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Abstract
Synthetic data inherits the differential privacy
guarantees of the model used to generate it. Addi-
tionally, synthetic data may benefit from privacy
amplification when the generative model is kept
hidden. While empirical studies suggest this phe-
nomenon, a rigorous theoretical understanding is
still lacking. In this paper, we investigate this
question through the well-understood framework
of linear regression. First, we establish negative
results showing that if an adversary controls the
seed of the generative model, a single synthetic
data point can leak as much information as releas-
ing the model itself. Conversely, we show that
when synthetic data is generated from random in-
puts, releasing a limited number of synthetic data
points amplifies privacy beyond the model’s inher-
ent guarantees. We believe our findings in linear
regression can serve as a foundation for deriving
more general bounds in the future.

1. Introduction
Differential privacy (DP) (Dwork and Roth, 2014) has be-
come the gold standard for privacy-preserving data analysis.
Training machine learning models with DP guarantees can
be achieved through various techniques: output perturbation
(Chaudhuri et al., 2011; Zhang et al., 2017b; Lowy and Raza-
viyayn, 2024), which adds noise to the non-private model;
objective perturbation (Chaudhuri et al., 2011; Kifer et al.,
2012; Redberg et al., 2023), which introduces noise into the
objective function; and gradient perturbation, which injects
noise into the optimization process, as in DP-SGD (Song
et al., 2013; Bassily et al., 2014; Abadi et al., 2016; Feldman
et al., 2018). Once trained, the model can be safely released,
with its privacy guarantees extending to all subsequent uses
thanks to the post-processing property of DP. This is partic-
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ularly relevant for differentially private generative models
(Zhang et al., 2017a; Xie et al., 2018; McKenna et al., 2019;
Jordon et al., 2019; McKenna et al., 2021; Lee et al., 2022;
Dockhorn et al., 2023; Bie et al., 2023), where the synthetic
data they produce inherits the same privacy guarantees as
the model itself.

Empirical studies, however, suggest that synthetic data may
offer even stronger privacy protection than the theoretical
guarantees provided by the model (Annamalai et al., 2024).
This suggests that certain structural properties of the data or
the generative process itself could contribute to an implicit
privacy amplification effect. One possible intuition is that
the privacy leakage might be reduced when the number
of released synthetic data points is “small” relative to the
complexity of the generative model. However, to the best of
our knowledge, no existing work has formally established
the existence of such a privacy amplification effect, and a
rigorous quantification of differential privacy in synthetic
data release remains an open question.

To address this gap, this paper takes an initial step towards
developing a theoretical framework for quantifying privacy
in synthetic data release. We focus on the well-studied set-
ting of (high-dimensional) linear regression trained via a
least-squares objective as a simple case study. This model
has the advantage of being analytically tractable but suffi-
ciently expressive to capture phenomena observed in more
complex models—such as double descent in overparam-
eterized regimes (Hastie et al., 2022) and, more recently,
model collapse in generative AI (Dohmatob et al., 2024;
Gerstgrasser et al., 2024).

We rely on the f -Differential Privacy (f -DP) framework
(Dong et al., 2022), which provides a flexible and robust
approach to privacy analysis, allowing precise characteri-
zations of privacy guarantees through trade-off functions.
When these trade-offs functions are difficult to interpret,
we also express privacy guarantees in the Rényi differential
privacy (RDP) framework (Mironov, 2017).

Our results are two-fold. First, in Section 3, we present
negative results in scenarios where an adversary controls
the seed of the synthetic data generation process. Specifi-
cally, we show that the adversary can leverage this control
to achieve privacy leakage equivalent to the bound imposed
by post-processing the model using only a single synthetic
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sample. Second, in Section 4, we analyze the privacy guar-
antees when synthetic data is generated from random inputs
to a private regression model obtained via output perturba-
tion. We demonstrate that privacy amplification is possible
in this setting, depending on the model size and the number
of released synthetic samples. All proofs can be found in
the supplementary material.

Our findings highlight the critical role of the randomness
given as input to the model, which must remain concealed
from the adversary in order to enable privacy amplification.
While the practical impact of our results is limited, we
believe they offer valuable insights and lay the groundwork
for a deeper understanding of synthetic data privacy in more
complex machine learning models.

Related work. To the best of our knowledge, existing meth-
ods for differentially private synthetic data generation rely
on learning a differentially private generative model (Hu
et al., 2024). Early approaches focused on marginal-based
techniques for tabular data, where a graphical model—such
as a Bayesian network—is privately estimated from data
and then used to generate new samples (Zhang et al., 2017a;
McKenna et al., 2019; 2021). More recent methods ex-
tend to other data modalities, leveraging expressive neural
network-based generative models—like GANs and diffusion
models—trained with differentially privacy (Xie et al., 2018;
Jordon et al., 2019; Lee et al., 2022; Dockhorn et al., 2023;
Bie et al., 2023). A key advantage of neural networks is the
availability of general differentially private training algo-
rithms, such as DP-SGD (Abadi et al., 2016) and PATE (Pa-
pernot et al., 2017), which can be applied across various
generative models. Crucially, all these methods rely on the
post-processing theorem to ensure the privacy guarantees of
the generated synthetic data—but it remains unclear whether
this guarantee is tight or potentially overly conservative.

In principle, one could deviate from this dominant approach
by adding noise directly to the data generated by a (non-
private) generative model. In such cases, the overall privacy
loss would scale with the number of released data points due
to the composition property of differential privacy. However,
this approach would require strong and often unrealistic as-
sumptions about the data. Most critically, it would lead to
significant utility loss—particularly for high-dimensional
perceptual data such as images, where even small perturba-
tions can severely degrade semantic content and downstream
performance. To our knowledge, no successful applications
of this approach have been demonstrated in practice.

Interestingly, our results in Section 4 suggest that differ-
entially private generative models may offer the best of
both worlds: the post-processing guarantee, which strictly
bounds the privacy leakage when releasing a large number
of samples, and simultaneously a privacy guarantee that
scales with the number of released data points, which is

more favorable when only a few samples are released.

Our results relate to the concept of privacy amplifica-
tion (Balle et al., 2018; Feldman et al., 2018; Erlingsson
et al., 2019; Cyffers and Bellet, 2022), which leverages
the non-disclosure of certain intermediate computations to
strengthen the privacy guarantees of existing mechanisms.
We note that the form of amplification we study in the con-
text of synthetic data release differs from privacy amplifi-
cation by iteration (Feldman et al., 2018). In that setting,
the final model is released after private training. In contrast,
our approach withholds the model entirely and releases only
synthetic data generated from random inputs to the model,
introducing an additional layer of privacy protection.

We conclude our discussion of related work by mentioning
a recent study that shows synthetic data can satisfy differ-
ential privacy guarantees without formal guarantees for the
generative model itself (Neunhoeffer et al., 2024). However,
this work is limited to a simple model where the private
training data is one-dimensional, and the synthetic data is
generated from a Gaussian distribution with mean and vari-
ance estimated from the private data. In contrast, our paper
addresses a different, more complex problem: we investi-
gate the privacy guarantees associated with releasing the
output of a differentially private model, specifically linear
regression. In our case, we directly model the distribution
of the output of linear regression for a random seed, which
corresponds to a product of Gaussian matrices.

2. Background & Preliminaries
2.1. Differential Privacy

In this section, we give a brief background about the tech-
nical tools we use from the differential privacy literature.
Here and throughout, M denotes a randomized mechanism,
and we say that two datasets D and D′ of fixed size m are
adjacent if they differ in a single data point.

Rényi Differential Privacy (RDP) is a variant of DP
which quantities the privacy guarantees in terms of a
Rényi divergence between M(D) and M(D′) (Mironov,
2017). Formally, for α > 1, let Dα(P,Q) =
1

α−1 logEx∼P

[(Q(x)
P (x)

)α]
be the Rényi divergence of order

α between distributions P and Q. By abuse of notation, if
V ∼ P , W ∼ Q, we will write Dα(V,W ) = Dα(P,Q).
For ε > 0, a mechanism M is said to satisfy (α, ε)-RDP if,
for any two adjacent datasets D and D′, we have:

Dα(M(D)∥M(D′)) ≤ ε.

Trade-off functions and f -DP. Trade-off functions (Dong
et al., 2022) capture the inherent trade-off between type I and
type II errors of hypothesis tests that distinguish between
outputs generated from two adjacent datasets. Let P and Q
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be two distributions and consider the following hypothesis
testing problem:

H1 : the distribution is P vs H2 : the distribution is Q.

For a given rejection rule ϕ ∈ [0, 1], the type I error is
EP [ϕ] and the type II error is 1−EQ[ϕ]. Then, the trade-off
function T (P,Q) is defined as:

T (P,Q)(α) = inf
ϕ
{1− EQ[ϕ] : EP [ϕ] ≤ α}.

Again, by abuse of notation, if V ∼ P , W ∼ Q, we will
write T (V,W ) = T (P,Q).

Let f : [0, 1] → [0, 1] be a decreasing convex function.
A mechanism M is said to satisfy f -Differential Privacy
(f -DP) if for any adjacent D,D′, we have:

T (M(D),M(D′)) ≥ f.

Gaussian Differential Privacy (GDP) (Dong et al., 2022)
is a special case of f -DP defined with Gaussian trade-off
functions. For µ ≥ 0, we define:

Gµ = T (N (0, 1),N (µ, 1)).

Then, M is said µ-GDP if it is Gµ-DP.

2.2. Linear Regression Setting

Throughout the paper, we consider a multi-output lin-
ear regression setting, where a dataset D = (X,Y ) =
((x1, y1), . . . , (xm, ym)) consists of m labeled data points,
with X ∈ X d×m the data matrix and Y ∈ Rn×m the label
(output) matrix. Here, d denotes the number of features of
the input (private) data points, and n denotes the dimen-
sion of outputs (i.e., the number of features of synthetic
data points). A linear model is represented by parameters
w ∈ Rn×d and predicts Ŷ = wX .

3. Releasing Synthetic Data from Fixed Inputs
In this section, we investigate the privacy guarantees of
releasing synthetic data when the input to the generation
process is fixed and chosen by an adversary. This represents
a strong yet practically relevant threat model, encompassing
situations such as when an adversary has access to an API
that allows them to query the generative model.

Focusing on linear regression, we consider two standard
ways to train the model with differential privacy guaran-
tees: output perturbation (Chaudhuri et al., 2011) and Noisy
Gradient Descent (Song et al., 2013; Bassily et al., 2014;
Abadi et al., 2016). In both cases, we show that when the
adversary controls the seed of the generation process, they
can induce privacy leakage that reaches the upper bound

established by post-processing, even with just a single data
point. In other words, no privacy amplification occurs un-
der this scenario. These negative results underscore the
vulnerability of synthetic data generation mechanisms to
adversarial manipulation.

3.1. Output Perturbation

We begin with models trained with output perturbation.
We make the assumption that each element (xi, yi) of the
dataset satisfies the following property: ∥xi∥ ≤ Mx and
∥yi∥ ≤ My, where ∥ · ∥ denotes the Frobenius norm.
These hypotheses are standard in private linear regres-
sion (Wang, 2018). Denoting the ℓ2-regularized least-
square objective as Fλ(w;D) = 1

m

∑m
k=1 ∥wxi − yi∥2 +

λ ∥w∥2, we know from (Chaudhuri et al., 2011) that
D 7→ argminw∈Rn×d Fλ(w;D) has bounded sensitivity
∆ = 2L/mλ, where L = M2

xMθ + MxMy + λMθ and
Mθ is the upper bound of the Frobenius norm of the min-
imizer of Fλ, always bounded for ridge regression. We
denote the output perturbation mechanism by M(D) =

argminw∈Rn×d Fλ(w;D) + σθN , where Nij
iid∼ N (0, 1).

For two adjacent datasets D and D′, let
v∗ = argminw∈Rn×d Fλ(w;D) and w∗ =
argminw∈Rn×d Fλ(w;D′). With some abuse of notation,
we denote M(v∗) = M(D) and M(w∗) = M(D′).

The exact trade-off function of output perturbation with the
Gausian mechanism is well known (Dong et al., 2022):

inf
v,w∈Rn×d:
∥v−w∥≤∆

T (M(v),M(w)) = inf
µ∈Rn×d:
∥µ∥≤∆

G∥µ∥/σθ
= G∆/σθ

.

The RDP guarantees are also known (Mironov, 2017):

sup
v,w∈Rn×d:
∥v−w∥≤∆

Dα(M(v),M(w)) =
α∆2

2σ2
θ

.

Due to translation invariance of trade-off function for Gaus-
sian matrices and noting µ = w∗ − v∗, comparing M(v∗)
and M(w∗) is equivalent to comparing V = M(0n×d) and
W = V + µ where µ is called the shift between V and W .

We are interested in quantifying the privacy leakage of re-
leasing the output of the model queried with a seed input.
Formally, a seed is a vector z ∈ Rd and we define the corre-
sponding query to model v∗ (respectively w∗) as v∗z ∈ Rn

(respectively w∗z). Note that M(v∗)z is a Gaussian vec-
tor. Based on the derivation above and due to translation
invariance of trade-off functions for Gaussian vectors, quan-
tifying the privacy leakage then amounts to characterizing
the trade-off function T (V z,Wz).

It is clear that an adversary can recover the model param-
eters v∗ from d queries (v∗z1, . . . , v∗zd) by choosing, for
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i ∈ J1 , dK, zi = (δij)j∈J1,nK, effectively probing each co-
ordinate individually. This leads to the maximum possible
information leakage allowed by the post-processing upper
bound. Strikingly, we now show that for some datasets, the
adversary can in fact induce this maximal privacy leakage
with just one query.

By definition, Wz = V z+µz and therefore Wz is the result
of shifting the distribution V z by µz. The norm of the shift
between Wz and V z is thus ∥µz∥, while the norm of the
shift between V and W is ∥µ∥. We can compare, for a given
shift µ and a given seed z, the trade-off functions of (V,W )
and (V z,Wz). We have T (V z,Wz) = G∥µz∥/∥z∥σθ

. For
a given shift µ between V and W , which is known by the
adversary in the threat model of DP, the adversary can max-
imize ∥µz∥/∥z∥ by taking z to be the right singular vector
corresponding to the largest singular value σmax(µ) of µ.
We directly obtain that

T (V z,Wz) = G|σmax(µ)|/σθ
.

Hence, for a hypothesis test between a particular instantia-
tion of shift µ ∈ Rn×d, the sensitivity of the exact trade-off
function between V z and Wz is improved from ∥µ∥ /σθ

to |σmax(µ)|/σθ. However, these considerations do not
imply better privacy guarantees than releasing the model
parameters, as shown by the following result.
Proposition 3.1. For any fixed z ∈ Rd, there exist adjacent
datasets D and D′ such that:

T (V z,Wz) = T (V,W ).

In other words, for any possible query z ∈ Rd, there ex-
ists two (pathological) adjacent datasets D,D′ such that
performing the query M(D)z implies the same privacy
leakage as directly releasing M(D).

Note however that our results show that, for a specific shift
µ ∈ Rn×d, the sensitivity of the exact trade-off function
between V z and Wz is |σmax(µ)|/σθ, which can be strictly
smaller than the norm-based bound ∥µ∥ /σθ. This indicates
that, from an empirical standpoint, the actual privacy leak-
age may be lower than the worst-case upper bound implied
by the post-processing theorem for realistic datasets.

We provide the detailed proof and a discussion about the
choice of z in Appendix A.1.

3.2. Noisy Gradient Descent

We now extend the previous results to the case where the
private generative model is trained with Noisy Gradient
Descent (NGD) (Song et al., 2013; Bassily et al., 2014;
Abadi et al., 2016; Feldman et al., 2018; Altschuler and
Talwar, 2022).

Specifically, we present negative results in the context of La-
bel Differential Privacy (Label DP), where adjacent datasets

only differ in the labels (Ghazi et al., 2021). Formally, ad-
jacent datasets under label DP can be written D = (X,Y ),
D′ = (X,Y ′), where Y ∈ Rn×m and Y ′ ∈ Rn×m differ
in exactly one column (we say Y, Y ′ are adjacent). Since
any two datasets that are adjacent under Label DP remain
adjacent under standard DP (where both features and labels
can differ), the maximum privacy leakage under standard
DP is at least as large. Our negative results for Label DP
thus extend to standard DP.

Let V0 = W0 ∈ Rn×d a standard Gaussian initialization,
F (w,X, Y ) = 1

m

∑m
k=1 ∥wxk − yk∥2 + λ∥w∥2 the objec-

tive function, η > 0, σ > 0 and {Nt}t a sequence of
i.i.d standard Gaussian matrices of Rn×d. On two adjacent
datasets D = (X,Y ), D′ = (X,Y ′), NGD corresponds to
the following updates:

Vt+1 = Vt − η∇wF (Vt, X, Y ) +
√
2ησNt+1,

Wt+1 = Wt − η∇wF (Wt, X, Y ′) +
√

2ησNt+1.

Note that Vt can be decomposed into independent Gaussian
rows, and likewise for Wt.

In the following, we focus on the case where the model is
trained until convergence (i.e., t → ∞) before querying
it to release synthetic data (a finite-time analysis can also
be done, see Appendix A.2). Our objective is thus to com-
pare the trade-offs functions T (V∞,W∞)—for releasing
the model directly—and T (V∞z,W∞z)—for releasing the
output of the model on a query z ∈ Rd.

As a discretized Langevin dynamical system with a strongly
convex, smooth objective, it is known that Vt converges
in distribution to a limit distribution (Durmus et al., 2019),
which is the Gibbs stationary distribution when η → 0. We
can leverage this consideration to characterize T (V∞,W∞)
and T (V∞z,W∞z).

Proposition 3.2. Let Σ = 1
nX

TX + λI , M = I − 2ηΣ
and denote by A the square root of Σ−1M and B the square
root of Σ−1M−1. Assume that Y and Y ′ are adjacent and
that η(λ+M2

x/n) < 1. Then:

T (V∞,W∞) = G ∥AXT (Y −Y ′)∥
nσ

,

T (V∞z,W∞z) = G ∥zT Σ−1XT (Y −Y ′)∥
nσ∥Bz∥

.

As in the output perturbation setting, the adversary aims to
maximize the privacy leakage from a single data point. Thus,
her objective is, for a fixed pair of adjacent datasets D,D′

to find supz∈Rd T (V∞z,W∞z). The following proposition
quantifies the associated privacy leakage.

Proposition 3.3. For any pair of adjacent datasets (in the
label DP sense), the adversary can choose z ∈ Rd such
that:

T (V∞z,W∞z) = T (V∞,W∞).
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This statement gives a negative result similar to the one
obtained for output perturbation (Proposition 3.1): releasing
V∞z does not offer any privacy amplification compared to
releasing the model V∞ in the worst case.

We provide the detailed proofs of the above results and a
discussion about the choice of z in Appendix A.3.

4. Privacy Amplification for Releasing
Synthetic Data from Random Inputs

Motivated by the negative results of the previous section, we
now consider the case where synthetic data points are gener-
ated by feeding random inputs into a linear regression model
privatized via output perturbation. This relaxed threat model
reflects the common scenario where a trusted party trains
the generative model, generates l synthetic data points, and
releases only these points—without revealing the generative
model or the random inputs used in the generation process.

Remarkably, we demonstrate that releasing synthetic data
points provides stronger privacy guarantees than directly
releasing the model when l ≪ d, highlighting the key role
of randomization in the privacy of synthetic data generation.

4.1. Setting

As before, we consider the linear regression setting intro-
duced in Section 2.2. We privatize the model via output
perturbation, as in Section 3.1, which we recall is given
by M(D) = argminw∈Rn×d Fλ(w;D) + σθN , where

Nij
iid∼ N (0, 1). The difference is that the seeds Z ∈ Rd×l

used to generate l synthetic data points are now Gaussian.
More precisely, we consider the following mechanism.

Definition 4.1 (Synthetic data generation from random in-
puts). Let D be a dataset and M denote the output pertur-
bation mechanism. Our objective is to analyze the privacy
guarantees of the mechanism MZ(v) = M(v)Z, where
Z ∈ Rd×l with Zij

iid∼ N (0, σ2
z).

For two adjacent datasets D and D′, we de-
fine v∗ = argminw∈Rn×d Fλ(w;D) and w∗ =
argminw∈Rn×d Fλ(w;D′).

The post-processing theorem (Dong et al., 2022) ensures
that we have:

T (MZ(v
∗),MZ(w

∗)) ≥ T (M(v∗),M(w∗)).

However, the post-processing theorem may not be tight for
this mechanism, i.e., equality may not hold in the inequality
above. In order to assess the potential privacy amplification
phenomenon associated with this mechanism, we aim to
compute, or at least estimate, T (MZ(v

∗),MZ(w
∗)).

Throughout the rest of the section, we let v, w ∈ Rn×d such

that ∥v − w∥ ≤ ∆. We note V = M(v) = v + σθN and
W = M(w) = w + σθN .

V Z and WZ are two distributions of a family that can be
parametrized by the mean of the left Gaussian matrix in
the product (v and w). We denote as Pv the distribution of
V Z and Pw the distribution of WZ. The trade-off function
between V and W is equal to:

T (V,W )(α) = Φ(Φ−1(1− α)− ∥w − v∥ /σθ),

where Φ is the c.d.f of a standard Gaussian variable.

We can derive closed-form expressions for Pv , as shown in
the following lemma.

Lemma 4.1. (Distribution of V Z and WZ). The distribu-
tion Pv has the following characteristic function:

ϕPv (t) =
exp

(
−σ2

z

2 tr(tT vvT t(Il + σ2
zσ

2
θt

T t)−1)
)

det (Il + σ2
zσ

2
θt

T t)
d/2

.

The proof can be found in Appendix B.1. For v = 0 and l =
1, the distribution Pv corresponds to a generalized Laplace
distribution, which has the following density (Mattei, 2017):

P0(s) =
2√

πn(2σzσθ)n+d

∥s∥ d−n
2

Γ(d/2)
K d−1

2

( ∥s∥
σzσθ

)
,

where π is a constant, Γ is the Gamma distribution and
K d−1

2
is the modified Bessel function of the second kind

of order d−1
2 . However, to our knowledge, when v ̸= 0,

the distribution Pv does not correspond to any standard
or well-studied distribution, and its density lacks a simple
closed-form expression (Li and Woodruff, 2021).

4.2. Releasing a Single Point

The above observations suggest that the exact computation
of T (V Z,WZ) or Dα(V Z,WZ) is likely intractable, if
not impossible in general. In this section, we focus on the
simplest case, where n = l = 1, and d ≫ 1. In other
words, the input dimension is large, and we release a single
one-dimensional synthetic data point. In this special case,
we can derive simple, non-asymptotic privacy bounds by
leveraging a univariate variation of the Central Limit The-
orem (CLT). Indeed, V Z ∈ R, so we avoid complications
related to dimensionality that arise in the multivariate CLT.
As a result, we obtain tighter bounds with better scaling in
d than would be possible in the higher-dimensional case
(n, l > 1). In contrast, multivariate non-asymptotic CLTs
break down when the dimension of the random vector be-
comes large—we discuss the applicability of our results in
higher dimensions in Section 4.3.
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Specifically, we observe that V Z can be decomposed into
a sum of independent terms: V Z =

∑d
k=1 VkZk, with

Z ∼ N (0, σ2
zId). From there, we apply a central limit

result to approximate V Z and WZ by Gaussian variables
for which the trade-off function is known. The following
lemma is essential to our reasoning.
Lemma 4.2. (Approximate trade-off function). Let
P,Q, P̃ , Q̃ four distributions of Rd. Let γ =
max(TV (P̃ , P ),TV (Q̃,Q)) where TV denotes the total
variation between distributions. Let α ∈ (γ, 1− γ). Then,

T (P̃ , Q̃)(α+γ)−γ ≤ T (P,Q)(α) ≤ T (P̃ , Q̃)(α−γ)+γ.

We refer to Appendix B.2 for the proof. This lemma ensures
that the non-asymptotic bounds of the CLT translate into
bounds for the trade-off function. Moreover, we use the
following theorem derived from (Bally and Caramellino,
2016) to establish convergence to the Gaussian distribution.
Theorem 4.2 (Multivariate CLT asymptotic development
in total variation distance (informal, adapted from Theorem
2.6. of Bally and Caramellino, 2016)). Let F = {Fk}k be a
sequence of i.i.d random variables in RN absolutely contin-
uous with respect to the Lebesgue measure, with null mean
and invertible covariance matrix C(F ). Let G ∼ N (0, IN ).
Let A(F ) = C(F )−1/2 and Sd = 1√

d

∑d
k=1 A(F )Fk. Let

r ≥ 2. If E[|F1|r+1] < +∞ and all moments up to order r
of A(F )F1 agree with the moments of a standard Gaussian
r.v. in RN , then:

TV (Sd, G) ≤ C(1 + E[|F1|r+1])max{r/3,1} × 1

d(r−1)/2
,

where C depends on r,N and C(F ).

In the univariate case, this theorem takes a particularly sim-
ple form given below.
Lemma 4.3. Let G ∼ N (0, 1). Then, there exists A∥v∥ > 0
such that:

TV

(√
d(σθN + v)Z, σz

√
dσ2

θ + ∥v∥2G
)

≤ A∥v∥

d
.

We have established that V Z and WZ can be approximated
by Gaussian variables, both with zero mean but different
variance. In the univariate case and for large d, our syn-
thetic data release thus transforms a mean shift between V
and W as described by the relationship W = V + w − v
into a variance shift. The variance shift is captured by the
approximation:

WZ ≈
√

dσ2
θ + ∥w∥2

dσ2
θ + ∥v∥2 V Z for d ≫ 1.

For conciseness, for x, y > 0, we denote by Λ(σθ, d, x, y)

the pair
(√

dσ2
θ + x2,

√
dσ2

θ + y2
)

. Now, we need to com-
pute the trade-off function of these Gaussian variables.

Proposition 4.1. (Trade-off function between Gaussians
with different variance). Let σ1, σ2 > 0. Then,

T (N (0, σ2
1),N (0, σ2

2)) =

{
T1(α) if σ1 ≤ σ2,

T2(α) else,

where T1(α) = 2Φ

(
σ1

σ2
Φ−1(1− α/2)

)
− 1,

T2(α) = 2− 2Φ

(
σ1

σ2
Φ−1((α+ 1)/2)

)
.

We denote this trade-off function by G̃(σ1,σ2).

We refer to Appendix B.4 for the proof. With these results,
we can approximate the trade-off function of interest (corre-
sponding to linear regression in the univariate output setting)
by that of Gaussians, as stated in the following theorem.

Theorem 4.3. Let d > 0. Then, there exists a universal
constant C > 0 such that for all α ∈ (C/d, 1− C/d):

G̃Λ(σθ,d,∥v∥,∥w∥)

(
α+

C

d

)
− C

d
≤ T (V Z,WZ)(α),

G̃Λ(σθ,d,∥v∥,∥w∥)

(
α− C

d

)
+

C

d
≥ T (V Z,WZ)(α).

This theorem states that the trade-off function between V Z
and WZ converges in O(1/d) to a trade-off function be-
tween two Gaussian variables with different variances. Com-
bining our bounds with the post-processing theorem, we
have shown that:

T (V Z,WZ) ≥ max

{
T (V,W ),

G̃Λ(σθ,d,∥v∥,∥w∥)
(
·+ C

d

)
− C

d .

Below, we will denote this lower bound by h. Figure 1
represents a numerical computation of the upper bound.

Interpretation with Rényi divergences. Translating the
convergence of the trade-off function into a formal privacy
amplification bound is nontrivial. We can first examine the
Rényi divergence between the limiting Gaussian distribu-
tions. We denote νdv = N (0, σ2

z(dσ
2
θ + v2)). The Rényi

divergence is maximized for v = v∗, w∗ = v∗+∆ for some
value v∗ which depends on d,∆ and σθ (more details in
Appendix B.7). Then, it can be shown that:

Dα(ν
d
v∗ , ν

d
w∗

) =
α∆2

4dσ2
θ

+ o(d−1).

This result yields two key insights. First, as d → ∞, νdv∗
is indistinguishable from νdw∗

, supporting the idea that V Z
becomes indistinguishable from WZ. Second, we have:

Dα(ν
d
v∗ , ν

d
w∗

) ≈ 1

2d
Dα(V,W ).
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1, d = 12.

This comparison with the post-processing upper bound
Dα(V,W ) suggests a privacy amplification of order O(1/d)
in the asymptotic regime. However, this observation alone
does not suffice to conclude that Dα(V Z,WZ) = O(1/d).
The difficulty arises from the fact that the O(1/d) conver-
gence rate of the lower bound h on the trade-off function
does not directly imply a corresponding convergence rate for
the Rényi divergence between the original (non-Gaussian)
distributions.

We thus numerically approximate Dα(V Z,WZ) using h to
gain more intuition. This is done via the following conver-
sion result from Dong et al. (2022).

Proposition 4.2 (Conversion from f -DP to RDP (Dong
et al., 2022)). If a mechanism is f -DP, then it is (α, lα(f))-
RDP for all α > 1 with:

lα(f) =

{
1

α−1 log
∫
|f ′(t)|1−αdt if zf = 1,

+∞ else,

with zf = inf{t ∈ (0, 1); f(t) = 0} = 1.

While it is difficult to theoretically compute h, for d large
enough, there exist 0 < c1 < c2 < 1 such that:

h(α) =

{
T (V,W )(α) if α ∈ (0, c1) ∪ (c2, 1),

g̃(α) if α ∈ (c1, c2),

where g̃(α) = G̃Λ(σθ,d,∆)

(
α+ C

d

)
− C

d . This matches
the numerical representation in Figure 1. Working with h
rather than g̃ alone is essential, because zg̃ < 1 implies
lα(g̃) = +∞, yielding no meaningful RDP guarantee. In
contrast, lα(h) remains finite, allowing us to derive valid
bounds.

For multiple values of d and ∆, we first determine c1 and
c2. Then, we estimate lα(h) using a Monte Carlo approxi-
mation:

lα(h) ≈
1

L(α− 1)
log

L∑
k=1

|h′(Xk)|1−α,

where (Xk)k≥1
iid∼ Unif([0, 1]) and L = 106 is the number

of samples. We run the procedure M = 50 times, and the
estimates are averaged. Figure 2 reports the logarithm of
the estimated divergence as a function of log(d) for mul-
tiple values of ∆. Standard deviations are not shown as
they are negligible compared to the estimated values. The
results suggest a convergence rate lα(h) ≈ O(1/d) in the
high privacy regime ∆ < 1. The initial plateau observed
for small d arises from limitations in our analysis. Specif-
ically, it reflects conservative constants in Lemma 4.3 and
the worst case-approximation of trade-off functions of The-
orem 4.3, rather than an intrinsic property of the divergence
itself. More details about the experiments can be found in
Appendix B.7.
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Figure 2. Privacy amplification in Rényi DP when releasing a sin-
gle point: estimation of Dα(V Z,WZ) as a function of log(d) for
different values of ∆.

4.3. Releasing Multiple Points

We now consider the more general case where l ≥ 1 syn-
thetic data points in dimension n ≥ 1 are released. In this
case, the adversary can leverage correlations between the
different outputs to better reconstruct V or W and thus yield
higher privacy leakage. In fact, the elements of V Z are not
independent. This means that we cannot directly leverage
the results of the previous section and apply composition
theorems to obtain an approximation of the trade-off func-
tion T (V Z,WZ). However, V Z can be vectorized and
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decomposed into a sum of independent vectorized matrices:
vec(V Z) =

∑d
k=1 vec(V·,kZk), where V·,k is the k-th col-

umn of V . Then, we can apply Theorem 4.2 for random
vectors and expect the distribution of vec(V Z) ∈ Rnl to
converge to a Gaussian. However, the constants in Theo-
rem 4.2 depend on the dimension of vec(V Z), here N = nl.
To our knowledge, no multivariate central limit theorem cur-
rently provides total variation distance bounds with explicit
constants yet. Raič (2019) studied Berry-Esseen bounds for
the central limit theorem and obtained universal constants
equal to 42N1/4 + 16, which become uninformative when
N is larger than some power of d.

A recent work solved this issue in the special case of the
product of i.i.d Gaussian matrices.

Theorem 4.4 (Convergence of product of Gaussian matrices
(adapted from Theorem 1 of (Li and Woodruff, 2021)). Sup-
pose that d ≥ max{n, l} and N ∈ Rn×d, Z ∈ Rd×l, G ∈
Rn×l are standard Gaussian matrices. Then, there exists
C > 0 such that:

TV (NZ,
√
dG) ≤ C

√
nl

d
.

This theorem must be adapted to our case, where N is
shifted by some matrix v. The following theorem estab-
lishes convergence even the presence of a shift v that induces
dependence between NZ and vZ, complicating the analy-
sis. We provide a non asymptotic upper bound on the TV
distance between (σθN +v)Z and a Gaussian matrix. Strik-
ingly, our bound does not depend on the norm of the shift v.

Theorem 4.5. (Convergence of product of Gaussian matri-
ces, shifted version). Let N ∈ Rn×d, Z, Z ′ ∈ Rd×l, G ∈
Rn×l be independent standard Gaussian matrices. Let
s = rank(v). Assume that d ≥ max{n, l}. Then, there
exists C ′ > 0 such that:

TV
(
(σθN + v)Z, σθ

√
d− sG+ vZ ′

)
≤ C ′

√
nls

d− s
.

Sketch of proof (details in Appendix B.6): For simplicity,
we set σθ = 1. The idea of the proof is to use the SVD
of v = FΣST and use the invertibility of F and S and
the invariance of Gaussian matrices by orthogonal trans-
formation to write TV ((N + v)Z,

√
d− sG + vZ ′) =

TV ((N + Σ)Z,
√
d− sG + ΣZ ′) and observe that for

d > max{n, l}, Σ = (λ1, . . . , λs, 0, . . . , 0︸ ︷︷ ︸
n−s times

).

Then, we decompose (N + v)Z into a part that depends
on the shift v and vanishes as d → +∞ and another part
that we can approximate with a Gaussian matrix: H =∑s

k=1(N·,k + Σ·,k)Zk and N−sZ−s =
∑d

k=s+1 N·,kZk,
and NZ = N−sZ−s +H . Note that N−sZ−s and H are
independent.

By Theorem 4.4, we can approximate N−sZ−s as a Gaus-
sian matrix

√
d− sG. Using the triangle inequality for the

TV distance:

TV
(
N−sZ−s +H,

√
d− sG+ vZ ′

)
≤ TV

(
N−sZ−s +H,

√
d− sG+H

)
(1)

+ TV
(√

d− sG+H,
√
d− sG+ΣZ ′

)
. (2)

Using independence in the decomposition and the post-
processing theorem, we have:

(1) ≤ TV
(
(N−sZ−s, H) , (

√
d− sG,H)

)
≤ C

√
nl

d− s
.

Also, (2) can be seen as the total variation distance between
the convolution of two distributions by a third one. We
use Pinsker inequality to relate this TV distance to a KL
divergence. Then, we define a random variable W and write:
G + H = G + W + H − W . Using the post-processing
inequality, the chain rule and convexity for KL divergences,
we obtain:

DKL(
√
d− sG+ΣZ ′,

√
d− sG+H)

≤DKL(ΣZ
′ +W,H)

+Ew∼W [DKL(
√
d− sG− w,

√
d− sG)].

Setting W =
∑s

k=1 N·,kZ
′
k, we get DKL(ΣZ

′+W,H) =
0 and:

DKL(
√
d− sG+ΣZ ′,

√
d− sG+H) ≤ nls

2(d− s)
.

This concludes the proof.

This theorem allows us to recover privacy amplification re-
sults in the multiple outputs scenario. By abuse of notation,
for G ∈ Rn×l a Gaussian matrix independent of Z, we de-
note G̃(σθ,d−n,v,w) = T (σθ

√
d− nG+ vZ, σθ

√
d− nG+

wZ).

Theorem 4.6. Let d > 0. Then, there exists a universal
constant C ′ > 0, Cn,l,d = C ′n

√
l

d−n such that for all
α ∈ (Cn,l,d, 1− Cn,l,d):

G̃(σθ,d−n,v,w) (α+ Cn,l,d)− Cn,l,d ≤ T (V Z,WZ)(α)

G̃(σθ,d−n,v,w) (α− Cn,l,d) + Cn,l,d ≥ T (V Z,WZ)(α).

Combining our bounds with the post-processing theorem
and denoting g̃(α) = G̃(σθ,d−n,v,w) (α+ Cn,l,d)− Cn,l,d,
we have shown that:

T (V Z,WZ) ≥ max{T (V,W ), g̃}.

We note h this upper bound, with a slight abuse of notation.
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Interpretation with Rényi divergences. Leveraging Rényi
divergences allows us to interpret our result both as a form
of privacy amplification via synthetic data release and as a
composition theorem for the “release one point” mechanism
of Section 4.2, which is valid when only a small number of
synthetic points are released, i.e., max{n, l} ≤ d.

Similar to the case l = n = 1, we can derive Rényi
divergence privacy bounds for the limiting distributions
in order to get some intuition about the relationship be-
tween the parameters and the privacy loss. Denoting Gv =
σθ

√
d− nG+vZ,Gw = σθ

√
d− nG+wZ, Dα (Gv, Gw)

can be upper bounded as follows (see Appendix B.7):

Dα (Gv, Gw) ≤
αnl∆2

4(d− n)σ2
θ

+ o(d−1).

Analogous to Section 4.2, Gv and Gw converge in distri-
bution when d → +∞. However, this time, there is a
dependence in nl which behaves as a composition result
of the “release one point” mechanism. Comparing to the
post-processing upper bound Dα(V,W ), we now have:

Dα(Gv, Gw) ≲
nl

2(d− n)
Dα(V,W ).

Following the same procedure described in Section 4.2, we
numerically estimate the Rényi divergence between V Z
and WZ for various values of d. Figure 3 suggests an
approximate convergence rate of O(d−1/2) when l and n
are fixed. More details about the experiments can be found
in Appendix B.7.
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Figure 3. Privacy amplification in Rényi DP when releasing mul-
tiple points (l = 10, n = 1): estimation of Dα(V Z,WZ) as a
function of log(d) for different values of ∆.

Discussion. When d is sufficiently large, the privacy loss
incurred by releasing nl synthetic data points is lower than

that of directly releasing the model parameters. The result-
ing guarantees are comparable in order to those obtained by
training the model non-privately and releasing nl noisy pre-
dictions—each individually satisfying differential privacy.
However, as discussed in Section 1, directly adding noise
to model outputs is undesirable, as it requires difficult and
often loose sensitivity analyses and often degrade utility. In
contrast, although we privatize the model itself, we obtain
bounds that resemble the composition of the "release one
point" mechanism. It is important to note, however, that this
convergence analysis holds only when d ≥ max{n, l}.

We believe that this behavior may hold in more general
settings, but our proof techniques heavily rely on the con-
vergence theorem of products of Gaussians. Unfortunately,
there is no hope to apply this technique in the "small d"
regime, as proven by Li and Woodruff (2021).
Theorem 4.7 (Non convergence of Gaussian product for
small d, adapted from Theorem 1 in Li and Woodruff, 2021).
Let G1 ∈ Rn×d, G2 ∈ Rd×l, G ∈ Rn×l be Gaussian matri-
ces. Suppose that

d ≤ C ′′ max{n, l}1/2 min{n, l}3/2,
with C ′′ an universal constant. Then:

TV (G1G2,
√
dG) ≥ 2/3.

5. Conclusion & Perspectives
We have shown that there exists a privacy amplification phe-
nomenon for synthetic data in the context of linear regres-
sion. However, there is no amplification when the adversary
has control over the seed of the synthesizer.

This negative result could inform the development of tighter
privacy auditing strategies for synthetic data release (An-
namalai et al., 2024). By quantifying the degradation in
privacy guarantees, our findings offer insights that can help
design more robust auditing methods in adversarial settings.

Several important directions remain for future work, includ-
ing deriving general privacy amplification bounds that hold
when n, l are large or d is small. A complete investigation
of privacy bounds for more advanced privacy preserving
algorithms such as Projected Noisy Gradient Descent or DP-
SGD, for fixed and random output settings, is also essential.
Finally, extending our analysis to more complex models
such as neural networks is a crucial step toward making
these theoretical results applicable to real-world scenarios.

Impact Statement
This paper presents work whose goal is to advance privacy
in machine learning, offering tools to make it more secure.
Private synthetic data generation is recognized as a promis-
ing approach for enabling flexible yet privacy-preserving

9



Privacy Amplification Through Synthetic Data: Insights from Linear Regression

analyses. Studying privacy amplification phenomena in this
context is valuable because it allows for tighter quantifica-
tion of privacy guarantees, thereby strengthening protection.
Moreover, it assists data curators in designing more effective
privacy-preserving algorithms.
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This appendix presents detailed proofs and additional discussion.

A. Proofs of Section 3
A.1. Proof of Proposition 3.1

Proposition 3.1. For any fixed z ∈ Rd, there exist adjacent datasets D and D′ such that:

T (V z,Wz) = T (V,W ).

Proof. We simply write Wz = V z + µz. Then, T (V z,Wz) = G∥µz∥/∥z∥σθ
. Then, ∥µz∥/∥z∥ is maximized by taking z

the right singular vector corresponding to the largest singular value of µ.

Now, we prove that for all z ∈ Rd, there exists D, D′ such that T (V z,Wz) = T (V,W ). In order to do this, we prove that
there exists two adjacent datasets D = (X,Y ), D′ = (X,Y ′) such that the shift µ between V and W , the weights matrices
of linear regression on D and D′ at convergence, has rank 1.

Let a ∈ Rm, u = z/∥z∥ ∈ Rd, v ∈ Rn. Let X = auT ∈ Rm×d, Y = avT ∈ Rm×n, be two rank one matrices. Therefore,
XTY = (aTa)uvT is rank one. We know that regularized linear regression converges to Y TX(XTX + λI)−1. By
Sherman-Morrison formula,

(XTX + λI)−1 = (∥a∥2uuT + λI)−1 =
1

λ
I − 1

λ

uuT

λ+ ∥u∥2 .

Then,

Y TX(XTX + λI)−1 =
∥a∥2
λ

vuT − ∥u∥2∥a2∥
λ

vuT

λ+ ∥u∥2 .

Finally, choosing Y ′ proportional to Y , the shift has rank 1 and ∥µ∥ = |σmax(µ)| = ∥µz∥/∥z∥.

A.2. Discussion on finite training time and convergence of NGD

We prove that full batch NGD converges to a normal distribution if η(λ+M2
x/n) < 1.

Proposition A.1. Let t ∈ N∗. Then, VT is composed of independent Gaussian columns (Vt)i
iid∼ N (µi

t,Σt) with:

µi
t =

t−1∑
k=0

BiM
k = Bi(I −M)−1(I −M t)

Σi
t = M2t + ησ2

t−1∑
k=0

M2k = M2m + ησ2(I −M2)−1(I −M2t).

Proof. The gradient is equal to

∇wFλ(Vk, X, Y ) =
1

n

m∑
i=1

∇wf(Vk, xi, yi) + 2λVk =
2

n
(VkX

T − Y T )X + 2λVk.

Then, noting B = 2η
n Y TX , Σ = 1

nX
TX + λI and M = I − 2ηΣ, we get:

Vk+1 = Vk − η∇wFλ(Vk, X, Y ) +
√
ηNn+1 = Vk(I − 2η(XTX/n+ λI))− 2

n
Y TX = VkM +B +

√
2ησNk+1.

Then, we can write:

Vt = V0M
t +

t−1∑
k=0

(B +
√

2ησNk+1)M
t−1−k,

12
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which is composed of independent lines with mean and covariance:

µi
t =

t−1∑
k=0

BiM
k = Bi(I −M)−1(I −M t),

Σi
t = M2t + 2ησ2

t−1∑
k=0

M2k = M2m + 2ησ2(I −M2)−1(I −M2t).

Note that we used symmetry of M .

Assume that η(λ+M2
x/n) < 1. Then M t → 0 and

µi
t → Bi(I −M)−1 =

1

n
Y T
i XΣ−1,

Σi
t → 2ησ2(I −M2)−1 = σ2(I − 2ηΣ)−1Σ−1 = σ2M−1Σ−1.

By Levy’s continuity theorem, Vt → V∞ ∼ ⊗n
i=1N (Y T

i XΣ−1/n, σ2M−1Σ−1) can be decomposed in independent rows
which have the same covariance and different mean. Note that when η → 0, we recover the Gibbs distribution.

A.3. Proofs of Proposition 3.2, Proposition 3.3

In this section, we compute the trade-off functions T (V∞,W∞) and T (V∞z,W∞z). The following lemma characterizes
the trade-off function between two Gaussian vectors with identical covariance and different mean. This function is expressed
in terms ∥ · ∥Σ (Mahalanobis) norms, which we define below:

Definition A.1 (∥ · ∥Σ norm.). Let µ ∈ Rd, Σ ∈ Rd×d be an symmetric definite positive matrix. Then, the Mahalanobis
norm is defined as:

∥µ∥Σ :=
√

µTΣ−1µ.

Lemma A.1 (trade-off function between Gaussian vectors with different means.). Let µ, µ′ ∈ Rd, Σ ∈ Rd×d be an
symmetric definite positive matrix. Then,

T (V,W ) = G∥µ−µ′∥Σ
.

Let µ, µ′ ∈ Rd, Σ ∈ Rd×d be a positive definite symmetric matrix. Let V ∼ N (µ,Σ), and W ∼ N (µ′,Σ).

Proof. Let H0 : N (µ,Σ), H1 : N (µ′,Σ). We note the log likelihood ratio:

llk(x) = (x− µ)TΣ−1(x− µ)− (x− µ′)TΣ−1(x− µ′) + C

= (µ′ − µ)TΣ−1(2x− (µ+ µ′)) + C

= 2(µ′ − µ)TΣ−1x− (µ′ − µ)TΣ−1(µ+ µ) + C.

Following the Neyman-Pearson Lemma B.2, the most powerful test at level α has the form T (x) = (µ′ − µ)TΣ−1x > tα.

Let N ∼ N (0, Id).

Under H0:

(µ′ − µ)TΣ−1V ∼ N ((µ′ − µ)TΣ−1µ, (µ′ − µ)TΣ−1(µ′ − µ)) = ∥µ′ − µ∥ΣN + (µ′ − µ)TΣ−1µ.

Then, the type I error is:

α = P ((µ′ − µ)TΣ−1V > tα) = 1− P

(
N ≤ tα − (µ′ − µ)TΣ−1µ

∥µ′ − µ∥Σ

)
,

tα = (µ′ − µ)TΣ−1µ+ ∥µ′ − µ∥ΣΦ−1(1− α).

13
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Under H1:

(µ′ − µ)TΣ−1V ∼ N ((µ′ − µ)TΣ−1µ′, (µ′ − µ)TΣ−1(µ′ − µ)) = ∥µ′ − µ∥ΣN + (µ′ − µ)TΣ−1µ′.

Then, the type II error is given by:

β(α) = P ((µ′ − µ)TΣ−1x ≤ tα) = P

(
N ≤ tα − (µ′ − µ)TΣ−1µ′

∥µ′ − µ∥Σ

)
= P

(
N ≤ (µ′ − µ)TΣ−1µ+ ∥µ′ − µ∥ΣΦ−1(1− α)− (µ′ − µ)TΣ−1µ′

∥µ′ − µ∥Σ

)
= Φ

(
Φ−1(1− α) +

(µ′ − µ)TΣ−1(µ− µ′)

∥µ′ − µ∥Σ

)
= Φ

(
Φ−1(1− α)− ∥µ′ − µ∥Σ

)
Then, T (V,W ) = G∥µ′−µ∥Σ

.

Now we can prove Propositions 3.2, 3.3. We give a slightly more general result allowing Y and Y ′ to differ in multiple
entries.
Proposition A.2. Let Σ = 1

nX
TX + λI , M = I − 2ηΣ and denote by A the square root of Σ−1M . Assume that Y and

Y ′ differ and that η(λ+M2
x/n) < 1. Then:

T (V∞,W∞) = G∥AXT (Y−Y ′)∥/nσ.

Moreover, for two given datasets, the adversary can choose z ∈ Rd such that:

T (V∞z,W∞z) = G|σmax(AXT (Y−Y ′))|/nσ.

In particular, when Y ′ and Y are adjacent (label DP), the adversary can choose z ∈ Rd such that:

T (V∞z,W∞z) = T (V∞,W∞).

The first statement shows that the trade-off function can be improved from a sensivity
∥∥AXT (Y − Y ′)

∥∥ /nσ to
|σmax(AX

T (Y − Y ′))|/nσ when Y and Y ′ differ on multiple rows, but not when they are adjacent (as Y − Y ′ is
of rank 1).

We provide a unified proof below.

Proof. We note B2 = Σ−1M−1. By Proposition A.1, V∞ and W∞ have independent rows and the i-th row of V∞
follows the distribution (V∞)i ∼ N (Y T

i XΣ−1/n, σ2M−1Σ−1). The square roots are defined because Σ and M commute.
Using Lemma A.1, the trade-off function between V∞ and W∞ is T (V∞,W∞) = G∑n

i=1 ∥µ′
i−µi∥σ2M−1Σ−1

, with µ′ =
1
nΣ

−1XTY ′, µ = 1
nΣ

−1XT y. Then,

∥µ′
i − µi∥2σ2M−1Σ−1 = (Y ′

i − Yi)
TXΣ−1MXT (Y ′

i − Yi)/σ
2 = ∥AXT (Y ′

i − Yi)∥2/n2σ2.

Furthermore, for z ∈ Rd, V∞z ∼ N((Σ−1XTYi · z)i/n, σ2zTM−1Σ−1zIn), Then,

T (V∞z,W∞z) = G ∥zT Σ−1XT (Y −Y ′)∥
nσ∥Bz∥

.

By noting the change of variable u = Bz and using the invertibility of B, we get:

sup
z ̸=0

∥zTΣ−1XT (Y − Y ′)∥
∥Bz∥ = sup

u ̸=0

∥uT (AXT (Y − Y ′))∥
∥u∥ = σmax(AXT (Y − Y ′)),

which corresponds to the 2-norm of AXT (Y − Y ′) and is obtained by setting u∗ the right singular vector corresponding
to the largest singular value of AXT (Y − Y ′). In the setting of Label DP, Y ′ − Y has rank 1, so T (V∞z,W∞z) =
T (V∞,W∞).

14
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B. Proofs of Section 4
B.1. Proof of Lemma 4.1

We provide the characteristic functions of V Z and WZ.

Lemma 4.1. (Distribution of V Z and WZ). The distribution Pv has the following characteristic function:

ϕPv
(t) =

exp
(

−σ2
z

2 tr(tT vvT t(Il + σ2
zσ

2
θt

T t)−1)
)

det (Il + σ2
zσ

2
θt

T t)
d/2

.

Proof. Let t ∈ Rn×l. Assume that σz = σθ = 1. We have:

ϕPv (t) = E[exp(i tr(tT (N + v)Z))] = E[E[exp(i tr(tT (N + v)Z))|Z]].

Conditioned on Z, (N + v)Z follows a matrix normal distribution (N + v)Z|Z ∼ MNn,l(vN, In, N
TN). Then,

ϕPv
(t) = E

[
exp

(
i tr(tT vN)− 1

2
tr(NTNtT t)

)]
.

Notice that Il + tT t is symmetric positive definite. We note At the square root of Il + tT t and Bt = ivT tA−1
t . Then,

leveraging the commutativity of trace operation and symmetry of At:

ϕPv
(t) = (2π)−dl/2

∫
exp

(
i tr(tT vx)− 1

2
tr(xTxtT t)

)
exp

(
−1

2
tr(xTx)

)
dx

= (2π)−dl/2

∫
exp

(
1

2

(
i tr(xT vT t) + i tr(tT vx)− tr(xTxA2

t )
))

dx

= (2π)−dl/2

∫
exp

(
1

2

(
i tr(vT txT ) + i tr(xtT v)− tr(xA2

tx
T )
))

dx

= (2π)−dl/2 exp

(
1

2
tr(BtB

T
t )

)∫
exp

(
−1

2

(
tr((xAt −Bt)(xAt −Bt)

T )
))

dx

= (2π)−dl/2 exp

(
1

2
tr(BtB

T
t )

)∫
exp

(
−1

2

(
tr((x−BtA

−1
t )A2

t (x−BtA
−1
t )T )

))
dx

= exp

(
1

2
tr(BtB

T
t )

)
det
(
A−2

t

)d/2
=

exp
(−1

2 tr(vT t(Il + tT t)−1tT v)
)

det (Il + tT t)
d/2

.

Now, assume that σz, σθ ̸= 1. Then,

ϕPv
(t) = E[exp(i tr(tTσzσθ(N + v/σθ)Z))]] =

exp
(

−σ2
z

2 tr(tT vvT t(Il + σ2
zσ

2
θt

T t)−1)
)

det (Il + σ2
zσ

2
θt

T t)
d/2

.

B.2. Proof of Lemma 4.2

We rewrite the Lemma 4.2 of approximation of trade-off functions and prove it.

Lemma 4.2. (Approximate trade-off function). Let P,Q, P̃ , Q̃ four distributions of Rd. Let γ =
max(TV (P̃ , P ),TV (Q̃,Q)) where TV denotes the total variation between distributions. Let α ∈ (γ, 1− γ). Then,

T (P̃ , Q̃)(α+ γ)− γ ≤ T (P,Q)(α) ≤ T (P̃ , Q̃)(α− γ) + γ.
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Proof. Let α ∈ (0, 1 − γ). We define 0 ≤ Ψ ≤ 1 as the most powerful test between P and Q at level α. We have
T (P,Q)(α) = 1− EQ[Ψ].

Then, using the definition of TV distance and the fact that 0 ≤ Ψ ≤ 1,

|EP [Ψ]− EP̃ [Ψ]| ≤ TV (P̃ , P ),

|EQ[Ψ]− EQ̃[Ψ]| ≤ TV (Q̃,Q).

Then, using Ψ is a test between P̃ and Q̃, Ψ is at level αP̃ ,Q̃ ≤ α+ TV (P̃ , P ) and is not necessarily optimal. This means
that T (P̃ , Q̃)(αP̃ ,Q̃) ≤ 1− EQ̃[Ψ]. As T (P̃ , Q̃) is non-increasing,

T (P̃ , Q̃)(α+ TV (P̃ , P )) ≤ T (P̃ , Q̃)(αP̃ ,Q̃) ≤ 1− EQ̃[Ψ] ≤ 1− EQ[Ψ] + TV (Q̃,Q) = T (P,Q)(α) + TV (Q̃,Q).

As trade-off functions are non-increasing:

T (P̃ , Q̃)(α+ γ)− γ ≤ T (P,Q)(α).

For the other side of the inequality, take α′ = α+ γ ∈ (γ, 1). We get:

T (P̃ , Q̃)(α′) ≤ T (P,Q)(α′ − γ) + γ,

and leverage the symmetry of the setting, giving the result.

B.3. Proof of Lemma 4.3

Before proving Lemma 4.3, we prove the following useful lemma:

Lemma B.1. Les σ > 0. Let N ∈ Rn×d, Z ∈ Rd×l be two independent standard Gaussian matrix. Let v ∈ Rn×d be a
deterministic matrix. Then, the distribution of (σN + v)Z is absolutely continuous with respect to the Lebesgue measure if
and only if d ≥ min{n, l}.

Proof. First, let us assume that d < min{n, l}. We know that rank((σN + v)Z) ≤ min{rank(N + v), rank(Z)}, and
because N and Z are Gaussian matrices, rank(N+v) = min{n, d} and rank(Z) = min{d, l}. Then, rank((σN+v)Z) ≤
min{n, d, l} ≤ d, and (N + v)Z lies in the manifold Md

n,l(R) of matrices of size nl with rank d which has dimension
d(n+l−d). Then, there exists a Borel set A ⊂ Md

n,l(R) such that P ((σN+v)Z ∈ A) > 0. However, as (n−d)(l−d) > 0,
nl > d(n+ l− d) and Lebnl(A) = 0. Thus, (σN + v)Z is not absolutely continuous with respect to the Lebesgue measure.

Now, assume that d ≥ n. Let A be Borel set of Rn×l such that Lebnl(A) = 0. Then, we write P ((σN + v)Z ∈ A) =∫
PσN+v(x)P (xZ ∈ A)dx. For all x ∈ Rn×d such that rank(x) = n, xZ is a Gaussian matrix and admits a density

[REF], which means that P (xZ ∈ A) = 0. Then, P ((σN + v)Z ∈ A) =
∫
rank(x)<n

PσN+v(x)P (xZ ∈ A)dx. Also, for
all x ∈ Rn×d, P (xZ ∈ A) ≤ 1. Then, P ((σN + v)Z ∈ A) ≤

∫
rank(x)<n

PσN+v(x)dx = P (rank(σN + v) < n) = 0,
because N + v is a Gaussian matrix and is absolutely continuous with respect to the Lebesgue measure. Then, (N + v)Z
is absoolutely continuous with respect to the Lebesgue measure. In the case n ≥ l, we apply the same reasoning to the
decomposition P ((σN + v)Z ∈ A) =

∫
PZ(y)P ((σN + v)y ∈ A)dy.

Lemma 4.3. Let G ∼ N (0, 1). Then, there exists A∥v∥ > 0 such that:

TV

(√
d(σθN + v)Z, σz

√
dσ2

θ + ∥v∥2G
)

≤ A∥v∥

d
.

Proof. We note U ∈ Rd the orthogonal matrix such that vUT = v̄ = 1√
d
(∥v∥, . . . , ∥v∥). Then, using invariance of

Gaussian matrices by orthogonal transformation, V Z = (N + v̄UT )Z = (NU + v̄)UTZ
d
= (N + v̄)Z. We write

V Z =
∑d

k=1 VkZk
d
=
∑d

k=1(σθNk +
1√
d
∥v∥)Zk, which is a sum of iid components. By Lemma B.1, (σθN1 +

1√
d
∥v∥)Z1
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is absolutely continuous with respect to the Lebesgue measure. We compute:

E
[
(σθN1 +

1√
d
∥v∥)Z1

]
= E

[
(σθN1 +

1√
d
∥v∥)

]
E [Z1] = 0,

E
[
(σθN1 +

1√
d
∥v∥)2Z2

1

]
= E

[
(σθN1 +

1√
d
∥v∥)2

]
E
[
Z2
1

]
= (σ2

θ +
1

d
∥v∥2)σ2

z ,

E
[
(σθN1 +

1√
d
∥v∥)2Z3

1

]
= 0.

= E

[(
σθN1 +

1√
d
∥v∥
)4

Z4
1

]
= 3σ4

z(3σ
4
θ + 6σ2

θ∥v∥2/d+ ∥v∥4/d2)

Then, 1

σz

√
σ2
θ+

1
d∥v∥2

(σθN1 +
1√
d
∥v∥)Z1 match the 3 first moments of a Gaussian variable.

Then, leveraging Theorem 4.2,

TV

(
V Z, σz

√
σ2
θ +

1

d
∥v∥2G

)
≤ C

1 +

E
[(

σθN1 +
1√
d
∥v∥
)4

Z4
1

]
σ4
z

(√
σ2
θ +

1
d∥v∥2

)4
 1

d
≤ A∥v∥

d
,

with A∥v∥ = C(9− 6
(1+dσ2

θ/∥v∥2)2
).

This means that for any v ∈ Rd, A∥v∥ ≤ 9C.

Note that C does not depend on σθ, v and d. In fact, noting Yk = 1

σz

√
σ2
θ+

1
d∥v∥2

(σθNk + 1√
d
∥v∥)Zk, we have Cov(Y1) =

I1 = 1, and we apply Theorem 4.2 on the random variable 1√
d

∑d
k=1 Yk, removing the dependence. The final bound is

obtained by invariance of TV distance by invertible transformation.

B.4. Proof of Proposition 4.1

Before proving the result, we recall the Neyman-Pearson lemma.

Lemma B.2 (Neyman-Pearson lemma (Lehmann and Romano, 2006)). Let P and Q be probability distributions on Ω
admitting densities p and q, respectively with respect to some measure ν. For the hypothesis testing problem H0 : P vs
H1 : Q, a test ϕ : Ω → [0, 1] is the most powerful test at level α if and only if there exists a constant h > 0 such that ϕ has
the form:

ϕ(w) =

{
1 if q(w) > hp(w)

0 if q(w) < hp(w),

and EP [ϕ] = α.

Proposition 4.1. (Trade-off function between Gaussians with different variance). Let σ1, σ2 > 0. Then,

T (N (0, σ2
1),N (0, σ2

2)) =

{
T1(α) if σ1 ≤ σ2,

T2(α) else,

where T1(α) = 2Φ

(
σ1

σ2
Φ−1(1− α/2)

)
− 1,

T2(α) = 2− 2Φ

(
σ1

σ2
Φ−1((α+ 1)/2)

)
.

We denote this trade-off function by G̃(σ1,σ2).
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Proof. Assume that 0 ≤ σ1 ≤ σ2. We note H0 : X ∼ N (0, σ2
1) = P , H1 : X ∼ N (0, σ2

2) = Q. We write the
log-likelihood ratio between P and Q:

llk(x) =
x2

2

(
1

σ2
2

− 1

σ2
1

)
.

Noting that
(

1
σ2
2
− 1

σ2
1

)
≥ 0 and using the Neyman Pearson Lemma B.2, the most powerful test at level α has the form

T (x) = x2 ≥ tα. Let N ∼ N (0, 1). The type I error is:

α = P (σ1N
2 > tα) = 2(1− P (0 ≤ N ≤ tα/σ1)) = 2(1− Φ(tα/σ1)).

Then, tα = σ1Φ
−1(1− α/2). Also, the type II error writes:

β(α) = P (σ2N
2 ≤ tα) = 2Φ(tα/σ2)− 1 = 2Φ

(
σ1

σ2
Φ−1(1− α/2)

)
− 1.

Also, if σ1 > σ2, the log-likelihood ratio llk(x) ≤ 0. Then, the most powerful test at level α has the form T (x) = x2 ≤ tα.

The type I error is:
α = P (σ1N

2 ≤ tα) = 2P (0 ≤ N ≤ tα/σ1) = 2Φ(tα/σ1)− 1.

Then, tα = σ1Φ
−1
(
1+α
2

)
. Also, the type II error writes:

β(α) = P (σ2N
2 > tα) = 2(1− Φ(tα/σ2)) = 2

(
1− Φ

(
σ1

σ2
Φ−1

(
1 + α

2

)))
.

Combining both tests gives the trade-off function.

We also give the trade-off function between Gaussian with different variances. This trade-off function depends on the cdf
and the inverse cdf of weighted chi squared variable, which are not trivial to compute in practice.

Lemma B.3 (Trade-off function between Gaussians matrices with different variances). Let v, w ∈ Rn×d. Let Σv =
σ2In + vvT ∈ Rn×n, Σw = σ2In +wwT ∈ Rn×n, P = N (0,Σv ⊗ Il) and Q = N (0,Σw ⊗ Il). We note λ1, . . . , λn the
eigenvalues of Σ−1/2

v ΣwΣ
−1/2
v . We note Fλ1,...,λn

(l, x) the distribution of the weighted sum of n independent χ2
l variables

with weights λ1, . . . , λn at x. Then,

T (P,Q)(α) = F(λk−1;k∈J1,nK)

(
l, F−1

(1−1/λk;k∈J1,nK)(l, 1− α)
)
.

Proof. We start with the case l = 1. vvT is positive semi-definite, so Σv is positive definite and Σ−1 exists. The log
likelihood ratio between P and Q is:

llk(x) = xT (Σ−1
v − Σ−1

w )x+ C.

Using the Neyman Pearson Lemma B.2, the most powerful test at level α has the form T (x) = xT (Σ−1
v − Σ−1

w )x =

xTΣ
−1/2
v (In − Σ

1/2
v Σ−1

w Σ
1/2
v )Σ

−1/2
v x ≥ tα. We investigate the law of T under P and Q. We note M = Σ

−1/2
v ΣwΣ

−1/2
v .

M is symmetric and positive definite. Then, we note M = UTDU , with D = diag(λ1, . . . , λn).

Let N ∼ N (0, Id).

Under P : X = Σ
1/2
v N and Σ

−1/2
v X = N :

T (X) = NT (In −M−1)N = NT (In −D−1)N =

n∑
k=1

(1− 1/λk)N
2
k ,

Under Q: X = Σ
1/2
w N and UΣ

−1/2
v X ∼ N (0, D). Then, writing T (X) = XTΣ

−1/2
v UT (In −D−1)UΣ

−1/2
v X:

T (X) = NTD1/2(In −D−1)D1/2N = NT (D − In)N =

n∑
k=1

(λk − 1)N2
k ,
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Then, the type I error is:

P

(
n∑

k=1

(1− 1/λk)N
2
k > tα

)
= α =⇒ tα = F−1

(1−1/λk;k∈J1,nK)(1, 1− α).

Finally, the type II error is given by:

β(α) = P

(
n∑

k=1

(λk − 1)N2
k ≤ tα

)
= F(λk−1;k∈J1,nK)

(
F−1
(1−1/λk;k∈J1,nK)(1, 1− α)

)
.

In the case l > 1, the eigenvalues of Ml = (Σv⊗Il)
−1/2(Σw⊗Il)(Σv⊗Il)

−1/2 = M⊗Il are λ1, . . . , λ1︸ ︷︷ ︸
l times

, . . . , λn, . . . , λn︸ ︷︷ ︸
l times

.

The log likelihood ratio between P and Q is:

llk(x) = xT ((Σv ⊗ Il)
−1 − (Σw ⊗ Il)

−1)x+ C = xT ((Σ−1
v − Σ−1

w )⊗ Il)x+ C.

As in the case l = 1, we can write the distribution of the test T = xT ((Σ−1
v −Σ−1

w )⊗ Il)x under P and Q and compute the
type I and II errors, giving the desired result. Let N ∼ N (0, In ⊗ Il).

In the case λ1 = · · · = λn = λ > 1, the type I error is:

P

(
m∑

k′=1

n∑
k=1

(1− 1/λk)N
2
k,k′ > tα

)
= α =⇒ P ((1− 1/λ)χnl > tα) = α =⇒ tα = (1− 1/λ)Φ−1

χ2
nl
(1− α),

where χ2
nl is the cdf of a chi-squared variable with nl degrees of freedom. The type II error is given by:

β(α) = P

(
m∑

k′=1

n∑
k=1

(λk − 1)N2
k,k′ ≤ tα

)
= P

(
(λ− 1)χ2

nl ≤ tα
)
= Φχ2

nl

(
1

λ
Φ−1

χ2
nl
(1− α)

)
.

B.5. Proof of Theorem 4.3

Theorem 4.3. Let d > 0. Then, there exists a universal constant C > 0 such that for all α ∈ (C/d, 1− C/d):

G̃Λ(σθ,d,∥v∥,∥w∥)

(
α+

C

d

)
− C

d
≤ T (V Z,WZ)(α),

G̃Λ(σθ,d,∥v∥,∥w∥)

(
α− C

d

)
+

C

d
≥ T (V Z,WZ)(α).

Proof. Let d > 0. Based on Lemma 4.3, there exists C > 0 such that:

TV

(
V Z, σz

√
σ2
θ +

1

d
∥v∥2G

)
≤ C

d

(
9− 6

(1 + dσ2
θ/∥v∥2)2

)
≤ 9C

d
,

TV

(
WZ,σz

√
σ2
θ +

1

d
∥w∥2G

)
≤ C

d

(
9− 6

(1 + dσ2
θ/∥w∥2)2

)
≤ 9C

d
.

Then, leveraging Lemma 4.2, for α ∈ (C/d, 1− C/d):

T (V Z,WZ)(α) ≥ T

(
σz

√
σ2
θ +

1

d
∥v∥2G, σz

√
σ2
θ +

1

d
∥w∥2G

)(
α+

C

d

)
− 9C

d
,

T (V Z,WZ)(α) ≤ T

(
σz

√
σ2
θ +

1

d
∥v∥2G, σz

√
σ2
θ +

1

d
∥w∥2G

)(
α− C

d

)
+

9C

d
,

giving the desired result.
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B.6. Proof of Theorem 4.5

Theorem 4.5. (Convergence of product of Gaussian matrices, shifted version). Let N ∈ Rn×d, Z, Z ′ ∈ Rd×l, G ∈ Rn×l

be independent standard Gaussian matrices. Let s = rank(v). Assume that d ≥ max{n, l}. Then, there exists C ′ > 0 such
that:

TV
(
(σθN + v)Z, σθ

√
d− sG+ vZ ′

)
≤ C ′

√
nls

d− s
.

Proof. We assume that d ≥ max{n, l, s}. Let N ∈ Rn×d, Z, Z ′ ∈ Rd×l, G ∈ Rn×l be independent standard Gaussian
matrices. We note the singular value decomposition of v = FΣST . Then, (σθN + v)Z = (σθN + FΣST )Z =

F (σθF
TNS+Σ)STZ

d
= F (σθN +Σ)Z, by invariance of Gaussian matrices through orthogonal transformations. Because

F is invertible, we can write: TV ((σθN + v)Z, σθ

√
d− sG + vZ ′) = TV (F (σθN + Σ)Z, σθ

√
d− sG + vZ ′) =

TV ((σθN +Σ)Z, σθ

√
d− sG+ΣZ ′).

We observe that NZ is decomposed into a sum of independent bits: NZ =
∑d

k=1 N·,kZk. Then,

TV ((σθN +Σ)Z, σθ

√
d− sG+ΣZ ′)

= TV

(
d∑

k=s+1

N·,kZk +

s∑
k=1

(N·,k +Σ·,k)Zk, σθ

√
d− sG+ vZ ′

)

≤ TV

(
d∑

k=s+1

N·,kZk +

s∑
k=1

(N·,k +Σ·,k)Zk, σθ

√
d− sG+

s∑
k=1

(N·,k +Σ·,k)Zk

)
(1)

+ TV

(
σθ

√
d− sG+

s∑
k=1

(N·,k +Σ·,k)Zk, σθ

√
d− sG+ΣZ ′

)
. (2)

Using the data-processing inequality for TV distance for the map (x, y) 7→ x+ y,

(1) ≤ TV

((
σθ

d∑
k=s+1

N·,kMk,

s∑
k=1

(σθN·,k +Σ·,k)Zk

)
,

(
σθ

√
d− sG,

s∑
k=1

(σθN·,k +Σ·,k)Zk

))

= TV

(
σθ

d∑
k=s+1

N·,kMk, σθ

√
d− sG

)
≤ C

√
nl

d− s
,

by independence of the components in the pair and using Theorem 4.5 for a product or size d − s. Also, using Pinsker
inequality:

(2) ≤

√√√√1

2
DKL

(
σθ

√
d− sG+ΣZ ′, σθ

√
d− sG+

s∑
k=1

(σθN·,k +Σ·,k)Zk

)
.

Because of independence of components in the sum, this divergence corresponds to the KL divergence between the
convolution of two distributions by a third distribution. We find an upper bound to this divergence using the chain rule for
KL divergence and a technique proof similar to the shift-reduction lemma (Feldman et al., 2018). Shift reduction lemma
allows to upper bound the divergence between convolution of two distributions by the same distribution by a coupling
technique and the use of chain rule.

Lemma B.4 (Shift-reduction for KL divergences). Let X,Y and N be three independent random vectors. Then, for any
random variable W that depend on X ,

DKL(X +N,Y +N) ≤ DKL(X +W,Y ) + Ew∼W [DKL(N − w,N)].
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Proof. Let X,Y and N be three independent random vectors. Let W be a random variable. Then, we observe that
X +N = X +W −W +N . We apply the post-processing inequality for KL divergence under the map f : (x, y) 7→ x+ y:

DKL(X +N,Y +N) ≤ DKL((X +W,−W +N)(Y,N)).

Using the independence between N and the other variables, we obtain:

DKL(X +N,Y +N) = DKL(X +W,Y ) + Ey∼pX+W
[DKL(N −W |X +W = y,N)].

Then, using convexity of KL divergences and writing PN−W |X+W=x(y) =
∫
PN (y + w)PW |X+W=x(w)dw, we obtain

DKL(X+N,Y +N) ≤ DKL(X+W,Y )+Ey∼PX+W
[Ew∼W |X+W=y[DKL(N −w,N)] = Ew∼W [DKL(N −w,N)].

Then, for α > 1, setting a shift W = σθ

∑s
k=1 N·,kZ

′
k, we have in distribution, ΣZ ′ +W

d
=
∑s

k=1(σθN·,k +Σ·,k)Zk. It
means that:

DKL

(
ΣZ ′ +W,

s∑
k=1

(σθN·,k +Σ·,k)Zk

)
= 0.

Also, DKL(σθ

√
d− sG− w, σθ

√
d− sG) = ∥w∥2

2σ2
θ(d−s)

.

Using the shift-reduction lemma, we get:

DKL

(
ΣZ ′ + σθ

√
d− sG,

s∑
k=1

(N·,k +Σ·,k)Zk + σθ

√
d− sG

)
≤ Ew∼W [DKL(σθ

√
d− sG− w, σθ

√
d− sG)]

≤ Ew∼W

[ ∥w∥2
2σ2

θ(d− s)

]
≤ nls

2(d− s)
,

where expectation is obtained using independence between N and Z,

E[∥W∥2] = σ2
θ

n∑
i=1

l∑
j=1

E

( s∑
k=1

Ni,kZk,j

)2
 = σ2

θnl

s∑
k=1

s∑
k′=1

E[Ni,kNi,k′ ]E[Zk,jZk′,j ] = σ2
θnls.

Finally, we find:

TV ((σθN + v)Z, σθ

√
d− sG+ vZ ′) ≤ C

√
nl

d− s
+

√
nls

4(d− s)
≤ C ′

√
nls

d− s
.

We obtain the result of the lemma by applying invariance of TV distance under rescaling.

B.7. Experiments and Interpretation with Rényi divergences

In this section, we explain the setup of our experiments, and compute upper bounds for Rényi divergences between Gaussian
matrices with different covariance structures.

Rényi divergence between Gaussian variables.

Let s > 0. The Rényi divergence between N (0, s+ v2) and N (0, s+ w2) is maximized by setting v = rs,∆, w = v +∆,
for some value 0 < rs,∆ < 1.
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Lemma B.5 (maximum of Rényi divergence between Gaussian variables with same mean and different variance).

sup
|v−w|≤∆

Dα(N (0, s+ v2),N (0, s+ w2)) =

{
1

2(α−1) (α log(rs,∆)− log(αrs,∆ + 1− α)) if s ≥ α(α− 1)∆2,

+∞ else,

where rs,∆ =
2s+∆2 −∆

√
∆2 + 4s

2s
.

Proof. For r > 0, we note f(r) = α log(r)− log(αr + 1− α), and we note r(v, w) = s+v2

s+w2 .

The Rényi divergence of order α > 1 between (N (0, s+v2) and N (0, s+w2) is given by Dα(N (0, s+v2),N (0, s+w2)) =
1

2(α−1)f(r(v, w)). We note rmax = sup|v−w|≤∆ r(v, w), rmin = sup|v−w|≤∆ r(v, w). We study the function f :

f ′(r) = α

(
1

r
− 1

αr + 1− α

)
.

f ′(r) ≤ 0 if r ∈ (1− 1/α, 1) and else f ′(r) ≥ 0. This means that sup|v−w|≤∆ f(r(v, w)) = max{f(rmax), f(rmin)}.

Now, we compute rmax and rmin. We first observe that rmax = 1/rmin. Writing v = w + x, and |x| ≤ ∆, we have
r(w + x,w) = s+(w+x)2

s+w2 . Also, rmax is obtained for v = w +∆, and w positive. In fact, if w < 0, for x ∈ R such that

|x| ≤ ∆, r(w + x,w) = r(−w − x,w) ≤ r(−w +∆, w). We derivate: d
dw r(w +∆, w) = 2∆ s−w∆−w2

(s+w2)2 , which has two

roots. We note wmax = 1
2 (
√
∆2 + 4s−∆), which verifies wmax +∆ = s/wmax. Then,

rmax =
s+ (wmax +∆)2

s+ w2
max

=
s+ (s/wmax)

2

s+ w2
max

=
s

w2
max

=
2s

2s+∆2 −∆
√
∆2 + 4s

.

Then, we investigate max{f(x), f(1/x)} for x ∈ (1, α/(α− 1)):

Let, for x ∈ (1, α/(α− 1)), g(x) = x1−2α − α+(1−α)x
αx+1−α . Then,

g′(x) = (1− 2α)x−2α − (1− α)(αx+ 1− α)− α(α+ (1− α)x)

(αx+ (1− α))2
= (1− 2α)

(
x−2α − 1

(α+ (1− α)x)2

)
.

Given that α > 1, x 7→ xα is convex on (1, α/(α − 1)), xα ≥ 1 + αx > αx + 1 − α, and, by monotonicity, x−2α ≤
1

(α+(1−α)x)2 . Then, g′(x) ≥ 0.

Also, g(0) = 0. Therefore, for x ∈ (1, α/(α− 1)), g(x) ≥ 0. By monotonicity of the logarithm,

(1− 2α) log(x) ≥ log

(
α+ (1− α)x

αx+ 1− α

)
=⇒ f(1/x) ≥ f(x).

Then, the supremum of the Rényi divergence attained for r = rmin and is given by:

sup
|v−w|≤∆

Dα(N (0, s+ v2),N (0, s+ w2)) =

{
1

2(α−1) (α log(rmin)− log(αrmin + 1− α)) if s ≥ α(α− 1)∆2,

+∞ else,

where rmin =
2s+∆2 −∆

√
∆2 + 4s

2s
.

Performing an asymptotic expansion, we recover convergence rates for the Rényi divergence:
Proposition B.1 (Rényi divergence rate of convergence – univariate case).

sup
|v−w|≤∆

Dα(N (0, σ2
θd+ v2),N (0, σ2

θd+ w2)) =
α∆2

4dσ2
θ

+ o(d−1).
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Proof. Note s = σ2d. We first compute an asymptotical expansion of rs,∆.

rs,∆ =
2s+∆2 −∆

√
∆2 + 4s

2s
= 1 +

∆2

2s
− ∆√

s

√
∆2

4s
+ 1 = 1 +

∆2

2s
− ∆√

s
+ o(1).

Also, we have α log(1 + r) − log(1 + αr) = α(r − r2/2 + o(r2)) − (αr − (αr)2/2 + o(r2)) = α(α−1)
2 r2 + o(r2).

Combining both expansions,

1

2(α− 1)
(α log(rs,∆)− log(αrs,∆ + 1− α)) =

α∆2

4d
+ o(d−1).

Rényi divergence between Gaussian matrices.

Now, we compute an upper bound of sup∥v−w∥≤∆ Dα(
√
sG+ vZ,

√
sG+ wZ).

Lemma B.6 (Upper bound of Rényi divergence between Gaussian variables with same mean and different variance). Let
G ∈ Rn×l, G ∈ Rd×l be Gaussian matrices, and v, w ∈ Rn×d. Then,

sup
∥v−w∥≤∆

Dα(
√
sG+ vZ,

√
sG+ wZ) ≤

{
nl

2(α−1) (α log(rs,∆)− log(αrs,∆ + 1− α)) if s ≥ α(α− 1)∆2,

+∞ else,

where rs,∆ =
2s+∆2 −∆

√
∆2 + 4s

2s
.

Proof. Because vZ is composed of independent columns, we can write Dα(
√
sG + vZ,

√
sG + wZ) = lDα(

√
sG1 +

vZ1,
√
s1 + wZ1). Noting Σv = sIn + vvT , Σw = sIn + wwT , we reduce to the problem:

Dα(sG+ vZ, sG+ wZ) = lDα(N (0,Σv),N (0,Σw)).

Σv is positive definite and admit a square root. We note Mv,w = Σ
−1/2
v ΣwΣ

−1/2
v , and note λ1, . . . , λn its eigenvalues.

Then, by invariance of Rényi divergence my invertible matrix multiplication, the Rényi divergence can be written:

Dα(N (0,Σv),N (0,Σw)) = Dα(N (0, In),N (0,Mv,w)) =
1

2(α− 1)
(α log(det(Mv,w)− log(αMv,w + 1− α))

=
1

2(α− 1)

n∑
k=1

α log(λk)− log(αλk + 1− α)

=

n∑
k=1

Dα(N (0, 1),N (0, λk)).

Now, we prove that for all k ∈ J1, nK, λi ∈ (rs,∆, 1/rs,∆). We note S = v − w. Any eigenvalue λ of Mv,w can be written
(with a change of variable x 7→ Σ−1/2x):

λ =
xTΣwx

xTΣvx
,

where x is an eigenvector associated to λ. We have: Σw = sIn+wwT = sIn+(v+S)(v+S)T = Σv+vST +SvT +SST .

Then,

λ− 1 =
xT (Σv + vST + SvT + SST )x

xTΣvx
− 1 =

2⟨STx, vTx⟩+ ∥STx∥2
s∥x∥2 + ∥vTx∥2 .

The condition ∥S∥ ≤ ∆ gives ∥STx∥2 ≤ σmax(S)
2∥x∥2 ≤ ∆2∥x∥2. Cauchy-Schwarz inequality yields ⟨STx, vTx⟩ ≤

∥vTx∥∥STx∥ ≤ ∆∥vTx∥∥x∥, and

λ ≤ 1 +
2∆∥vTx∥∥x∥+∆2∥x∥2

s∥x∥2 + ∥vTx∥2 ≤
s+

(
∥vT x∥
∥x∥ +∆

)2
s+

(
∥vT x∥
∥x∥

)2 ≤ sup
v∈R

s+ (v +∆)2

s+ v2
≤ 1/rs,∆,
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using the analysis from Lemma B.5.

Then, leveraging Lemma B.5, we find:

sup
∥v−w∥≤∆

Dα(
√
sG+ vZ,

√
sG+ wZ) ≤ nlDα(N (0, s+ v2s,∆),N (0, s+ (vs,∆ +∆)2)),

with vs,∆ = 1
2 (
√
∆2 + 4s−∆), concluding the proof.

Note that there is no reason for this bound to be optimal. In fact, we leverage a upper bound of the eigenvalues of Mv,w

individually instead of directly analyzing:

sup
∥v−w∥≤∆

n∑
k=1

Dα(N (0, 1),N (0, λk)).

Performing the same asymptotical analysis as Proposition B.1, we recover the following upper bound for the Rényi
divergence:

Proposition B.2 (Rényi divergence rate of convergence – multivariate case).

sup
|v−w|≤∆

Dα(σθ

√
d− nG+ vZ, σθ

√
d− nG+ wZ) ≤ αnl∆2

4(d− n)σ2
θ

+ o(d−1).

Methodology of experiments — releasing one output.

Let v, w ∈ R1×d. We give a result more precise than Theorem 4.3. By Theorem 4.3, there exists C∥v∥,∥w∥ > 0 such that for
all α ∈

(
C∥v∥,∥w∥/d, 1− C∥v∥,∥w∥/d

)
:

G̃Λ(σθ,d,∥v∥,∥w∥)

(
α+

C∥v∥,∥w∥

d

)
− C∥v∥,∥w∥

d
≤ T (V Z,WZ)(α),

Here, the constant C∥v∥,∥w∥ is not universal but depends on v and w. C∥v∥,∥w∥ = max{A∥v∥, A∥w∥} is given by Proposi-
tion 4.3. A∥v∥ and A∥w∥ both depend on a universal constant, derived from Theorem 4.2, that we set to 1 for our experiments.

We note A∥v∥ =
(
9− 6

(1+dσ2
θ/∥v∥2)2

)
.

Based on Lemma B.5, the Rényi divergence Dα(N (0, σθd+ ∥v∥2),N (0, σθd+ ∥w∥2)) is maximized by setting vd,∆ :=
∥v∥ = 1

2 (
√
∆2 + 4σθd − ∆), wd,∆ := ∥w∥ = 1

2 (
√
∆2 + 4σθd + ∆). Then, the ratio of the variances r satisfies

r =
σθd+v2

d,∆

σθd+w2
d,∆

< 1. Leveraging Proposition 4.1, for α ∈ (0, 1), we consider the trade-off function:

G̃Λ(σθ,d,vd,∆,wd,∆)(α) = 2Φ

(
σθd+ v2d,∆
σθd+ v2d,∆

Φ−1 (1− α/2)

)
− 1.

Our objective is to estimate the Rényi divergence derived from the following trade-off function:

h(α) = max

T (V,W )(α),

2Φ
(

σθd+v2
d,∆

σθd+v2
d,∆

Φ−1
(
1− α/2− Cvd,∆,wd,∆

/2d
))

− 1 +
Cvd,∆,wd,∆

d ,

where we set, by abuse of notation:

Φ

(
σθd+ v2d,∆
σθd+ v2d,∆

Φ−1
(
1− α/2− Cvd,∆,wd,∆

/2d
))

−1+
Cvd,∆,wd,∆

d
:= 0 if α ∈ (0, Cvd,∆,qd,∆/d)∪(1−Cvd,∆,wd,∆

/d, 1).

The constant Cvd,∆,wd,∆
is equal to Cvd,∆,wd,∆

= max{Avd,∆ , Awd,∆
} =

(
9− 6

(1+dσ2
θ/v

2
d,∆)2

)
.
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Now, we can numerically estimate lα(h).

As discussed in Section 4.3, for d large enough, there exist 0 < c1 < c2 < 1 such that:

h(α) =

T (V,W )(α) if α ∈ (0, c1) ∪ (c2, 1),

2Φ
(

σθd+v2
d,∆

σθd+v2
d,∆

Φ−1
(
1− α/2− Cvd,∆,wd,∆

/2d
))

− 1 +
Cvd,∆,wd,∆

d if α ∈ (c1, c2).

We numerically compute c1 and c2 with the scipy.optimize.brentq method, with the smallest possible tolerance
tol = 4*np.finfo(float).eps ≈ 10−15, which is negligible compared to the other quantities of the experiment.
Φ and Φ−1 are respectively computed with the methods scipy.stats.norm.cdf and scipy.stats.norm.ppf.
We compute the derivative:

h′(α) =


−ϕ(Φ−1(1−α)−∆/σθ)

ϕ(Φ−1(1−α)) if α ∈ (0, c1) ∪ (c2, 1),

−σθd+v2
d,∆

σθd+v2
d,∆

ϕ

(
σθd+v2

d,∆

σθd+v2
d,∆

Φ−1(1−α/2−Cvd,∆,wd,∆
/2d)

)
ϕ(Φ−1(1−α/2−Cvd,∆,wd,∆

/2d))
if α ∈ (c1, c2).

Then, we estimate lα(h) using a Monte Carlo algorithm. We set σθ = 1. We set the number of samples L = 5× 105. We
draw M = 50 times (Xk,k′)1≤k≤L,1≤k′≤M

iid∼ Unif([0, 1]). Then, we run the procedure and the estimates are averaged:

l̃α(h) =
1

M(α− 1)

M∑
k=1

log
1

L

L∑
k′=1

|h′(Xk,k′)|1−α.

We repeat the process for different values of d and ∆. For each configuration, we compute the empirical standard variation
of the averaged estimates:

S̃α(h) =
1√

M − 1

√√√√ M∑
k=1

(
1

α− 1
log

(
1

L

L∑
k′=1

|h′(Xk,k′)|1−α

)
− l̃α(h)

)2

Standard variations are not shown in Figure 2 as they are too small to be distinguishable (they are about 50 times lower than
the corresponding averages).

Methodology of experiments — releasing multiple outputs.

Let v, w ∈ Rn×d. By Theorem 4.6, There exists a universal constant C > 0 such that for all α ∈(
Cn
√

l
d−n , 1− Cn

√
l

d−n

)
:

T
(
σθ

√
d− nG+ vZ, σθ

√
d− nG+ wZ

)(
α+ Cn

√
l

4(d− n)

)
− Cn

√
l

d− n
≤ T (V Z,WZ)(α).

We take C = 1 for our experiments. The left trade-off function is not simple to compute for general values of v and w (see
Lemma B.3). However, by independence of rows in σθ

√
d− nG+ vZ,

T
(
σθ

√
d− nG+ vZ, σθ

√
d− nG+ wZ

)
= T

(
σθ

√
d− nG1 + vZ1, σθ

√
d− nG1 + wZ1

)⊗l

.

By Lemma B.6 the associated Rényi divergence can be upper bounded by a choice of v∗ = vd−n,∆In,d, with vd−n,∆ =
1
2 (
√
∆2 + 4σθ(d− n)−∆), w∗ = (vd−n,∆ +∆)In,d. Note that ∥v − w∥ = n∆, so the upper bound may not be tight.

We denote Φχ2
nl

as the trade-off function of a chi-squared random variable with nl degrees of freedom. Then, we consider
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the following trade-off function:

T
(
σθ

√
d− nG1 + v∗Z1, σθ

√
d− nG1 + w∗Z1

)⊗l

=T
(
σθ

√
d− nG1 + vd−n,∆In,dZ1, σθ

√
d− nG1 + (vd−n,∆ +∆)In,dZ1

)⊗l

=T
(
σθ

√
d− nG1,1 + vd−n,∆Z1,1, σθ

√
d− nG1,1 + (vd−n,∆ +∆)Z1,1

)⊗nl

=Φχ2
nl

(
σ2
θ(d− n) + v2d−n,∆

σ2
θ(d− n) + (vd−n,∆ +∆)2

Φ−1
χ2
nl
(1− α)

)
,

which is obtained from Lemma B.3. Let the trade-off function:

h(α) = max

{
T (V,W )(α),

Φχ2
nl

(
σ2
θ(d−n)+v2

d−n,∆

σ2
θ(d−n)+(vd−n,∆+∆)2

Φ−1
χ2
nl

(
1− α− Cn

√
l

d−n

))
− Cn

√
l

d−n .

For d large enough, there exist 0 < c1 < c2 < 1 such that:

h(α) =

{
T (V,W )(α) if α ∈ (0, c1) ∪ (c2, 1),

Φχ2
nl

(
σ2
θ(d−n)+v2

d−n,∆

σ2
θ(d−n)+(vd−n,∆+∆)2

Φ−1
χ2
nl

(
1− α− Cn

√
l

d−n

))
− Cn

√
l

d−n if α ∈ (c1, c2).

With the same method as the one output case, we numerically compute c1 and c2. Then, we compute the derivative:

h′(α) =


−ϕ(Φ−1(1−α)−∆/σθ)

ϕ(Φ−1(1−α)) if α ∈ (0, c1) ∪ (c2, 1),

− σ2
θ(d−n)+v2

d−n,∆

σ2
θ(d−n)+(vd−n,∆+∆)2

ϕ
χ2
nl

(
σ2
θ(d−n)+v2

d−n,∆

σ2
θ
(d−n)+(vd−n,∆+∆)2

Φ−1

χ2
nl

(
1−α−Cn

√
l

d−n

))
ϕ
χ2
nl

(
Φ−1

χ2
nl

(
1−α−Cn

√
l

d−n

)) if α ∈ (c1, c2),

where ϕχ2
nl

is the density of a chi-squared random variable with nl degrees of freedom. The functions Φχ2
nl

, Φ−1
χ2
nl

and ϕχ2
nl

are respectively computed with the methods scipy.stats.chi2.cdf, scipy.stats.chi2.ppf and
scipy.stats.chi2.cdf. Using the same Monte Carlo procedure as above, we can now compute the averaged
empirical estimates with M = 50 repetitions and L = 5× 105 samples. We set l = 10 and n = 1, and we report in Figure 3
the estimated Rényi divergence for multiple values of d and ∆. As in the one-dimensional output case, standard variations
are not shown in Figure 3 as they are too small to be distinguishable (they are about 20 times lower than the corresponding
averages).
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