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Abstract
We propose Adam-mini, an optimizer that
achieves on-par or better performance than
AdamW with 45% to 50% less memory footprint.
Adam-mini reduces memory by cutting down the
learning rate resources in Adam (i.e., 1/

√
v). We

find that ≥ 90% of these learning rates in v could
be harmlessly removed if we (1) carefully parti-
tion the parameters into blocks following our pro-
posed principle on Hessian structure; (2) assign
a single but good learning rate to each parameter
block. We further find that, for each of these pa-
rameter blocks, there exists a single high-quality
learning rate that can outperform Adam, provided
that sufficient resources are available to search
it out. We then provide one cost-effective way
to find good learning rates and propose Adam-
mini. Empirically, we verify that Adam-mini per-
forms on par or better than AdamW on various
language models sized from 125M to 7B for pre-
training, supervised fine-tuning, and RLHF. The
reduced memory footprint of Adam-mini also al-
leviates communication overheads among GPUs,
thereby increasing throughput. For instance,
Adam-mini achieves 49.6% higher throughput
than AdamW when pre-training Llama2-7B on
2× A800-80GB GPUs, which saves 33% wall-
clock time for pre-training. Our implementa-
tion of Adam-mini is available at https://
github.com/zyushun/Adam-mini.

1. Introduction
Adam(W) (Kingma & Ba, 2014; Loshchilov & Hutter, 2017)
has become the de-facto optimizer for training large lan-
guage models (LLMs) (e.g., (Vaswani et al., 2017; Achiam
et al., 2023; Touvron et al., 2023; Team et al., 2023)). De-
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spite its superior performance, Adam is expensive to use.
Specifically, Adam requires the memory for its optimizer
states: the first-order momentum m, and the second-order
momentum v. These in total take at least 2× the memory of
the model size1. This memory consumption has become a
major burden in LLM training. For instance, to train a 7B
model, Adam alone requires about 56 GB per card for m and
v, and with the gradients included, a total of 86 GB is needed.
This is expensive even for cutting-edge graphics cards (e.g.,
A100-80GB). To support the high-memory algorithm, CPU-
offload and sharding (Rajbhandari et al., 2020) must be used
in practice, which unfortunately increases the latency and
slows down the training (Rajbhandari et al., 2021). The
situation further deteriorates when training larger models
like PaLM with 540B parameters (Chowdhery et al., 2023).
In this case, Adam alone occupies more than 50 GPUs and
becomes a major overhead for pre-training.

It is intriguing to design effective optimizers that require
less memory. First, the reduction in memory can ease the
burden of CPU offloading and alleviate the need to shard
model parameters. Both of these reduce the communication
among GPUs and CPUs, which in turn, can enhance the
throughput and accelerate the training process. Second, it
allows practitioners to use fewer GPUs to train a model with
a desired size, leading to substantial savings in both cost
and energy. Third, it lowers the threshold of training LLMs
and encourages participation from more researchers with
limited GPU resources.

It is challenging to modify Adam without sacrificing its
performance. One primary reason is that we still lack under-
standing of the role of Adam’s m and v (Zhang et al., 2020;
Kunstner et al., 2023). It remains uncertain which compo-
nents in Adam are indispensable for superior performance,
and conversely, which components could be re-designed or
improved. One notable attempt is Adafactor (Shazeer &
Stern, 2018), which cuts down memory by low-rank fac-
torization on v. However, Adafactor is widely reported to
suffer degenerated performance in LLM training (e.g. (Luo
et al., 2023)). One possible reason is that the current v in
Adam is crucial for effectiveness and cannot be reduced

1We restate the update rules of Adam and AdamW in Appendix
D.
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Figure 1: Results for Llama2-7B pre-training. (a) Adam-mini takes less memory and can reach higher throughput (# tokens
per second). The throughput is tested on 2× A800-80GB GPUs. (b, c) Adam-mini performs on-par with AdamW, but takes
33% less time for processing the same # tokens.

without compromising performance. This is possible as
most existing Adam variants that attempt to modify v to
varying extents have been reported to perform worse than
Adam (Orabona, 2020). Another possible reason is that
there is potential to cut down v, but Adafactor did not use
the most suitable way: matrix factorization is a generic ap-
proach that could be applied broadly, but it does not leverage
much problem-specific structure, thus it does not work well
on specific neural-net tasks.

In this work, we find it is possible to significantly reduce
the usage of v. Currently, Adam’s v assigns an individual
learning rate for each parameter, i.e., i-th parameter receives
learning rate η√

vi
, where vi is the i-th component of v. For

a billion-sized model, Adam designs billions of learning
rates. We argue that it is possible to achieve on-par or better
performance with much fewer learning rate resources. We
notice that Transformer’s Hessian has a near-block-diagonal
structure consisting of different sizes of dense sub-blocks.
We find that, for each of these dense sub-blocks, there exists
a single high-quality learning rate that outperforms Adam,
provided that we have enough resources to search it out.
Since the number of dense sub-blocks is much fewer than the
number of parameters, our findings imply that it is possible
to achieve good performance with much fewer learning rates.
The remaining question is how to find them efficiently.

We then propose a cheap and simple way to find good learn-
ing rates that are sufficient to perform on-par or better than
Adam. We introduce the proposed design principle here:
we first partition the gradient vector into B sub-vectors ac-
cording to the dense Hessian sub-blocks, and call it gb for
b = [B]. For each gb, we calculate the quantity below.

vb = (1− β2) ∗ mean(gb ◦ gb) + β2 ∗ vb, b = 1, · · ·B

We then use η/
√
vb as the learning rate for the parame-

ters associated with gb. We call the corresponding method
Adam-mini. As a result, Adam-mini changes almost all
Adam’s v to a handful of scalars and thus significantly re-
duce the memory cost. We summarize our main contribution
as follows.

• New optimizer. We propose a new optimizer called

Adam-mini. First, Adam-mini partitions the model pa-
rameters based on the principle we established upon the
Hessian structure. Then, it chooses a single learning rate
for each block using the average of Adam’s v in that block.
Adam-mini has the following advantages.

– Lightweightness: By design, Adam-mini largely
reduces the number of learning rates used in Adam.
For mainstream LLMs, Adam-mini could cut down
≥ 90% proportion of Adam’s v, which saves 45% to
50% of the memory cost of Adam.

– Effectiveness: Despite the memory cut down, we
empirically verify that Adam-mini performs on par
or even better than AdamW on various language
models sized from 125M to 7B, including pre-
training, supervised fine-tuning (SFT), and reinforce-
ment learning from human feedback (RLHF). Adam-
mini also achieves better performance on non-LLM
tasks such as training diffusion models, vision mod-
els, and graph neural networks.

– Efficiency: Adam-mini can reach higher throughput
than AdamW. We observe that Adam-mini reaches
49.6% higher throughput of AdamW when pre-
training Llama2-7B on 2× A800-80GB, which saves
33.1% wall-clock time for pre-training. The effi-
ciency comes from two factors. First, Adam-mini
does not introduce extra computation in per-step up-
dates. Second, the memory cut-down allows larger
batch sizes per GPU, and at the same time, it eases
the burden of communication among GPUs, which
is usually a major overhead.

• Partition principle. A key component in Adam-mini is
the strategy for parameter partition. We propose to par-
tition parameters based on the smallest dense sub-block
in Hessian. This principle can apply to generic problems:
for problems with block diagonal structure, we find that
more learning rates do not necessarily bring extra gain.
In particular, for the problem associated with each dense
sub-block, a single (but good) learning rate suffices to
bring better performance.

• Hessian structure of Transformers. We empirically
apply the above principle to Transformers. We find that
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(a) Transformer from (Zhang et al.,
2024)

(b) MLP from (Collobert,
2004)

(c) MLP from (Roux et al.,
2007)

(d) MLP from (Martens
& Grosse, 2015)

Figure 2: The Hessian of neural nets have near-block-diagonal structure. This is widely reported in the literature on
Transformers (a) and various multi-layer perceptrons (MLPs) (b)(c)(d).
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(d) Sub-problem loss

Figure 3: (a): The Hessian of a three-block random quadratic problem. (b): Training curves for the problem associated with
the full Hessian in (a). The optimal single (blockwise) learning rate is chosen based on the full (blockwise) Hessian in (a).
(c): The 1st dense Hessian sub-blocks in (a). (d): Training curves for the new problem associated with the Hessian in (c).

Transformer Hessian’s smallest dense blocks are: Query
and Key (by heads); Value and Projection (as a whole);
and MLP (by layer). We emphasize that our Hessian-
based partition principle is crucial for good performance.
In contrast, naive or default partitions would oversimplify
the problem and cause training instability on LLMs.

2. Method
2.1. Motivations and Observations
Now we discuss our observations that motivate the design
of Adam-mini. We start by investigating the role of Adam’s
v and explore possibilities for improvement. In Adam, v
provides an individual learning rate for each parameter, i.e.,i-
th parameter receives the learning rate η√

vi
, where vi is the

i-th component of v. Recently, Zhang et al. (2024) pointed
out that such design is crucial because Transformers need
different learning rates for different blocks. They provide
two pieces of evidence: First, the Hessian of Transformers
and various neural nets are near-block-diagonal (restated
in Figure 2). Second, for Transformers, each block has
a dramatically different eigenvalue distribution (restated
in Appendix D.2). As such, Transformers need different
learning rates for different blocks to handle the eigenvalue
heterogeneity. This could be provided by Adam’s v.

The findings in (Zhang et al., 2024) suggest that it is neces-
sary to use a different learning rate for each block. Nonethe-
less, Adam does much more than that: it assigns an indi-

vidual learning rate not just for each block, but for each
parameter. Note that the number of parameters (could be
billions) is much larger than the number of blocks (usually
hundreds). This begs the question:

Is it necessary to use an individual learning rate for each
parameter? If not, how much can we save?

We first explore this question on generic optimization prob-
lems and then discuss Transformers. Following the find-
ings in Figure 2, we conduct a case study on random
quadratic minimization problem with block-diagonal Hes-
sian. We visualize the Hessian in Figure 3 (a) and rele-
gate the detailed setup in Appendix E.2. We conduct the
coordinate-wise learning-rate method, i.e., Adam, and the
single-learning-rate method, i.e., gradient descent (GD). We
choose quadratic minimization because the optimal learning
rate has a close form. We have the following findings.

• (1): as shown in Figure 3 (a) and (b), Adam outperforms
the optimal single-learning-rate method. This is expected
since Adam deploys different learning rates to different
parameters.

• (2): as shown in Figure 3 (c) and (d), we consider a
new problem whose Hessian is a dense sub-block of (a).
We consider the optimal single learning-rate method for
this new problem and find it outperforms Adam, even
though Adam assigns much more learning rates. Similar
phenomena apply to all the three sub-blocks of (a).
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(a) Query (4 heads) (b) Key (4 heads) (c) Value (4 heads)
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Figure 4: (a,b,c): The Hessian of different parameter blocks in a 4-layer Transformer at initialization. More figures in other
blocks and detailed setup are shown in Appendix D.3 and E.2. (d) Training curves on TinyLlama-1B. When using the
PyTorch default partition, Adam-mini could suffer loss spikes. The spike disappears when we change the partition strategy
to Algorithm 2.

• (3): If we collect these optimal learning rates in (2) and
apply them to a “blockwise” version of GD, it would be
faster than Adam on the original problem (the green line
in Figure 3 (b)).

In summary, for generic problems with block-diagonal Hes-
sian, more learning rates do not necessarily bring extra gain.
In particular, for each dense sub-block, a single (but good)
learning rate suffices to bring better performance than
using tens or hundreds more. Why would this happen? One
possible explanation is the following. Adam can be viewed
as a diagonal preconditioned method, but it may not be
a good preconditioner and thus cannot effectively reduce
the condition number of the dense sub-matrix (Forsythe &
Straus, 1955; Young, 1954; Sun & Ye, 2021).

We also observe the similar phenomena on Transformers.
For a small Transformer, we find that: block-wise learning
rate methods can outperform Adam, given sufficient grid
search to find the good learning rates. Due to the space
constraint, we relegate these results to Appendix A.

To summarize all the phenomena above, we find that: for
Transformers, it is possible to reach similar or better per-
formance with much fewer learning rates than Adam. The
remaining issue is how to find them without grid-search.
Following this finding, in the next part, we propose a simple
and cost-effective method called Adam-mini, which could
bring comparable or even better performance than Adam,
but with 90% to 99% fewer learning rates.

2.2. Proposed Method: Adam-mini
Based on the discussion above, we propose Adam-mini in
Algorithm 1. Adam-mini aims to cut down the learning
rate resources in Adam without laboriously grid-searching
the learning rates as in Section 2.1. Adam-mini consists of
two steps. Step 1 is only required at the initialization.

Step 1-1. We partition the model parameters into blocks.
For Transformers, we use Algorithm 2: “Partition for Trans-

formers”, which partitions all Querys and Keys by heads
and uses the default PyTorch partition for the rest. For other
networks, we use the default PyTorch partition, and we
call it Algorithm 3: “Partition for non-Transformers”. We
discuss its design principle later in Section 2.3.

Step 1-2. We choose embd blocks using Algorithm
4. For Transformers, it includes the embedding layer and
output layer. For other networks, no parameters will be
chosen.

Step 2. For each parameter block that is outside the
embd blocks, we use a single learning rate. To efficiently
choose a suitable learning rate in each block, Adam-mini
simply replaces g ◦ g in vanilla Adam by its mean value.
We adopt the moving average on these mean values as in
Adam.

A simple example. We use a simple example to illustrate the
key design of Adam-mini. For a problem with 5 parameters
w ∈ R5, Adam and Adam-mini both perform w = w−u◦m,
where m is the 1st-order momentum and u has different
forms as follows:

• For Adam: uAdam =
(

η√
v1
, η√

v2
, η√

v3
, η√

v4
, η√

v5

)
.

• For Adam-mini: suppose the partition is (1, 2, 3) and
(4, 5) then

umini =

(
η√
v123

,
η√
v123

,
η√
v123

,
η√
v145

,
η√
v45

)
where v123 = (v1 + v2 + v3)/3 and v45 = (v4 + v5)/2.

Note that the number of effective elements umini equals #
blocks, which could be significantly smaller than that of
uAdam, which equals # parameters. For LLMs, we will show
that this would free ≥ 90% elements in v.

Remark on the “embd blocks”. For Transformers,
“embd blocks” refer to the embedding layer and output
layer. Here, we explain why Step 2 does not apply to these
blocks. This is because these blocks do not reconcile with
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the average operation in Step 2: By design of the embedding
layer, many rows will be zero if the tokens corresponding
to these rows do not appear in the current data minibatch.
In other words, the only non-zero row is the row that rep-
resents the current input word (Press & Wolf, 2016). As
such, taking an average over the entire embedding layer will
absorb a significant amount of zeros, which leads to highly
biased learning rates. A similar argument also applies to the
output layer. In Figure 6 (a), we show that removing the
embd blocks causes training instability (see the curve
labeled as “Adam-mini (embd blocks removed)”).

Algorithm 1 Adam-mini in Pytorch style

1: Input weight-decay coefficient λ and
current step t

2: Choose param blocks from
Algorithm 2 or 3

3: Choose embd blocks from
Algorithm 4

4: for name, param in param blocks do
5: g = param.grad
6: param = param - ηt ∗ λ∗ param
7: m = (1− β1) ∗ g+ β1 ∗ m
8: m̂ = m

1−βt
1

9: if param in embd blocks then
10: v = (1− β2) ∗ g ◦ g+ β2 ∗ v
11: else
12: v = (1− β2) ∗ mean(g ◦ g) + β2 ∗ v
13: end if
14: v̂ = v

1−βt
2

15: param = param - ηt * m̂√
v̂+ϵ

16: end for

Algorithm 2 Partition for Transformers

1: param blocks = {}
2: for name, param in parameters do
3: if name is Query or Key then
4: Partition param by heads as

param[0..heads-1]
5: for i = 0...heads-1 do
6: param blocks[name+i]=param[i]
7: end for
8: else
9: param blocks[name]=param

10: end if
11: end for
12: Return param blocks

Algorithm 3 Partition for non-Transformers

1: param blocks = {}
2: for name, param in parameters do
3: param blocks[name]=param
4: end for
5: Return param blocks

Algorithm 4 Get embd blocks

1: if Transformer then
2: Return [Embedding layer,

Output layer]
3: else
4: Return []
5: end if

2.3. Principle for the Partition Strategy
We now discuss how to choose the parameter partition for
Adam-mini. Based on the analysis in Section 2.1, a general
principle is shown in Principle 1 below. Building upon this
principle, we now present the corresponding partitioning
strategy in the context of neural networks.

Principle 1: We should partition parameters into blocks,
s.t., each parameter block is associated with the smallest

dense sub-blocks in Hessian.

Based on the block-diagonal structure reported in the lit-
erature (Figure 2), the default partition in PyTorch would
be a reasonable candidate. In Section 3, we will show that
this partition indeed works well widely on non-Transformer
tasks such as ResNet, diffusion model, and graph models.
We show this strategy in Algorithm 3: “Partition for non-
Transformers”.

Unfortunately, we find that the default PyTorch partition
does not always work well on Transformers. In particular,
we find that Adam-mini encounters training instability on
1B models (see Figure 4 (d)). We suspect this is because the
default PyTorch partition did not fully capture the Hessian
structure. To find out, we explore the Hessian of a 4-layer
Transformer as in Figure 8. Under the default PyTorch parti-
tion, we compute the exact Hessian at initialization for each
parameter block (or equivalently, the principal sub-blocks
in the whole Hessian). We report some representatives in
Figure 4 and relegate the others in Appendix D. We find
there are two classes of Hessian sub-blocks.

• Class 1: Similar to the whole Hessian, the Hessian sub-
block itself further has a block-diagonal structure and
consists of smaller dense matrices. This class includes
Query and Key. We empirically find that the number of
small dense sub-blocks equals the number of heads in
multi-head attention.

• Class 2: The Hessian sub-blocks have dense structures
and cannot be further partitioned into smaller ones. This
class includes Value, attention projection, and MLP lay-
ers. Note that the Hessian structure of Value is different
from that of Query and Key, although they all consist of
four heads. This is probably because Value is positioned
outside the softmax operator in the self-attention design,
while Query and Key are not.

Based on above findings, we find the default Pytorch par-
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tition is indeed not the best fit for Transformers: Querys
and Keys can be further partitioned into different blocks
by head. By Principle 1, different heads should belong to
different blocks. Intuitively, different heads play a different
role in understanding tokens, thus it seems reasonable that
they require distinct learning rates.

We then introduce the resulting Algorithm 2: “Partition for
Transformers”, which partitions Querys and Keys by heads.
This procedure follows the principle based on the smallest
Hessian sub-blocks. As shown in Figure 4 (d). This strategy
indeed stabilizes the training and boosts the performance.

2.4. Some Characteristics of Adam-mini
Memory cut down. By design, for Transformers, Adam-
mini reduces the number of learning rates from the number
of total paramters to the sum of the size of embedding layer,
the size of output layer, and the number of blocks in other
layers according to our procedure to partition Transformers.
Thus, the proportion of reduced memory depends on the
fraction of non-embedding parameters in the model. On
Llama2-7B, this fraction is 96.2%. For mainstreamed LLMs,
this fraction is usually ≥ 90% (see a summary in Table
5 in Appendix D). Note that this fraction monotonically
approaches 100% as more and more layers are stacked into
the architecture, e.g., for Llama3-70B, this proportion is
99.25%. Thus, Adam-mini could cut down more than 90%
of v, which saves up to 45% to 50% of Adam’s memory.
Table 1: Memory cost of AdamW v.s. Adam-mini on
Llama2-7B. Calculation is based on float32.

Model Optimizer Memory (GB)
GPT2-1.5B AdamW 12.48
GPT2-1.5B Adam-mini 6.56 (47.4% ↓)

TinyLlama-1B AdamW 8.80
TinyLlama-1B Adam-mini 4.92 (44.10% ↓)

Llama2-7B AdamW 53.92
Llama2-7B Adam-mini 28.04 (48.04% ↓)

Table 2: Throughput (↑) test on 2× A800-80GB GPUs for
Llama2-7B pre-training. ✗means out of memory.

Optimizer Micro bs Total bs Throughput (↑)
Adam-mini 4 256 5572.19 (↑ 49.6%)

AdamW 2 256 ✗
AdamW 1 256 3725.59

Higher throughput. Adam-mini can reach a higher
throughput than AdamW, especially under limited hard-
ware resources. There are two reasons. First, Adam-mini
does not introduce extra computation in its update rules.
The averaging operation in Algorithm 1 incurs negligible
cost. Additionally, Adam-mini significantly reduces the
number of tensor-square-root and tensor-division operations
in AdamW. Second, thanks to the memory cut-down, Adam-
mini can support larger batch sizes per GPU, and at the same

time, it reduces the communication among GPUs, which is
known to be a major overhead (Rajbhandari et al., 2021).

Owing to these properties, Adam-mini could reduce the
overall time for pre-training. We provide evidence in Table
2. Here, Micro bs and Total bs denote per-device and total
batch size. When pre-training Llama2-7B on 2× A800-
80GB GPUs, we find Adam-mini could reach 49.6% higher
throughput than AdamW. Recall that throughput refers to
# processed tokens per second, so Adam-mini could save
33.1% time on processing the same amount of tokens for
pre-training.

Has room to improve. Adam-mini designs the learning
rate for each dense Hessian sub-block using the average
of Adam’s v in that block. Such a design achieves cheap
computation, but it might not be optimal. Fortunately, the
current design is sufficient to achieve the same or marginally
better performance than Adam with much less memory. We
believe there is great room to improve the learning rate
design, yet it requires more fine-grained analysis of each
dense Hessian sub-block. We leave it as an important future
direction.

3. Experiments
We now verify the efficacy of Adam-mini. We primarily
focus on LLM tasks, including pre-training, supervised fine-
tuning (SFT) and reinforcement learning from human feed-
back (RLHF). We will also evaluate Adam-mini on non-
LLM tasks. All LLM experiments are conducted on four
NVIDIA A800-80GB GPUs and the rest are conducted on
four V100 GPUs. All the experimental details are explained
in Appendix E.1.

3.1. Pre-training
Setups. We pre-train open-sourced LLMs including GPT2
series and Llama series. We train these models on main-
stream English Corpus from scratch. In particular, We
train GPT2 (Radford et al., 2019) series on Openwebtext
(Gokaslan et al., 2019). We train TinyLlama-1B, Llama2-7B
(Touvron et al., 2023) on CommonCrawl 2. We train models
with 2B, 3B, and 25B tokens (as recommended by Chin-
chilla’s law (Hoffmann et al., 2022)). We choose model con-
figurations (e.g. context length) by their standard protocols.
We compare Adam-mini with AdamW as well as popular
memory-efficient methods including Adafactor (Shazeer &
Stern, 2018), CAME (Luo et al., 2023), and SM3(Anil et al.,
2019). For Adafactor and SM3, we incorporate momentum
with β1 = 0.9 to ensure a fair comparison with other meth-
ods. We tune the learning rate for all methods within the
same budget and report the best performance.

Llama series. Figure 5 (a) shows the validation loss
curve for pre-training TinyLlama-1B. The training curve

2https://commoncrawl.org/.
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Figure 5: Training curves of (a) TinyLlama-1B. (b) GPT2-125M. Adam-mini performs on par as AdamW with less memory,
while other methods perform worse on these tasks. (c): Adam-mini seems not sensitive to hyperparameters.
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Figure 6: Training curves of GPT2 pre-training. Adam-mini reaches the same performance as AdamW with less memory.

for Llama2-7B is presented in Figure 1 (c) in Section 1. For
both TinyLlama-1B and Llama2-7B, we find Adam-mini
performs on par with AdamW with less memory.

GPT2 series. Figure 5 (b) shows the validation loss
curve for GPT2-125M and Figure 6 shows the valida-
tion loss curve for GPT2 sized from 330M to 1.5B. We
find that Adam-mini matches the good performance of
AdamW with less memory, while other methods perform
worse. In Figure 5 (b), we further consider Adam-mini
(embd blocks removed), which sets the embd blocks
= ∅. That is, we use one single learning rate for the
whole embedding (output) layer. We find that Adam-mini
(embd blocks removed) performs poorly, as expected from
the analysis in Section 2.1. We stop the trial since it shows
clear unstable behavior.

Sensitivity analysis. On GPT2-125M pre-training task, we
test the sensitivity of Adam-mini to hyperparameters. We
report the validation loss after training with 2.5B tokens.
As shown in Figure 5, Adam-mini seems not sensitive to
hyperparameters.

3.2. Supervised Fine-tuning and RLHF
In this section, we evaluate the effectiveness of Adam-
mini for downstream fine-tuning tasks. Specifically, we
consider two representative tasks: supervised fine-tuning
(SFT) and reinforcement learning from human feedback

(RLHF). We use the Llama-2-7b pretrained model (released
by Meta (Touvron et al., 2023)) for our study. We use
the ultrafeedback dataset3 and implement the RLHF
workflow from (Ouyang et al., 2022). Specifically, we train
an SFT model with 40% of the chosen data and train a re-
ward model using the remaining 60%. Then, we apply the
reinforcement learning algorithm ReMax (Li et al., 2023), a
memory-efficient alternative to PPO (Schulman et al., 2017),
to optimize the preference reward.

We evaluate the alignment performance in terms of chat
ability using the MT-Bench (Zheng et al., 2024), where
GPT-4 assesses multi-turn chatting capabilities and assigns
a score from 0 to 10 (higher is better). Our results, presented
in Table 3, demonstrate that Adam-mini can outperform
AdamW, even though Adam-mini uses a single learning rate
and is more memory-efficient.

Table 3: GPT-4 evaluation score (↑) of SFT and RLHF on
the MT-Bench (Zheng et al., 2024).

SFT (LoRA) SFT RLHF

AdamW Adam-mini AdamW Adam-mini AdamW Adam-mini

MT-Bench 4.23 4.41 5.37 5.40 5.54 5.68

3https://huggingface.co/datasets/argilla/
ultrafeedback-binarized-preferences-cleaned
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Figure 7: Training curves of SFT (LoRA), SFT and RLHF when aligning LLMs. Adam-mini reaches better performance
(smaller perplexity, higher reward) than AdamW with less memory.

3.3. Non-LLM Tasks

We also evaluate Adam-mini on popular non-LLM tasks
including vision and graph tasks. We find that Adam-mini
performs on-par or better than Adam, but with less memory.
We relegate these results to Appendix B.

4. Concluding Remarks
We proposed Adam-mini, an optimizer that saves 45% to
50% memory of Adam. We remark that there is great room
to improve the design of Adam-mini: currently Adam-mini
uses a simple and cost-effective way to design a learning
rate for each dense Hessian sub-block, but it might not be an
optimal way. We leave the development of stronger designs
as a future direction.
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A. More Observations for Motivating Adam-mini
Following the findings in Section 2.1, we now conduct similar experiments for Transformers. We consider a 4-layer
Transformer in the codebase4. Under the default partition by PyTorch, We randomly choose one parameter block as the
“left-out” block and change the coordinate-wise learning rate to a single-learning rate counter-part. We use Adam for the rest
of the blocks. We grid-search the learning rate for the left-out block and apply the cosine decay schedule. We report the best
result and call this method “Adam (leave-one-out)”. Figure 8 shows that Adam (leave-one-out) can reach similar or better
performance than Adam for all randomly picked left-out blocks. A similar phenomenon is also observed when we randomly
leave out up to three blocks and search three learning rates. We cannot afford to leave more blocks out since the cost of grid
search grows exponentially.

To summarize all the phenomena above, we find that: for Transformers, it is possible to reach similar or better performance
with much fewer learning rates than Adam. The remaining issue is how to find them without grid-search. Following this
finding, in the next part, we propose a simple and cost-effective method called Adam-mini, which could bring comparable or
even better performance than Adam, but with 90% to 99% fewer learning rates.
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Figure 8: (a) (b) (c) Adam (leave-x-out) can reach a similar or better performance than Adam for all randomly picked
left-out blocks. x = 1, 2, 3. (d) The performance gap between Adam and Adam (leave-one-out) for all possible blocks. We
find Adam (leave-one-out) always performs on par with Adam, and for most blocks, Adam (leave-one-out) performs better.

B. Adam-mini for Non-LLM Tasks

Table 4: On popular Non-LLM tasks, Adam-mini performs on par or better than AdamW.

Domain Model Optimizer Metric 25% steps 50% steps 75% steps 100% steps
Vision ResNet18 AdamW Test acc (↑) 0.6149 0.6478 0.6613 0.6669
Vision ResNet18 Adam-mini Test acc (↑) 0.6140 0.6501 0.6629 0.6667
Vision Diffusion model AdamW Train loss (↓) 0.0529 0.0497 0.0420 0.0394
Vision Diffusion model Adam-mini Train loss (↓) 0.0525 0.0495 0.0416 0.0388
Graph GAT AdamW Val acc(↑) 0.7277 0.7367 0.7399 0.7421
Graph GAT Adam-mini Val acc (↑) 0.7378 0.7394 0.7403 0.7429
Graph GCN AdamW Val acc (↑) 0.7347 0.7428 0.7379 0.7374
Graph GCN Adam-mini Val acc (↑) 0.7406 0.7427 0.7380 0.7423

We now evaluate Adam-mini on non-LLM tasks. Table 4 shows the results for training ResNet18 on ImagNet; Diffusion
model on CelebA; Graph Convolution Net (GCN), Graph Attention Net(GAT) on OGB-arxiv. We find that Adam-mini
reaches comparable or better performance than AdamW, but with less memory. Detailed setups are shown in Appendix E.1.

C. Related works
Understanding of Adam. There is an active line of works trying to understand why Adam works well (Zhang et al., 2019b;
Wu et al., 2020; Zhang et al., 2022; Wang et al., 2022; Pan & Li, 2023; Jiang et al., 2023; Kunstner et al., 2023; Zhang et al.,

4
https://colab.research.google.com/drive/1SiF0KZJp75rUeetKOWqpsA8clmHP6jMg?usp=sharing
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2024; Ahn et al.). In contrast to these works, we point out that Adam’s v might not function at its full potential as effectively
as we expected: sometimes fewer learning rates can reach the same or better results (due to the dense Hessian sub-blocks).
Our findings might motivate stronger optimizers that better fit the neural-net Hessian structure.

On the Hessian of Neural Nets. Hessian matrix is crucial for the behaviors of gradient methods. There are several important
attempts to study the Hessian of MLPs and CNNs (Collobert, 2004; Roux et al., 2007; Martens & Grosse, 2015; Sagun et al.,
2016; 2017; Chaudhari et al., 2019; Papyan, 2020; Wu et al., 2020; Liao & Mahoney, 2021; Papyan, 2018; 2019; Sankar
et al., 2021; Gur-Ari et al., 2018; Yao et al., 2018; Zhang et al., 2019a; Ghorbani et al., 2019; Yao et al., 2020; Dauphin
et al., 2024). Inspired by these works, we explore the Hessian structure of Transformers and connect it to the behaviors of
Adam. We then find room to improve and propose to slim down Adam into Adam-mini.

Lightweight optimizers for general tasks. There are several attempts to reduce the memory cost of Adam. Adafactor
(Shazeer & Stern, 2018) and its variant CAME (Luo et al., 2023) conduct nonnegative low-rank factorization over Adam’s
v. SM3 (Anil et al., 2019) is a lightweight version of AdaGrad (Duchi et al., 2011). SM3 chooses the learning rate of the
i-th parameter by taking the minimal value in a certain candidate set, and each element in the candidate set is related to the
maximal squared gradient under a predetermined cover. All these aforementioned methods could release almost all memory
for v and save about 48% of Adam’s memory. However, we find that their performance degenerate in various experiments,
while Adam-mini maintains as effective as AdamW (Figure 5).

After completing this work, we noticed two methods that share some of the ideas of Adam-mini: BAGM (Zheng & Kwok,
2019) and NovoGrad (Ginsburg et al., 2019). Both of them use block-wise or layer-wise adaptive learning rates to achieve
robust performance and better generalization. We summarize their key differences with Adam-mini. BAGM partitions
parameters to reach minimal-norm solutions and achieve provable robustness. Based on their theory, the resulting strategy is
that: (I) they used the default PyTorch partition; (II) they did not introduce embd blocks. Although these partition designs
may have benefits on robustness, they overlook the Hessian structure and oversimplify the training problem (as we discussed
in Section 2.2 and 2.3). As a result, these designs will lead to training instability in large-scale experiments. This is evident
in our failed preliminary versions of Adam-mini in Figure 4 (d) and 5 (b). As for NovoGrad, it uses layer-wise learning rate
design, which is coarser than the blockwise design in BAGM and thus would share similar drawbacks to BAGM. Further,
NovoGrad introduces a different design to 1st-order momentum: instead of performing weighted-sum on the past gradients,
it performs weighted-sum on “the current gradient divided by the 2nd-order momentum”. Such design is largely different
from AdamW and Adam-mini. It seems unclear whether such design can work on large-scale tasks like LLMs.

In summary, these two methods have different designs and their partition strategies oversimplify the training problems.
Consequently, they would cause training instability on large-scale experiments as evident in Figure 4 (d) and 5 (b). In
contrast, Adam-mini carefully assigns learning rates following our proposed principle on Hessian structures. Such design
principle is crucial for training stability and it works well on various LLMs including 7B models.

Other orthogonal methods. The idea of Adam-mini can be orthogonally combined with various existing approaches to
gain more merits. For instance, GaLore (Zhao et al., 2024) is a new memory-efficient optimizer for LLMs. Given a gradient
matrix g, GaLore calculates a low-rank gradient estimator ĝ and then calculates m and v based on this ĝ. Adam-mini can
potentially be combined with GaLore to reach further memory reduction on v. The combined method, e.g., “GaLore-mini”,
can further reduce about 40% memory on GaLore and about 81% on AdamW in total.5 Additionally, GaLore-mini can ease
the offload burden and enhance the throughput of GaLore, especially when training on customer-level GPUs with limited
memory. Sophia (Liu et al., 2023) is another recent diagonal preconditioned optimizer. Just as Adam, Sophia requires
memory for m and v. It is possible to combine Adam-mini and Sophia to get “Sophia-mini”, which saves up to 50% of
memory in Sophia. Sophia-mini can also enhance throughput and further speed up Sophia on wall-clock time as in Table 2.

We list more potential combinations here. LoRA (Hu et al., 2021) is a memory-efficient method for SFT tasks. This method
fine-tunes the model via additive low-rank adaptors and uses Adam to update these adaptors. Note that the Adam steps
in LoRA can be replaced by Adam-mini. As a result, Adam-mini brings better performance (Figure 7). In parallel to
our work, BAdam (Luo et al., 2024) conducts SFT in a block-coordinate-descent (BCD) fashion. This method requires
repeated Adam steps to solve the sub-problem in BCD. Similarly as in LoRA, the Adam steps in BAdam can be replaced by
Adam-mini to further reduce memory. Nero optimizer (Liu et al., 2021) also cuts down the memory of Adam. It removes
the 1st-order momentum and uses a neuron-specific projected gradient-style update. According to (Liu et al., 2021), their
design imposes constraints on weight matrices and has the advantage of “balanced excitation and inhibition”. Such design

5These results are calculated based on (Zhao et al., 2024, Table 1). We consider Llama2-7B and r = 1024 in GaLore.
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can potentially be combined with Adam-mini to further boost performance. To save the memory cost for fine-tuning LLMs,
MeZO (Malladi et al., 2023) uses zeroth-order methods to approximate the gradient information. It is possible to combine
this idea with Adam-mini to further save memory for SFT. Adam-mini can also potentially be combined with other diagonal
preconditioned methods (such as AdaGrad(Duchi et al., 2011) and Adan(Xie et al., 2022)) as well as recent schedule-free
optimizers such as SchedulefreeAdamW (Defazio et al., 2024).

There are several other tricks that ease GPU memory burden but are orthogonal to optimizer design. These tricks include
gradient checkpointing (Chen et al., 2016), model offloading and sharding (Rajbhandari et al., 2020; 2021), quantization
(Dettmers et al., 2021; Li et al., 2024), and fused update (Lv et al., 2023a;b). Adam-mini can be implemented upon these
tricks.

Finally, we discuss another popular adaptive optimizer called LAMB (You et al., 2019) (see Algorithm 7 in Appendix D.1).
LAMB might be misunderstood as a similar optimizer to Adam-mini, but actually, it is not. We emphasize that Adam-mini
is significantly different from LAMB. First, LAMB still keeps the same coordinate-wise learning-rate design 1/

√
v as in

Adam. Second, in addition to this 1/
√
v, LAMB further re-scales the parameters in a layer-by-layer fashion. This re-scaling

design is often known as the “layer-wise learning rates”, but to be precise, it is actually an additional “layer-wise scaling”
besides the “coordinate-wise learning rates 1/

√
v”. As a result, LAMB does not save memory over Adam and its overall

design is quite different from Adam-mini. This is understandable because LAMB was designed for large-batch training, not
for memory saving. Numerically, we find that LAMB performs worse than Adam-mini on GPT2 pre-training (Figure 5 (b)).

D. More Results
D.1. Preliminaries on Adam, AdamW and LAMB

We introduce Adam, AdamW, and LAMB in Algorithm 5, 6, and 7. These methods need to track m and v along the training.
Both m and v are vectors of the same size as # model parameter.

Algorithm 5 Adam in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter blocks do
3: g = param.grad
4: if λ > 0 then
5: g = g+ λ ∗ param
6: end if
7: param = param - ηt ∗ λ∗ g
8: m = (1− β1) ∗ g+ β1 ∗ m
9: m̂ = m

1−βt
1

10: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
11: v̂ = v

1−βt
2

12: param = param - ηt * m̂√
v̂+ϵ

13: end for

D.2. Prelimiary results in (Zhang et al., 2024)

We here restate (Zhang et al., 2024, Figure 3). This figure shows that: for Transformers, different parameter blocks have
different Hessian eigenvalue distributions, while for CNNs, the eigenvalue distributions are similar among blocks. This
suggests that Transformers need different learning rates for different blocks to handle the heterogeneity in eigenvalue
distributions.

D.3. More Hessian sub-blocks in Figure 4

In Figure 4, we present the Hessian of Query, Key, Value and MLP proj in the 2nd layer. We now comprehensively provide
Hessian in all attention and MLP blocks in all layers in the 4-layer Transformer used in Figure 4. We plot the Hessian at
initialization. Experimental details can be seen in Appendix E.2. As we can see below, almost all these Hessian sub-blocks
belong to either Class 1 or Class 2. The only exception is the MLP fc block in the 4th layer, which shows a diagonal pattern.
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Algorithm 6 AdamW in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter blocks do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: param = param - ηt * m̂√
v̂+ϵ

10: end for

Algorithm 7 LAMB in Pytorch style

1: Let λ be the weight decay coefficient, let ϕ be a scaling function.
2: for param in all layers do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: r = m̂√
v̂+ϵ

10: param = param - ηt * ϕ(∥param∥)
∥r+λ∗param∥ * r

11: end for

(a) VGG16 (b) BERT

Figure 9: Figure 3 in (Zhang et al., 2024). The eigenvalues distribution are similar among blocks for CNNs, while they
differ significantly across blocks for Transformers. This indicates Transformers need different learning rates for different
blocks to handle the heterogeneity in eigenvalue distributions.
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This begs the question: does Adam significantly outperforms single-learning-rate methods on this diagonal block? We find
the answer is still no. This is because the Hessian eigenvalues in this block is concentrated. We provide evidence in Figure
14. This suggests that the optimization problem in this block is well-conditioned and single-learning-rate methods can work
well. As shown in Figure 14, optimal single-learning-rate still significantly outperforms Adam, similarly as what happens in
other dense blocks. Another evidence lies in Figure 8 (d): when the MLP fc block in the 4th layer is chosen as the left-out
block, Adam (leave-one-out) achieves 0.1416 lower loss than Adam.

(a) Query (4 heads) (b) Key (4 heads) (c) Value (4 heads)

(d) Attn.proj (e) MLP fc (f) MLP proj

Figure 10: The initial Hessian structure of different parameter blocks in the 1st layer.
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(a) Query (4 heads) (b) Key (4 heads) (c) Value (4 heads)

(d) Attn.proj (e) MLP fc (f) MLP proj

Figure 11: The initial Hessian structure of different parameter blocks in the 2nd layer.

(a) Query (4 heads) (b) Key (4 heads) (c) Value (4 heads)

(d) Attn.proj (e) MLP fc (f) MLP proj

Figure 12: The initial Hessian structure of different parameter blocks in the 3rd layer.
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(a) Query (4 heads) (b) Key (4 heads) (c) Value (4 heads)

(d) Attn.proj (e) MLP fc (f) MLP proj

Figure 13: The initial Hessian structure of different parameter blocks in the 4th layer.

(a) Hessian sub-block of MLP fc in the
4th layer.

(b) The eigenvalue distribution
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Figure 14: (a) The Hessian sub-block of MLP fc in the 4th layer. There is a near-diagonal pattern. (b) The eigenvalues
are concentrated in this Hessian sub-block. (c) When taking this matrix as the Hessian of a quadratic function, the optimal
single-learning-rate method outperforms Adam.
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D.4. Embedding Proportion in LLMs

Table 5 shows the proportion of the embedding & output parameters in mainstream LLMs including GPT2 (Radford et al.,
2019), Llama series (Touvron et al., 2023), Phi-3 (Abdin et al., 2024), and Gemma (Team et al., 2024). We find that the
embedding & output layer takes a fairly small proportion of the total parameters, usually ≤ 10%.

Table 5: Proportion of the embedding & output parameters in mainstream LLMs. Note that GPT2 and Gemma use
weight-tying, so the parameters for the embedding & output layers are shared. We find that the embedding & output layer
usually takes ≤ 10% of total parameters.

Model Vocabulary size Embedding
dimension

# Parameters for the
embedding & output layer

# Total parameters Proportion

GPT2-1.5B 50304 1600 50304 * 1600 1.5B 5.17%
TinyLlama-1B 32000 2048 32000*2048*2 1.1B 11.80%

Llama2-7B 32000 4096 32000*4096*2 6.7B 3.80%
Llama2-13B 32000 4096 32000*4096*2 13B 2.02%
Llama2-33B 32000 4096 32000*4096*2 33B 0.79%
Llama2-65B 32000 4096 32000*4096*2 65B 0.40%
Llama3-8B 128256 4096 128256*4096*2 8B 13%

Llama3-70B 128256 4096 128256*4096*2 70B 0.15%
Phi-3 32064 3072 32064*3072*2 3.8B 5.18%

Gemma-7B 256128 3072 256128*3072 8.5B 9.83%

D.5. Further Comparison with Popular Memory-Efficient Optimizers

Similar trajectory to AdamW. As a bonus finding, Adam-mini could generate similar trajectories to that of AdamW,
while other popular memory-efficient methods cannot. We train a 6-layer Transformer sized 11M on Openwebtext and
launch AdamW, Adam-mini, and other memory-efficient optimizers under the same random seed and same learning rate 1e-5.
We save the model weights for every 250 iterations and compare their Euclidean distance to the weights along AdamW’s
trajectory. As shown in Figure 15, the model weights obtained by Adam-mini is close to those by AdamW throughout
training. In contrast, other optimizers deviate from AdamW. This is because Adam-mini makes fewer modifications over
AdamW than other methods.
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Figure 15: On a 6-layer Transformer, we compare the model checkpoints along the trajectory of different methods. We find
the model weights obtained by Adam-mini is close to those by AdamW throughout training.

D.6. Sample Responses from LLMs trained by Adam-mini

The results are shown in Figure 16.
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Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see
attractions.

AdamW: Sure! Here’s a travel blog post about a recent trip to Hawaii: ...... Whether you’re interested in history, nature, or simply
soaking up the sun, Hawaii has something for everyone. Until next time, Aloha!
Adam-mini: Sure! Here’s a travel blog post about a recent trip to Hawaii: ...... I highly recommend visiting this beautiful
archipelago for a truly unforgettable adventure.

Prompt: Rewrite your previous response. Start every sentence with the letter A.

AdamW: A trip to Hawaii is a must-visit destination for any traveler, offering a variety of cultural experiences and must-see
attractions. From the Polynesian Cultural Center to the USS Arizona Memorial, and from Lanikai Beach to the lively night markets,
every corner of the islands reveals a new surprise and a new way to connect with the spirit of Hawaii.
Adam-mini: A trip to Hawaii is a must-do for any travel enthusiast. A trip to the beautiful Hawaiian Islands is a paradise on
earth. A visit to Oahu is a great way to start your adventure. A helicopter tour of the island is both educational and breathtaking. A
visit to Maui is a must-see. A visit to Haleakala National Park is a highlight of your trip. A visit to the Polynesian Cultural Center
is a great way to learn about the history and traditions of the islands. A traditional luau is a must-attend event. Overall, a trip to
Hawaii is an unforgettable experience.

Figure 16: Response Sample of Llama2-7B supervised fine-tuned by AdamW and Adam-mini to the #81 test question from
the MT-Bench (Zheng et al., 2024) dataset. Since there is little information in the first round response, we omit the answers
from the models.

E. More Experimental Details
E.1. Training configurations for Section 3

For all experiments, we choose the model configurations (e.g. context length) by their standard protocols. We choose the
learning rates by the recommendation from open-source platforms if applicable. For instance, for GPT2 series, we use
the recommended learning rates by (Liu et al., 2023), which are reported to be optimal by grid search. Unless mentioned
otherwise, Adam-mini, Adafactor, SM3, and LAMB use the same learning rate as the recommended ones of AdamW. We
choose the learning rate of CAME following the suggestions from the authors 6. If there is no public recommended learning
rate for AdamW, we tune the learning rate for all optimizers within the same computational budget and report the best
performance. For other hyperparameters, we follow the recommendation from open-source platforms or by their default
setting. For SM3 and Adafactor, we incorporate momentum with β1 = 0.9 to offer a fair comparison with other optimizers
and the rest of the hyperparameters are set as default. The detailed configurations are explained as follows.

GPT2 pre-training. We use the nanoGPT codebase 7 to train GPT2 sized 125M (small), 330M (medium), 770M (large),
and 1.5B (XL) on Openwebtext. For all models, we use context length = 1024, batch size = 480, weight decay coefficient
λ = 0.1, ϵ = 1e-8, β1 = 0.9, β2 = 0.95. We use cosine-decay learning rate schedule with 2000 iterations of warm-up. For
GPT2-small, medium, and large, we use the recommended peak learning rate by (Liu et al., 2023), which are reported to
be the optimal ones found by grid search. For GPT2-XL, we use the recommended peak learning rate by the Levanter 8.
The chosen peak learning rates are 6e-4, 3e-4, 2e-4, 1e-4 for GPT2-small, medium, large, XL, respectively. The minimal
learning rate is chosen as 3e-5, 6e-5, 1e-5, 1e-5 for these models.

Llama pre-training. We use TinyLlama codebase 9 to train TinyLlama-1B and Llama2-7B on CommonCrawl 10. We use
batch size = 40. We preprocess the directionary ’2019-30’ of CommonCrawl into 10850 bins, which in total gives 85GB of
tokens. We leave the last 20 bins out as the validation set. For both models, we use weight decay coefficient λ = 0.1, ϵ =
1e-8, β1 = 0.9, β2 = 0.95. We use cosine-decay learning rate schedule with 2000 iterations of warm-up. For TinyLlam-1B,
we use context length = 2048, batch size = 512, peak learning rate = 2e-4, and minimal learning rate = 2e-5. For Llama2-7B,

6https://github.com/yangluo7/CAME
7https://github.com/karpathy/nanoGPT/tree/master
8https://github.com/stanford-crfm/levanter/blob/e183ec80ec5971b12d4a3fb08a160268de342670/

config/gpt2_xl.yaml
9https://github.com/jzhang38/TinyLlama

10https://commoncrawl.org/
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we use context length = 4096, batch size = 256, peak learning rate = 8e-5, and minimal learning rate = 8e-6.

SFT and RLHF. The implementation of SFT and RLHF code is based on the ReMax codebase11. We use DeepSpeed
ZeRO-2 in our training. GPT-4 evaluation template in Table 3 is from the codebase12. In the reward optimization stage, We
use ReMax, a memory-efficient alternative to PPO. We use UltraFeedback dataset (Cui et al., 2023) and use 40% data for
SFT and 60% data for ReMax.

SFT. We use 80 samples in a batch and train the model for 3 epochs. By searching the learning rate from {1e-5, 2e-5,
5e-6} based on validation loss, we use 5e-6 with cosine annealing for both AdamW and Adam-mini. We apply LoRA for all
layers except the embedding layer. The rank of LoRA is set to 128. After selecting the learning rate from the same set as the
full parameter tuning, we use 5e-6 for both AdamW and Adam-mini when LoRA is applied. The weight decay coefficient is
set to 0 as recommended by LlamaFactory 13. The rest of the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8,
β1 = 0.9, β2 = 0.95.

ReMax. We use 48 samples in a batch and train the model for 1 epoch. By searching the peak learning rate from
{1e-6, 2e-6, 5e-7} based on validation reward, AdamW uses 1e-6 while Adam-mini selects 5e-7 as the peak learning
rate. The weight decay coefficient is set to 0. The rest of the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8,
β1 = 0.9, β2 = 0.95.

ResNet. We use the PyTorch official implementation codebase14 to train ResNet18 (He et al., 2016) on ImageNet (Deng
et al., 2009). We use cosine-decay learning rate, epoch =90, β1 = 0.9, β2 = 0.999, ϵ =1e-8. For ResNet18, we use
batch size = 256, peak learning rate = 0.005. For ViT-base, we use batch size = 128, peak learning rate = 0.0001. These
configurations are used for both Adam-mini and AdamW.

Diffusion models. We use the codebase15 to train diffusion models. The image size is 64 and the training objective is to
predict the noise as in (Ho et al., 2020). We use the default U-Net archiecture hyper-parameters and the dimension multiply
in U-Net is (1, 2, 4, 8). We use the CelebA dataset16 and train the diffusion model with a learning rate 5× 10−5 with cosine
decay. The batch size is 128 and the training epoch is 50.

Graph Neural Networks. We use the DGL implementation 17 of Graph Convolution Networks (GCN) (Kipf & Welling,
2016) and Graph Attention Networks (GAT) (Velickovic et al., 2017) for OGBN-arxiv 18 dataset. All configurations as
default. For both Adam-mini and AdamW, we use the default learning rate = 0.005 for GCN and the default learning rate =
0.002 for GAT.

E.2. Detailed Setup for Other Experiments

Configuration for Figure 3. For each dense sub-block Hl, l = 1, 2, 3, we use random positive definite matrices. We
fix the choose the eigenvalues of each Hl as follows: for l = 1, we independently sample from {1,2,3} for 30 times; for
l = 2, we repeat this procedure for {99,100,101}; for l = 3, we repeat this procedure for {4998 ,4999, 5000}. For the
single (blockwise) learning rate method, we use GD with optimal constant learning rate 2/(L + µ), where L, µ are the
largest and smallest eigenvalue of the (blockwise) Hessian. We use Adam with β1 = 0. This helps us focus on the effect of
coordinatewise learning rate in Adam. We also set β2 = 1 to the time-varying learning rate. This is necessary because, for
any β2 < 1, Adam with constant learning rate will oscillate on quadratic functions. This is theoretically proved in (Da Silva
& Gazeau, 2020, Proposition 12, Figure 1) and empirically observed in (Zhang et al., 2024, Section 3.3).

11https://github.com/liziniu/ReMax
12https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
13https://github.com/hiyouga/LLaMA-Factory
14https://github.com/pytorch/examples/blob/main/imagenet/main.py
15https://github.com/lucidrains/denoising-diffusion-pytorch
16https://cseweb.ucsd.edu/˜weijian/static/datasets/celeba/
17https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-arxiv
18https://ogb.stanford.edu/docs/nodeprop/
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Configuration for Figure 4. We use the codebase of 19. We consider a 4-layer Transfomer with n emb = 32, n head = 4.
The dataset is a randomly generated binary sequence of length 42. With the help of auto-differentiation framework, we
calculate the Hessian on the whole dataset with two passes of backpropagation (Pearlmutter, 1994) and the calculation is
exact. In Figure 4, we first set the largest value of color bar vmax as 1e-6 for all blocks, which is roughly the maximal value
in most blocks. But then we find the whole query and key blocks are black, so we decrease vmax to 1e-8 for these blocks
and then the block diagonal pattern becomes clear.

Throughput Comparison in Table 2. The results are tested on 2× A800-80GB GPUs using Tinyllama codebase. We did
not turn on CPU offload. We report the throughput from the summary file of Wandb log.

19https://colab.research.google.com/drive/1SiF0KZJp75rUeetKOWqpsA8clmHP6jMg?usp=sharing
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