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Abstract

Despite the rapid progress of video generative models, the001
role of data in shaping motion quality is poorly understood.002
We present MOTIVE(MOtion Training Influence for Video003
gEneration), a motion-centric, gradient-based data attribu-004
tion framework that scales to modern, large, high-quality005
video datasets and models. We use this to study which fine-006
tuning clips improve or degrade temporal dynamics. MO-007
TIVE isolates temporal dynamics from static appearance via008
flow-weighted loss masks, yielding scalable influence scores009
practical for modern, large, and high-quality datasets and010
models. On text-to-video models, MOTIVE identifies clips011
that strongly affect motion and guides data curation that im-012
proves temporal consistency and physical plausibility. With013
MOTIVE selected high-influence data, our method improves014
both motion smoothness and dynamic degree on VBench,015
achieving a 76.7% human preference win rate compared016
with the pretrained base model. To our knowledge, this is the017
first framework that attributes motion (not just appearance)018
in video generative models and uses it to curate data.019

1. Introduction020

Motion is the defining element of videos. Unlike image021
generation, which produces a single frame, video generation022
must capture how objects move, interact, and obey physical023
constraints. For video diffusion models, a central question024
remains:025

Which training clips drive the motion observed in a
video diffusion sample?

Why it matters. Diffusion models are data-driven, and026
their progress has tracked the scaling of data and com-027
pute [14, 26, 29, 34]. Generative properties such as vi-028
sual quality [33], semantic fidelity [25], and compositional-029
ity [8, 45] emerge from training data [4, 17, 32]. Motion is no030
exception. We use motion to mean temporal dynamics cap-031
tured by optical flow, including trajectories, deformations,032
camera movement, and interactions. If generated motion033

reflects the data distribution that shaped the model, then at- 034
tributing motion to influential training clips provides a direct 035
lens on why a model moves the way it does and enables 036
targeted data selection for desired dynamics. 037

High-quality data often matters most in finetuning, where 038
large pretraining corpora are inaccessible and carefully cho- 039
sen clips can have an outsized impact. Motion-specific at- 040
tribution is therefore especially valuable in the finetuning 041
regime, where the goal is to identify which clips most influ- 042
ence temporal coherence and physical plausibility. 043

Why existing approaches fail for motion. Prior diffu- 044
sion data attribution focuses on images and explains static 045
content. Extending these methods to videos naı̈vely collapses 046
motion into appearance, missing the temporal structure that 047
distinguishes videos from images. Three challenges drive 048
this gap: (i) localizing motion so attribution focuses on dy- 049
namic regions rather than static backgrounds, (ii) scaling to 050
sequences since gradients must integrate across time, and 051
(iii) capturing temporal relations like velocity, acceleration, 052
and trajectory coherence that single-frame attribution cannot 053
measure. Addressing motion attribution requires methods 054
that explicitly model temporal structure, rather than treating 055
time as an additional spatial axis. 056

Our method. We introduce MOTIVE, a motion attri- 057
bution framework for video diffusion models that isolates 058
motion-specific influence. MOTIVE computes gradients with 059
motion-aware masking, so the attribution signal emphasizes 060
dynamic regions rather than static appearance. Efficient 061
approximations make the method practical for large, high- 062
quality datasets and video generative models. The resulting 063
scores trace generated motion back to training clips, enabling 064
targeted curation and improving motion quality when used 065
to guide fine-tuning. 066

2. Method 067

We formalize the problem setup in §C.3 and develop a prac- 068
tical framework for motion attribution in video diffusion 069
models with three key components: scalable gradient com- 070
putation (§2.1), frame-length bias fix (§2.2), motion-aware 071
weighting (§2.3) and data selection for targeted finetuning 072
(§C.1). We also provide a computational efficiency analy- 073
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Figure 1. MOTIVE. Top. Motion-gradient computation (§2.3) has three steps: (1) detect motion with AllTracker; (2) compute motion-
magnitude patches; (3) apply loss-space motion masks to focus gradients on dynamic regions. Bottom. Our method (§2.1) is made scalable
via a single-sample variant with common randomness and a projection, computed for each pair of training and query data, aggregated (§C.1)
for a final ranking, and eventually used to select finetuning subsets.

sis (§C.4) demonstrating the scalability of our approach to074
billion-parameter models and large-scale video datasets.075

2.1. Efficient Gradient-based Attribution for Gen-076
erative Models077

Approximating the inverse-Hessian. Computing exact078
inverse-Hessian-vector products is infeasible for modern079
neural networks. We estimate influence via gradient similar-080
ity, using an identity preconditioner for the inverse Hessian081
[18, 27, 30].082

Common randomness for stable rankings. To reduce083
variance without changing the target, we evaluate train and084
test gradients under the same (t, ϵ) pairs and average over085
a small set T [20, 46]. This paired averaging stabilizes086
rankings compared to independent draws:087

I1diff(xn,xtest) =
1

|T |
∑
t,ϵ∈T

∇θLdiff(θ; xtest, t, ϵ)∥∥∇θLdiff(θ; xtest, t, ϵ)
∥∥⊤

∇θLdiff(θ; xn, t, ϵ)∥∥∇θLdiff(θ; xn, t, ϵ)
∥∥ (1)

Single-sample variant for reduced compute. We then088
fix a single tfix and a single shared draw ϵfix ∼ N (0, I) for089

all train–test pairs at the final checkpoint. Sharing (tfix, ϵfix) 090
is key to having low enough variance, for the low-cost single- 091
sample estimator to maintain relative ordering [20, 46]. The 092
estimator collapses to: 093

I2diff(xn,xtest) =
∇θLdiff(θ; xtest, tfix, ϵfix)∥∥∇θLdiff(θ; xtest, tfix, ϵfix)

∥∥⊤
∇θLdiff(θ; xn, tfix, ϵfix)∥∥∇θLdiff(θ; xn, tfix, ϵfix)

∥∥ (2)

Structured projection for reduced storage. To operate 094
at model scale, we apply a Johnson–Lindenstrauss projection 095
via Fastfood [19] and normalize after projection. Let 096

P ∈ RD′×D be implemented as 097

P :=
1

ξ
√
D′

SQGΠQB (3) 098

where Q is the Walsh–Hadamard matrix, B is a diagonal 099
Rademacher matrix, Π is a random permutation, G is a 100
diagonal Gaussian scaling, and S is a diagonal rescaling, 101
and ξ normalizes the variance. The projected, normalized 102
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gradient is:103

Let g = P∇θLdiff(θ,x, tfix, ϵfix)104

g̃
(
θ,x

)
:=

g

∥g∥
(4)105

Then the influence score is the compact cosine in RD′
:106

I3diff(xn,xtest) = g̃
(
θ; xtest

)⊤
g̃
(
θ; xn

)
(5)107

This keeps compute O(D′ logD′) for projection and108
O(D′) per dot product, with storage O(|D|D′), while stay-109
ing close to the ranking behavior of full-gradient cosine110
similarity [27].111

2.2. Video-specific Frame-length Bias Fix112

Raw gradient magnitudes depend on the number of frames F113
in the video v, which biases scores toward video length. We114
correct this at measurement time by normalizing for frame115
count before the projection–normalization step:116

∇θLdiff(θ; v, tfix, ϵfix) ←
1

F
∇θLdiff(θ; v, tfix, ϵfix) (6)117

We still apply ℓ2 normalization in Eq. 5, further stabilizing118
scales across examples. Together, single-timestep, common119
randomness, projection, and frame-length correction form a120
compact, scalable estimator that we use throughout. Fig. 3121
shows the results of attributions with and without our fix.122
However, naı̈ve video-level attribution conflates appearance123
with motion, often ranking clips high just because they share124
visual appearance, while offering little insight into dynamics.125

2.3. Motion Attribution126

To move beyond whole-video influence, we introduce mo-127
tion attribution, which isolates the contribution of training128
data to temporal dynamics. Unlike video-level attribution,129
which treats each clip as a single unit and conflates appear-130
ance with motion, motion attribution reweights per-location131
gradients using motion masks, assigning influence via dy-132
namic behavior rather than static content.133

Motion Masking Attribution. Motion is what distin-134
guishes video diffusion from image diffusion. Our goal is135
to understand how training data shapes motion in video dif-136
fusion models. Prior work has emphasized architectural or137
algorithmic changes for motion modeling [4, 11, 29], many138
of the largest generative gains have instead come from scal-139
ing and curating massive video corpora, which in turn enable140
impressive motion synthesis results in video diffusion mod-141
els [14, 36, 39, 47]. yet we lack tools that quantify how142
specific training clips shape particular motion patterns. We143
address this by attributing motion back to data via motion-144
weighted gradients, which yields actionable signals for tar-145
geted data selection.146

Motion Detection and Latent Space Mapping. Given147
a video v ∈ RF×H×W×3 with F frames of resolution148

H × W , we first encode it into the VAE latent space as 149
h = E(v) ∈ RF×H/s×W/s×C , with downsampling factor 150
s = 8 and C = 16 following the Wan2.1 backbone used 151
in our experiments. For motion computation, we use All- 152
Tracker [12] to extract motion information in pixel space: 153
A = A(v) ∈ RF×H×W×4, where the first two channels 154
contain optical flow maps A:,:,:,0:2 indicating pixel displace- 155
ment between frames, and the remaining channels A:,:,:,2:4 156
encode visibility and confidence scores. We extract displace- 157
ment vectors at each pixel location as: 158

Df (h,w) = (Af,h,w,0, Af,h,w,1) = (dw,dh) (7) 159

We then bilinearly downsample motion quantities from 160
(H,W ) to the latent grid

(
H
s ,

W
s

)
so that our masking lives 161

where gradients are computed. 162
Motion-Weighted Gradient Computation. We define 163

the motion magnitude at each location as: Mf (h,w) = 164
∥Df (h,w)∥2. To obtain comparable motion weights across 165
frames and pixels, we min–max normalize over all frames 166
and pixels, ensuring values lie in [0, 1]: This normaliza- 167
tion mitigates bias from absolute motion scale, yielding 168
weights that emphasize relative motion saliency rather than 169
raw magnitude, following prior practice in video saliency 170
detection [7]. Let (h̃, w̃) index the latent grid. We obtain 171
latent-aligned weights by bilinear downsampling: 172

W̃(f, h̃, w̃) = Bilinear
(
W(·, ·, ·), F, H

s ,
W
s

)
(8) 173

We compute per-location squared error at fixed (tfix, ϵfix) 174
at each frame f and “latent pixel” (h̃, w̃): and define the 175
motion-weighted loss by averaging over frames and latent 176
spatial locations: 177

Lmot(θ;v, c) =
1

Fv
meanf,h̃,w̃

[
W̃v,c(f, h̃, w̃) · L̃θ,v,c(f, h̃, w̃)

]
(9) 178

Notably, when W̃ is all ones, this recovers the standard 179
objective with no motion emphasis. The 1/Fv factor corrects 180
for frame-length bias and Fv signifies how the number of 181
frames may be video-dependent. The corresponding motion- 182
weighted gradient for attribution is: 183

Imot(vn, v̂) = g̃mot(θ, v̂)
⊤g̃mot(θ,vn) 184

where g̃mot(θ,v) :=
Pgmot(θ,v, tfix, ϵfix)

∥Pgmot(θ,v, tfix, ϵfix)∥
185

and gmot := ∇θLmot (10) 186

Loss-space masking leaves forward noising and gener- 187
ation unchanged and reweights only attribution, avoiding 188
interactions between motion weighting and noise injection. 189
In contrast, our motion-aware attribution emphasizes dy- 190
namic regions and de-emphasizes static backgrounds, so 191
rankings identify training clips that most strongly shape the 192
model’s motion rather than appearance. More details about 193
subset selection are in Appendix C.1. 194
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Method (↓) / Metric (→) Subject Consist. Background Consist. Motion Smooth. Dynamic Degree Aesthetic Quality Imaging Quality

Base 95.3 96.4 96.3 82.3 45.3 65.7
Full finetuning 95.9 96.6 96.3 84.7 45.0 63.9
Random selection 95.3 96.6 96.3 81.6 45.7 65.1
Whole video 95.4 96.1 96.3 85.3 45.7 63.2

MOTIVE (Ours) 96.3 96.1 96.3 89.4 46.0 64.6

Table 1. VBench Evaluation. Performance comparison on VBench [16]. We evaluate subject consistency, background consistency, motion
smoothness, dynamic degree, aesthetic quality, and imaging quality across different data selection methods (all values in %, higher is better).
Random selection and our MOTIVEboth select 10% of the training data, with our method using majority vote aggregation (§ C.1) across all
motion queries.

3. Experiment195

3.1. Main Results196

Experiment setup details are in Appendix §F.2. High-197
influence selection and negative filtering. Fig. 6 shows198
that motion-aware attribution ranks clips with clear, phys-199
ically grounded dynamics and downranks those with little200
transferable motion. For rolling and floating, positives show201
continuous trajectories and smooth temporal evolution (tur-202
bulent water carrying objects; planetary rotation). Negatives203
are mostly static footage, camera-only motion, or cartoon204
clips whose simplified kinematics do not transfer to natural205
scenes. Our procedure promotes informative motions and206
filters data that would dilute temporal learning during fine-207
tuning. These trends hold across categories and align with208
the quantitative gains that follow.209

Qualitative improvements across motion types. Fig. 5210
compares the base pretrained model, naı̈ve motion finetuning,211
and our motion-aware data selection for finetuning across212
four scenarios. Top: rubber-ball compression and coin spin-213
ning. Bottom: coffee mug sliding and red ball drop. Our214
method yields higher motion fidelity and temporal consis-215
tency than both baselines, especially for complex deforma-216
tion, rotational dynamics, and physics-driven motion.217

Quantitative Results. We evaluate our approach across218
different metrics using VBench [16], demonstrating consis-219
tent improvements in motion fidelity when finetuning with220
attribution-selected data compared to random sampling or221
naı̈ve approaches. As shown in Tab. 1, MOTIVE achieves the222
highest dynamic degree score (89.4%), significantly outper-223
forming random selection (81.6%) and whole video attribu-224
tion (85.3%). Our method also excels in subject consistency225
(96.3%) and aesthetic quality (46.0%), while maintaining226
competitive motion smoothness (96.3%). Using 10% of227
the training data, our approach surpasses the full finetuned228
model on dynamic degree (84.7%) and subject consistency229
(95.9%), demonstrating the superior empirical performance230
of motion-specific attribution for targeted finetuning.231

Table 2. Human evaluation results. Pairwise comparisons across
10 motion categories. Win, tie, and loss rates show the percentage
of comparisons where our method is preferred, rated equal, or
outperformed by each baseline method.

Method Win Tie Loss

vs. Base 76.7 10.0 13.3
vs. Random 66.7 13.3 20.0
vs. Full FT 57.5 15.0 27.5
vs. Whole Video 50.8 12.5 36.7

3.2. Human Evaluation 232

Automated scores can miss perceptual motion quality, so 233
we run a human evaluation pairwise comparison protocol: 234
participants view two generated videos and choose which 235
shows better motion. We recruit 6 annotators and evaluate 236
10 motion categories. For each category, we prepare two 237
test cases and compare our method to baselines across three 238
pairings, yielding a balanced set of judgments. Presentation 239
order is randomized, and ties are allowed. We report win 240
rate (fraction our method is preferred), tie rate, and overall 241
preference. As shown in the table, annotators favor our 242
attribution-guided selection: 76.7% win rate vs. the base 243
model and 57.5% vs. the full finetuned model, indicating 244
perceptually meaningful motion improvements. 245

4. Conclusion 246

We address a central and underexplored question in video 247
diffusion: where is motion from? We propose MOTIVEthat 248
traces generated dynamics back to influential training clips 249
by isolating motion-specific gradients. Unlike image-based 250
attribution, our method directly targets temporal dynamics, 251
revealing how coherence and physical plausibility emerge 252
from data. Our results show that motion learning is trace- 253
able to specific examples, providing a quantitative tool for 254
diagnosing artifacts and enabling targeted data selection and 255
curation. This enables more controllable and interpretable 256
video diffusion models, and as models scale, such data-level 257
understanding will be essential for building robust and reli- 258
able generative systems. 259
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A. Notation 501

B. Background 502

A table of notation is in App. §A, as well as an extended 503
related work in App. §D. 504

B.1. Video Generation with Diffusion and Flow- 505
Matching Models 506

Diffusion and flow matching in latent space. Let pθ(v | c) 507
be a conditional generator with parameters θ, where v ∈ 508
RF×H×W×3 is a clip of height H , width W , and F frames, 509
and c denotes conditioning such as text or other multimodal 510
metadata (e.g., fps, depth, pose). We operate in VAE latents: 511
h = E(v) and train a denoiser or velocity field on noisy 512
latents. A noise scheduler supplies time-dependent coeffi- 513
cients (αt, σt) controlling signal and noise scales, and the 514
forward noising is: 515

z(t, ϵ) = αt h + σt ϵ, ϵ ∼ N (0, I), t ∈ {1, . . . , T}
(11) 516

Denoising diffusion [13] trains a network ϵθ(z, c, t) to pre- 517
dict the injected noise: 518

Ldiff(θ;v, c) = Et,ϵ

[
∥ϵθ(z(t, ϵ), c, t)− ϵ∥22

]
(12) 519

Flow matching [1, 21] learns a time-dependent vector field 520
fθ(zt, c, t) that matches the instantaneous velocity ż = d

dtz 521
induced by a chosen interpolant: 522

Lflow(θ;v, c) = Et,ϵ

[
∥fθ(z(t, ϵ), c, t)− ż(t, ϵ)∥22

]
(13) 523

The two objectives are closely related and both train time- 524
indexed predictors over the same latent space while integrat- 525
ing over t and ϵ. Methods, such as for attribution, relying on 526
per-sample gradients naturally transfer between them, since 527
the estimation challenges arise from the similar integrations. 528

From images to video for generation. Adding a tempo- 529
ral axis materially changes modeling and training. Genera- 530
tion must capture spatial appearance and temporal dynamics 531
such as object and camera motion, deformations, and in- 532
teractions. Modern systems extend image backbones with 533
temporal capacity, for example, 3D U-Nets or 2D U-Nets 534
augmented with temporal attention, causal or sliding-window 535
context, and factorized space-time blocks, often trained in a 536
latent-video VAE that compresses frames while preserving 537
temporal cues. Training departs from images along several 538
axes, which we address in §2: (i) Compute and storage. 539
Longer sequences multiply the cost of sampling timesteps, 540
noise draws, and frames, motivating fixed-timestep or small- 541
subset estimators that reduce variance without prohibitive 542
cost (§2.1). (ii) Variable horizon. Clips vary in F and frame 543
rate (§2.2). (iii) Time-specific failure modes. Typical artifacts 544
include inconsistent trajectories, temporal flicker, identity 545
drift, and physically implausible dynamics despite sharp 546
individual frames (§2.3). 547
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Motion representations in videos. We denote our video548
as v = [ff ]

F
f=1 with ff ∈ RH×W×3 being the f -th frame.549

We represent motion via optical flow between consecutive550
frames: Ff : {1, . . . ,H} × {1, . . . ,W} → R2, where each551
flow vector in R2 encodes the horizontal displacement dw552
and vertical displacement dh of a pixel. The motion mag-553
nitude is Mf (h,w) = ∥Ff (h,w)∥2. The Mf over frames f554
and pixels h,w summarizes the amount and spatial layout555
of motion in a clip, which we will use to provide masks in556
our motion-weighted loss in §2.557

B.2. Data Attribution558

Data attribution connects model behavior to specific training559
examples by giving examples a score for their contribution to560
a target prediction or loss. A classic formulation is influence561
functions [18]. For a loss L(θ;x) and a test input xtest, the562
influence of training point xn is:563

I(xn,xtest) = −∇θL(θ;xtest)
⊤ H−1

θ ∇θL(θ;xn)564

Hθ = 1
N

∑N

n=1
∇2

θL(θ;xn) (14)565

Exact Hessian inverses are infeasible at modern scales, so566
practical methods approximate influence via gradient simi-567
larity, for example, TracIn [30] and TRAK [27].568

Attribution in diffusion models. Diffusion training569
aggregates gradients over timesteps t and noise draws ϵ,570
and gradient norms vary systematically with t. This pro-571
duces a timestep bias where examples aligned with large-572
norm timesteps appear spuriously influential. Diffusion-573
ReTrac [20] reduces this bias by normalizing gradients and574
sub-sampling t and ϵ when forming influence. Let Ldiff575
denote the diffusion loss and with the sampled-timestep-576
and-noise set T , we compute a cosine-style score between577
normalized test and train gradients:578

Idiff(xn,xtest)

=
1

|Ttest|
∑

t,ϵ∈Ttest

∇θLdiff(θ;xtest, t, ϵ)∥∥∇θLdiff(θ;xtest, t, ϵ)
∥∥⊤

× 1

|Tn|
∑

t,ϵ∈Tn

∇θLdiff(θ;xn, t, ϵ)∥∥∇θLdiff(θ;xn, t, ϵ)
∥∥ (15)

Averaging over (t, ϵ) stabilizes estimates, and normaliza-579
tion mitigates timestep-induced scale effects. Attribution580
quality is also sensitive to the measurement function used581
to score examples, such as denoising loss versus likelihood582
proxies [49].583

Why vanilla attribution is insufficient for videos.584
Naı̈vely applying gradient-based attribution to video dif-585
fusion risks treating appearance and motion alike, often586

overemphasizing low-level appearance matches (objects, tex- 587
tures, backgrounds) while overlooking dynamics [28, 38]. Its 588
cost grows with clip length, sampled timesteps, noise draws, 589
and gradient dimensionality, making naı̈ve methods imprac- 590
tical at modern video scales. Because we aim to explain 591
and improve motion, we need attribution that suppresses 592
static appearance, emphasizes motion-specific signals, and 593
remains efficient, motivating the motion-centric approach in 594
§2. Motion is distributed across frames and temporal hori- 595
zons and entangled with static cues, so influence cannot be 596
assigned by considering frames independently. 597

C. Additional Method Details 598

C.1. Most Influential Finetuning Subset Selection 599

Goal. Given a query clip (v̂, ĉ), we compute a motion- 600
aware attribution value for each candidate finetuning exam- 601
ple (vn, cn) ∈ Dft using: Imot(vn, v̂) from Eq. 10. Then, 602
we construct a finetuning dataset S for one or many query 603
videos v̂. 604

Single-query-point finetuning selection. For a budget 605
of K data points, we select the K highest-scoring examples. 606
In practice, K is chosen as a percentile of the dataset size 607
(e.g., top 1–10%), ensuring the subset scales consistently 608
across datasets. 609

Multi-query-point finetuning selection: aggregating 610
attribution scores. For Q queries, we adopt the majority vot- 611
ing approach from ICONS [44] and aggregate motion-aware 612
influence scores across queries by percentile thresholding 613
and voting. A sample receives a vote if the score is above 614
the percentile cutoff τ for that query. The consensus score 615
of a candidate vn is the total number of queries that vote 616
for it. We then rank all training samples by MajVote(vn) 617
and select the top-K to form the finetuning subset. This 618
formulation emphasizes samples that are consistently influ- 619
ential across multiple queries, without requiring cross-query 620
calibration of raw scores. 621

MajVoten =
∑Q

q=1
I
[
Imot(vn, v̂q) > τ

]
622

Svote(K) =
{
vn|vn in top-K by MajVote

}
(16) 623

C.2. Scope 624

Tracker-agnostic scope. We treat the motion estimator as 625
a pluggable source of saliency rather than a training de- 626
pendency. Given displacement magnitudes, we construct 627
latent-space weights via bilinear mapping and normalization. 628
Our implementation allows for the use of alternate estimators 629
(such as dense optical flow or point tracking) with identical 630
interfaces, enabling practitioners to swap AllTracker without 631
modifying the attribution code. 632

Model-agnostic scope. Our attribution only requires 633
per-example gradients under matched (t, ϵ), and therefore 634
applies to both diffusion and flow-matching objectives. The 635
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score reduces to a gradient inner product under a fixed pre-636
conditioner; the generator architecture affects gradient statis-637
tics but not the definition of influence. In practice, replacing638
the denoiser or velocity field leaves the weighting and aggre-639
gation unchanged.640

C.3. Problem Formulation641

We study data attribution for motion in the finetuning set-642
ting. Let Dft = {(vn, cn)}Nn=1 be the finetuning corpus.643
Given a query video (v̂, ĉ), we assign to each training clip644
(vn, cn) a motion-aware influence score I(vn, v̂;θ) that ex-645
plains how it contributes to the dynamics observed in v̂.646
The score should satisfy: (i) predictivity: rankings corre-647
late with observed changes doing finetuning on the most648
influential subsets; (ii) efficiency: scales to modern video649
generators, such as forgoing explicit Hessian inversion, ex-650
pensive per-data integration, or prohibitive storage. To do651
this, we augment the influence target defined in Eq. 15 to be652
(a) lower variance for stable rankings with feasible levels of653
compute, (b) more scalable to store, and (c) motion-centric.654

Finetuning Subset Selection. For a budget K ≪ N , we655
get a motion-influential subset by ranking scores and taking656
the top-K examples. When aggregating across multiple657
query motions, we combine selections as described in §2.658
The resulting subsets serve as candidates for motion-centric659
finetuning.660

C.4. Computational Efficiency Analysis661

Gradient Compute. Naı̈vely averaging over timesteps and662
noise for every example costs O(|D| |T |B), where B is663
a single forward+backward cost and |T | is the number of664
sampled t, ϵ per data. Using a single sample reduces this to665
O(|D|B) – essential for having a reasonable cost on modern666
video datasets and models – while re-using the same sample667
across data allows the single-sample to have low enough668
variance for stable rankings. Projection adds O(D′ logD′)669
per example using Fastfood [19], negligible relative to a670
backward pass.671

Gradient Storage. Storing full gradients is O(|D|D).672
We instead store only projected vectors, O(|D|D′), plus673
the structured Fastfood state, O(D). Since D′ is typically674
orders of magnitude smaller than D, this transformation675
makes storage tractable for billion-parameter models.676

Data Ranking Compute. Influence computation in Eq. 5677
is an inner product in RD′

, so evaluating all train examples678
against a query is O(|D|D′), and sorting is O(|D| log |D|).679

Additional Motion-Emphasis Compute. Motion-680
specific overhead primarily stems from AllTracker mask681
extraction with complexityO(|D| ·H ·W ·F ) for clip length682
F and frame resolution H ×W . Masks are extracted once,683
cached, and negligible relative to gradient cost.684

D. Related Work 685

D.1. Data Attribution 686

Understanding how individual training examples shape 687
model behavior has been a long-standing goal in machine 688
learning. Influence functions [18] provide a principled frame- 689
work by approximating the effect of removing a training 690
point. Extensions such as TracIn [30] and TRAK [27] make 691
attribution feasible at scale. While effective for classification, 692
these methods assume a direct mapping between training 693
gradients and predictions, which becomes more complex in 694
generative models. 695

Data attribution refers to methods that trace how individ- 696
ual training examples (or subsets) influence a model’s pre- 697
dictions or behavior. Formally, it assigns an attribution score 698
to each training sample, estimating the extent to which that 699
sample contributes (positively or negatively) to the model’s 700
output on a given test query or behavior. Before diffusion 701
models, attribution methods were applied in supervised learn- 702
ing tasks such as classification and regression, where influ- 703
ence functions [18] and scalable approximations like TracIn 704
[30], TRAK [27], and TDA [2] quantified the impact of 705
training examples on downstream predictions. Recent work 706
adapted data attribution to diffusion models, where iterative 707
denoising introduces timestep-dependent bias. Mlodoze- 708
niec et al. [24] propose scalable approximations, while Xie 709
et al. [46] identify timestep-induced artifacts and normal- 710
ization schemes. Concept-TRAK [28] extends attribution 711
to concepts by reweighting gradients with concept-specific 712
rewards, enabling attribution to semantic factors. Wang et al. 713
[41] instead design a customization-based benchmark for 714
text-to-image models, where models are fine-tuned on exem- 715
plar images with novel tokens and attribution is evaluated by 716
whether it can recover the responsible exemplars. However, 717
these works are limited to image diffusion, which captures 718
static appearance but not temporal dynamics. 719

D.2. Motion in Video Generation 720

Video diffusion extends image generation to time, requiring 721
coherent motion across frames [4, 14, 29, 39]. A large body 722
of work builds temporal structure via attention layers [43], 723
control signals [5, 48], feature correspondences [3, 9, 40], 724
or consistency distillation [42, 50]. Recent work has high- 725
lighted the challenge of decoupling motion from appearance 726
in video diffusion transformers, where spatial and temporal 727
information become entangled in the model’s representations 728
[35]. However, understanding which training clips influence 729
specific motion patterns in generated videos remains an open 730
challenge. 731

In parallel, motion has long been studied through opti- 732
cal flow and correspondence – from classical formulations 733
[15, 23] to modern deep flows like RAFT, which improves 734
accuracy and generalization [37]. These priors are often 735
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Figure 2. Projection dimension analysis. Spearman correlation
between projected and full gradients shows rapid improvement
with projection dimension, with 512 providing a strong trade-off
between accuracy and efficiency.

repurposed in generation for guiding dynamics or checking736
temporal consistency, but they do not explain which train-737
ing examples shaped a model’s motion behavior. Our work738
addresses both gaps by introducing a motion-aware data attri-739
bution framework specifically designed for video diffusion.740
We use motion-weighted gradients that disentangle temporal741
dynamics from static appearance, enabling us to trace gen-742
erated motion patterns back to the most influential training743
clips.744

D.3. Ablations745

Single-timestep attribution. Using a single timestep avoids746
the cost of averaging across timesteps while closely match-747
ing the multi-timestep baseline. With a fixed t = 500,748
we obtain ρ= 68% agreement with the 7-timestep setting749
t ∈ {150, 300, 400, 500, 600, 750, 850}. Using the same750
timestep for train and test is key to preserving relative751
rankings. Early timesteps (e.g., 250) add little noise; late752
timesteps (e.g., 750) heavily corrupt inputs and can obscure753
motion cues. t=500 strikes a balance, delivering high corre-754
lation and substantial compute savings. Averaging multiple755
timesteps yields minimal ranking gains, and incorporating756
late-timestep gradients can bias rankings. A single fixed757
timestep is therefore sufficient for variance-reduced, scal-758
able attribution.759

Projected Gradients Preserve Influence Rankings.760

Comparing full gradients for attribution is infeasible at761
a billion-parameter scale. We reduce dimensionality with762
structured random projections that preserve influence geom-763
etry, ablating D′∈{128, . . . , 2048} against the full-gradient764
baseline. We assess ranking preservation via Spearman corre-765
lation with unprojected scores (Fig. 2). Small projections pre-766
serve rankings poorly: D′=128 yields ρ=46.9%. Preser-767
vation improves with size: D′ = 512 reaches ρ = 74.7%.768

Beyond that, gains are marginal while cost rises: D′=1024 769
(ρ= 75.7%) and D′ = 2048 (ρ= 76.1%). Thus, D′ = 512 770
offers the best trade-off, scaling to large models while main- 771
taining quality. 772

Frame-Length Normalization. Following the Wan train- 773
ing protocol, we standardize all videos to 81 frames at 16 774
fps (satisfying the 4n+1 constraint) to enable fair attribution 775
across clips of different raw lengths. Without standardization, 776
gradient-based scores correlate strongly with video length 777
rather than motion quality (ρ=78.0%), causing longer clips 778
to rank higher regardless of dynamics. Standardizing frames 779
reduces this spurious length correlation by 54.0% while pre- 780
serving motion-based correlation, so rankings reflect motion 781
rather than duration. As in Fig. 3, normalization clarifies 782
motion-specific patterns. For floating queries, with frame- 783
length normalization (left), top-ranked samples consistently 784
show wave dynamics, floating objects, and surfing, which 785
match the target motion. Without normalization (right), top 786
samples lack coherent similarity because rankings are driven 787
by clip length, hindering identification of motion-relevant 788
training examples. 789

Samples from Motion Query Set

We illustrate representative prompts in our query set that
are used to generate query videos with Veo-3.

compress, "A slice of sandwich bread
flattened by a flat metal plate,
steady camera, soft studio lighting,
plain backdrop;
emphasize air pockets collapsing."

bounce, "A ping-pong ball bouncing
on a white table, steady side camera,
neutral light, seamless backdrop;
emphasize consistent bounce height a
nd timing."

roll, "A spool of thread rolling from
left to right, close-up static
camera, bright studio light; highlight
axle rotation and smooth travel."

explode, "A single balloon bursting
into fragments, captured in high-speed
slow motion with a fixed camera,
bright even lighting, seamless
background; emphasize outward
debris and air release."

float, "A foam cube floating on
the surface of water, static overhead
camera, bright light, clean tank;
emphasize buoyancy and slight rocking."

790
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Query

With Frame Normalization

Top influential Samples

Without Frame Normalization

Figure 3. Impact of Frame-Length Normalization on Motion Attribution. Comparison of top-ranked samples for floating motion query.
Left: With proper frame-length normalization, top samples consistently exhibit floating motion (waves, floating objects, surfing). Right:
Without normalization, rankings are biased by video length, resulting in no coherent patterns among top samples.

E. Details on Motion Query Data791

A small, controllable set of query videos is constructed to iso-792
late specific motion primitives while minimizing confounds793
(e.g., textured backgrounds, uncontrolled camera motion).794
Such clean and consistent clips are challenging to obtain795
from natural data sources. To address this, we synthesize the796
query set using Veo-3 [10] and apply a strict post-generation797
screening for physical plausibility and generation realism.798
We target ten motion types: compress, bounce, roll, explode,799
float, free fall, slide, spin, stretch, swing. For each cate-800
gory, we retain five query samples, resulting in a total of801
50 queries. This scale provides adequate coverage of the802
motion taxonomy used in our evaluations while maintaining803
tractable attribution computation. We further provide a few804
examples of the generation prompts and the generated video805
query set in Fig. 4.806

Rationale for synthetic queries. The query set is not used807
as training data; instead, it specifies targets for attribution808
and for multi-query aggregation. Synthetic generation offers809
controllability that is difficult to achieve at scale with web810
videos. This design yields near-realistic yet standardized811
stimuli aligned with our goal of probing motion-specific812
influence.813

Samples from Motion Test Set

We illustrate representative prompts in our test set that are
used to generate test videos with our finetuned models.

compress, "A rubber ball being
compressed under a flat press,
filmed with a stationary camera.
Bright, shadow-free lighting
and a clean background emphasize
the deformation as it flattens."

bounce, "A basketball bouncing
vertically on a wooden court plank,
unmoving camera, balanced indoor
lighting, plain wall background;
clearly show deformation at impact."

roll, "A bike tire rolling freely
on a stand, static side camera,
indoor neutral light; show uniform
rotation without wobble."

explode, "A fragile glass ornament
breaking apart mid-air,
fixed camera, bright controlled lighting,
plain backdrop; capture shards and
reflections crisply."

float, "A green leaf floating gently
on perfectly still water
in a transparent tank, fixed top-down
camera, bright even lighting;
emphasize surface tension ripples."

814

F. Details on Experiments 815

F.1. Hyperparameter Settings 816

For reproducibility, we document the hyperparameters used 817
throughout attribution, subset selection, and finetuning. 818
Where values were not explicitly tuned, we adopted defaults 819
from DiffSynth-Studio and the official wan repo. 820

Attribution. Motion-aware influence estimation is com- 821
puted at a single fixed timestep tfix = 500, selected as a 822
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Free FallFree FallExplodeFloat

Swing

Figure 4. Illustration of motion query set. We generate near-realistic video queries with Veo-3 across ten motion categories. Each category
contains five query videos synthesized with controlled prompts and manually screened for clarity and physical plausibility.

mid-range value that correlates strongly with multi-timestep823
averaging. A shared Gaussian draw ϵfix ∼ N (0, I) is used824
across all training–query pairs to reduce stochastic variance.825
Gradients are projected from dimension D = 1418 996 800826
to D′ = 512 using a Fastfood Johnson–Lindenstrauss pro-827
jection P selected via the search in Fig.2 to balance perfor-828
mance and storage. Motion weights W are computed from829
AllTracker flow magnitudes Mf , min–max normalized to830
[0, 1] with a small bias ζ = 10−6. All computations use831
bfloat16 precision for memory efficiency.832

Subset Selection & Finetuning. For any number of833
query points, we select top-10% data of the datasets. We834
finetune the Wan2.1-T2V-1.3B backbone while freezing835
both the T5 text encoder [31] and the VAE. The input reso-836
lution is fixed to 480 × 832 pixels. We use a learning rate837
of 1× 10−5 and the AdamW optimizer [22] following the838
DiffSynth-Studio defaults. We train the models for 1 epoch839
with the dataset repeated 50 times.840

Evaluation. The test set consists of the same 10 motion841
categories with different visual appearances compared with842
the query set. We provide the prompt samples below.843

F.2. Setup844

Finetuning Datasets. We evaluate our motion attri-845
bution framework on two large-scale video datasets:846
VIDGEN-1M [36] and 4DNeX-10M [6], both offering diverse847
motion patterns with rich temporal dynamics and complex848
scenes. For our experiments, we use 10k videos from both849

datasets, which provide sufficient scale and diversity to thor- 850
oughly evaluate motion attribution methods across different 851
types of temporal patterns and video generation scenarios. 852

Motion Query Data. To evaluate our motion attribution, 853
we curate a set of query videos representing distinct motion 854
patterns and scenarios. Our query dataset consists of videos 855
spanning multiple motion categories, with a focus on object 856
dynamics: compress, bounce, roll, explode, float, free fall, 857
slide, spin, stretch, swing. Each motion type is represented 858
by 5 videos, totaling 50 queries. These videos are chosen to 859
exhibit clear and isolated motions, serving as the basis for 860
evaluating attribution quality and downstream motion gener- 861
ation. Further details on query video curation are provided 862
in App. E. 863

Model & Baselines. All experiments use pretrained 864
Wan2.1-T2V-1.3B1 as the primary video diffusion model, 865
a widely used open-source baseline with strong performance 866
and feasible compute. Our baselines: Base model (pre- 867
trained, no finetuning); Random selection (uniform sam- 868
pling at our budget); Full finetuning (approximate upper 869
bound using the complete dataset); and Whole video attri- 870
bution (whole video level influence without motion-specific 871
weighting). 872

Benchmark. We evaluate our motion attribution frame- 873
work with VBench [16], a video generation benchmark. 874
VBench provides evaluation across dimensions, including 875
subject and background consistency, motion smoothness, 876

1https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B
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A white mug is placed and then slid across a wooden kitchen counter, fixed 
side camera, diffuse lighting, blurred kitchen background; emphasize the  

sliding motion of the mug.

A single coin twirls on a polished glass surface, close-up fixed 
camera, bright even lighting, plain backdrop; capture its 

precession and slow wobble as it settles.

A rubber ball being compressed under a flat press, filmed with a 
stationary camera. Bright, shadow-free lighting and a clean 

background emphasize the deformation as it flattens.

 A red ball drops vertically from above and falls straight down onto the wooden 
surface. The motion is quick and direct, with light motion blur showing its fall 

against the clean wooden background.

Slide Free fall

Compress Spin

Figure 5. Qualitative Comparisons. We compare four motion scenarios – compress, spin, slide, and free fall – across the base model,
random selection, and our method. Our approach yields more realistic dynamics than baselines, with improved object deformation under
compression, consistent rotation of the spinning coin, smoother pendulum motion of the swinging key, and more accurate gravitational
acceleration during free fall. Supplementary videos are included.

dynamic degree, and aesthetic and imaging quality. Since877
our method targets temporal dynamics, motion smoothness878
and dynamic degree are most relevant; other metrics con-879
firm that improvements do not sacrifice visual or semantic880
consistency.881

Implementation Details. We finetune882
Wan2.1-T2V-1.3B with our MOTIVE-selected high-quality883
video data following the official & DiffSynth-Studio 2884
implementation. During finetuning, we update only the885
DiT backbone while freezing the T5 text encoder and886
VAE. All models are trained at 480 × 832 resolution with887
a learning rate of 1e−5. Specialist models are trained on888
single motion category selected data while generalist models889
use aggregated selections (both with top 10% selection from890
VIDGEN-1M [36] or 4DNeX [6] with motion-weighted loss891
attribution). All training runs are conducted on 4-8 NVIDIA892
A100 GPUs. We use one A100 GPU, taking approximately893
150 hours to compute the influence score of 10k samples.894

2https://github.com/modelscope/DiffSynth-Studio

895
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Query

Positive

influence

Negative

influence

Float Roll

Figure 6. Motion attribution examples. Top row: Query clips showing floating (right) and rolling (left) motions. Middle rows: Top-ranked
positive influential training samples by MOTIVE that share similar motion patterns, such as water flow with floating objects and rotations.
These samples exhibit similar motion patterns and dynamics that help the model generate realistic motion, demonstrating how our method
identifies motion-relevant examples across different visual appearances and object types. Bottom rows: Negative samples including minimal
motion content, camera-only motion, and cartoon-style videos, which conflict with the target motions.
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Table 3. Glossary and notation.

VAE Variational Autoencoder
DiT Diffusion Transformer backbone
I Identity matrix

pθ(v | c) Conditional video generator with parameters θ
v ∈ RF×H×W×3 Video clip with frames F , height H , width W

c Conditioning signal such as text or multimodal metadata
θ Trainable model parameters

f ∈ {1, . . . , F} Frame index
h ∈ {1, . . . ,H}, w ∈ {1, . . . ,W} Spatial indices for height and width respectively

t ∈ {1, . . . , T} Diffusion or flow-matching timestep, with total timesteps T
D = {(vn, cn)}Nn=1 Training corpus with size N and index n

Dft ⊆ D Fine-tuning dataset
S ⊆ D Selected influential subset

k ∈ {1, . . . ,K} The selected subset size
q ∈ {1, . . . , Q} Number of query clips

v̂, ĉ Query video and its conditioning
E VAE encoder

h = E(v) ∈ RF×(H/s)×(W/s)×C Latent video with spatial factor s and channels C
z Noisy latent variable used in diffusion or flow matching

ϵ ∼ N (0, I) Gaussian noise
ϵθ(z, c, t) Predicted noise network in diffusion training
fθ(z, c, t) Time-indexed vector field in flow matching

ż Time derivative of the latent trajectory
αt, σt Scheduler signal and noise scales at timestep t
ϵtarget Target noise or velocity used for supervision
tfix, ϵfix Fixed timestep and shared noise draw used for low-variance gradients
L Generic loss

Ldiff(θ;v, c),Lflow(θ;v, c) Diffusion and flow-matching objective
Lmot(θ;v, c) Motion-weighted objective used for attribution

L̃ Per-location squared error in latent space
g, g̃ Gradient and its projected version

gmot, g̃mot Motion-weighted gradient and its projection
Hθ Hessian with respect to θ

I(vn, v̂;θ) Influence score between a train clip and a query clip
Imot(vn, v̂;θ) Motion-aware influence score

TopK(·) Top-K operator for selecting highest scores
MajVote(·) Majority-vote aggregation across queries

τ Percentile cutoff for voting
ρ Spearman correlation coefficient

A(v) = A AllTracker motion extraction
A ∈ RF×H×W×4 Motion tensor containing flow, visibility, and confidence

Df (h,w) Displacement vector at frame f and location (h,w)
Mf (h,w) Motion magnitude at a location, computed from the displacement

W(f, h, w) ∈ [0, 1] Normalized motion weights used to mask per-location losses
D, D′ Full and projected gradient dimensions

P ∈ RD′×D Projection matrix used for Fastfood-style JL projection
ξ Variance normalization constant for projection
T Set of sampled (t, ϵ) pairs for gradient estimation
B Unit compute cost used in complexity accounting
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