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Abstract

Learning neural implicit surfaces from volume rendering has become popular for
multi-view reconstruction. Neural surface reconstruction approaches can recover
complex 3D geometry that are difficult for classical Multi-view Stereo (MVS)
approaches, such as non-Lambertian surfaces and thin structures. However, one
key assumption for these methods is knowing accurate camera parameters for
the input multi-view images, which are not always available. In this paper, we
present NoPose-NeuS, a neural implicit surface reconstruction method that extends
NeuS to jointly optimize camera poses with the geometry and color networks. We
encode the camera poses as a multi-layer perceptron (MLP) and introduce two
additional losses, which are multi-view feature consistency and rendered depth
losses, to constrain the learned geometry for better estimated camera poses and
scene surfaces. Extensive experiments on the DTU dataset show that the proposed
method can estimate relatively accurate camera poses, while maintaining a high
surface reconstruction quality with 0.89 mean Chamfer distance.

1 Introduction

3D reconstruction from multi-view images is a fundamental problem in computer vision and computer
graphics. Traditionally, 3D reconstruction pipelines, such as COLMAP [1] [2], contain multiple steps
to generate multi-view depth maps and fuse them into a dense point cloud representation, which is
then used to recover scene surfaces. These methods rely on correspondence matching between RGB
images, which causes artifacts and missing regions due to matching errors. Following the recent
advances in NeRF [3], new approaches [4] [5] [6] have emerged to learn neural implicit surfaces
using volume rendering. Generally, these works aim to jointly optimize implicit geometry and color
networks guided by photometric loss from differentiable volume rendering. The geometry network is
often encoded as a multi-layer perceptron (MLP) representing a signed distance function (SDF).

A common assumption in classical and neural rendering based techniques is the existence of accurate
camera parameters for the input multi-view images. Actual camera parameters are not always easy
to obtain in real situations, such as in casually captured images. Consequently, Structure from
Motion (SfM) [1] methods are used to estimate camera parameters and sparse 3D points before
performing multi-view geometry optimization. Recent NeRF-based methods [7] [8] [9] [10] propose
joint optimization techniques of camera parameters with radiance fields.
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Figure 1: An example of reconstructed surfaces from the DTU dataset [14], showing the reconstruction
quality of our proposed method compared to other methods.

In this work, we enable camera pose optimization in SDF-based surface reconstruction methods,
particularly NeuS [6]. Following NeRFtrinsic Four [11], we use an MLP to predict camera poses
from Gaussian Fourier features of camera indices. We impose two additional constraints, which
are multi-view feature consistency, inspired by MVSDF [12] and D-NeuS [13], and rendered depth
loss. These additional losses constrain the learned geometry to jointly optimize camera poses along
with geometry and color networks. Results on the DTU dataset [14] show that the proposed method
estimates camera poses with high relative accuracy, while outperforming classical MVS methods
in terms of reconstruction quality, and offering comparable quality to other SDF-based surface
reconstruction methods that depend on accurate input camera parameters, as shown in Figure 1.

The main contributions of this paper are summarized as follows:

• We propose a joint optimization method of camera poses with geometry and color networks
of NeuS [6] constrained by additional multi-view feature consistency and rendered depth
losses, in order to maintain high quality geometry compared to other SDF-based surface
reconstruction methods relying on input camera poses.

• We evaluate our proposed method both qualitatively and quantitatively on the DTU dataset
[14] and show high surface reconstruction quality with relatively accurate camera poses
compared with other baselines.

2 Related Work

2.1 Classical Multi-view Stereo

Traditional Multi-view Stereo (MVS) methods [2] [16] [17] aim to recover a global 3D dense
representation of the scene from a set of posed overlapping images. These methods estimate the
pixel-wise depth map of each input image using pairwise matching of RGB image patches, and then
fuse the depth maps into a dense point cloud. As a post-processing step, surfaces are recovered from
the dense point cloud using methods like Screened Poisson surface reconstruction [18]. As these
methods require camera parameters for the input RGB images, Structure from Motion (SfM) [1] is
first applied to recover the camera parameters and the sparse point cloud representation of the scene.
The reconstruction quality of the classical MVS methods is heavily affected by the quality of the
correspondence matching, which is usually difficult for regions without rich textures.

Recently, deep learning-based MVS methods [19] [20] [21] showed better performance in estimating
depth maps and dense representations. Furthermore, transformer-based approaches [22] [23] can
capture long-range context information across images, further enhancing the quality of the reconstruc-
tion. Similar to classical MVS methods, learning-based methods rely on input camera parameters
and struggle with low-texture regions. In this work, we relax the assumption of having input camera
extrinsics (poses) guided by multi-view feature consistency, inspired by MVS approaches, to constrain
volume rendering for surface reconstruction.

2.2 Neural Implicit Surface Representation and Reconstruction

Neural implicit representations have gained increasing attention recently, because of the ability to
learn continuous and highly-complex functions using simple neural networks. Implicit 3D scene
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Figure 2: Overview of the proposed method. We aim to jointly learn camera poses along with scene
geometry and color functions following the formulation of NeuS [6]. We use an MLP to predict the
camera poses from Gaussian Fourier features of camera indices [11]. Furthermore, we impose two
additional constraints: 1) multi-view feature consistency from MVSDF [12] and D-NeuS [13], 2)
monocular depth supervision using predicted depth maps from ZoeDepth [27].

representation can encode 3D scenes with high spatial resolution into a multi-layer perceptron
(MLP) with few layers. Consequently, this representation is successfully applied to multi-view 3D
reconstruction. The related works in this area can be roughly categorized into surface rendering based
methods and volume rendering based methods. Surface rendering based methods [24] [25] render
the pixel color as the color of the intersection between the pixel ray and the scene geometry, which
is vulnerable to self-occlusions and sudden changes in depth. On the other hand, volume rendering
based methods [3] render the pixel color using alpha-composition of sampled point colors along
the pixel ray. These methods are more robust to complex geometry changes, however the learned
geometry is often noisy, due to the lack of constraints on the geometry level sets.

To mitigate such issues, methods, such as UNISURF [4], VolSDF [5] and NeuS [6], learn implicit
geometry functions, represented as occupancy values or signed distance functions (SDF), using
volume rendering. SDF-based methods [5] [6] are generally better, because the surface can be
extracted as the zero-level set of the SDF using the Marching Cubes algorithm [26], which produces
more accurate geometry. Similar to classical MVS, these methods assume knowing accurate camera
parameters for the input images.

Following NeRF [3], methods, such as NeRFmm [7], BARF [8], SC-NeRF [9] and NoPe-NeRF [10],
propose techniques to jointly optimize camera parameters with radiance fields to relax the assumption
of knowing accurate camera parameters by imposing additional losses to the optimization process.
In this work, we enable camera pose optimization in SDF-based surface reconstruction methods,
particularly NeuS [6], by combining better camera parameterization and additional losses to constrain
the learned geometry.

3 Proposed Method

Given a set of RGB images of a scene, the goal is to reconstruct its surface represented by the
zero-level set of an implicit neural signed distance field (SDF) without knowing the camera poses or
alternatively given rough initial camera poses. The overview of the proposed method is illustrated
in Figure 2. We allow camera poses to be jointly optimized along with implicit neural networks.
In this section, we first review the usage of volume rendering to learn SDF-based implicit neural
surfaces. Then, we explain our parameterization of the camera poses and the two additional losses
for improving the estimated camera poses and the overall surface quality.
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3.1 SDF-based Surface Reconstruction using Volume Rendering

Using volume rendering to learn SDF-based implicit surfaces combines the advantages of surface
rendering based and volume rendering based methods, where the scene space is constrained by a
signed distance field. The surface S is then represented as the zero-set level of an implicit SDF field
S = {x ∈ R3|f(x) = 0}, where f is a function f : R3 → R that maps a spatial position x ∈ R3

to its signed distance to the object surface. This mapping function is implicitly encoded using a
multi-layer perceptron (MLP), which encodes the scene geometry. In addition to the MLP of scene
geometry (SDF), another MLP is used to encode the color function g : R3 × S2 × S2 × RNf → R3

that maps a spatial point x ∈ R3, its viewing direction v ∈ S2, its normal surface n ∈ S2 calculated
by differentiating the SDF function ∇f(x), and a feature vector v ∈ RNf generated by the SDF
network to the point color c ∈ R3. In order to train both networks, 3D points are sampled along a ray
emitted through an image pixel as follows:

x(t) = o+ tv|t ≥ 0 (1)

where o is the camera origin, v is the unit vector of the ray direction, and t is the distance between
the 3D point x and the camera origin o. Then, sampled colors are weighted and accumulated along
the ray using volume rendering in order to get the pixel color to compare with the ground-truth:

C(o, v) =

∫ +∞

0

w(t)g(x(t), v, n, z)dt (2)

where C(o, v) is the output color of the corresponding pixel, g(x(t), v, n, z) is the color of the 3D
point x(t) given the viewing direction v, and w(t) is the weight of the 3D point x(t). NeuS [6]
introduced a weight function that is both unbiased and occlusion-aware:

w(t) = exp

(
−
∫ t

0

ρ(u)du

)
ρ(t) (3)

where ρ(t) is called an opaque density function, which is the counterpart of the density function σ(t)
in the standard volume rendering. Equation 2 can be approximated using discretization; refer to NeuS
[6] for more details on this. The rendered pixel colors are then compared with the ground-truth input
image pixel colors for supervising the networks training.

3.2 Camera Parameterization

The camera parameters Π = K[R|t] include camera intrinsics Ki, which transform the points from
the camera i coordinates into the image i coordinates, and extrinsics (poses) Ti = [Ri|ti], which
transform the world coordinates into camera i coordinates. We assume that the camera intrinsics
K are known, as they are usually included in the image metadata. We only consider optimizing the
camera poses [R|t] in this work, where R ∈ SO(3), t ∈ R3 and [R|t] ∈ SE(3).

Following NeRFtrinsic Four [11], the index of each camera is mapped to a higher-dimensional space
using Gaussian Fourier feature mapping from Tancik et al. [28].

γ(v) = [cos(2πBv), sin(2πBv)]T , B ∈ Rm×d (4)

where v is the low-dimensional input and B is a matrix for the Gaussian mapping, whose values are
sampled from N(0, σ2) and frequency parameter m.

These features are then passed through an MLP with GELU activation functions to predict the pose for
each camera, which contains translation vector t ∈ R3 and rotation vector in axis-angle representation
r ∈ so(3) that is used to construct the rotation matrix SO(3). This formulation gives the camera
poses more degrees of freedom to learn than directly optimizing rotation and translation vectors,
which enables joint optimization of camera, geometry, and color networks.
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3.3 Multi-view Consistency

Generally, using multi-view consistency constraints is common in 3D reconstruction methods. This
becomes more important when optimizing camera poses, as the multi-view consistency constraints
ensure correct relative poses between cameras. Photo-consistency approaches use photometric
distance across RGB images, which is typically used in classical MVS methods [2]. Meanwhile,
feature consistency approaches compare pixels in feature maps of different views.

We use feature consistency on surface points to constrain camera and surface optimization. Similar to
D-NeuS [13], we utilize the SDF values of the sampled 3D points to extract the surface points. This
is done using linear interpolation to find the zero-crossing of the SDF values between the last positive
and the first consecutive negative SDF values.

Once the surface points are obtained, features of this point are compared across multiple views,
similar to MVSDF [12]. Features are extracted by applying a convolutional neural network (CNN),
pretrained for supervised MVS [21], on the RGB images. The final multi-view feature consistency
loss is formulated as follows:

Lfeature =
1

NcNs

Ns∑
i=1

|F0(p0)− Fi(Ki(Rix
′
+ ti))| (5)

where Nc is the number of channels in the feature maps, Ns is the number of neighboring source
views, F is the extracted feature map for a specific view, p0 is the pixel through which the ray is
cast in the reference view, x′ is the interpolated surface point, and Ki(Rix

′
+ ti) is the surface point

projected on the source view i using its camera parameters Ki, Ri, ti.

It is clear that the multi-view feature consistency loss imposes direct constraint on the predicted
camera poses Ri, ti to enforce correct relative pose between the reference and source cameras.

3.4 Depth Supervision

In order to improve the quality of the reconstructed surface and keep the estimated camera translation
within reasonable limits, we apply monocular depth loss against ground-truth depth maps. Ground-
truth depth maps D̄ are predicted by applying a pretrained monocular depth predictor on the input
RGB images. We choose ZoeDepth [27] for monocular depth prediction, which offers state-of-the-art
monocular depth quality. However, the predicted depth maps from the RGB images are usually not
multi-view consistent.

Consequently, we use monocular depth undistortion technique from Nope-NeRF [10], which considers
learning scale and shift parameters {(αi, βi)|i = 0...N − 1} for each view. These parameters are
used to linearly transform monocular depth maps to recover multi-view consistent depth maps D̄∗ to
be used for depth supervision:

D̄∗
i = αiD̄ + βi (6)

The scale αi and shift βi parameters are jointly optimized along with camera poses, geometry and
color MLPs. Furthermore, the predicted depth maps D̂ are obtained using volume rendering as
follows:

D̂ =

∫ +∞

0

w(t)tdt (7)

Similar to Equation 2, w(t) is the weight of the 3D point x(t) and t is the distance between the
distance between the 3D point x(t) and the camera origin o from Equation 1.

The rendered depth maps D̂ are then compared with the undistorted ground-truth depth maps D̄∗
i

using L1 loss on Nr rays (pixels) in the minibatch:
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Ldepth =
1

Nr

Nr∑
j

||D̂j − D̄∗
j ||1 (8)

3.5 Overall Training Loss

The overall loss to jointly optimize camera poses, depth undistortion parameters, geometry network
and color network is formulated as follows:

L = Lrgb + λ1Leikonal + λ2Lmask + λ3Lfeature + λ4Ldepth (9)

The color loss Lrgb is defined as L1 photometric loss between the rendered RGB Ĉ and the input
RGB images C on Nr rays (pixels) in the minibatch:

Lrgb =
1

Nr

Nr∑
j

||Ĉj − Cj ||1 (10)

Moreover, Eikonal loss Leikonal is applied on the sampled points to regularize the gradients of the
SDF field predicted by the geometry network f :

Leikonal =
1

NrNp

Nr,Np∑
j,k

(||∇f(xj,k)||2 − 1)2 (11)

where Nr is the number of rays (pixels) in the minibatch, and Np is the number of sampled 3D points
per ray. Also, we use an optional mask loss Lmask, which is defined as binary cross entropy loss
against ground-truth mask, as described in the original NeuS paper [6].

Finally, we apply coarse-to-fine optimization from BARF [8], which adds increasingly higher
frequencies to the positional encoding of both 3D position and viewing direction during training. This
is proven to reduce the likelihood of converging to a local minimum for camera pose optimization.

4 Experimental Results

4.1 Dataset

To evaluate our method against other baselines, we use the DTU dataset [14], which is widely-used
for evaluating 3D reconstruction methods with a challenging variety of geometry, materials and
appearance. We choose the same 15 scenes as those used in IDR [25] and NeuS [6]. Each scene
contains 48 or 64 images of a resolution of 1200 × 1600. Ground truth camera parameters are
also provided to evaluate our estimated camera poses using relative pose error (RPE) between pairs
of image views. Furthermore, reference point clouds for all scenes are provided in the dataset for
quantitative evaluation using the Chamfer distance provided by the official dataset evaluation protocol.

4.2 Experimental Setup

Baselines. We compare the quality of our reconstructed geometry to the widely-used classical MVS
pipeline COLMAP [1] [2], as well as other SDF-based surface reconstruction methods: NeuS [6]
and MonoSDF [15], which offer state-of-the-art results on the DTU dataset. For MonoSDF, we use
the MLP representation trained on all input views for fair comparison. Moreover, we quantitatively
compare our estimated camera poses with those estimated by COLMAP using the relative pose error
(RPE) between pairs of image views.

Implementation Details. Similar to NeuS [6], the geometry network contains 8 hidden layers, each
of size 256 and a skip connection from the input to the output of the 4th layer. The color (radiance)
network contains 4 hidden layers, each of size 256. We follow the same hierarchical sampling strategy
for volume rendering from NeuS. Positional encoding is applied to position x and viewing direction
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v, with frequencies of 6 and 4, respectively. However, we use a coarse-to-fine scheduling strategy,
similar to BARF [8], to smoothly mask the frequencies of positional encoding on an interval [0.1, 0.5].
Moreover, the camera pose network is modeled as an MLP with 3 layers with a hidden size of 64 and
GELU activation functions, similar to NeRFtrinsic Four [11]. The input frequency parameter m is set
to 128, which results in an embedding size of 256. We allow the estimation of actual camera poses or
relative transformation from an initial pose. By default, all cameras are zero initialized at the center of
a unit sphere, following NeuS initialization of the SDF network. For multi-view feature consistency
loss, we use Ns = 2 where each reference view is compared to two source views using Nc = 32
feature channels. We train our method for 300k iterations and 512 sampled rays per batch for 21
hours on a single Nvidia RTX 2080ti GPU. We use the ADAM optimizer [29] with a learning rate of
5e− 4. Also, we set λ1, λ2, λ3 and λ4 to 0.1, 0.1, 0.5 and 0.01, respectively. After optimization, we
use the Marching Cubes algorithm [26] to extract mesh from the learned SDF field using bounding
boxes defined by estimated camera poses with volume size of 5123 voxels.

4.3 Results

We conducted our comparisons with baselines both quantitatively and qualitatively. In Table 1, we
report the Chamfer distances on the selected scenes from the DTU dataset [14]. The results show that
our method offers comparable results to NeuS [6] and MonoSDF [15], which are SDF-based surface
reconstruction methods that rely on input camera parameters. Meanwhile, our method outperforms
the classical MVS pipeline COLMAP [2] in most cases. Furthermore, we show the relative pose errors
in Table 2 against COLMAP, which is the only method in our baselines that optimizes camera poses.
The results show that our method maintains accurate relative poses between different views as good as
the classical MVS pipelines. This is mainly due to the imposed constraints by the multi-view feature
consistency and depth losses. Note that the estimated camera poses are sensitive to initialization, as
discussed in 4.4.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
COLMAP [2] 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36

NeuS [6] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
MonoSDF [15] 0.83 1.61 0.65 0.47 0.92 0.87 0.87 1.30 1.25 0.68 0.65 0.96 0.41 0.62 0.58 0.84
NoPose-NeuS 0.91 1.51 0.95 0.44 1.01 0.63 0.79 1.53 1.22 0.88 0.51 1.35 0.39 0.55 0.67 0.89

Table 1: Quantitative evaluation on the DTU dataset using the Chamfer distance (lower values are
better). Results of the baselines are reported from the original papers, except for COLMAP results,
which are taken from MonoSDF paper [15]. The best score for each scan is marked in bold.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

R
PE

r COLMAP [2] 0.52 0.93 0.62 0.71 0.72 0.65 0.61 0.89 0.66 0.71 0.55 0.64 0.57 0.57 0.63 0.67
NoPose-NeuS 0.55 0.89 0.69 0.54 0.66 0.54 0.62 0.79 0.57 0.75 0.48 0.66 0.60 0.51 0.58 0.63

R
PE

t COLMAP [2] 0.95 1.01 1.12 0.99 0.81 0.93 0.67 1.05 1.15 1.05 0.91 0.88 0.91 0.86 0.99 0.95
NoPose-NeuS 1.01 1.08 0.91 0.88 0.76 0.80 0.87 1.02 1.19 1.04 0.79 0.82 0.96 0.85 0.97 0.93

Table 2: Quantitative evaluation of the estimated camera poses using relative pose error (lower values
are better). We compare our estimated poses to those estimated by COLMAP in terms of relative
rotation and translation errors. The rotation error (RPEr) is reported in degrees, and the translation
error (RPEt) is scaled by 100. The best score for each scan is marked in bold.

Moreover, Figure 3 shows our qualitative results against the baselines. Our method is able to recover
highly-accurate geometry, while jointly optimizing camera poses. COLMAP results suffer from noisy
and discontinuous surfaces (scans 37, 65 and 106). Meanwhile, MonoSDF (MLP) can reconstruct
smooth surfaces with high accuracy (scan 63), however it struggles with thin structures (scan 37). Our
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method reconstructs continuous surfaces with a high level of quality, which outperforms COLMAP
in all cases. Moreover, our method can handle complex geometry (scans 24, 37, 65 and 106), offering
comparable geometry quality to NeuS and MonoSDF (MLP), which rely on accurate input camera
parameters. However, flat surfaces are better in NeuS in some cases (scan 24 and 37). Also, MonoSDF
(MLP) is better for smooth surfaces in other cases (scan 63).
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Reference Image NoPose-NeuS (ours) NeuS [6] MonoSDF [15] COLMAP [2]

Figure 3: Qualitative evaluation of the surface reconstruction of our method against COLMAP [2],
NeuS [6] and MonoSDF [15].
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4.4 Discussion

Camera Pose Initialization. Good camera pose initialization is essential for our method to achieve
high-quality reconstruction. We performed an analysis to show the effect of camera initialization.
As illustrated in Figure 4, initializing camera poses (translation vector t ∈ R3 and rotation vector
r ∈ so(3)) with random values that do not follow any structure can result in losing fine details, as the
optimization process cannot recover the correct relative poses between different views. However, it is
better that the camera poses are zero initialized (center of a unit sphere), as the geometry network is
initialized to produce an approximate SDF of a unit sphere. Note that near-optimal initialization of
camera poses helps the model to converge faster to good results.

Reference Image a) Random Initial Poses b) Centered Initial Poses

Figure 4: Qualitative results showing the effect of camera pose initialization on the reconstruction
quality. We show rendered surface normal maps and RGB images of two models: a) initialized with
random noisy camera poses, b) initialized with zero (centered) camera poses.

Ablation Study. We conducted an ablation study of the DTU dataset to evaluate the different
components of our loss function. We started with the original losses from NeuS (Lrgb, Leikonal and
Lmask), then progressively combined our additional losses. We show the rendered surface normal
maps of DTU scan 24 for different settings in Figure 5. It is clear that using only the original NeuS
losses results in over-smoothed geometry, while adding only feature consistency or depth loss results
in noisy geometry. This is mainly due to high relative camera pose error. The final loss (described in
Equation 9) offers the best reconstruction quality.

Reference Image W/o feature/depth W/o feature W/o depth Ours

Figure 5: Qualitative results of the ablation study conducted on the DTU dataset. To further illustrate
the importance of the two additional losses, we show the rendered normal maps in different cases.

5 Conclusion

We introduced NoPose-NeuS, a neural implicit surface reconstruction method that enables camera
pose optimization in NeuS [6]. In our work, we encode the camera poses as an MLP, which is jointly
optimized with the geometry and color networks. Furthermore, we impose two additional losses,
which are multi-view feature consistency and rendered depth loss, to constrain the learned camera
poses and 3D geometry. Our method can recover relatively accurate camera poses, while maintaining
the quality of the surface reconstruction. The main limitation of our approach is the sensitivity to
the camera initialization, as it assumes a bounded scene following NeuS formulation. Therefore,
an interesting future work is to relax this assumption from the camera parameterization and the
SDF network initialization. Moreover, we can further optimize the camera intrinsics for full camera
calibration.
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