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Abstract

The rapid progress in machine learning (ML) has brought forth many large
language models (LLMs) that excel in various tasks and areas. These LLMs
come with different abilities and costs in terms of computation or pricing.
Since the demand for each query can vary, e.g., because of the queried
domain or its complexity, defaulting to one LLM in an application is not
usually the best choice, whether it is the biggest, priciest, or even the one
with the best average test performance. Consequently, picking the right
LLM that is both accurate and cost-effective for an application is necessary
yet remains a challenge. In this paper, we introduce MetalLLM, a frame-
work that dynamically and intelligently routes each query to the optimal
LLM (among several available LLMs) for classification and multi-choice
question-answering tasks, achieving significantly improved accuracy and
cost-effectiveness. By framing the selection problem as a multi-armed
bandit, MetalLLM balances prediction accuracy and cost efficiency under
uncertainty. Our experiments, conducted on popular LLM platforms such
as OpenAl and Together Al, as well as open-source LLM, showcase Met-

aLLM'’s efficacy in real-world scenarios, laying the groundwork for future

extensions!.

1 Introduction

Large language models have shown extraordinary zero-shot capabilities in various tasks
and domains, such as text classification, summarization, question answering, and chat-
bot (Radford et al., 2019; Brown et al., 2020; Schick & Schiitze, 2021; Wei et al., 2022; Ouyang
et al., 2022; Trivedi et al., 2023). Recent works (Kaplan et al., 2020; Chowdhery et al., 2023;
Hoffmann et al., 2022) suggest exhaustively scaling the model size and training data size
to improve the performance of language models and provoke their emergent abilities; for
example, GPT-4, with over 1.74 trillion parameters, achieves superior performance in several
tasks but also incurs high economic costs. While this trend of scaling language models will
continue in the future, there is also a growing diversification in recent models in terms of
task or (sub-)domain specialization and computational costs. As a consequence, no single
model —even the largest and most expensive — can consistently yield the best performance
across all tasks. This means that, for model users, identifying which LLM is best suited
for their applications will become crucial. However, this is a challenging task, especially
when we factor in cost constraints, either in terms of computational resources or API service
pricing.

*The work does not relate to the author’s position at Amazon.
1Our code is available here.
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We imagine a world with several LLM providers, such as OpenAl® or Together AI®; each
provides service access to a diverse suite of LLMs with heterogeneous capabilities and cost
structures. Here, an LLM user asks this important question: How do I select an LLM i (out
of k LLMs) for optimal performance and usage cost in my application? One option is combining
multiple LLMs as seen in existing ensemble methods (Jiang et al., 2023; Wang et al., 2023;
Ong et al.), but this approach will yield significantly higher service costs; another option is
cascading over a set of LLMs (Chen et al., 2023), but such an approach still requires querying
the LLMs until we could find the best one. On the other hand, defaulting to a single LLM
to avoid the extra cost of querying multiple models — by predicting the performance of
LLMs (Shnitzer et al., 2023; Lu et al., 2023) — may not also be optimal; for some queries, a
less expensive model may also provide correct answers. Furthermore, as different LLMs
exhibit very distinctive abilities on different tasks and data distribution (Jiang et al., 2023;
Wang et al., 2023), for a query, it is possible for LLM i to perform better than LLM j even
though the cost of LLM i is noticeably lower than the cost of j.

In this work, we introduce a framework that wraps around a set of LLMs with diverse
capabilities and brings the best performance at a more affordable cost to a user’s application.
The underlying component of this framework is a multi-arm bandit algorithm that routes
each query to the least expensive LLM with the correct answer for the zero-shot classification
and question answering task. Essentially, we formulate the problem of selecting the “best”
LLM for a query as a decision-making problem under uncertainty: when a new query
arrives, the proposed framework picks an LLM to answer and observe whether the LLM
provides a correct answer; the goal is to maximize the total reward — a specific trade-off
between the overall performance and usage cost. Intuitively, our method prefers the LLM
that has a high probability of answering a query at a low cost. Our contributions can be
summarized as follows:

* We propose MetaLLM, a versatile wrapper around a suite of any off-the-shelf LLMs, for
zero-shot text classification tasks. MetaLLM can intelligently choose the target LLM for
each query to achieve optimal performance and cost.

* We propose an algorithm based on multi-armed bandit to tackle the routing problem in
MetaLLM. This algorithm is efficient since it makes the routing decision without needing
to query any LLMs.

* Our experimental results on benchmark datasets and popular API services, including
OpenAl and Together Al, and both closed-source and open-source LLMs, demonstrate
the ability of MetaLLM in identifying the optimal LLM in terms of cost and performance.
Specifically, MetaLLM improves the accuracy of the best model by around 1% while
saving up to 60% and 10% of the total price on OpenAl and Together AI APIs, respectively.

Our work focuses on zero-shot classification and multiple-choice question-answering prob-
lems, which are common evaluation choices in the related work (Ong et al.). Nevertheless,
the MetaLLM framework can be extended to arbitrary language tasks by modifying the
reward function to incorporate suitable metrics assessing the quality of the responses. We
leave it for future work.

2 Related Works

Large Language Models. The emergence of large language models (LLMs) has fundamen-
tally transformed several domains, including natural language processing, computer vision,
and e-commerce, and diverse tasks such as (zero-shot) classification, question-answering,
and recommendation (Menghani, 2023; Liu et al., 2023a;b). The impressive effectiveness
and versatility of these LLMs have come at the price of a drastic increase in LLM sizes,
along with significant computational costs and data required to train, and expensive com-
putational resources to perform inference with them. Consequently, several companies or
services are now offering users access to LLMs with diverse capabilities and heterogeneous

2https://platform.openai.com/docs/models
Shttps://www. together.ai/
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cost structures. For instance, the costs for processing 10 million tokens are $0.1, $0.18, $0.2,
and $0.3 for Gemma, Llama, Mistral, and Qwen, respectively, using Together Al APIs.
This abundance of API choices significantly burdens their users with the decision “which
LLM should I use?”, as different LLM APIs are known for their diverse capabilities for the
prediction tasks (Liang et al., 2023; McKenzie et al.; 2022).

Prompt Optimization and Mixture of Experts. Fine-tuning is a standard option to improve
the performance of LLMs for specific tasks. Mixture-of-Experts (MoE) (Eigen et al., 2013;
Shazeer et al., 2017; Du et al., 2022; Si et al., 2023) trains a routing operator within the
large model to enhance its performance; essentially, MoE assumes the model as a collection
of “experts” (modules) and learn to route the input to the best expert. These approaches
require training the LLMs, which is challenging for many users, while their single-LLM
enhancements are usually model and scenario specific. Prompting reasoning like Chain-
of-Thought (Wei et al., 2022; Wang et al., 2022; Zhou et al., 2022) or Tree of Thoughts (Yao
et al., 2024) could improve the LLM performance without additional training. Both MoE
and prompt-based reasoning, however, could not benefit from the large number of available
LLMs, some of which could be significantly less expensive to use.

Model Ensemble. LLMs have been shown to yield diverse capabilities due to their architec-
ture and dataset (Jiang et al., 2023; Wang et al., 2023). Jiang et al. (2023) observe that over
5000 instructions, the optimal LLM for each query significantly varies, and there is no single
optimal model regardless of their size. Therefore they recommend ensembling to combine
the strength of multiple LLMs for a better performance. FrugalML (Chen et al., 2020; 2022)
cascades multiple machine learning models by querying sequentially until getting a re-
sponse with a high confidence score. Motivated by FrugalML, Chen et al. (2023) exploit
the full potential of LLMs by applying multiple techniques, including prompt engineering,
caching, and cascading, for higher-quality answers.

Model Selection. Different from previous approaches that combine the strength of multiple
models, there are some attempts to query a single LLM for each task. Hari & Thomson (2023)
suggest training a language model to predict the performance of LLMs and route to the
model with the highest performance, which incorporates the high cost of the router. Sakota
et al. (2024) formulate the cost-performance trade-off as an integer linear programming
(ILP) problem and use existing ILP solvers to assign appropriate LLMs for each input query.
Lu et al. (2023) distill the preference of off-the-shelf reward models to select the LLM that
achieves the best performance, ignoring its cost. Ding et al. (2024) train a router that maps
easy queries to small models and hard queries to large models; however, their framework is
only applicable when we have two LLMs. Recently, Hu et al. (2024) proposed a benchmark
to evaluate routing models by their cost and performance on downstream tasks.

Commercialized Foundation Model Services. Recently, many companies have commercial-
ized their LLM models so that customers can apply or even fine-tune LLMs for their own
use cases without heavy technical knowledge. In 2023, OpenAl released many language
models, such as text-ada-001, text-babbage-001, text-curie-001, and text-davinci-002#, with
various prices and capabilities. Their users can use these models as a chatbot, extract text
embedding, or even ask them to write code. Recently, Together Al also brought forth their
APIs that allow access to several foundation generative models, including text generation,
image generation, and multimodal models, such as Llama, Gemma, Mistral, Qwen, Flux,
etc.

3 MetaLLM Framework

3.1 Preliminaries

Zero-shot Classification. In this paper, we employ LLMs for text classifications without
additional training. Given an input sentence x € X, we create a prompt to ask a language
model M for a label. The model gives a correct prediction if the answer M(x) matches the
corresponding ground-truth label y.

4These models have been deprecated since 2024-01-04.
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Figure 1: The general process of serving queries in MetaLLM. MetaLLM wraps around an
existing LLM Provider, inspects each query, and then routes it to the least expensive LLM
that can provide an accurate response. As an example, the blue query can be answered
accurately by LLM 1 and LLM 2, but MetaLLM will route it to LLM 1 since it is less expensive;
similarly in another example, the green query is routed to the least expensive LLM 2 even
though LLMs 2 and 3 both can accurately answer it. The entire process is lightweight and
can be performed without accessing in LLMs.

LLM APIs. We consider the case where the user has access to a set K of k different LLM
APIs; each LLM M; has a different capability, determined by how well M; can answer a
query x, and a cost ¢;. For zero-shot classification, we represent the capability a;(x) € {0,1}
of an LLM M,; on a sample x by comparing the answer to its corresponding ground-truth
label: a;(x) = 1if M;(x) = y. Usually, the model with a higher cost has better capability. If
the user has a limited budget, they can choose less expensive models for their application. In
contrast, if they require better performance, more expensive models will be more desirable.
However, in general, the more expensive model is not always the best-performing choice
for all queries (Jiang et al., 2023; Wang et al., 2023), making the LLM selection problem
significantly challenging.

Problem Formulation. The goal of MetaLLM is to learn a routing function f : X — K
that dispatches a query x to an appropriate LLM to achieve a good response with a lower
cost. For example, given a subset of LLMs, K’ C K, that can give good responses for x,
MetaLLM’s objective is to return arg min;cx ¢;. In practice, the user wants the ability to
balance the performance and the usage cost, depending on the needs of their application.
More specifically, given a budget b, the user wants to maximize the performance on N
queries while spending less than b to query the APIs.

N N
arg m}gx Y gy (xi) st Y Chxy) <D (1)
i=1 i=1

3.2 The optimal solution of routing objective

Let S € {0,1}V*k, Sij = 1[f(x;) = j], represent the choice of the routing function f on N

queries, and A € RNk Ai,]- = a]-(xi), represent the performance of the j-th API on each

sample x;. Eqn. (1) aims to choose the highest performance LLM within a cost constraint b
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and can be reformulated as follows:

N k N
arg m;lx Z Z AijSij st Z Crxy) < b. )
i=1j=1 i=1

Instead of solving a discrete optimization problem, we relax S € {0, 1}N*¥ to § € RN*K,
Zk:1 Sij = 1, and has the following dual problem (Boyd & Vandenberghe, 2004):

]
arg min p—i—Zqi st pej+q; >aj(x;) + 1. 3
i

pER GERN

Chen et al. (2022) study a similar formulation for model cascading and suggest solving the
dual form as in Eqn. (3). In the case where we have an exact accuracy matrix A, we can
optimize Eqn. (2) to find the optimal S and choose the suitable API j such that S; ; = 1.

3.3 The Proposed MetaLLM

When deploying an application, we can- -
not know the exact accuracy of an LLM’s Algorithm 1 MetaLLM framework

API on a test sample before sending the input: k LLMs, each with cost ¢j and ac-

test sample through this LLM. Previous
works (Chen et al., 2022; 2020) learn a model
to predict the performance of each APL
These methods cascade multiple machine

curacy 4;(-); cost scaling p, parameters 6,
training sample {x1,...,x,}, test query x.
output: The optimal LLM for the query x.

learning models and query them iteratively
until the response has high confidence; con-
sequently, they are highly expensive, espe-
cially when there are a substantial number

### Initialize the policy
forjin 1.k do
Aj + (XTX + AI), bj « XTy;

of queries. 9? “ A]fl b;
In this work, we approach this problem end for
from a different perspective. Instead of it Inference

training an accuracy predictor, we reformu-
late this problem as a multi-armed bandit.
Specifically, for each input query, we define
an LLM as an “arm”, and obtain a reward
expressing the performance of the LLM and
the cost for that query. The benefit of this
formulation is twofold: first, it allows the
modeler to focus on designing the reward
function to capture their application needs, making the framework more versatile; second,
we can take advantage of the extensive and well-developed research on multi-arm bandits,
including their rigorous theoretical foundations and practical solutions. The MetaLLM
framework is depicted in Figure 1.

. -1
J < argmaxy xT0; + oy /xTA]., X

Aj Aj1+ xxT,bj < bj +r(x,j)x
return j

Reward function. The remaining question will discuss our design of the reward function
that takes the input query and returns the reward of choosing the i-LLM. Chen et al.
(2022) prove that if a cost scaling p € R is the solution of Eqn. (3), the routing function
f(x) = argmax; a;(x) — pc; will be the optimal solution of Eqn. (1). Intuitively, this strategy
prefers the LLM with high performance and low-cost value. Motivated by that theoretical
result, we propose the following reward function for training the multi-armed bandit:

r(x,i) = ai(x) — pe;. 4)

Multi-arm bandit. We assume that the user has access to a training dataset of n queries
and can obtain the training performance of each LLM on this dataset. We initialize the
reward model Q;(x; 0) of each arm j by minimizing the objective 0; = arg ming ||Q;(x;, 0) —

(aj(x;) — pej) 3.

Similar to (Li et al., 2010), we employ a linear reward model Q;(x;6;) = xT6; and obtain
the closed-form solution of ridge regression 9? = (A?) _1b§’, A? = (XTX + AI), b? = XTy,
where X is the data matrix and y;; = a;(x;) — pc;.
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Given a new query x;, we choose an arm using the UCB selection strategy:

. / 1
j= argn}gx xtTG;, +u xIA? xt, o> 0.

and update the reward function of the chosen arm, as follows:

-1 .
6;*1 = (A;H) b;“, A;H = A;- + xex], b;“ = b]t- +r(xt, )t

4 Experiments

In this section, we provide empirical results of MetaLLM on popular APIs and benchmark
datasets.

4.1 Experimental Setup

LLM Services. We conduct our experiments with LLMs provided by popular API services,
including OpenAlI and Together Al. We chose four models from OpenAl: text-ada-001,
text-babbage-001, text-curie-001, and text-davinci-002. These models have different costs
and different capabilities, giving the users diverse options. The costs of these models are
shown in Table 1.

Given a sample SENT, we query OpenAl models with the following prompt:

For the sentence: SENT, is the sentiment in this sentence positive or negative?

For Together Al APIs, we evaluate MetaLLM with four different LLMs: Gemma, Llama,
Mistral, and Qwen. Since these models come from different families, this evaluation setting

exhibits more heterogeneity than the setting with the OpenAl models. We summarize the
cost of each APIs in Table 2.

Model Cost Model Cost
text-ada-001 $0.40 / 1M tokens Gemma $0.10 / 1M tokens
text-babbage-001  $0.50 / 1M tokens Llama  $0.18 / 1M tokens
text-curie-001 $2.00 / 1M tokens Mistral  $0.20 / 1M tokens
text-davinci-002  $20.00 / 1M tokens Qwen $0.30 / 1M tokens
Table 1: Price of OpenAlI APIs. Table 2: Price of Together Al APIs.

Given a sample SENT, we query Together Al APIs with the following prompt:

Answer the following multiple-choice question with only the answer letter (A, B, C, or D
R

Question: QUESTION

Options:

A. CHOICE A

B. CHOICE B

C. CHOICE C

D. CHOICE D

Answer:

Datasets. We conduct experiments on SST-2 — a text classification dataset and MMLU —
a question answering dataset. SST-2 is a binary sentiment analysis dataset consisting of
movie reviews; the task here is to classify whether a review is positive or negative. This
dataset has 67,439 training samples and 872 test samples. MMLU is a dataset multitask
language understanding dataset including 57 multi-choice question answering subtasks.
It has 14,042 test samples and 99, 842 auxiliary training samples collected from several
question answering benchmarks.
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Setting Method Test cost Test accuracy
text-ada-001 0.096 80.50
text-babbage-001 0.120 82.80
text-curie-001 0.480 90.60
text-davinci-002 4.800 91.51
MetaLLM (text-babbage-001 budget)  0.120 84.06
Offline MetaLLM (text-curie-001 budget) 0.539 89.56
MetaLLM (text-davinci-002 budget) 2.030 91.97
MetaLLM (text-babbage-001 budget)  0.303 84.06
Online w/o training data MetaLLM (text-curie-001 budget) 0.818 87.27
MetaLLM (text-davinci-002 budget) 1.456 88.30
MetaLLM (text-babbage-001 budget) 0.117 84.06
Online MetaLLM (text-curie-001 budget) 0.455 90.94
MetaLLM (text-davinci-002 budget) 2.046 92.55

Table 3: The cost and accuracy of each LLM on OpenAl APIs

Training MetaLLM. For each input query, we utilize Sentence-BERT (Reimers & Gurevych,
2019) model to extract an embedding vector. MetaLLM is a linear model that maps the
embedding vector to the reward expectation, which is optimized with the true reward
(Eqn. (4)) by Algorithm 1. We normalize the cost of each LLM in the reward function such
that the highest value is 1. For a budget b, we train MetaLLM with the scaling p five times,
such that the cost of MetaLLM on the validation set is not higher than b, and compute the
accuracy of the classification task. Given that p, we evaluate three different scenarios: i)
only optimizing the reward function with training data, ii) only performing online updates
during inference, and iii) initializing the policy from training data and updating during
inference.

Evaluation. To evaluate, we compute the cost and the accuracy of MetaLLM on the test set
of the classification task and compare them to each LLM candidate. We report the average
cost per 10, 000 queries in all experiments.

4.2 Performance of MetaLLM on OpenAl Models

Table 3 shows the accuracy and cost of each OpenAl LLM and MetaLLM with different p
on SST-2. As can be observed, the LLM with a higher cost has better accuracy. Noticeably,
the differences in cost between LLMs can be very high; for example, text-davinci-002 is ten
times more expensive than text-curie-001 but only has 0.4% better performance in terms of
accuracy. Consequently, querying only the most expensive LLM is not an optimal choice
unless the usage budget of the application is sufficiently high.

Performance of MetaLLM. For each LLM, except text-ada-001, we compute the cost of
choosing that model only, fine-tune the scaling p on the validation set such that the cost is
not higher than that model’s cost (the budget), train MetaLLM with the found p five times
and report the mean accuracy of the text classification task with LLMs selected by MetaLLM.
We can observe that MetaLLM can achieve better accuracy at a lower cost. Specifically,
with the same budget as text-babbage-001, MetaLLM’s performance is 2% better than
that of defaulting all queries to text-babbage-001, while having a slightly less expensive
cost. Similarly, MetaLLM can achieve higher accuracy and lower cost than text-curie-001.
More importantly, MetaLLM can reach a higher performance than that of defaulting to
text-davinci-002, the best LLM, while spending 60% less.

Comparison of different scenarios. Table 3 also demonstrates that only optimizing on
training data can yield higher accuracy than text-davinci-002, yet not as effective as online
updating on test data. The initialization step also plays an important role; only online
updating fails to find a good policy.
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swered by one model but not by the other models. slightly decreases the accuracy with a
Cheaper models can answer many queries that high budget; however, both approaches
more expensive models cannot. can perform better than a single LLM.

4.3 The Heterogeneous Capabilities of Different LLMs

The fact that MetaLLM can achieve better accuracy than even the most expensive OpenAl
model means that an LLM’s performance can vary across queries, and cannot always be
determined by its usage cost (or the size of the LLM). In this section, we provide a more
rigorous analysis of this observation. In Figure 2, the value at position (i, ) is the number
of samples that are correctly classified by the i-th model but not the j-th model. As we
can observe, there exist many queries that can be answered by the smaller models, such as
text-ada-001 and text-babbage-001, while text-curie-001 and text-davinci-002 give incorrect
answers. If MetaLLM can exploit this heterogeneous relationship between performance and
cost to find the most suitable LLM for a query, it can even significantly boost the accuracy of
using a single model. Our analysis in Section 4.6 confirms this hypothesis.

44 Reward Function With Dynamic Cost

The cost of an LLM is not fixed for every input; for the zero-shot classification task, it
primarily depends on the length of the query. We perform an experiment where we use the
exact cost of each training input in the reward function (4) and train MetaLLM with different
p. The results for this dynamic cost setting and the fixed cost are provided in Figure 3. As
we can observe, using dynamic costs does not lead to significant improvements, although
both strategies can achieve better accuracies and lower costs than defaulting to a single
LLM. When we set a high budget, dynamic cost setting can even has lower accuracy. We
hypothesize that using dynamic cost imposes greater penalties on long queries, thereby
encouraging MetaLLM to route them to cheaper models; these queries are, however, more
complicated and may not be effectively solved by these cheaper models. Therefore, we
recommend training MetaLLM with a fixed cost in the reward function for every training

query.
4.5 Performance of MetaLLM on Together AI APIs

This section studies the scenario where the LLMs are heterogeneous, i.e., the less expensive
models can perform better on some queries than the more expensive ones. We perform
this experiment using the LLMs provided by Together Al and the MMLU dataset. Table 4
provides the accuracy and the cost of each approach, including defaulting to the same LLM
(the first four rows) and our MetaLLM. As we can observe, when defaulting to a single LLM,
a more expensive option does not guarantee a better performance; for example, Mistral is
more expensive than Llama but yields lower performance.



Preprint. Under review.

Setting Method Test cost  Test accuracy
Gemma 866.187 64.33
Llama 1559.136 76.69
Mistral 1732.374 66.68
Qwen 2598.561 80.24
Offline MetaLLM (Llama budget) 1474.975 75.70
MetaLLM (Qwen budget) 2287.195 79.68
Online w/o training data MetaLLM (Llama budget)  866.187 64.33
& MetaLLM (Qwen budget) ~ 866.187 64.33
Online MetaLLM (Llama budget) 1540.663 76.87
MetaLLM (Qwen budget) 2304.500 80.90

Table 4: The cost and accuracy of each LLM on Together AI APIs

On the other hand, training MetaLLM with p = 0 yields the best performance (80.90%
accuracy) on MMLU. Since the distribution of the auxiliary training set is far from the
test set, optimizing the reward function does not provide a good policy, i.e., obtaining
the highest accuracy. On the other hand, without the initialization step, the multi-arm
bandit algorithm only defaults to Gemma. Setting a positive value to p decreases the cost
substantially while having a minor degradation in the accuracy. Notably, MetaLLM can
achieve better performance than the second-best LLM, Llama, but with a lower cost. These
results further confirm that MetaLLM provides a cost-efficient yet high-performance policy.

4.6 Analysis of MetaLLM'’s Cost Scaling Parameter

In this section, we study the characteristics of MetaLLM with different values of p in the
reward function. First, we consider the scenario where the user only optimizes for the
performance (i.e., p = 0). Figure 4 shows the histogram or the frequency each OpenAl’s
LLM is selected by MetaLLM, separated by the number of correct and incorrect predictions,
in the SST-2 dataset. As we can observe, MetaLLM indeed can learn whether an LLM
can accurately answer a query. As discussed in Section 4.3, there exist many queries
that can be correctly answered by less expensive models such as text-babbage-001, and
MetaLLLM chooses text-babbage-001 more often than choosing text-curie-001 or text-davinci-
002 .

Figure 5 shows the histogram when putting a small regularization p = 0.001 on the cost
component in the reward function. In this scenario, MetaLLM rarely picks text-davinci-002,
while still being able to achieve 90.98% accuracy; as a reminder, this is still better than
defaulting to the most expensive model, as previously observed in Table 3.
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Figure 4: The histogram of OpenAI LLMs  Figure 5: The histogram of OpenAl LLMs
selected by MetaLLM with p = 0. selected by MetaLLM with p = 0.001.
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5 Conclusion

In this paper, we study the problem of dynamically selecting an LLM out of a set of LLMs for
an input that achieves optimal performance and cost efficiency. To solve this problem, we
propose a multi-armed bandit framework that can learn the reward of querying the correct
model at a low price. Our approach, denoted as MetalLM, is lightweight and applicable
to any set of off-the-shelf LLMs and thus is versatile in practical use cases. Empirical
results show that MetaLLM can improve the accuracy of the best API by around 1% while
significantly reducing the cost of zero-shot text classification and multiple-choice question
answering tasks by up to 60%.

6 Limitations and Societal Impacts

6.1 Limitations

As mentioned in the previous sections, we only study MetaLLM ’s framework on zero-shot
text classification tasks as these are important in NLP applications and increasingly utilize
LLMs as the base predictors. Another reason is that it is straightforward to determine the
correct LLM outputs and set up the reward function accordingly. As our paper aims to to
demonstrate the potential of the MetaLLM’s framework, this is sufficient.

However, the MetaLLM framework can be extended to arbitrary language tasks, such as as
question answering or text generation, by modifying the reward function to incorporate
suitable metrics assessing the quality of the responses. Due to the complexities of designing
such reward function, these directions deserve independent studies. We leave them to
future work.

MetaL LM also only trains a simple linear model whose input is the extracted feature of the
query, which can ignore more fine-grained features. Building a more complex reward model
and utilizing other information from the query, such as the domain of the input and the
demand of the user, may further facilitate better the needs of the applications and improve
the performance of MetaLLM.

Finally, we optimize MetaLLM with two values in the reward function: the performance
and the cost of querying the API. However, several aspects to evaluate the model in practice
could be incorporated into the reward, such as the inference time, the robustness of the
model, emergent abilities, or even the information on the training distribution. Combining
those factors can help build a more powerful and reliable Al system for diverse purposes.

6.2 Societal Impacts

Large language models, with their emergent abilities, have transformed our lives by assisting
in several tasks. However, large models come with high inference costs; therefore they
are very expensive to deploy and may cause harmful effects to the environment by high
power consumption. Our framework helps reduce the cost of querying LLMs substantially
by routing the input to cheaper models that may return the correct answer and can even
improve performance by utilizing the combination of many LLMs. MetaLLM is applicable
to any set of off-the-shelf LLMs, being useful for future Al systems with more modern
language models.
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