settings. When we completely eliminate gen-
eralization, we can compute the exact capacity
of language models; our measurements estimate
that GPT-style models have a capacity of approxi-
mately 3.6 bits per parameter. We train language
models on datasets of increasing size and observe
that models memorize via unintended memoriza-
tion until their capacity fills, at which point mem-
orization decreases as models begin to generalize.
We train hundreds of transformer language mod-
els ranging from 500K to 1.5B parameters and
produce a series of scaling laws relating model
capacity and data size to membership inference.

1. Introduction
For the past several years, modern language models have
been trained on increasingly large amounts of data, while
parameter counts stay stagnant in the billions. For example,
one recent state-of-the-art model (Dubey & et al, 2024) has
8 billion parameters (around 32GB on disk) but is trained
on 15 trillion tokens (around 7TB on disk).

A long line of work (Carlini et al., 2019; Mireshghallah et al.,
2022; Nasr et al., 2023; Zhang et al., 2023; Carlini et al.,
2023b; Schwarzschild et al., 2024) questions whether such
pretrained language models memorize their training data in
a meaningful way. Most research approaches this problem
either through the lens of extraction, aiming to recover full
training data points from model weights, or membership
inference, simply classifying whether a training point was
present in the training data of a given model.

Studies of language model extraction argue that a data point
is memorized if we can induce the model to generate it

(Carlini et al., 2023b; Nasr et al., 2023; Schwarzschild et al.,
2024). We argue that because language models can be
coerced to output almost any string (Geiping et al., 2024)
simple willingness to output something is weak proof of
memorization. Additionally, some strings are outputted
due simply to good generalization: for example, a good
language model prompted to add two numbers can output
the correct answer without having seen the equation before.

If extraction is unreliable, what is the right way to define
memorization? We note that “memorization” of a datapoint
is tied to its inherent compression rate in bits (Carlini et al.,
2019) and the broader question of how to distinguish mem-
orization from generalization (Prashanth et al., 2024). We
separate memorization into two components: unintended
memorization, the information a model contains about a spe-
cific dataset, and generalization, the information a model
contains about the true data-generation process.

To understand these new quantities, we measure unintended
memorization and generalization by training language mod-
els of varying capacity on datasets of different sizes. We first
eliminate the question of generalization entirely by training
on a dataset of random uniformly-sampled bitstrings. In this
setting, we can exactly measure the amount of information
contained about the data inside the model. This gives us a
principled way to measure language model capacity when
trained on uniform datasets of exact known information
content. We find that GPT-style transformers can store be-
tween 3.5 and 4 bits of information in each model parameter,
depending on model architecture and precision.

We then repeat our experiments with real text, where gen-
eralization is possible and even beneficial for learning. On
real text, language models memorize up to a certain capac-
ity, at which point they substitute unintended memorization
for generalization, and begin to learn general, reusable pat-
terns as opposed to sample-level specifics. Our framework
shows that double descent phenomenon begins to occur at
this point, when the data size exceeds the model capacity in
bits.

Finally, we use our results to predict a scaling law for mem-
bership inference performance based on model capacity and
dataset size. We show that membership inference follows a
clean relationship based on model capacity and dataset size:
bigger models can memorize more samples, and making
datasets bigger makes membership inference harder. Our
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Figure 1. Unintended memorization of uniform random syn-
thetic data (Section 3). Memorization plateaus at the capacity
of different-sized models from the GPT-family. Models stop
memorizing when trained on data exceeding their capacity.
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Figure 2. Unintended memorization of text data across model
and dataset sizes (Section 4). All quantities are calculated with
respect to a large oracle model (1B params). Horizontal lines
indicate the expected capacity of each model according to our α.

scaling laws extrapolate to larger models, and predict most
modern language models are trained on too much data to do
reliable membership inference on the average data point.

2. Related Work
Language models and compression. Shannon’s source
coding theorem (Shannon, 1948) first formalized the dual-
ity between prediction and compression. The connection
between language modeling and compression was studied
as far back as Shannon (1950), which observed that more
accurate models of English can compress text in fewer bits.
Other works note the connection between Kolmogorov com-
plexity (Kolmogorov, 1965) and Shannon information in
detail (Grunwald & Vitanyi, 2004). Delétang et al. (2024) in-
vestigate using modern transformer-based language models
as compressors. We use compression as a tool to measure
memorization in models.

Language model capacity. (Arpit et al., 2017) formalize
the idea of effective capacity of a model and its training pro-
cedure; they also observe that both representation capacity
and training time have a strong impact on empirical model
capacity. Several other works measure language model ca-
pacity in the number of facts or random labels that can be
memorized by a network such as an RNN (Collins et al.,
2017; Boo et al., 2019) or transformer (Roberts et al., 2020;
Heinzerling & Inui, 2021; Allen-Zhu & Li, 2024), some-
times under quantization. A few research efforts (Yun et al.,
2019; Curth et al., 2023; Mahdavi et al., 2024; Kajitsuka
& Sato, 2024) have developed theoretical estimates for the
capacity of different model architectures, although none
have yet scaled to multi-layer modern transformers. We are

the first to measure a clear upper-bound in model capacity.

Alternative definitions of memorization. Unintended
memorization is deeply related to the many other definitions
of memorization proposed in the literature. We provide a
detailed comparison in Section B.

2.1. Memorization, intended and unintended

When a model θ = L(x) is trained using a training algo-
rithm L and a dataset x ∼ X , some information is trans-
ferred from the sample x to the model θ. A key question
in the memorization literature is determining how much
of this stored information is intended versus unintended.
In this work, we aim to provide a rigorous definition of
memorization that satisfies certain properties:

1. Separation from generalization. Our notion of un-
intended memorization must be distinct from in-
tended memorization, which we refer to as gener-
alization. For example, consider a language model
trained on the sample: Q: What is 2100? A:
1267650600228229401496703205376. When assess-
ing how much of this training sample is memorized,
we must account for the fact that performing simple
math operations is expected from a language model.

2. Sample-level memorization. We need to define mem-
orization for realizations of random variables, not the
random variables themselves. Specifically, we want
to determine how much unintended memorization of a
sample x occurs in a model θ.
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Figure 3. Bits memorized across training. This particular model
is a GPT-style transformer with 6.86M parameters and a capacity
of 23.9 MB.
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Figure 4. Capacity in bits-per-parameter for models trained on
synthetic data. We estimate α = 3.64 bits-per-parameter for
GPT models trained in half precision.

3. Independence from training algorithm. Our definition
should be independent of the training algorithm L and
only a function of the final model θ and the sample x.
This is crucial for language models, where we often
only have access to the final model and target sample.

Previous works have attempted to define memorization for
machine learning models. We aim to provide precise defini-
tions of memorization that meet our criteria, and offer ways
to measure it. See Appendix B for a broader discussion on
definitions of memorization.

2.2. A statistical view of memorization

Notation. In this section, we use capital letters (e.g. X , Θ)
to refer to random variables and lowercase letters to refer to
instances of a random variable (e.g. x ∼ X and θ ∼ Θ).

Information theory has developed well understood notions
of information for random variables. For a random variable
X , we often use H(X), the entropy of X , to define the
amount of information present in X . Moreover, for two
distinct random variables X,Y , we can define X | Y to be
the uncertainty left in X after fixing Y . Having defined this
quantity, we can now measure mutual information between
X and Y by subtracting the leftover information from the
total information: I(X,Y ) = H(X)−H(X | Y ).

Now assume we have a machine learning pipeline. We have
a prior Θ on the underlying model that captures our dataset
distribution X . And we have a learning algorithm L that
maps samples from X to a trained model Θ̂. To understand
how much information about X is stored in Θ̂, we can use

the notion of mutual information:

mem(X, Θ̂) = I(X, Θ̂) = H(X)−H(X | Θ̂).

Note that this captures all the information about X that
is stored in Θ̂. As we discussed, we need our notion of
memorization to account for generalization as well. So
when measuring unintended memorization, we are only
interested in the information that is present in X | Θ, which
is the uncertainty left in X after fixing Θ. Hence, we can
define unintended memorization as

memU (X, Θ̂,Θ) = I([X | Θ], Θ̂)

= H(X | Θ)−H(X | (Θ, Θ̂)).

and then the generalization (or intended memorization)
must be

memI(Θ̂, X,Θ) = mem(X,Θ)− memU (X, Θ̂,Θ)

= I(X, Θ̂)− I(X | Θ, Θ̂)

Now that we have defined our notions of intended and un-
intended memorization we turn our attention to practically
measuring them. Let us first state a proposition that enables
measurement of unintended memorization:
Proposition 1 (Super-additivity of Unintended Memoriza-
tion). Assume X = (X1, . . . , Xn) is a dataset of n i.i.d.
samples. We have∑

i∈[n]

memU (Xi, Θ̂,Θ) ≤ memU (X, Θ̂,Θ) ≤ H(Θ̂).

This proposition shows that to measure a lower bound on the
unintended memorization on the dataset level, we can sum

3
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per-sample memorization. On the other hand, the entropy of
the information content of the trained model itself servers as
an upper bound on the unintended memorization. Another
implication of this implies that unintended memorization
should scale with the dataset size but cannot exceed the total
capacity of the model.

2.3. Measuring unintended memorization with
Kolmogorov Complexity

Our definitions of memorization and generalization so far
are defined using an “entropy-based” notion of information.
This means our definitions can only be used for random
variables. This brings big challenges in measuring memo-
rization. All our variables in the definition of memorization
are singletons. We have a single underlying model θ, we
have a single dataset x = (x1, . . . , xn) and we have a single
trained model θ̂1. It is impossible to measure the entropy
(let alone conditional entropy) of the underlying variables
using a single sample.

To this end, we switch to another notion of information
based on compression, then later we show how this notion
closely approximates the notion of memorization defined
above. Kolmogorov complexity defines the information
content of a string x, denoted as HK(x), to be the length of
shortest representation of x in a given computational model.
Similarly, we can define the leftover information x | θ, to be
the shortest representation of x, when we have θ available as
a reference. And the information content of x | θ, denoted
by HK(x | θ), is the length of such description. Then, we
can define mutual information in a similar fashion:

Definition 2 (Kolmogorov complexity). Let f be an arbi-
trary computational model that takes a set of inputs and
returns an output (e.g. universal Turing machine). The short-
est description of x with respect to computational model
f is defined as HK(x) = minf(p)=x |p|. Also, the Kol-
mogorov complexity of x relative to another string θ is
defined as HK(x | θ) = minf(p,θ)=x |p|. And we define
the Kolmogorov mutual information between x and θ by
IK(x, θ) = HK(x) − HK(x | θ). We assume inputs are
bitstrings and |p| is the bit length of the input.

We are now ready to define Kolmogorov memorization.

Definition 3 (Kolmogorov memorization). Let θ be a refer-
ence model that approximates the true distribution of data,
and θ̂ be a model trained on a dataset x = (x1, . . . , xn). For
each xi we define the memorization of xi in θ̂ as

memK(θ̂, x) = IK(θ̂, x).

We also define intended and unintended variants of memo-
1Note the switch to lowercase variables because we are now

working with instances, not random variables.

rization:

memK
U (x, θ, θ̂) = HK(x | θ)−HK(x | (θ, θ̂)).

and

memK
I (x, θ, θ̂) = memK(x, θ̂)− memK

U (x, θ, θ̂).

There are known connections between Kolmogorov com-
plexity and Shannon Entropy (Grunwald & Vitanyi, 2004).
These results point at the conceptual connection between
the two notions and imply that Ex∼X [HK(x)] ≈ H(X).
Interestingly, this implies that our notion of Kolmogorov
memorization closely approximates Shannon memorization.
Proposition 4. Let X = (X1, . . . , Xn) be an i.i.d, dataset
distribution parametrized by ground-truth model θ. Let L be
a training algorithm mapping X to Θ̂. Assume H(Θ̂) = ℓ
and H(Xi) = ℓ′ 2. Then we have

∣∣∣ E
x∼X

θ̂∼L(x)

[
memK

U (xi, θ̂, θ)]
]
− memU (Xi, Θ̂, θ)

∣∣∣ ≤ ϵ.

for some constant ϵ independent of θ, ℓ, ℓ′ and n.

2.4. Estimating Kolmogorov with compression

Fixing our notion of Kolmogorov memorization, we now
describe how we can estimate HK in different setups. Note
that exact calculation of Kolmogorov complexity is known
to be uncomputable (the decision version of is undecidable).
However, we can still approximate it using the best avail-
able compression schemes. Below, we summarize how we
approximate each term in our definition.

• HK(x): This is the shortest description of x when we
have no knowledge about the underlying representation
of x. For this, we can use best compression algorithms
(e.g. gzip) to calculate the information content in x.

• HK(x | θ) : This quantifies the shortest description of
x when we know that x is sampled from an underlying
model θ. We know that for such scenarios, arithmetic
coding is the optimal compression algorithm in expec-
tation (Pasco, 1977). Hence, we use arithmetic coding
to calculate the code length of x using the model θ.
Note that we do not know the real model θ, but we can
still approximate it using the state-of-the-art models
that capture the underlying distribution. We call these
models our reference models.

• HK(x | θ̂) : Here, θ̂ is a model that is trained and
we call it the target model. The target model does not

2The trained model and each data sample can be presented
using ℓ and ℓ′ bits respectively.
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necessarily capture the true data distribution. Depend-
ing on the training algorithm, we need to optimize a
coding scheme that can losslessly compress x using θ̂.

• HK(x, | θ̂, θ) : In this case, the compression algorithm
has access to both target and reference models. In this
case, we also need to design a compression algorithm
that benefits from the knowledge of θ and θ̂.

3. Model Capacity for Memorization
Unintended memorization provides us a principled way of
measuring the precise number of bits a model θ knows
about a datapoint x. If we add up the information for each
datapoint in a dataset, we can measure the total amount
of bits a model knows about the dataset. And in cases
where generalization is not possible because each datapoint
is completely independent, we can estimate the capacity
of a given model θ by summing per-datapoint unintended
memorization.

3.1. Definition of capacity

We first formalize this notion of memorization capacity
for a particular language model θ. Capacity is the total
amount of memorization that can be stored in θ across all
its parameters.
Definition 5 (Capacity). Let X be a distribution and
L : X → Θ a learning algorithm. We define the capac-
ity of the learning algorithm L to be

Capacity(L) = max
X

mem
(
X,L(X)

)
When the model capacity is reached, mem(X,L(X)) will
no longer increase with dataset size. In practice, we can
compute capacity by training to saturation on varying sizes
of X and computing the maximum memorization.

3.2. Measuring model capacity with synthetic sequences

In this section we measure the capacity of Transformer
language models. Our goal is to instantiate multiple datasets
and distributions and measure the memorization of them
when training a single model θ. Then, we take the maximum
over all datasets to approximate of the model’s capacity. For
instantiating our datasets, each token is uniformly sampled
from a predefined set of tokens independent of the previous
tokens.

To approximate Hk(x | θ, θ̂), we can simply use arithmetic
coding using the trained model to calculate the shortest
description of the dataset conditioning on θ̂. Subtracting
the two, we can approximate the unintended memorization
memU (X,L(X)). Since the process for sampling the data
is completely random, there is no generalizationto be stored
within θ̂ (memU (X,L(X)) ≈ mem(X,L(X))).
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Figure 5. We show that double descent occurs exactly when the
dataset size begins to exceed the model’s capacity, when unin-
tended memorization is no longer beneficial for lowering the loss.

Observe that when we sample synthetic sequences from
a uniform distribution, we can compute their Shannon in-
formation exactly. Given a dataset size N , we construct
a dataset of N sequences, each of S tokens. Given a vo-
cabulary size V , we can calculate the total entropy of a
dataset xi with such parameters by H(xi) = NS log2 V .
Then we calculate the compressed form xi using arithmetic
coding with θ̂i to calculate the code length and use that
as an approximation of HK(xi | θ̂j). Then we calculate
the mem(xi, θ̂i) = H(xi) − HK(xi | θ̂j) and compute a
model’s capacity as the maximum amount of memorization
over all datasets.

Experimental details. In accordance with Kaplan et al.
(2020), we train models with the GPT-2 architecture (Rad-
ford et al., 2019) initialized from scratch. Our models have
between 1 and 8 layers, hidden dimensions from 32 to 512,
and from 100K to 20M parameters. We train models for
106 steps with a batch size of 2048. We use the Adam op-
timizer. All models are trained on a single A100 GPU in
bfloat16 precision, and we use gradient accumulation if a
batch cannot fit in memory. Unless otherwise noted, we set
vocabulary size V = 2048, sequence length S = 64 and
vary only the number of points in a dataset. We train each
model on each dataset size over five random seeds, which
affect both model initialization and the dataset sampling.

Results. We plot memorization across model and data
sizes in Figure 1. This allows us to visualize unintended
memorization amounts (y-axis) across dataset sizes (x-axis)
grouped by model size (line color). We observe a strik-
ing plateau once a model reaches its capacity. Given the
dataset is large enough, models exhibit an upper bound in
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net memorization, regardless of data size. Small datasets are
completely memorized by all models with enough capacity.

We estimate the capacity of each model as the maximum
amount of unintended memorization in bits measured across
all dataset sizes. We then compare this capacity to the model
size in Figure 4. Interestingly, even at this small scale, we
see a very smooth relationship between observed capacity
(maximum memorization measured over all datasets) and
model parameters. We plot this relationship in Figure 4:
under these settings, our models consistently memorize
between 3.5 and 3.6 bits per parameter. This corroborates
the findings of prior work such as (Roberts et al., 2020; Lu
et al., 2024), which noticed that fact storage scales linearly
with model capacity. Ours is a slightly larger estimate than
Allen-Zhu & Li (2024), which estimated via quantization
that models can store around 2 bits per parameter.

Since our models are learned via gradient descent, they are
not guaranteed to find the global optima; thus, we are only
ever measuring a lower bound on model capacity. We take
a closer look at the training curves to analyze the conver-
gence of our 8M parameter language model. We plot model
convergence throughout training in Figure 3.

In this case, all datasets from 16,000 to 4M samples fall
within a range of 3.56−3.65×106 bits memorized. This in-
dicates that our measurements are robust within an order of
magnitude, and we do not expect to memorize significantly
more information by training for more steps. This finding
also confirms our hypothesis that capacity scales roughly
with parameter count. The two largest datasets (4M and 8M
samples, respectively) converge to total memorization of
2.95× 106 and 1.98× 106 bits memorized. We expect that
their memorization rates would continue to increase toward
the capacity had we trained for more epochs.

How does precision affect capacity? One natural ques-
tion is how our estimates for α depend on the precision of
language model training. In fact, although most software de-
faults to training in 32-bit precision, recent work has shown
that language models can be quantized to fewer than 2 bits
per parameter and still retain much of their utility. Since all
other experiments have been conducted in bfloat16 preci-
sion, rerun our experiments in full fp32 precision to analyze
the effect on capacity. Across model sizes, we observe a
small increase in capacity, and an increase in α from 3.51
to 3.83 bits-per-parameter on average. This is far less than
the actual 2x increase in the bits of θ, indicating that most
of the extra model bits added when increasing precision
from bfloat16 to float32 are not used for raw storage.

Membership inference. Finally, we perform a stan-
dard loss-based membership inference (Yeom et al., 2018;
Sablayrolles et al., 2019) attack on each model and plot per-

nlayer dmodel Params Capacity(θ) [bits] α [bpp]

1

32 8.04×104 3.39×105 3.16×105 4.23 3.93
64 1.85×105 7.27×105 6.93×105 3.92 3.74

128 4.69×105 1.71×106 1.69×106 3.65 3.61
256 1.33×106 4.15×106 3.83×106 3.12 2.88

2

32 9.31×104 3.87×105 3.31×105 4.16 3.56
64 2.35×105 9.60×105 9.27×105 4.08 3.94

128 6.67×105 2.66×106 2.60×106 3.99 3.89
256 2.12×106 8.49×106 7.76×106 4.01 3.66

4

32 1.18×105 4.65×105 3.99×105 3.92 3.37
64 3.35×105 1.34×106 1.14×106 3.98 3.39

128 1.06×106 4.02×106 3.75×106 3.78 3.53
256 3.70×106 1.36×107 1.30×107 3.68 3.51

8

32 1.69×105 5.12×105 4.85×105 3.02 2.86
64 5.35×105 2.05×106 1.71×106 3.83 3.19

128 1.86×106 7.23×106 6.49×106 3.89 3.49
256 6.86×106 2.71×107 2.51×107 3.96 3.65

Mean (±0.1):
3.83 3.51

Table 1. Model capacity estimates across different widths and
depths in full and half-precision. Doubling precision from bfloat16
to float32 only increases model capacity from 3.51 to 3.83 bits-
per-parameter.
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Train

Figure 6. Train and test losses of different model and dataset sizes
trained on text. Double descent occurs when dataset size exceeds
model capacity.

formance across dataset sizes. We show results in Figure 13.
Above a certain dataset size, membership inference starts
to fail in the average case. This finding indicates that if the
dataset size is too large compared to the model, membership
inference of an average training sample may not be possible.
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4. Disentangling Unintended Memorization
from Generalization

Our previous experiments analyzed the memorization and
membership inference properties of synthetic bitstrings. We
now turn to measuring memorization of text. Unlike ran-
domly generated sequences, learning from text data is a
mix of both unintended memorization (sample-level) and
generalization (population-level).

Experimental details. We repeat the experiments from
3.2, substituting our synthetic datapoints for real text. To
obtain a distribution of real-world text data, we could use
any pre-training scale text dataset; we use the recently pro-
posed FineWeb dataset (Penedo et al., 2024) as it follows
state-of-the-art deduplication practices. We use sequences
of 64 tokens but perform an additional deduplication step
to ensure perfect deduplication (otherwise, that 1− 2% of
sequences become duplicates when truncating to 64 tokens).
We find careful deduplication extremely important for faith-
fully measuring extraction rates. As in the previous subsec-
tion, we pretrain models of varying sizes on different-sized
text datasets and measure the unintended memorization of
each model-dataset pair. In addition to memorization, we
measure membership inference performance according to
a standard loss-based membership inference procedure; we
also compute exact extraction rates by greedily decoding
prefixes of different lengths.

Results. We first observe that the sample-level unintended
memorization increases with model parameters and de-
creases with training set size (Figure 6). When we measure
unintended memorization with respect to an oracle refer-
ence model (Figure 2), memorization steadily increases as
our smaller model is able to learn more about the small
training set than the oracle, and then decreases as our model
starts to generalize and perform on average worse than the
(higher-capacity) oracle.

Dataset-to-capacity ratio predicts double descent. We
observe from the train and test loss that for larger datasets
the model only begins to generalize (i.e. evaluation loss
decreases) once its capacity is reached, which takes approx-
imately 105 samples, depending on parameter count. As in
Nakkiran et al. (2019) we plot the ratio between the dataset
size and model capacity (Figure 5). Unlike prior work,
in our experiments we can compute the exact dataset size
(based on the compression rates of the reference model) and
exact model capacity (based on our estimate of α).

We clearly observe double descent evaluation performance
decreases as the training set size nears model capacity, and
then rapidly drops as the dataset capacity exceeds the ca-
pacity of the model. Our observations offer an intuitive
explanation for double descent (Belkin et al., 2019; Nakki-

ran et al., 2019): double descent begins exactly when the
data capacity exceeds the model capacity. One theory is
that once the model can no longer memorize datapoints indi-
vidually, it is forced to share information between datapoints
to save capacity, which leads to generalization.

Generalization explains nonzero extraction rates. We
measure extraction rates on the full training set and 10,000
non-overlapping test samples (Figure 16). We note that for
32-token prefixes, 100% are extractable for very small train-
ing set sizes; predictably, all extraction numbers decrease
with training set size. When the dataset sizes grows suffi-
ciently large, the extraction rate does not go fully to zero;
however, it converges to nearly exactly the test extraction
rate. In other words, when our (deduplicated) dataset grows
sufficiently large, all successful training data extraction
is attributable to generalization.

Membership inference grows difficult at scale. For each
of our models, we use unused non-overlapping data from
FineWeb to perform a standard loss-based membership in-
ference (Yeom et al., 2018; Sablayrolles et al., 2019) on
each model and plot performance across dataset sizes (8).
For a fixed model size, membership inference gets more
difficult as the size of the data increases. When comparing
membership inference to extraction (Figure 7), membership
inference is strictly higher in every case; in some cases we
can infer training dataset membership quite well (score of
0.97) with an extraction rate of 0.

5. Scaling Laws for Memorization
In this section we develop a set of predictive models for
memorization. Specifically, we predict the F1 score of a
loss-based membership attack given token count, number of
examples, and model parameter count. We then validate our
predictions on models from 500K to 1.5B parameters.

5.1. Functional forms

We observe that for a fixed model capacity, membership
inference follows a roughly sigmoidal form with respect to
dataset size. The intuitive explanation is that M.I. is easy
for large models overfit to tiny datasets, so its score begin
at 1; as dataset size increases, differentiating train from test
data by loss becomes more and more difficult, eventually
decaying toward 0.5.

We reuse the data collected in our text experiments (Section
4) to solve for constants c1, c2, c3 in the following equation:

MembershipF1
(θ,D) =

1

2
(1 + c1σ(c2(

Capacity(θ)
|D|

+ c3))

where σ(x) = 1
1+e−x .

7
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Figure 9. Scaling law curves for membership inference overlaid
with empirical data, shown in circles.

Limiting behavior. We observe that as |D| → ∞, per-
formance of our membership inference attack decreases to
0.5 (essentially random performance). For a model trained
on an infinite dataset, our law predicts both membership
inference and extraction to be impossible.

Fitting. We use a non-linear least squares solver to find
optimal values for c1, c2, c3. Solutions found are c1 = 1.34,
c2 = −0.034, and −33.14. We plot the scaling laws along
with observed data in Figure 9. Although the sigmoidal
function is slightly simplistic (the points do not perfectly fit)
our fit produces estimates within 1− 2% of observations.

5.2. Validation on larger models

We note that all contemporary language models trained
with a tokens-per-parameter ratio of 102 or higher, which
according to our laws would imply membership inference
score of 0.5 – that is, within our formulation, statistically
significant loss-based membership inference is not possible.

To validate our predictions, we train models with expected
membership F1 scores of 0.55, 0.75, and 0.95. For model
sizes we select GPT-2 small (125M params) and GPT-2
XL (1.5B params). Using our scaling law, we solve for
the dataset size required to get the desired membership
inference score for the given model size (see Table A.3 for
more information). We train models on the estimated dataset
size and measure F1 score (Figure 9). Our predictions are
generally within 1.5 points of the true F1 score; the score is
most inaccurate for estimated F1 of 0.75, which is the point
where the sigmoid is steepest. In general, the accuracy of our
results indicates that our empirical model of membership
inference is relatively accurate and provides evidence for
why membership inference attacks fail on models trained
on extremely large datasets (Das et al., 2024; Duan et al.,
2024; Maini et al., 2024).

6. Conclusion
We propose a new definition of memorization that allows us
to measure the exact number of bits a model knows about
a dataset. We use our definition to measure the capacity
of modern transformer language models and analyze how
measurements such as extraction and F1 score scale with
model and dataset size. We also propose a scaling law
for membership inference and validate it on larger models.
Our results help further practitioner understanding of how
language models memorize and what they might (or might
not) be memorizing across model and dataset scales.
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A. Appendix
A.1. Additional related work

Prior definitions of memorization. Carlini et al. (2019)
defined a string m as memorized by a language model θ
if the second half of m can be generated greedily when
prompting the model with the first half. Following this, Nasr
et al. (2023) introduced extractable memorization, where
model θ is said to memorize m if an adversarial prompt p
can be found that generates m. Mireshghallah et al. (2022)
and Schwarzschild et al. (2024) refined this definition by
restricting p to a certain number of tokens, preventing it
from containing the entire m. However, even this definition
has limitations: for example, generating the sequence “cat
cat cat ... cat” with the prompt ”repeat cat 1000 times”
does not necessarily indicate memorization. Carlini et al.
(2019) use perplexity or likelihood, one measure of the
compressibility of a sequence, in an effort to distinguish
highly memorized sequences from merely easy-to-compress
ones. One additional definition of note is counterfactual
memorization (Zhang et al., 2023), which measures the
impact of a single datapoint on training; this can be seen as
an instantiation of our definition where a different model
of the same family is used as a reference model. Overall,
all these works regarded memorization in terms that can be
seen as forms of compression, although did not explicitly
define it as such.

Finally, a concurrent work (Cohen et al., 2024) proposes
a theoretical definition for memorization also relying on
Kolmogorov.

Some of our findings also relate to the discovery of double
descent in machine learning (Belkin et al., 2019; Nakkiran
et al., 2019) and language modeling (Xia et al., 2023), as
well as general discussions of memorization and general-
ization in deep learning (Zhang et al., 2017; Tänzer et al.,
2022).

A.2. Compression with language models beyond
arithmetic coding

Shannon (1948) noted that the optimal compression method
for a given source is one that assigns codes to symbols such
that the average code length approaches the entropy of the
source. Arithmetic coding (Pasco, 1977; Rissanen, 1976)
is known to be one optimal way to compress text given a
distribution over symbols; it was used in (Delétang et al.,
2024) to compress text using modern language models.

Although arithmetic coding is known to be optimal for sam-
ples generated from the random process of choice, it may
still be sub-optimal for cases where the compressed samples
are correlated with the choice of random process. Specif-
ically, in language modeling, the training data is highly
correlated with the model itself and hence we might need to

treat them differently. For instance, we know from previous
work that the models behavior on training data points is
different from random samples. A large portion of training
data can be generated using greedy decoding (Carlini et al.,
2023b) which is a behavior not expected for a randomly
sampled data. To this end, we design a new compression
technique, a generalization of arithmetic coding.

Ensemble compression. Sampling from language models
involve two key parameters k for topk selection and t for
temperature. We design a compression method that sets
these parameters adaptively. For instance, for cases where
we know we can decode the next 100 tokens in a greedy
fashion, we set k = 1 to reduce the bit length of arithmetic
code. Changing the setup of the coding scheme itself re-
quires a new token to be injected and wastes some number
of bits, but it could still be beneficial for the code length.
Our compression program uses dynamic programming to
find the optimal code with injection of these new tokens in
the middle of the text. Notably, our algorithm runs in time
O(n ∗ T ), where n is the number of tokens and T is the
number of possible setups (combination of t and k) that we
allow.

A.3. How reliable are our linear estimates of capacity?

Instead of scaling the number of examples in a dataset, we
scale model sequence length to adjust the size of a dataset.
We use the following measurement for expected memoriza-
tion of a model:

mem(X,L(X)) ≈ min(capacity(L), H(X))

we substitute our previous estimate of α = 3.642 and ensure
to adjust the parameter count for increases due to resizing
the model’s embedding matrices. We fix the number of
training samples to 4096 and train a model with 2 layers
and a hidden size of 128. Results are illustrated in Figure
10 and Table 3. Our predictions of total memorization are
accurate, with an average error rate of 1.7% while scaling S
and 1.8% when scaling V .

A.4. Additional memorization results

Our findings indicate that memorization of text data neatly
plateaus near the model capacity just as in the synthetic
data case. When the dataset size increases by a factor of N ,
the model divides its memorization between datapoints by
an equal amount; the sum of memorization is measured to
be constant, presumably at the upper bound of the model’s
capacity.

When the dataset is small enough for each model to fit – that
is, below the capacity of the smallest model – we observe
very similar performance between the models. For larger
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demb nlayer |θ| |D| Predicted F1 Observed F1

GPT2-XL 1600 48 1,556,075,200
170,654,583 0.55 54.61± 1.3
76,795,021 0.75 71.08± 0.4
18,851,574 0.95 95.85± 0.8

GPT2-Medium 768 12 123,702,528
13,566,442 0.55 53.44± 1.1
6,104,935 0.75 65.69± 0.6
1,498,634 0.95 97.98± 0.3

Table 2. Dataset sizes that our scaling law predicts will produce a given membership inference F1, along with empirical values.

S Params. Memorized Expected Error

4 6.59× 105 1.73× 105 1.80× 105 4.19
8 6.60× 105 3.54× 105 3.60× 105 1.80

16 6.61× 105 7.15× 105 7.21× 105 0.84
32 6.63× 105 1.44× 106 1.44× 106 0.41
64 6.67× 105 2.29× 106 2.36× 106 2.97

128 6.75× 105 2.36× 106 2.39× 106 1.24
256 6.92× 105 2.44× 106 2.45× 106 0.44

Table 3. Model capacity estimates across sequence
length S, along with error (%).

V Params. Memorized Expected Error

128 4.21× 105 1.49× 106 1.49× 106 0.36
512 4.71× 105 1.71× 106 1.67× 106 2.78

1024 5.36× 105 1.95× 106 1.90× 106 2.70
2048 6.67× 105 2.39× 106 2.36× 106 1.11
4096 9.29× 105 3.13× 106 3.15× 106 0.47

Table 4. Model capacity estimates across vocab size V ,
along with error (%).

data sizes we notice an interesting trend: unintended memo-
rization increases with dataset size for to a point, presumably
as a model fills its capacity with the available information,
and then decreases, as the model replaces sample-level in-
formation with more useful, generalizable knowledge. A
given model generalizes the most (and memorizes the least
information about any individual sample) when the dataset
is maximally large.

A.5. Comparison of distributions memorized

Distribution-level analysis. Text sequences have very dif-
ferent properties than uniform synthetic bitstrings. We ex-
plore how two models of equal capacity spread their mem-
orization across datapoints. We plot a histogram (Figure
14) of train and test compression rates of training data from
both synthetic random bitstrings and text. Random training
data follows a very normal distribution with a small amount
of overlap between train and test compression rates. Text
loss is lower on average but more spread out, with low loss
on some training points and a long tail of higher losses.
There is much more overlap between the train and test loss
distributions, which explains why membership inference is
more difficult for text data.

Which datapoints are most memorized? Our
distribution-level analysis indicates that unlike in the
random-bitstring case, models trained on a large amount
of text are able to memorize a small number of datapoints.
Prior work has indicated that a large amount of this
memorization can be due to duplicated training points (Lee

et al., 2022) but our dataset is fully deduplicated so this
cannot be an explanation in our case.

To quantitatively evaluate the number of rare words per doc-
ument, we measure the TF-IDF of each training document,
plotted vs. unintended memorization in Figure 15. We use
the following equation for TF-IDF:

TF-IDF(d;D) =
1

|d|
∑
w∈d

log
|D|

tf(w,D)

where tf(d,D) indicates the total number of times word w
appears in dataset D. Intuitively, a higher TF-IDF score for
document d indicates that d contains more words that are
rare in D.

We clearly observe for samples with positive unintended
memorization there is a strong correlation between trainset
TF-IDF and memorization: examples with more rare words
are more memorized. In particular, the sample with highest
TF-IDF out of the whole training dataset (a sequence of
Japanese words) has the third-highest measured memoriza-
tion; even though this is just one out of 260, 000 training
samples, the model can regurgitate the entire sequence given
just a single token (囚). Out of the top twenty memorized
sequences, all but three contain sequences of tokens from
other languages (Japanese, Chinese, and Hebrew).

Manual analysis (Table 5) indicates that the most memorized
datapoints have extremely rare tokens, typically ones not
found in English.
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Table 5. Highest TF-IDF training examples from a 20M param model trained past its capacity on 216 sequences of English text. All of
the highest TF-IDF examples are considered memorized, and contain text from non-English languages (Japanese, Chinese, Hebrew, and
Greek).

A.6. Scaling law fit

Here we demonstrate the fit of our sigmoidal scaling law to
experimental data. We show points in tokens-per-parameter
vs. fit in Figure 16. Although the sigmoidal function is
slightly simplistic (the points do not perfectly fit the curve)
our fit produces estimates within 1− 2% of observations.

Here, we discuss other definitions of memorization.

B. Other notions of memorization
In this section we list multiple other notions of memorization
and compare it with our definition. We specifically focus on
why these notions do not satisfy all of our requirements.

• Stability-based notions of memorization. There are
notions of privacy and memorization that deal with
“stability” of the training algorithm to small changes
in the training set. Most notably, differential privacy
(Dwork, 2006) considers the worst-cast drift of the
model distribution when a single data point changes.
Another notion of memorization in Feldman (2020)
is based on the change of the model prediction on a
point x, when we add the labeled pair (x, y) to the

training set of a classification/regression model. Both
of these notions are crucially relying on the learning
algorithm and how it behaves. Moreover, the definition
of differential privacy is not ideal for our case because
it is a worst-case definition and cannot be applied at
sample/model level. While the notion of memorization
in Feldman (2020) does not have this particular issue, it
suffers from the fact that it only applies to classification
models and mostly deals with the memorization of the
association between the label (y) and input (x), and not
the memorization of x itself. These issues make these
notions not ideal for our case.

• Extraction-based memorization. There are mul-
tiple works in the literature (Carlini et al., 2019;
Mireshghallah et al., 2022; Nasr et al., 2023; Zhang
et al., 2023; Carlini et al., 2023b; Schwarzschild
et al., 2024) that define memorization of samples in
language models based on how easy it is to extract
that sample. Specifically, when trying to understand
the extent of memorization of a sample x in a model
θ they measure some notion of complexity for the
task of eliciting the model to output x. Although
these notions are great in that they only take a model
θ and a sample x, they still do not account for
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generalization. Considering our running example of
the following training sample: ”What is 2100? (A:
1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376)”,
this will be identified as highly memorized by almost
all of the extraction based notions of memorization.
Another issue with these definitions are that they are
heavily dependent on the details of decoding algorithm.
This is not ideal as we do not expect the memorization
of a sample x in a model θ to depend on the detailed
parameters we use to generate samples using θ.

The work of (Schwarzschild et al., 2024) in this cate-
gory is the closest to ours. This work which is based
on prompt-optimization, optimizes a short prompt p
to make the model elicit x, then it calls the sample
x memorized, if length of p is less than x. Although
this definition is close to our definition in using com-
pression, it still does not account for generalization of
the model. Moreover, it focuses on a specific way of
compression through prompting. We posit that com-
pression through prompting is an inferior compression
scheme and can often lead to compression rates greater
than 1.

• Membership/attribute inference. Membership in-
ference (Shokri et al., 2017) and attribute inference
attacks (Jayaraman & Evans, 2022) have been used for
empirically measuring the privacy of machine learning
algorithms. These notions which usually aim at ap-
proximating the stability notions of memorization are
suffering from the same shortcomings. They rely heav-
ily on the learning algorithm and the data distribution.
Moreover, they fail at providing a sample level notion
of memorization. For example, the obtained accuracy
for membership inference attack is only meaningful
in the population level. This is because various at-
tack may have different true positives for membership,
and the union of all these true positive across different
attack may cover the entire training set, rendering it
unusable as a sample level notion of memorization.

• Data copying in generative models. There are some
interesting notions of memorization designed specifi-
cally for generative modeling where a generative model
may output a certain portion of training samples (Bhat-
tacharjee et al., 2023; Carlini et al., 2023a). These
notions are similar to extraction based definition of
memorization but they are more lenient in that they
only require extraction of part of the training data.
However, they still suffer from the same challenges
as of extraction based definitions.

C. Proofs
In the section we provide the proofs missing from the main
body.

C.1. Proof of Proposition 1

Here we prove Proposition 1

Proof. we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= I((X1 | Θ, . . . , Xn | Θ), Θ̂).

And since the data is sampled i.i.d., all random variables in
{Ri = [Xi | Θ]}i∈[n] are independent. 3 So we have,

I((X1 | Θ, . . . , Xn | Θ), Θ̂) ≥
∑
i∈[n]

I(Xi | Θ, Θ̂)

which implies

memU (X, Θ̂,Θ) ≥
∑
i∈[n]

memU (Xi, Θ̂,Θ).

On the other hand, we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= H(Θ̂−H(Θ̂ | (X | Θ))

≤ H(Θ̂)

C.2. Proof of Proposition 4

Proof. We first state a Lemma about connection between
algorithmic (kolmogorov) mutual information and mutual
information.
Lemma 6. [Theorem 3.6 in Grunwald & Vitányi (2004)]
Assume (X,Y ) be a pair of joint random variables. Let
f be the density function, f(x, y) = Pr[(X,Y ) = (x, y)].
Then we have

I(X,Y )−HK(f) ≤ E
(x,y)∼(X,Y )

[IK(x, y)]

≤ I(X,Y ) + 2HK(f).

Now we use this lemma to prove the statement of the Propo-
sition. Let f be a the density function for the joint dis-
tribution (Xi | θ, Θ̂). That is fi(xi, θ̂) = Pr[Xi = xi |
θ and Θ̂ = θ̂]. Note that this function is independent of n
and θ. By definition we have

memU (Xi, Θ̂, θ) = I(Xi | θ, Θ̂).

3Note that Xi themselves are not independent because they
are sampled by first sampling an underlying model Θ. However,
they are conditionally independent once the underlying model Θ
is given.
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Now using Lemma 6 we have

I(Xi | θ, Θ̂)−HK(f) ≤ E
xi∼Xi|θ

[IK(xi, θ̂)]

≤ I(Xi | θ, Θ̂) + 2HK(f).

and this concludes the statement of Proposition by setting
ϵ = 2HK(f)
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Figure 10. Model memorization across sequence lengths for a
fixed-length dataset. Our predictions of total memorization are
accurate, with an average error rate of 1.7%.

Figure 11. Model memorization across vocabulary size for a
fixed-length dataset. Our predictions of total memorization are
accurate, with an average error rate of 1.8%. Note that, we do
not observe a capacity plateau, since increasing V also increases
parameters.
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Figure 12. Train and test losses for different-sized language mod-
els trained on synthetic data.
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Figure 13. Membership inference attack performance decreases
with dataset scale. In the case of uniform synthetic data, mem-
bership inference performance never falls below 0.54.
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Figure 14. Distribution of compression rates for equal-sized transformers (nlayer = 4, dmodel = 128) trained on 214 sequences of
equal-length random bitstrings (left) and text (right).
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Figure 15. Unintended memorization vs. TF-IDF for all training points of a 20M param model trained past its capacity on 216 sequences
of English text. The training documents with rarest words are typically the most memorized.
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Figure 16. Our sigmoidal scaling law for membership inference fit to experimental data.
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