

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING IN PROPHET INEQUALITIES WITH NOISY OBSERVATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the prophet inequality, a fundamental problem in online decision-making and optimal stopping, in a practical setting where rewards are observed only through noisy realizations and reward distributions are unknown. At each stage, the decision-maker receives a noisy reward whose true value follows a linear model with an unknown latent parameter, and observes a feature vector drawn from a distribution. To address this challenge, we propose algorithms that integrate learning and decision-making via lower-confidence-bound (LCB) thresholding. In the i.i.d. setting, we establish that both an Explore-then-Decide strategy and an ε -Greedy variant achieve the sharp competitive ratio of $1 - 1/e$. For non-identical distributions, we show that a competitive ratio of $1/2$ can be guaranteed against a relaxed benchmark. Moreover, with window access to past rewards, the optimal ratio of $1/2$ against the optimal benchmark is achieved. Experiments on synthetic datasets confirm our theoretical results and demonstrate the efficiency of our algorithms.

1 INTRODUCTION

The prophet inequality is a fundamental problem in online decision-making and optimal stopping (Hill & Kertz, 1992). A decision-maker (or gambler) sequentially observes a stream of random variables (or rewards) revealed one by one and must decide at each stage whether to *accept the current value and stop*, or *continue to the next stage*. The benchmark is the *prophet*, an omniscient agent who knows all realizations in advance. The objective of the gambler is to design an online stopping rule whose expected payoff is competitive with that of the prophet, aiming to maximize the competitive ratio. This framework has been extensively studied, owing to its rich mathematical structure and broad applications such as posted-price mechanisms (Lucier, 2017), online ad allocation (Alaei et al., 2012), and hiring processes in labor markets (Arsenis & Kleinberg, 2022).

Classical work has established sharp guarantees when the underlying distributions are known. In particular, Samuel-Cahn (1984) showed that a single-threshold strategy achieves the optimal ratio of $1/2$ for independent but non-identical distributions, while in the i.i.d. case, $1 - 1/e$ was achieved in Hill & Kertz (1982) and later improved by Abolhassani et al. (2017); Correa et al. (2017).

Crucially, all these results rely on full knowledge of the distributions, an assumption that rarely holds in practice. More recently, attention has shifted toward the prophet inequality under *unknown* distributions (Correa et al., 2019a; 2020; Goldenshluger & Zeevi, 2022; Immorlica et al., 2023). In particular, Correa et al. (2019a) showed that, in the unknown-distribution setting, a competitive ratio of $1/e (\approx 0.368)$ can be achieved by the classical optimal algorithm for the secretary problem. To obtain the higher ratio of $1 - 1/e (\approx 0.632)$ in the i.i.d. reward distribution setting, however, $\Theta(n)$ additional offline reward samples are required. Likewise, in the non-i.i.d. setting with unknown distribution, attaining $1/2$ competitive ratio also demands $\Theta(n)$ offline samples (Rubinstein et al., 2019). Such requirements limit the applicability of these results in real-world scenarios.

In this work, we study the prophet inequality in a novel and practical setting, in which at each stage only a *noisy* realization of the random variable is observed, and reward distributions are *unknown* without available offline reward samples. Instead, the decision-maker has access to observable feature vectors drawn from distributions, and the rewards follow a linear model with an unknown latent parameter. This structural information enables estimation of the reward distribution and fundamentally distinguishes our setting from the classical unknown-distribution model (Correa et al., 2019a).

This feature-based formulation is motivated by applications such as online advertising, hiring, and recommendation systems, where contextual information (e.g., ad profiles, candidate attributes, or item descriptions) and noisy feedback are observable, while the underlying reward distributions remain unknown.

To address these challenges, we integrate learning and decision-making under noisy reward observations and feature information. Furthermore, we employ a lower-confidence-bound (LCB) thresholding strategy to handle the uncertainty in the estimator. The main contributions are as follows:

Summary of Contributions.

- Motivated by practical scenarios, we introduce a novel setting of the prophet inequality where the gambler only observes noisy rewards together with feature information and reward distributions are unknown.
- In the i.i.d. case, we propose learning-decision algorithms that integrate lower-confidence-bound (LCB) thresholding, achieving the sharp competitive ratio of $1 - 1/e$ against the optimal benchmark.
- For the non-identical case, we analyze an algorithm that attains a competitive ratio of $1/2$ against a relaxed benchmark. Furthermore, with window access to past rewards, the algorithm achieves the optimal competitive ratio of $1/2$ against the optimal benchmark.
- We validate our algorithms through experiments on synthetic datasets.

2 RELATED WORK

Prophet Inequalities under Known Reward Distributions. The study of prophet inequalities originates from Krengel & Sucheston (1977; 1978). A key milestone was established by Samuel-Cahn (1984), who showed that a single-threshold strategy achieves the optimal competitive ratio of $1/2$ in the case of independent but non-identical distributions. In the order-selection variant, where the gambler can choose the order of arrivals, Chawla et al. (2010) achieved a ratio of $1 - 1/e$. For the i.i.d. case, Hill & Kertz (1982) established a ratio of $1 - 1/e$, which was subsequently improved by Abolhassani et al. (2017) and Correa et al. (2017). Extending beyond exact observations, Assaf et al. (1998) demonstrated that analogous guarantees remain valid under noisy observations, though only with respect to a Bayesian version of the prophet benchmark, which is weaker than the classical one. Indeed, under noisy observations, any non-trivial guarantee with respect to the classical benchmark becomes impossible without additional structural assumptions, as we will show later. Finally, all of these results assume full knowledge of the underlying reward distributions—an assumption rarely satisfied in practical applications.

Prophet Inequalities under Unknown Reward Distributions. To address this limitation, recent work has studied prophet inequalities under unknown reward distributions (Correa et al., 2019a; 2020; Goldenshluger & Zeevi, 2022; Immorlica et al., 2023; Gatmiry et al., 2024; Li et al., 2022). For the i.i.d. setting, Correa et al. (2019a) showed that a competitive ratio of $1/e (\approx 0.368)$ can be achieved by the classical optimal algorithm for the secretary problem as the horizon grows. To obtain the higher ratio of $1 - 1/e (\approx 0.632)$, however, $\Theta(n)$ additional offline reward samples are required. Building on this, Goldenshluger & Zeevi (2022) showed that an asymptotic ratio approaching 1 is attainable, but only for fixed distributions whose maxima lie in the Gumbel or reverse-Weibull domains of attraction as the horizon grows.

The case of unknown non-identical distributions has been examined in Kaplan et al. (2020); Rubinstein et al. (2019); Gatmiry et al. (2024); Liu et al. (2025). However, achieving a $1/2$ competitive ratio requires $\Theta(n)$ offline samples. Although Gatmiry et al. (2024) and Liu et al. (2025) avoid offline samples, their setting involves repeated sequences of rounds rather than a single sequence. This repetition allows information to be aggregated across rounds, making the learning problem tractable under bandit feedback. In contrast, our setting involves only a single sequence, and is therefore fundamentally different. Prophet inequalities under unknown and non-independent distributions were also studied in Immorlica et al. (2023), achieving a ratio of $1/(2er)$ for r -sparse correlated structures, but their model still assumes distributional knowledge of the independent components of the rewards.

108 In contrast, we study a novel and practical setting that targets the optimal prophet under noisy reward
 109 observations and unknown reward distributions without available offline reward samples. Instead,
 110 we exploit observable feature vectors and their distribution, a setting motivated by real-world appli-
 111 cations where feature information are available but the reward distribution is unknown.
 112

113 3 PROBLEM STATEMENT

115 We consider n non-negative random variables (or rewards) X_1, \dots, X_n , where each X_i is indepen-
 116 dently drawn from an *unknown* distribution \mathcal{D}_i . In particular, we assume that
 117

$$118 \quad X_i = x_i^\top \theta, \quad i \in [n],$$

120 where $x_i \in \mathbb{R}^d$ is a feature vector drawn independently from a known distribution $\mathcal{D}_{x,i}$, and $\theta \in \mathbb{R}^d$
 121 is an *unknown* latent parameter. Since θ is unknown, the induced distributions \mathcal{D}_i of the X_i are also
 122 unknown to the gambler.

123 At each stage i , the gambler does not observe X_i directly. Instead, it observes a *noisy* measurement
 124

$$125 \quad y_i = X_i + \eta_i,$$

126 where the noise η_i is i.i.d drawn from a σ -sub-Gaussian distribution for $\sigma > 0$. The noisy observa-
 127 tions y_1, y_2, \dots are revealed sequentially.
 128

129 After observing y_i and x_i at stage i , the gambler must make an irrevocable decision on whether to
 130 accept index i (and stop) or continue to the next stage. We denote by $\tau \in [n+1]$ the stopping
 131 time at which the gambler accepts an index, with $\tau = n+1$ meaning that the gambler rejects all
 132 variables. For completeness, we allow X_{n+1} to be any non-negative value, so that our analysis
 133 applies uniformly in this case.

134 The gambler’s expected payoff is $\mathbb{E}[X_\tau]$. As a benchmark, we consider the prophet—an omniscient
 135 decision maker who knows all values X_1, \dots, X_n in advance—which achieves $\mathbb{E}[\max_{i \in [n]} X_i]$.
 136 The goal of the gambler is to maximize the *asymptotic competitive ratio* against the prophet, defined:

$$137 \quad \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]}.$$

140 **Notation.** For a square matrix M , $\lambda_{\min}(M)$ denotes its minimum eigenvalue.
 141

142 We consider regularization conditions as follows.

143 **Assumption 3.1.** *There exists $S > 0$ such that $\|\theta\|_2^2 \leq S$.*

144 **Assumption 3.2.** *There exists $L > 0$ such that, for all $i \in [n]$ and $x \sim \mathcal{D}_{x,i}$, $\|x_i\|_2^2 \leq L$*

146 **Remark 3.3.** *Our regularization assumptions are standard in the online linear learning literature
 147 (Abbasi-Yadkori et al., 2011; Ruan et al., 2021; Liu et al., 2025). We emphasize that in our setting
 148 L may depend on n and can diverge as $n \rightarrow \infty$; this point will be revisited later.*

150 4 THE I.I.D. SETTING

152 Here, we focus on the case where all reward distributions are identical, i.e., $\mathcal{D}_i = \mathcal{D}$ for every $i \in [n]$.
 153 This holds, for instance, when the feature distributions are identical across stages, i.e., $\mathcal{D}_{x,i} = \mathcal{D}_x$
 154 for $i \in [n]$. Under this setting, we propose algorithms and analyze their competitive ratios.
 155

156 4.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

158 We first propose an algorithm (Algorithm 1) based on Explore-then-Decide with lower confidence
 159 bound (LCB) thresholding. To address the unknown distribution \mathcal{D} , the algorithm begins with an
 160 exploration phase of length l_n , provided as an input. Afterward, during the decision phase, it com-
 161 putes an LCB for the reward and applies an LCB-based thresholding rule to decide at each stage
 whether to stop or continue. The details of this procedure are described below.

162 **Algorithm 1** Explore-Then-Decide with LCB Thresholding (ETD-LCBT)
163 **Input:** Exploration length l_n ; regularization parameter β
164 **Output:** Stopping time τ
165 1 **for** $i = 1, \dots, n$ **do**
166 2 **if** $i \leq l_n$ **then**
167 3 Observe (y_i, x_i)
168 4 **if** $i = l_n$ **then**
169 5 $V \leftarrow \sum_{t=1}^{l_n} x_t x_t^\top + \beta I_d$; $\hat{\theta} \leftarrow V^{-1} \sum_{t=1}^{l_n} y_t x_t$
170 6 Compute α from (2) (or (5) for non-i.i.d.)
171
172 7 **else**
173 8 Observe (y_i, x_i)
174 9 Compute X_i^{LCB} from (1)
175 10 **if** $X_i^{LCB} \geq \alpha$ **then**
176 11 Stop and set $\tau \leftarrow i$
177

4.1.1 STRATEGY

Exploration. With setting $l_n = o(n)$, during the first l_n stages, we collect pairs of noisy rewards y_t and features x_t at each stage t . Using these observations, we estimate the unknown parameter θ as $\hat{\theta} = V^{-1} \sum_{t=1}^{l_n} y_t x_t$, where $V = \sum_{t=1}^{l_n} x_t x_t^\top + \beta I_d$ for a constant $\beta > 0$.

After this exploration phase, the algorithm enters the decision phase, where it determines at each stage whether to stop or continue. The details regarding LCB Thresholding are given below.

Lower Confidence Bound (LCB). We define the lower confidence bound for X_i as

$$X_i^{LCB} = x_i^\top \hat{\theta} - \xi(x_i), \quad (1)$$

where $\xi(x_i) := \sqrt{x_i^\top V^{-1} x_i} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta})$.

Decision with LCB Threshold. Using the CDF of $\mathbb{P}_{z \sim \mathcal{D}_x}(Z^{LCB} \leq \alpha | \hat{\theta}, V)$ where $Z^{LCB} = z^\top \hat{\theta} - \xi(z)$, we set threshold α s.t.

$$\mathbb{P}_{z \sim \mathcal{D}_x}(Z^{LCB} \leq \alpha | \hat{\theta}, V) = 1 - \frac{1}{n} \quad (2)$$

The algorithm stops at stage $i > l_n$ if $X_i^{LCB} \geq \alpha$, in which case we set $\tau = i$. By definition, if no stopping occurs throughout the horizon, we set $\tau = n + 1$.

4.1.2 THEORETICAL ANALYSIS

Now we provide theoretical analyses. In this setting, a fundamental difficulty emerges due to noisy observations. In fact, it is possible to construct instances where the observation noise drives the competitive ratio to a trivial limit, as formalized below (see Appendix A.1 for the proof).

Proposition 4.1. *There exists a bounded i.i.d. distribution for $(X_i)_{i=1}^n$ together with an observation noise model such that, for any (possibly randomized) algorithm τ based on the observations, $\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} = 0$.*

The trivial outcome in Proposition 4.1 explains why Assaf et al. (1998) studied a Bayesian version of the prophet inequality rather than the classical one ($\mathbb{E}[\max_{i \in [n]} X_i]$) under the noisy observation. As Proposition 4.1 shows, even with full knowledge of the reward distribution, no algorithm can avoid this collapse to a trivial competitive ratio. To overcome this fundamental challenge—both in targeting the classical prophet under noisy observation and in the presence of an unknown latent parameter in the reward distribution—we later impose a mild non-degeneracy condition on reward scaling.

For notational convenience, let $\lambda = \lambda_{\min}(\mathbb{E}_{x \sim \mathcal{D}_x}[xx^\top])$, the minimum eigenvalue of the covariance matrix of the feature distribution. Without loss of generality, we restrict attention to the case $\lambda > 0$,

ensuring non-degeneracy of the feature covariance. Under this notation, we can now state our main guarantee on the competitive ratio (see Appendix A.2 for the proof).

Theorem 4.2. *Algorithm 1 with $l_n = o(n)$, $l_n = \omega(\frac{L \log d}{\lambda})$, and a constant $\beta > 0$, achieves an asymptotic competitive ratio of*

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq 1 - \frac{1}{e} - \mathcal{O}\left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda l_n}}\right).$$

This result highlights the critical role of the optimal value $OPT = \mathbb{E}[\max_{i \in [n]} X_i]$ in determining the competitive ratio under noisy learning. As shown in Proposition 4.1, without further structural assumptions, the competitive ratio can collapse to zero. To circumvent this issue, we impose a non-degeneracy condition on reward scaling, specifically on the growth of OPT , which ensures learnability under noise and allows us to recover the sharp bound established in Theorem 4.2.

Corollary 4.3. *We set $l_n = \frac{Ld(\sigma^2 d + S)}{\lambda} f(n) \log(Ln)$ for some function $f(n)$ (e.g., $f(n) = \Theta(\log^p n)$ for $p > 0$, or $\Theta(n^q)$ for $0 < q < 1$) satisfying $l_n = o(n)$. If $OPT = \omega(1/\sqrt{f(n)})$, then Algorithm 1 achieves an asymptotic competitive ratio of*

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq 1 - \frac{1}{e}.$$

The growth condition of $OPT = \omega(1/\sqrt{f(n)})$ in Corollary 4.3 is mild in practice. For example, by using $f(n) = n^{2/3}$ for setting l_n , the requirement is satisfied in most applications since OPT typically remains bounded away from zero. In particular, it suffices that $OPT \geq C$ for some constant $C > 0$ and all sufficiently large n .

Our competitive ratio of $1 - 1/e$ matches that of Hill & Kertz (1982) in the known i.i.d. setting and that of Correa et al. (2019a) in the unknown i.i.d. setting but with $\Theta(n)$ additional offline reward samples. Without such samples, only a $1/e$ ratio can be guaranteed (Correa et al., 2019a), which is strictly weaker than our result. Moreover, because rewards in our setting are observed only through noisy realizations, these prior guarantees no longer apply. Also note that $1 - 1/e$ is the best possible competitive ratio attainable by single quantile-threshold policies (Correa et al., 2019b; 2017), and our algorithm provides a close approximation to this class of policies.

Remark 4.4. *Importantly, while Correa et al. (2019a) show that $1/e$ is optimal for unknown distributions without sufficiently many offline reward samples of $\Omega(n)$, we demonstrate that by exploiting feature information under structural assumptions, the sharp bound of $1 - 1/e$ can in fact be achieved. Moreover, our analysis accommodates distributions whose support grows with the horizon n (e.g., $L = \sqrt{n}$ when setting $f(n) = \log n$ in Corollary 4.3), so that both the support and the variance of D may diverge as $n \rightarrow \infty$. This highlights that our framework is not restricted to the fixed distributional domains considered in Goldenshluger & Zeevi (2022), but instead applies more broadly to settings where distributions may evolve with the horizon.*

4.2 ε -GREEDY WITH LCB THRESHOLDING

While the Explore-then-Decide method achieves a sharp competitive ratio, its deterministic separation between exploration and decision phases—and the fact that exploration is confined to the early stages—limits its practicality in applications where exploration spread across time is preferable, such as online advertising or sequential recommendation systems. To address this, we propose an ε -Greedy approach (Algorithm 2) that selects decision stages uniformly at random over the time horizon. The details of the strategy are described as follows.

Randomized Exploration. At each stage $i \in [n]$, we draw a Bernoulli random variable $b_i \sim \text{Bernoulli}(\varepsilon)$, where $\varepsilon = \sqrt{l_n/n}$ with setting $l_n = o(n)$.

- If $b_i = 1$, we perform exploration by observing the noisy reward y_i and feature x_i , and update, $\hat{\theta}_i = V_i^{-1} \sum_{t \in \mathcal{I}_i} y_t x_t$, where $V_i = \sum_{t \in \mathcal{I}_i} x_t x_t^\top + \beta I_d$ for a constant $\beta > 0$.
- If $b_i = 0$, we enter the decision phase and determine whether to stop based on a dynamic threshold.

270 **Algorithm 2** ε -Greedy with LCB Thresholding (ε -Greedy-LCBT)

271 **Input:** Bernoulli parameter ε ; regularization parameter β
272 **Output:** Stopping time τ
273 12 **for** $i = 1, \dots, n$ **do**
274 13 Sample $b_i \sim \text{Bernoulli}(\varepsilon)$
275 14 **if** $b_i = 1$ **then**
276 15 $\mathcal{I}_i \leftarrow \mathcal{I}_{i-1} \cup \{i\}$
277 16 Observe (x_i, y_i)
278 17 $V_i \leftarrow \sum_{t \in \mathcal{I}_i} x_t x_t^\top + \beta I_d$; $\hat{\theta}_i \leftarrow V_i^{-1} \sum_{t \in \mathcal{I}_i} y_t x_t$
279 18 **else**
280 19 $\mathcal{I}_i \leftarrow \mathcal{I}_{i-1}$, $\hat{\theta}_i \leftarrow \hat{\theta}_{i-1}$, $V_i \leftarrow V_{i-1}$
281 20 Observe (x_i, y_i)
282 21 Compute X_i^{LCB} from (3) and α_i using (4)
283 22 **if** $X_i^{LCB} \geq \alpha_i$ **then**
284 23 Stop with $\tau \leftarrow i$

286
287

288 Unlike the Explore-then-Decide method, here the exploration rounds are distributed over the entire
289 horizon. Consequently, $\hat{\theta}_i$ and V_i are updated continuously, which in turn affects both the LCB and
290 the threshold dynamically, described below.

291

292 **Lower Confidence Bound.** We redefine the LCB for $X_i = x_i^\top \theta$ as

$$293 \quad X_i^{LCB} = x_i^\top \hat{\theta}_i - \xi_i(x_i), \quad (3)$$

294
295
296

where $\xi_i(x_i) := \sqrt{x_i^\top V_i^{-1} x_i} (\sigma \sqrt{d \log(n + n|\mathcal{I}_i|L/d\beta)} + \sqrt{S\beta})$.

297
298
299

Dynamic Threshold. Using a CDF of $\mathbb{P}_{z \sim \mathcal{D}_x}(Z_i^{LCB} \leq \alpha \mid \hat{\theta}_i, V_i, \mathcal{I}_i)$ where $Z_i^{LCB} = z^\top \hat{\theta}_i - \xi_i(z)$, for each $i \in [n]$, we set the dynamic threshold α_i such that

$$300 \quad \mathbb{P}_{z \sim \mathcal{D}_x}(Z_i^{LCB} \leq \alpha_i \mid \hat{\theta}_i, V_i, \mathcal{I}_i) = 1 - \frac{1}{n}. \quad (4)$$

301
302
303
304
305

The algorithm stops at stage i if $X_i^{LCB} \geq \alpha_i$, in which case we set $\tau = i$. Unlike Explore-then-Decide, this procedure employs a dynamic threshold. By definition, if no stopping occurs over the entire horizon, we set $\tau = n + 1$. Recall $\lambda = \lambda_{\min}(\mathbb{E}_{x \sim \mathcal{D}_x}[xx^\top])$. Then, the algorithm satisfies the following theorem (see Appendix A.3 for the proof).

306
307

Theorem 4.5. *Algorithm 2 with $\varepsilon = \sqrt{l_n/n}$, $l_n = o(n)$, $l_n = \Omega(\frac{L \log d \log n}{\lambda})$, and a constant $\beta > 0$, achieves an asymptotic competitive ratio of*

$$308 \quad \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq 1 - \frac{1}{e} - \mathcal{O}\left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda l_n}}\right).$$

311
312
313
314

Furthermore, by setting $l_n = \frac{Ld(\sigma^2 d + S)}{\lambda} f(n) \log(Ln)$ for some function $f(n)$ (e.g., $f(n) = \Theta(\log^p n)$ for $p > 0$, or $\Theta(n^q)$ for $0 < q < 1$) satisfying $l_n = o(n)$, if $OPT = \omega(1/\sqrt{f(n)})$, then Algorithm 2 achieves the asymptotic ratio

$$315 \quad \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq 1 - \frac{1}{e}.$$

316
317
318
319

Notably, the ε -Greedy approach achieves the same competitive ratio as established for the Explore-then-Decide method in Corollary 4.3, while ensuring uniformly random decision stages.

320
321

5 NON-IDENTICAL DISTRIBUTIONS

322
323

In this section, we consider the setting where the distributions \mathcal{D}_i are not identical across $i \in [n]$. In what follows, we propose algorithms and analyze their competitive ratios.

324
325

5.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

326
327
328
329
330

We build on the Explore-then-Decide framework in Algorithm 1, adapting the thresholding policy accordingly. In the initial exploration phase of length l_n , we collect data and estimate $\hat{\theta} = V^{-1} \sum_{t=1}^{l_n} y_t x_t$, where $V = \sum_{t=1}^{l_n} x_t x_t^\top + \beta I$ for a constant $\beta > 0$. In the subsequent decision phase, we apply LCB-based thresholding for non-identical distributions, as described below.

331
332

Decision with LCB Threshold. For each time $i > l_n$, for $z_s \sim \mathcal{D}_{x,s}$ for all $s \in [l_n + 1, n]$, we define the threshold:

333
334

$$\alpha = \frac{1}{2} \mathbb{E} \left[\max_{s \in [l_n + 1, n]} z_s^\top \hat{\theta} \mid \hat{\theta} \right] \quad (5)$$

335
336
337

Recall the lower confidence bound for X_i in the Explore-then-Decide framework: $X_i^{LCB} = x_i^\top \hat{\theta} - \xi(x_i)$, where $\xi(x_i) := \sqrt{x_i^\top V^{-1} x_i} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta})$. The algorithm stops at stage i if $X_i^{LCB} \geq \alpha$.

338
339
340

For notational convenience, let $\lambda' = \min_{i \in [n]} \lambda_{\min}(\mathbb{E}_{x \sim \mathcal{D}_{x,i}} [xx^\top])$. Then, the algorithm satisfies with the following theorem (see Appendix A.5 for the proof).

341
342
343

Theorem 5.1. Consider Algorithm 1 with $l_n = o(n)$, $l_n = \omega(\frac{L \log d}{\lambda'})$, and a constant $\beta > 0$, where the threshold value is chosen according to (5). Then the algorithm achieves the following asymptotic competitive ratio:

344
345

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \geq \frac{1}{2} - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \sqrt{\frac{(\sigma^2 d + S) \log(Ln)}{\lambda' l_n}} \right).$$

346
347
348
349

Furthermore, by setting $l_n = \frac{L(\sigma^2 d + S)}{\lambda} f(n) \log(Ln)$ for some function $f(n)$ (e.g., $f(n) = \Theta(\log^p n)$ for $p > 0$, or $\Theta(n^q)$ for $0 < q < 1$) satisfying $l_n = o(n)$, if $OPT = \omega(1/\sqrt{f(n)})$, then Algorithm 1 with threshold (5) achieves the following asymptotic competitive ratio:

350
351

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \geq \frac{1}{2}.$$

352
353
354

In the theorem, we target the relaxed prophet of $\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]$ due to the inherent difficulty of the non-i.i.d. setting against the original prophet, as shown in Proposition 5.2 (see Appendix A.4 for the proof).

355
356
357
358
359
360

Proposition 5.2. There exist non-identical distributions $\{\mathcal{D}_{x,i}\}_{i=1}^n$ for the feature vectors x_i 's, and a parameter vector θ , such that when observing noise-free rewards $X_i = x_i^\top \theta$ for $i \in [n]$, the following holds: for any stopping rule τ , $\mathbb{E}[X_\tau]/\mathbb{E}[\max_{i \in [n]} X_i] \leq \min\{\frac{1}{2}, \frac{1}{d}\}$. Furthermore, there exists $\{\mathcal{D}_{x,i}\}_{i=1}^n$ and θ such that, for any stopping rule τ , $\lim_{n \rightarrow \infty} \mathbb{E}[X_\tau]/\mathbb{E}[\max_{i \in [d+1, n]} X_i] \leq 1/2$.

361
362
363
364
365
366
367

Proposition 5.2 shows that, even in the noise-free case ($\sigma = 0$), the initial stages must be sacrificed to learn θ . For the prophet of $\mathbb{E}[\max_{i \in [n]} X_i]$, the competitive ratio approaches zero with large enough d (e.g. $d = \log(n)$). For the relaxed prophet of $\mathbb{E}[\max_{i \in [d+1, n]} X_i]$, the upper bound becomes non-trivially $1/2$. The noise enhances this effect. In our setting with noise, the first l_n observations are necessarily reserved for learning and are thus excluded from the stopping decision. This motivates our focus on a relaxed prophet benchmark based on $\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]$, which allows for non-trivial guarantees.

368
369
370
371

Furthermore, based on Proposition 4.1, noisy observations also lead to trivial outcomes in the case of non-identical distributions without any structural assumptions. To address this, we impose a mild non-degeneracy condition on reward scaling—specifically on the growth of OPT —which allows us to recover the sharp bound stated in Theorem 5.1.

372
373
374
375
376
377

The optimal competitive ratio for non-identical distributions is known to be $1/2$ (Samuel-Cahn, 1984). In our setting with unknown distributions, Theorem 5.1 shows that attaining this ratio requires relaxing the prophet benchmark by excluding the initial exploration phase. Equivalently, if l_n offline reward samples with features were available, the original optimal prophet benchmark could be targeted while still achieving the $1/2$ ratio. In the next subsection, we present another practical condition under which the optimal prophet benchmark can be attained in our learning setting without relying on additional offline reward samples.

378 5.2 EXPLORE-THEN-DECIDE WITH WINDOW ACCESS
379

380 In the standard non-identical distribution setting, items are revealed sequentially, and the gambler
381 must decide immediately whether to accept or reject the *current* observation. As discussed in Mar-
382 shall et al. (2020); Benomar et al. (2024), this assumption, however, can be overly pessimistic: in
383 many practical scenarios, early opportunities are not irrevocably lost but may remain available for a
384 short period of time. For instance, in a hiring process, one may be able to interview several candi-
385 dates sequentially before making a final choice among them.

386 **Window Access.** Motivated by this observation, we consider a mild relaxation of the standard
387 setting by using window access for the previous time steps, same as Marshall et al. (2020). More
388 specifically, for a window size of w_n , at time i , the decision-maker is allowed to choose among the
389 first w_n values $\{X_{i-w_n+1}, \dots, X_i\}$ before deciding whether to continue. Interestingly, for $w_n \leq$
390 $n-1$, the optimal competitive ratio in the non-i.i.d. distributions is the same with the standard
391 setting (i.e. window size 1) as shown in the following (see Appendix A.6 for the proof).

392 **Proposition 5.3.** *In the non-i.i.d. setting with window access of size $w_n \leq n-1$, for any algorithm,*
393 *there always exist non-identical distributions such that the competitive ratio is bounded above by*
394 $\mathbb{E}[X_\tau]/\mathbb{E}[\max_{i \in [n]} X_i] \leq 1/2$.

395 These observations raise the following question: *Can the optimal competitive ratio under window*
396 *access also be achieved in the setting of unknown non-identical distributions and noisy reward ob-*
397 *servations? If so, what window size w_n is required, and how frequently is window access required?*

398 To handle this setting, we propose an algorithm (Algorithm 3 in Appendix A.7) adopting the
399 Explore-then-Decide method. After the exploration phase, at time $l_n + 1$ the decision-maker, with
400 window size $w_n = l_n + 1$, may select from the values $\{X_1, \dots, X_{l_n+1}\}$ before deciding whether
401 to continue. From this perspective, the early observations collected during exploration are no longer
402 wasted but can be revisited together with the $(l_n + 1)$ -st observation, thereby mitigating the ineffi-
403 ciency of pure exploration. Notably, our algorithm requires only a single window access at time
404 $l_n + 1$, with window size $l_n + 1$. Due to space constraints, we defer the detailed description of the
405 algorithm to Appendix A.7. In what follows, we provide a theorem for the competitive ratio of the
406 method with window access (see Appendix A.8 for the proof).

407 **Theorem 5.4.** *In the non-i.i.d. setting with unknown distributions and window access of size $w_n >$*
408 *l_n , Algorithm 3 with $l_n = o(n)$, $l_n = \omega(\frac{L \log d}{\lambda})$, and a constant $\lambda > 0$ achieves the following*
409 *asymptotic competitive ratio:*

$$410 \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq \frac{1}{2} - \mathcal{O}\left(\lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{L(\sigma^2 d + S) \log(Ln)}{\lambda l_n}}\right).$$

413 Furthermore, by setting $l_n = (L(\sigma^2 d + S)/\lambda)f(n) \log(Ln)$ for some function $f(n)$ (e.g., $f(n) =$
414 $\Theta(\log^p n)$ for $p > 0$, or $\Theta(n^q)$ for $0 < q < 1$) satisfying $l_n = o(n)$, if $OPT = \omega(1/\sqrt{f(n)})$, then
415 Algorithm 3 achieves the following asymptotic competitive ratio:

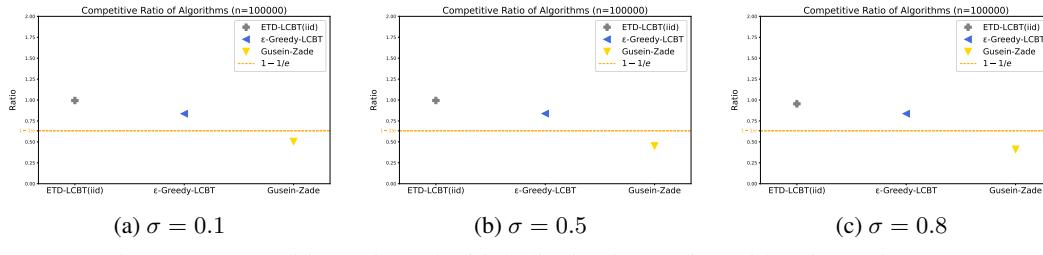
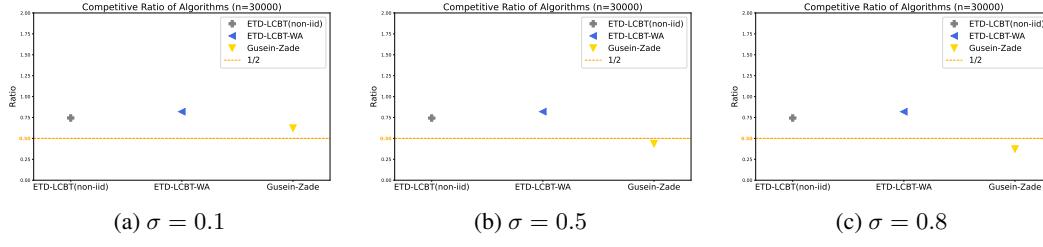
$$416 \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq \frac{1}{2}.$$

419 Notably, Algorithm 3 achieves the optimal ratio, matching the upper bound in Proposition 5.3.

420 **Remark 5.5.** *The guarantees in Theorem 5.4 can also be obtained by running LCB-Thresholding*
421 *with l_n offline samples, without window access. In prior work, the non-i.i.d. setting requires $\Theta(n)$*
422 *offline samples to achieve a 1/2 competitive ratio (Rubinstein et al., 2019). In contrast, exploiting*
423 *the linear structure allows our method to achieve the optimal 1/2 ratio using only l_n samples, which*
424 *can be significantly smaller—for example, $l_n = O(\log^{p+1} n)$ when $f(n) = \Theta(\log^p n)$ for $p > 0$.*
425 *Further details are provided in Appendix A.9.*

427 6 EXPERIMENTS
428

429 In this section, we evaluate our algorithms on synthetic datasets. Gaussian noise with variance σ^2
430 is added to the rewards, and each experiment is repeated 10 times. We consider dimension $d = 2$
431 for the feature and latent parameter. For our algorithms, we set $l_n = n^{2/3}$ and $\beta = 1$. Since no
existing algorithm directly applies to our setting with noisy rewards and without additional reward

Figure 1: Competitive ratio under i.i.d. distribution setting with noise variance σ .Figure 2: Competitive ratios under non-identical distributions with noise variance σ .

452 samples under unknown distributions, we adopt the rule of Gusein-Zade (Gusein-Zade, 1966)
453 as a benchmark. This rule observes the first n/e stages and then stops at the first record exceeding
454 the maximum among these initial n/e values. Although it does not handle noisy rewards, it has
455 been shown to extend to the prophet inequality with unknown i.i.d. distributions without additional
456 reward samples. In particular, it guarantees a competitive ratio of $1/e$ in the worst case (Correa et al.,
457 2019a), and can even achieve an asymptotic ratio of 1 under certain problem-specific distributions
458 (Goldenshluger & Zeevi, 2022).

459 We first consider the i.i.d. setting with $n = 100000$, where θ and each x_i are drawn uniformly over
460 each dimension and then normalized. Figure 1 shows that our algorithms of ETD-LCBT(iid)
461 (Algorithm 1) and ϵ -Greedy-LCBT (Algorithm 2) achieve competitive ratios exceeding $1 - 1/e$,
462 consistent with the theoretical guarantees in Corollary 4.3 and Theorem 4.5, and significantly out-
463 perform the benchmark of Gusein-Zade. Furthermore, as the noise variance increases, the per-
464 formance gap between our algorithms and the benchmark becomes even larger, highlighting the
465 robustness of our methods to noise.

466 Next, we consider the non-identical distribution setting with $n = 30000$, where θ is drawn uniformly
467 over each dimension, but each x_i is drawn from a distinct distribution: the range of each dimen-
468 sion is randomly sampled, and each coordinate is then drawn uniformly within its range. Figure 2
469 demonstrates that ETD-LCBT-WA (Algorithm 3) achieves a competitive ratio exceeding $1/2$, con-
470 sistent with the theoretical guarantee in Theorem 5.4. Even ETD-LCBT(non-iid) (Algorithm 1),
471 which is guaranteed only against the relaxed benchmark (Theorem 5.1), empirically attains a ratio
472 above $1/2$. As expected, ETD-LCBT-WA outperforms ETD-LCBT(non-iid) due to its access to
473 the window. Notably, both algorithms outperform the benchmark of Gusein-Zade. Furthermore,
474 as the noise variance increases, the performance gap between our algorithms and the benchmark
475 becomes even larger, highlighting the robustness of our methods to noise.

7 CONCLUSION

477 We introduced a new framework for prophet inequalities under noisy observations and unknown
478 reward distributions, motivated by real-world applications where noisy reward and contextual in-
479 formation are observable but reward distributions are not. By combining learning with LCB-based
480 stopping rules, we achieved the sharp competitive ratio of $1 - 1/e$ in the i.i.d. setting. For non-
481 identical distributions, we showed that the optimal bound of $1/2$ can be attained under window
482 access. Our empirical results demonstrate the efficiency of our algorithms. **(Future Directions)**
483 Several directions remain open for future work, including extensions to correlated rewards and ap-
484 plications to richer contextual models beyond linear structure. We believe that bridging prophet
485 inequalities with modern online learning techniques will continue to uncover new insights at the
interface of optimal stopping, learning, and decision-making.

486 REPRODUCIBILITY STATEMENT
487

488 All theoretical claims are stated with explicit assumptions and are accompanied by complete proofs
489 in the appendix. Algorithmic details, including pseudocode, are provided in the main paper and
490 supplementary materials. For the experimental results, we describe the data generation process in
491 the main, and we attach source code for reproducing all figures and numerical results as part of the
492 supplementary material.

493
494 REFERENCES
495

496 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
497 bandits. *Advances in neural information processing systems*, 24, 2011.

498 Melika Abolhassani, Soheil Ehsani, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Robert
499 Kleinberg, and Brendan Lucier. Beating 1-1/e for ordered prophets. In *Proceedings of the 49th*
500 *Annual ACM SIGACT Symposium on Theory of Computing*, pp. 61–71, 2017.

502 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-inequality matching
503 with applications to ad allocation. In *Proceedings of the 13th ACM Conference on Electronic*
504 *Commerce*, pp. 18–35, 2012.

505 Makis Arsenis and Robert Kleinberg. Individual fairness in prophet inequalities. *arXiv preprint*
506 *arXiv:2205.10302*, 2022.

508 David Assaf, Larry Goldstein, and Ester Samuel-Cahn. A statistical version of prophet inequalities.
509 *The Annals of Statistics*, 26(3):1190–1197, 1998.

511 Ziyad Benomar, Dorian Baudry, and Vianney Perchet. Lookback prophet inequalities. *Advances in*
512 *Neural Information Processing Systems*, 37:42123–42161, 2024.

513 Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. Multi-parameter
514 mechanism design and sequential posted pricing. In *Proceedings of the forty-second ACM sym-*
515 *posium on Theory of computing*, pp. 311–320, 2010.

517 José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. Posted price
518 mechanisms for a random stream of customers. In *Proceedings of the 2017 ACM Conference on*
519 *Economics and Computation*, pp. 169–186, 2017.

520 José Correa, Paul Dütting, Felix Fischer, and Kevin Schewior. Prophet inequalities for iid random
521 variables from an unknown distribution. In *Proceedings of the 2019 ACM Conference on Eco-*
522 *nomics and Computation*, pp. 3–17, 2019a.

524 José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. Recent de-
525 velopments in prophet inequalities. *ACM SIGecom Exchanges*, 17(1):61–70, 2019b.

526 José Correa, Paul Dütting, Felix Fischer, Kevin Schewior, and Bruno Ziliotto. Unknown iid
527 prophets: Better bounds, streaming algorithms, and a new impossibility. *arXiv preprint*
528 *arXiv:2007.06110*, 2020.

530 Khashayar Gatmiry, Thomas Kesselheim, Sahil Singla, and Yifan Wang. Bandit algorithms for
531 prophet inequality and pandora’s box. In *Proceedings of the 2024 Annual ACM-SIAM Symposium*
532 *on Discrete Algorithms (SODA)*, pp. 462–500. SIAM, 2024.

533 Alexander Goldenshluger and Assaf Zeevi. Optimal stopping of a random sequence with unknown
534 distribution. *Mathematics of Operations Research*, 47(1):29–49, 2022.

536 SM Gusein-Zade. The problem of choice and the optimal stopping rule for a sequence of independent
537 trials. *Theory of Probability & Its Applications*, 11(3):472–476, 1966.

538 Theodore P Hill and Robert P Kertz. Comparisons of stop rule and supremum expectations of iid
539 random variables. *The Annals of Probability*, pp. 336–345, 1982.

- 540 Theodore P Hill and Robert P Kertz. A survey of prophet inequalities in optimal stopping theory.
 541 *Contemporary Mathematics*, 125(1):191, 1992.
 542
- 543 Nicole Immorlica, Sahil Singla, and Bo Waggoner. Prophet inequalities with linear correlations and
 544 augmentations. *ACM Transactions on Economics and Computation*, 11(3-4):1–29, 2023.
- 545 Haim Kaplan, David Naori, and Danny Raz. Competitive analysis with a sample and the secretary
 546 problem. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-*
 547 *rithms*, pp. 2082–2095. SIAM, 2020.
- 548 Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. 1977.
- 549 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value. *Prob-*
 550 *ability on Banach spaces*, 4(197-266):1–2, 1978.
- 551 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value. *Prob-*
 552 *ability on Banach spaces*, 4(197-266):1–2, 1978.
- 553 Bo Li, Xiaowei Wu, and Yutong Wu. Prophet inequality on iid distributions: beating 1-1/e with a
 554 single query. *arXiv preprint arXiv:2205.05519*, 2022.
- 555 Junyan Liu, Ziyun Chen, Kun Wang, Haipeng Luo, and Lillian J Ratliff. Improved regret and contex-
 556 tual linear extension for pandora’s box and prophet inequality. *arXiv preprint arXiv:2505.18828*,
 557 2025.
- 558 Brendan Lucier. An economic view of prophet inequalities. *ACM SIGecom Exchanges*, 16(1):24–47,
 559 2017.
- 560 William Marshall, Nolan Miranda, and Albert Zuo. Windowed prophet inequalities. *arXiv preprint*
 561 *arXiv:2011.14929*, 2020.
- 562
- 563 Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distri-
 564 butional optimal design. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory*
 565 *of Computing*, pp. 74–87, 2021.
- 566
- 567 Aviad Rubinstein, Jack Z Wang, and S Matthew Weinberg. Optimal single-choice prophet inequali-
 568 ties from samples. *arXiv preprint arXiv:1911.07945*, 2019.
- 569
- 570 Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for independent nonnegative
 571 random variables. *the Annals of Probability*, pp. 1213–1216, 1984.
- 572 Joel A Tropp et al. An introduction to matrix concentration inequalities. *Foundations and Trends®*
 573 *in Machine Learning*, 8(1-2):1–230, 2015.
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593

594 **A APPENDIX**

595 **A.1 PROOF OF PROPOSITION 4.1**

596 To show this proposition, we follow the example in Assaf et al. (1998). Let X_1, \dots, X_n be i.i.d.
597 Bernoulli with success probability $p_n = c/n$ for some fixed $c \in (0, \infty)$. Let the observations be
600 obtained through a symmetric flip-noise channel:

601
$$Z_i = \begin{cases} X_i, & \text{with probability } 1/2, \\ 1 - X_i, & \text{with probability } 1/2, \end{cases}$$

602 independently across i and independently of $(X_i)_{i=1}^n$. Then $Z_i \perp X_i$ and in fact $Z_i \sim$
603 Bernoulli(1/2) regardless of p_n .

604 Let τ be any (possibly randomized) index valued in $\{1, \dots, n\}$ that is measurable with respect to
605 (Z_1, \dots, Z_n) . Write $P_i(Z) := \Pr(\tau = i | Z)$ where $Z = (Z_1, \dots, Z_n)$. By independence and
606 $\mathbb{E}[X_i | Z] = \mathbb{E}[X_i] = p_n$,

607
$$\mathbb{E}[X_\tau | Z] = \mathbb{E}\left[\sum_{i=1}^n X_i P_i(Z) | Z\right] = \sum_{i=1}^n \mathbb{E}[X_i | Z] \mathbb{E}[P_i(Z) | Z] = \sum_{i=1}^n p_n \mathbb{E}[P_i(Z) | Z] = p_n = \frac{c}{n},$$

608 hence $\mathbb{E}[X_\tau] = c/n$ for every algorithm τ .

609 On the other hand, the oracle that sees the true X 's obtains the maximum $\max_i X_i$, which equals 1
610 iff at least one success occurs. Therefore

611
$$\mathbb{E}\left[\max_{1 \leq i \leq n} X_i\right] = 1 - (1 - p_n)^n = 1 - \left(1 - \frac{c}{n}\right)^n \xrightarrow[n \rightarrow \infty]{} 1 - e^{-c} > 0.$$

612 Combining the two displays,

613
$$\frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_i X_i]} = \frac{c/n}{1 - (1 - c/n)^n} \xrightarrow[n \rightarrow \infty]{} 0.$$

614 Since τ was arbitrary, the conclusion holds for any algorithm.

615 **A.2 PROOF OF THEOREM 4.2**

616 We first provide a lemma for estimation error.

617 **Lemma A.1** (Theorem 2 in Abbasi-Yadkori et al. (2011)). *For $\delta > 0$, we have*

618
$$\mathbb{P}\left(\|\hat{\theta} - \theta\|_V \leq \sqrt{S\beta} + \sigma \sqrt{d \log\left(\frac{1 + \sum_{i=1}^{l_n} \|x_i\|_2^2/d\beta}{\delta}\right)}\right) \geq 1 - \delta.$$

620 *Proof.* This lemma follows from Theorem 2 in Abbasi-Yadkori et al. (2011), using the inequality
621 $\det(V) \leq (\text{Tr}(V)/d)^d = (\beta + \sum_{s=1}^{l_n} \|x_s\|_2^2/d)^d$, where $\text{Tr}(V)$ denotes the trace of V . \square

622 The above lemma implies that

623
$$\mathbb{P}\left(|x^\top(\hat{\theta} - \theta)| \leq \sqrt{x^\top V^{-1} x} \left(\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}\right), \forall x \in \mathbb{R}^d\right) \geq 1 - 1/n. \quad (6)$$

624 We define an event $\mathcal{E}_1 = \{|x^\top(\hat{\theta} - \theta)| \leq \sqrt{x^\top V^{-1} x} \left(\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}\right), \forall x \in \mathbb{R}^d\}$,
625 which holds with $\mathbb{P}(\mathcal{E}_1) \geq 1 - \frac{1}{n}$.

626 We define $g := \sqrt{L\|V^{-1}\|_2}(\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta})$. Recall

627
$$\xi(x_i) = \sqrt{x_i^\top V^{-1} x_i} \left(\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}\right).$$

628 Then we have $\xi(x_i) \leq g$. Under \mathcal{E}_1 , for any $i > l_n$ we have

629
$$X_i - 2g \leq x_i^\top \hat{\theta} - g \leq x_i^\top \hat{\theta} - \xi(x_i) \leq X_i^{LCB} \leq X_i. \quad (7)$$

630 We define α^* s.t. $\mathbb{P}_{X \sim \mathcal{D}}(X \leq \alpha^*) = 1 - \frac{1}{n}$. Then we have the following lemma regarding the
631 bounds for the threshold value. We denote $\mathcal{H}_{l_n} = \{\hat{\theta}, V\}$.

648 **Lemma A.2.** Under \mathcal{E}_1 , for any given \mathcal{H}_{l_n} , we have

$$649 \quad 650 \quad \alpha^* - 2g \leq \alpha \leq \alpha^*.$$

651 *Proof.* For $z \sim \mathcal{D}_x$, we define $Z = z^\top \theta$ and $\hat{Z} = z^\top \hat{\theta}$. Then, under \mathcal{E}_1 , for any given \mathcal{H}_{l_n} , we have
652 $Z - 2g \leq \hat{Z} - g \leq \hat{Z} - \xi(z) \leq Z$ with $\xi(z) \leq g$.

653 Since $\hat{Z} - \xi(z) \leq Z$ and $\mathbb{P}(\hat{Z} - \xi(z) \geq \alpha \mid \mathcal{H}_{l_n}) = \mathbb{P}(Z \geq \alpha^* \mid \mathcal{H}_{l_n}) = 1/n$, we can easily obtain

$$654 \quad 655 \quad \alpha \leq \alpha^*.$$

656 Likewise, for α' s.t. $\mathbb{P}(Z - 2g \geq \alpha' \mid \mathcal{H}_{l_n}) = \frac{1}{n}$, from $Z - 2g \leq \hat{Z} - \xi(z)$ and $\mathbb{P}(Z - 2g \geq \alpha' \mid$
657 $\mathcal{H}_{l_n}) = \mathbb{P}(\hat{Z} - \xi(z) \geq \alpha' \mid \mathcal{H}_{l_n}) = 1/n$, we have $\alpha' \leq \alpha$. Therefore, with $\alpha' + 2g = \alpha^*$ from
658 $\mathbb{P}(Z \geq \alpha^* \mid \mathcal{H}_{l_n}) = \mathbb{P}(Z - 2g \geq \alpha' \mid \mathcal{H}_{l_n}) = 1/n$, we have

$$659 \quad 660 \quad \alpha^* - 2g \leq \alpha,$$

661 which concludes the proof. \square

662 **Lemma A.3.** For $l \geq 1$, let $z_1, \dots, z_l \stackrel{i.i.d.}{\sim} \mathcal{D}_x$ satisfying Assumption 3.2. Recall $\lambda =$
663 $\lambda_{\min}(\mathbb{E}_{z \sim \mathcal{D}_x}[zz^\top]) > 0$. Then

$$664 \quad 665 \quad \mathbb{P}\left(\frac{1}{l} \sum_{s=1}^l z_s z_s^\top \succeq \frac{\lambda}{2} I_d\right) \geq 1 - d \exp\left(-\frac{\lambda l}{8L}\right).$$

666 *Proof.* Let $\mu_{\min} = \lambda_{\min}(\mathbb{E}[\sum_{s=1}^l z_s z_s^\top])$. By the matrix Chernoff bound (Theorem 5.1.1 in Tropp
667 et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any $\delta \in [0, 1]$,

$$668 \quad \Pr\left[\lambda_{\min}\left(\sum_{s=1}^l z_s z_s^\top\right) \leq (1 - \delta)\mu_{\min}\right] \leq d \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}}\right)^{\mu_{\min}/L} \leq d \exp\left(-\frac{\delta^2}{2} \cdot \frac{\mu_{\min}}{L}\right).$$

669 Choosing $\delta = \frac{1}{2}$ yields

$$670 \quad \Pr\left[\lambda_{\min}\left(\sum_{s=1}^l z_s z_s^\top\right) \leq \frac{\mu_{\min}}{2}\right] \leq d \exp\left(-\frac{\mu_{\min}}{8L}\right) \leq d \exp\left(-\frac{l\lambda}{8L}\right),$$

671 where the last inequality is obtained from Weyl's eigenvalue inequalities. Equivalently, with probability at least
672 $1 - d \exp(-\lambda l / (8L))$,

$$673 \quad 674 \quad \sum_{s=1}^l z_s z_s^\top \succeq \frac{\mu_{\min}}{2} I_d \succeq \frac{l\lambda}{2} I_d,$$

675 which completes the proof. \square

676 Let $\mathcal{E}_2 = \{\sum_{s=1}^{l_n} x_s x_s^\top \succeq \frac{\lambda l_n}{2} I_d\}$, which holds with probability at least $1 - \frac{d}{e^{\lambda l_n / 8L}}$ from
677 Lemma A.3. Then under \mathcal{E}_2 , we have $\|V^{-1}\|_2 \leq \|(\sum_{s=1}^{l_n} x_s x_s^\top)^{-1}\|_2 \leq 2 \frac{1}{\lambda l_n}$. Then, we have

$$678 \quad \xi(x_i) \leq \sqrt{L\|V^{-1}\|_2}(\sigma\sqrt{d\log(n + nl_n L/d\beta)} + S\sqrt{\beta}) (= g) \\ 679 \quad \leq \sqrt{L\frac{2}{\lambda l_n}}(\sigma\sqrt{d\log(n + n^2 L/d\beta)} + S\sqrt{\beta}).$$

680 Here we define $h := \sqrt{L\frac{2}{\lambda l_n}}(\sigma\sqrt{d\log(n + n^2 L/d\beta)} + S\sqrt{\beta})$ and $\mathcal{E} := \mathcal{E}_1 \cup \mathcal{E}_2$. For analyzing
681 X_τ , we first examine the probability that the stopping time τ equals i given \mathcal{E} . Recall $\mathcal{H}_{l_n} =$
682 $\{\theta, \{x_s\}_{s \in [l_n]}\}$.

683 **Lemma A.4.** For $i > l_n$, we have

$$684 \quad 685 \quad \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) = \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n}.$$

702 *Proof.* For $i > l_n$, we have

703
704
705
706
707
708
709
710
711
712
713
714 where the first equality is obtained from the fact that, given $\hat{\theta}$ and $\{x_s\}_{s \in [l_n]}$, X_i^{LCB} is independent
715 to $X_{l_n+1}^{LCB}, \dots, X_{i-1}^{LCB}$. Similarly, for the last term above, we have

$$\begin{aligned}
 & \mathbb{P}(X_{l_n+1}^{LCB} \leq \alpha, \dots, X_{i-1}^{LCB} \leq \alpha \mid \mathcal{H}_{l_n}) \frac{1}{n} \\
 &= \mathbb{P}(X_{l_n+1}^{LCB} \leq \alpha, \dots, X_{i-2}^{LCB} \leq \alpha \mid \mathcal{H}_{l_n}) \mathbb{P}(X_{i-1}^{LCB} \leq \alpha \mid \mathcal{H}_{l_n}) \frac{1}{n} \\
 &= \mathbb{P}(X_{l_n+1}^{LCB} \leq \alpha, \dots, X_{i-2}^{LCB} \leq \alpha \mid \mathcal{H}_{l_n}) \left(1 - \frac{1}{n}\right) \frac{1}{n} \\
 &\quad \vdots \\
 &= \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n},
 \end{aligned}$$

729
730 which concludes the proof. □

731
732
733
734
735
736
737
738 From the exploration phase in the algorithm, we have $\mathbb{P}(\tau = i \mid \mathcal{E}) = 0$ for all $1 \leq i \leq l_n$.
739 Therefore, given \mathcal{E} we have

$$\begin{aligned}
 & \mathbb{E}[\mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]] \\
 &= \mathbb{E}\left[\sum_{i=1}^n \mathbb{P}(\tau = i \mid \{x_s\}_{s \in [l_n]}) \mathbb{E}[X_i \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}]\right] \\
 &= \mathbb{E}\left[\sum_{i=l_n+1}^n \mathbb{P}(\tau = i \mid \{x_s\}_{s \in [l_n]}) \mathbb{E}[X_i \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}]\right] \\
 &\geq \mathbb{E}\left[\sum_{i=l_n+1}^n \mathbb{P}(\tau = i \mid \{x_s\}_{s \in [l_n]}) \mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}]\right] \\
 &\geq \mathbb{E}\left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}]\right].
 \end{aligned} \tag{8}$$

756 For the last term above, we have
 757

$$\begin{aligned}
 & \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \right] \\
 &= \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times (\mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] + \mathbb{E}[(X_i^{LCB} - \alpha) \mathbb{1}(\mathcal{E}) \mid X_i^{LCB} \geq \alpha, \mathcal{H}_{l_n}]) \right] \\
 &= \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times (\mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + \mathbb{E}[(X_i^{LCB} - \alpha)^+ \mathbb{1}(\mathcal{E}) \mid X_i^{LCB} \geq \alpha, \mathcal{H}_{l_n}]) \right] \\
 &= \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + \frac{\mathbb{E}[(X_i^{LCB} - \alpha)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]}{\mathbb{P}(X_i^{LCB} \geq \alpha \mid \mathcal{H}_{l_n})} \right) \right] \\
 &\geq \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) - 2g \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + n \mathbb{E}[(X_i - 2g - \alpha^*)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \right) \right], \tag{9}
 \end{aligned}$$

774 where the second inequality is obtained from independency between $\tau = i$ for $i > l_n$ and \mathcal{E} given $\hat{\theta}$
 775 and $\{x_s\}_{s \in [l_n]}$, and the last inequality is obtained from Lemma A.2 and (7). Let $Z_s \sim \mathcal{D}$ for $s \in [n]$.
 776 Then, with $l_n = o(n)$, for the last term in (9), we have
 777

$$\begin{aligned}
 & \mathbb{E} \left[\sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times (\mathbb{E}[(\alpha^* - 2g) \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + n \mathbb{E}[(X_i - 2g - \alpha^*)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]) \right] \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \mathbb{E}[\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - 2\mathbb{E}[h \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + n \mathbb{E}[(X_i - 2h - \alpha^*)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]] \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \mathbb{E} \left[\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - 2\mathbb{E}[h \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + \mathbb{E}[\sum_{s \in [n]} (Z_s - 2h - \alpha^*)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \right] \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \mathbb{E} \left[\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - 2\mathbb{E}[h \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] + \mathbb{E}[\max_{s \in [n]} (Z_s - 2h - \alpha^*)^+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \right] \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\alpha^* \mathbb{P}(\mathcal{E}) - 2h \mathbb{P}(\mathcal{E}) + \mathbb{E}[\max_{s \in [n]} (Z_s - 2h - \alpha^*) \mathbb{1}(\mathcal{E})] \right) \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\alpha^* \mathbb{P}(\mathcal{E}) - 2h \mathbb{P}(\mathcal{E}) + \mathbb{E}[\max_{s \in [n]} Z_s] \mathbb{P}(\mathcal{E}) - (2h + \alpha^*) \mathbb{P}(\mathcal{E}) \right) \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\mathbb{E}[\max_{s \in [n]} X_s] \mathbb{P}(\mathcal{E}) - 4h \right) \\
 &\geq \sum_{i=l_n+1}^n \left(1 - \frac{1}{n}\right)^{i-l_n-1} \frac{1}{n} \times \left(\mathbb{E}[\max_{s \in [n]} X_s] \mathbb{P}(\mathcal{E}) - O\left(\sqrt{\frac{dL \log(nL)}{\lambda l_n}}(\sigma \sqrt{d} + \sqrt{S})\right) \right) \\
 &\geq \frac{1 - (1 - \frac{1}{n})^{n-l_n}}{1/n} \frac{1}{n} \left(\mathbb{E}[\max_{s \in [n]} X_s] \left(1 - \frac{1}{n} - \frac{d}{e^{\lambda l_n/8L}}\right) - O\left(\sqrt{\frac{dL \log(nL)}{\lambda l_n}}(\sigma \sqrt{d} + \sqrt{S})\right) \right), \tag{10}
 \end{aligned}$$

809 where the first inequality is obtained from $g \leq h$ and the second last inequality is obtained from the
 810 definition of h .

Finally, from (8), (9), and (10), we have

$$\begin{aligned}
& \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} = \lim_{n \rightarrow \infty} \frac{\mathbb{E}[\mathbb{E}[X_\tau \mid \mathcal{H}_{l_n}]]}{\mathbb{E}[\max_{i \in [n]} X_i]} \\
& \geq \lim_{n \rightarrow \infty} \frac{\mathbb{E}[\mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]]}{\mathbb{E}[\max_{i \in [n]} X_i]} \\
& \geq \lim_{n \rightarrow \infty} \frac{1 - (1 - \frac{1}{n})^{n-l_n}}{1/n} \frac{1}{n} \left(\left(1 - \frac{1}{n} - \frac{d}{e^{\lambda l_n/8L}} \right) - \mathcal{O} \left(\frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld \log(Ln)}{\lambda l_n}} (\sigma \sqrt{d} + \sqrt{S}) \right) \right) \\
& = \left(1 - \frac{1}{e} \right) - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda l_n}} \right),
\end{aligned} \tag{11}$$

where the last inequality is obtained from limits $\lim_{n \rightarrow \infty} (1 - 1/n)^n = 1/e$ and $\lim_{n \rightarrow \infty} (1 - 1/n)^{l_n} = 1$ (since $l_n = o(n)$) and $l_n = \omega(\frac{L \log d}{\lambda})$.

A.3 PROOF OF THEOREM 4.5

Lemma A.5 (Theorem 2 in Abbasi-Yadkori et al. (2011)). *We have*

$$\mathbb{P} \left(\forall i \in [n], \|\hat{\theta}_i - \theta\|_{V_i} \leq \sqrt{S\beta} + \sigma \sqrt{d \log \left(\frac{1 + \sum_{s \in \mathcal{I}_i} \|x_s\|_2^2 / d\beta}{\delta} \right)} \right) \geq 1 - \delta$$

The above lemma implies that

$$\mathbb{P} \left(\left| x^\top (\hat{\theta}_i - \theta) \right| \leq \sqrt{x^\top V_i^{-1} x} \left(\sigma \sqrt{d \log(n + n|\mathcal{I}_i|L/d\beta)} + \sqrt{S\beta} \right), \forall x \in \mathbb{R}^d, \forall i \in [n] \right) \geq 1 - 1/n. \tag{12}$$

We define an event $\mathcal{E}_1 = \{|x^\top (\hat{\theta}_i - \theta)| \leq \sqrt{x^\top V_i^{-1} x} (\sigma \sqrt{d \log(n + n|\mathcal{I}_i|L/d\beta)} + \sqrt{S\beta}), \forall x \in \mathbb{R}^d, \forall i \in [a_n + 1, n]\}$. From (12), we have $\mathbb{P}(\mathcal{E}_1) \geq 1 - \frac{1}{n}$. Let $a_n = \lceil \sqrt{n l_n} \rceil$. Then we define $g_i := \sqrt{L \|V_{a_n}^{-1}\|_2} (\sigma \sqrt{d \log(n + n|\mathcal{I}_i|L/d\beta)} + \sqrt{S\beta})$ so that, for $i > a_n$, $\xi_i(x_i) \leq g_i$ (recall $\xi_i(x_i) = \sqrt{x_i^\top V_i^{-1} x_i} (\sigma \sqrt{d \log(n + n|\mathcal{I}_i|L/d\beta)} + \sqrt{S\beta})$). We denote $\mathcal{H}_i = \{\hat{\theta}_i, V_i, \mathcal{I}_i\}$.

Lemma A.6. *Under \mathcal{E}_1 , for any $i > a_n$, and any given \mathcal{H}_i , we have*

$$\alpha^* - 2g_i \leq \alpha_i \leq \alpha^*.$$

Proof. For $z \sim \mathcal{D}$, we define $Z = z^\top \theta$ and $\hat{Z}_i = z^\top \hat{\theta}_i$. Then, under \mathcal{E}_1 , for any given V_i and $\hat{\theta}_i$, we have $Z - 2g_i \leq \hat{Z}_i - g_i \leq \hat{Z}_i - \xi_i(z) \leq Z$ with $\xi_i(z) \leq g_i$.

Let α^* be the oracle threshold satisfying $\mathbb{P}(Z \geq \alpha^* \mid \mathcal{H}_i) (= \mathbb{P}(Z \geq \alpha^*)) = 1/n$. From $\hat{Z}_i - \xi_i(z) \leq Z$ and $\mathbb{P}(\hat{Z}_i - \xi_i(z) \geq \alpha_i \mid \mathcal{H}_i) = \mathbb{P}(Z \geq \alpha^* \mid \mathcal{H}_i) (= 1/n)$, we can easily obtain

$$\alpha_i \leq \alpha^*.$$

Likewise, for α' s.t. $\mathbb{P}(Z - 2g_i \geq \alpha' \mid \mathcal{H}_i) = \frac{1}{n}$, from $Z - 2g_i \leq \hat{Z}_i - g_i \leq \hat{Z}_i - \xi_i(z)$ and $\mathbb{P}(Z - 2g_i \geq \alpha' \mid \mathcal{H}_i) = \mathbb{P}(\hat{Z}_i - \xi_i(z) \geq \alpha_i \mid \mathcal{H}_i)$, we have $\alpha' \leq \alpha_i$. Therefore, with $\alpha' + 2g_i = \alpha^*$ from $\mathbb{P}(Z - 2g_i \geq \alpha' \mid \mathcal{H}_i) = \mathbb{P}(Z \geq \alpha^* \mid \mathcal{H}_i) = 1/n$, we have

$$\alpha^* - 2g_i \leq \alpha_i,$$

which concludes the proof. \square

864 **Lemma A.7** (Multiplicative Chernoff Bound). *Let Z_1, \dots, Z_l be Bernoulli random variables with
865 mean μ . Then for $0 \leq \delta \leq 1$ we have*
866
867
868

$$869 \quad \mathbb{P} \left(\left| \sum_{s=1}^l Z_s - l\mu \right| \geq \delta l\mu \right) \leq 2 \exp(-\delta^2 l\mu/3)$$

$$870$$

$$871$$

$$872$$

$$873$$

$$874$$

$$875$$

876 From the above lemma, we define $\mathcal{E}_2 = \left\{ \left| |\mathcal{I}_i| - i\sqrt{l_n/n} \right| \leq \frac{1}{2}i\sqrt{l_n/n}, i \in \{a_n, n\} \right\}$, which holds
877 with probability at least $1 - 2 \exp(-\frac{l_n}{12}) - 2 \exp(-\frac{\sqrt{n}l_n}{12})$.
878

879 From Lemma A.3, for any $l \geq 1$, suppose $z_1, \dots, z_l \sim \mathcal{D}_x$ are i.i.d drawn from a distribution \mathcal{D}_x
880 satisfying Assumption 3.2. Recall $\lambda = \lambda_{\min}(\mathbb{E}_{z \sim \mathcal{D}_x}[zz^\top]) > 0$. We have that
881
882
883

$$884 \quad \mathbb{P} \left(\frac{1}{l} \sum_{s=1}^l z_s z_s^\top \succeq \frac{\lambda}{2} I_d \right) \geq 1 - d \exp \left(-\frac{\lambda l}{8L} \right).$$

$$885$$

$$886$$

$$887$$

$$888$$

$$889$$

890 Then, we define $\mathcal{E}_3 = \{\sum_{s \in \mathcal{I}_{a_n}} x_s x_s^\top \succeq \frac{|\mathcal{I}_{a_n}|}{2} \lambda I_d\}$, which holds, under \mathcal{E}_2 , with prob-
891 ability at least $1 - \frac{d}{e^{\lambda l_n/4L}}$. This implies $\mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}_3) = \mathbb{P}(\mathcal{E}_3 \mid \mathcal{E}_2) \mathbb{P}(\mathcal{E}_2) \geq$
892 $(1 - \frac{d}{e^{\lambda l_n/4L}}) \left(1 - 2 \exp(-\frac{l_n}{12}) - 2 \exp(-\frac{\sqrt{n}l_n}{12}) \right)$.
893

894 Then under $\mathcal{E}_2 \cap \mathcal{E}_3$, we have $\|V_{a_n}^{-1}\|_2 \leq \|(\sum_{s \in \mathcal{I}_{a_n}} x_s x_s^\top)^{-1}\|_2 \leq 2 \frac{1}{\lambda |\mathcal{I}_{a_n}|} \leq 4 \frac{1}{\lambda l_n}$. Then for
895 *i* > a_n , we have
896

$$900 \quad \xi_i(x_i) \leq \sqrt{L \|V_{a_n}^{-1}\|_2} (\sigma \sqrt{d \log(n + n |\mathcal{I}_i| L / d\beta)} + \sqrt{S\beta}) (= g_i)$$

$$901$$

$$902 \quad \leq \sqrt{L \frac{4}{\lambda l_n}} (\sigma \sqrt{d \log(n + n^2 L / d\beta)} + \sqrt{S\beta}). \quad (13)$$

$$903$$

$$904$$

$$905$$

$$906$$

907 Here we define $h := \sqrt{L \frac{4}{\lambda l_n}} (\sigma \sqrt{d \log(n + n^2 L / d\beta)} + \sqrt{S\beta})$ and $\mathcal{E} := \mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3$.
908

909 We define the set of decision stages until *i* as $\mathcal{J}_i := [i] \setminus \mathcal{I}_i$ so that $\mathcal{J}_i \cup \mathcal{I}_i = [i]$ and $\mathcal{J}_1 \subseteq \mathcal{J}_2, \dots, \subseteq$
910 \mathcal{J}_n . Then, we analyze the stopping probability at *i* in the following lemma.
911

912 **Lemma A.8.** *For *i* ∈ \mathcal{J}_n with any given $\mathcal{J}_i = \{j_1, j_2, \dots, j_{|\mathcal{J}_i|}\}$, we have*
913
914
915

$$916 \quad \mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E}) = \left(1 - \frac{1}{n} \right)^{|\mathcal{J}_i|-1} \frac{1}{n}.$$

$$917$$

918 *Proof.* For notation simplicity, we define $\mathcal{J}_i^{(k)} := \{j_1, \dots, j_k\} \subseteq \mathcal{J}_i$ for $k \in [|\mathcal{J}_i|]$. Then, for
919 $i \in \mathcal{J}_n$, we have
920

921 $\mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E})$
922 $= \mathbb{E}[\mathbb{P}(\tau = i \mid \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}]$
923 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-1)}\}, X_i^{LCB} > \alpha \mid \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}]$
924 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-1)}\} \mid \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}) \mathbb{P}(X_i^{LCB} > \alpha \mid \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}]$
925 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-1)}\} \mid \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}] \frac{1}{n}$
926 $= \mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-1)}\} \mid \mathcal{J}_i, \mathcal{E}) \frac{1}{n}$
927 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-1)}\} \mid \mathcal{H}_{j_{|\mathcal{J}_i|-1}}, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}] \frac{1}{n}$
928 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-2)}\} \mid \mathcal{H}_{j_{|\mathcal{J}_i|-1}}, \mathcal{J}_i, \mathcal{E}) \times \mathbb{P}(X_{j_{|\mathcal{J}_i|-1}}^{LCB} \leq \alpha \mid \mathcal{H}_{j_{|\mathcal{J}_i|-1}}, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}] \frac{1}{n}$
929 $= \mathbb{E}[\mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-2)}\} \mid \mathcal{H}_{j_{|\mathcal{J}_i|-1}}, \mathcal{J}_i, \mathcal{E}) \mid \mathcal{J}_i, \mathcal{E}] \left(1 - \frac{1}{n}\right) \frac{1}{n}$
930 $= \mathbb{P}(\{X_t^{LCB} \leq \alpha \forall t \in \mathcal{J}_i^{(|\mathcal{J}_i|-2)}\} \mid \mathcal{J}_i, \mathcal{E}) \left(1 - \frac{1}{n}\right) \frac{1}{n}$
931 \vdots
932 $= \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n}$
933

□

940
941
942
943
944
945
946
947
948 From the decision strategy of the algorithm, we have $\mathbb{P}(\tau = i \mid \mathcal{J}_n) = 0$ for all $i \in \mathcal{I}_n$. Therefore,
949 for analyzing X_τ , we have

950 $\mathbb{E}[X_\tau \mid \mathcal{E}]$
951 $= \mathbb{E}\left[\sum_{i=1}^n \mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E}) \mathbb{E}[X_i \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]$
952 $= \mathbb{E}\left[\sum_{i \in \mathcal{J}_n} \mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E}) \mathbb{E}[X_i \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]$
953 $\geq \mathbb{E}\left[\sum_{i \in \mathcal{J}_n \setminus [a_n]} \mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E}) \mathbb{E}[X_i \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]$
954 $\geq \mathbb{E}\left[\sum_{i \in \mathcal{J}_n \setminus [a_n]} \mathbb{P}(\tau = i \mid \mathcal{J}_i, \mathcal{E}) \mathbb{E}[\mathbb{E}[X_i^{LCB} \mid \tau = i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}] \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]$
955 $\geq \mathbb{E}\left[\sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \mathbb{E}[\mathbb{E}[X_i^{LCB} \mid \tau = i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}] \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]$
956 $\geq \mathbb{E}\left[\sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \mathbb{E}[\mathbb{E}[X_i^{LCB} \mid \tau = i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}] \mid \tau = i, \mathcal{J}_i, \mathcal{E}] \mid \mathcal{E}\right]. \quad (14)$
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

For the last term above, for $i \in \mathcal{J}_n \setminus [a_n]$, we have

972
 973
 974
 975 $\mathbb{E}[X_i^{LCB} \mid \tau = i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}]$
 976 $= \mathbb{E}[\alpha_i \mid \tau = i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}] + \mathbb{E}[X_i^{LCB} - \alpha_i \mid X_i^{LCB} \geq \alpha_i, \mathcal{H}_i, \mathcal{J}_i, \mathcal{E}]$
 977 $= \mathbb{E}[\alpha_i \mid \mathcal{H}_i, \mathcal{E}] + \frac{\mathbb{E}[(X_i^{LCB} - \alpha_i)^+ \mid \mathcal{H}_i, \mathcal{E}]}{\mathbb{P}(X_i^{LCB} \geq \alpha_i \mid \mathcal{H}_i, \mathcal{E})}$
 978 $\geq \mathbb{E}[\alpha^* - 2g_i \mid \mathcal{H}_i, \mathcal{E}] + n\mathbb{E}[(X_i - 2g_i - \alpha^*)^+ \mid \mathcal{H}_i, \mathcal{E}]$ (15)
 979
 980
 981
 982

983 where the last term is obtained from Lemma A.6, $\xi_i(x_i) \leq g_i$, and the definition of α_i .
 984

985 In what follows, we consider the case of $\mathbb{E}[\max_{i \in [n]} X_i] - \mathcal{O}\left(\sqrt{dL(\sigma^2 d + S) \frac{\log(Ln)}{\lambda l_n}}\right) > 0$, be-
 986 cause otherwise, it is trivially holds:
 987

988
 989 $\mathbb{E}[X_\tau \mid \mathcal{E}] \geq \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{n - \frac{3}{2}\sqrt{nl_n} - 1} \right) \left(\mathbb{E}[\max_{i \in [n]} X_i] - \mathcal{O}\left(\sqrt{Ld(\sigma^2 d + S) \frac{\log(Ln)}{\lambda l_n}}\right) \right).$
 990
 991
 992

993
 994
 995 Recall $h := \sqrt{L \frac{4}{\lambda l_n}} (\sigma \sqrt{d \log(n + n^2 L/d\beta)} + \sqrt{S\beta})$. Let $Z_k \sim \mathcal{D}$ for $k \in [n]$. Then, for the last
 996 term above in (14) with (15), under \mathcal{E} , we have
 997

998
 999 $\sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \left(\mathbb{E}[\alpha^* - 2g_i \mid \mathcal{H}_i, \mathcal{E}] + n\mathbb{E}[(X_i - 2g_i - \alpha^*)^+ \mid \mathcal{H}_i, \mathcal{E}] \right)$
 1000 $= \sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \left(\mathbb{E}[\alpha^* - 2g_i \mid \mathcal{H}_i, \mathcal{E}] + n\mathbb{E}[(Z_1 - 2g_i - \alpha^*)^+ \mid \mathcal{H}_i, \mathcal{E}] \right)$
 1001 $\geq \sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \left(\mathbb{E}[\alpha^* - 2g_i \mid \mathcal{H}_i, \mathcal{E}] + \mathbb{E}[\max_{k \in [n]} (Z_k - 2g_i - \alpha^*)^+ \mid \mathcal{H}_i, \mathcal{E}] \right)$
 1002 $\geq \sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \left(\mathbb{E}[\max_{k \in [n]} Z_k \mid \mathcal{H}_i, \mathcal{E}] - 4h \right)$
 1003 $\geq \sum_{i \in \mathcal{J}_n \setminus [a_n]} \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_i|-1} \frac{1}{n} \left(\mathbb{E}[\max_{k \in [n]} Z_k \mid \mathcal{H}_i, \mathcal{E}] - 4h \right)$
 1004 $\geq \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{|\mathcal{J}_n|-1} \right) \left(\mathbb{E}[\max_{k \in [n]} Z_k \mid \mathcal{H}_i, \mathcal{E}] - 4h \right)$
 1005 $= \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{n - |\mathcal{J}_n| - 1} \right) \left(\mathbb{E}[\max_{k \in [n]} Z_k] - 4h \right)$
 1006 $\geq \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{n - \frac{3}{2}\sqrt{nl_n} - 1} \right) \left(\mathbb{E}[\max_{k \in [n]} Z_k] - 4h \right),$ (16)
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023

1024 where the last inequality is obtained from \mathcal{E}
 1025

Finally, from (14), (15), and (16), we have

$$\begin{aligned}
& \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \\
& \geq \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau | \mathcal{E}] \mathbb{P}(\mathcal{E})}{\mathbb{E}[\max_{i \in [n]} X_i]} \\
& \geq \lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{n - \frac{3}{2}\sqrt{nl_n} - 1} \right) \left(\mathbb{E} \left[\max_{k \in [n]} X_k \right] - 4h \right) \mathbb{P}(\mathcal{E}) \\
& \geq \lim_{n \rightarrow \infty} \left(\left(1 - \frac{1}{n}\right)^{\sqrt{nl_n}} - \left(1 - \frac{1}{n}\right)^{n - \frac{3}{2}\sqrt{nl_n} - 1} \right) \left(1 - \mathcal{O} \left(\frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda l_n}} \right) \right) \mathbb{P}(\mathcal{E}) \\
& \geq \left(1 - \frac{1}{e}\right) \left(1 - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda l_n}} \right) \right), \tag{17}
\end{aligned}$$

where the last equality is obtained from $l_n = \Omega(\frac{L \log d \log n}{\lambda})$ and $l_n = o(n)$, and $\mathbb{P}(\mathcal{E}) \geq \left(1 - \frac{1}{n} - \left(1 - \left(1 - \frac{d}{e^{\lambda l_n/4L}}\right) \left(1 - 2 \exp(-\frac{-l_n}{12}) - 2 \exp(-\frac{\sqrt{nl_n}}{12})\right)\right)\right)$.

A.4 PROOF OF PROPOSITION 5.2

We first provide a proof for $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq \frac{1}{d}$. Let $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{R}^d$. Consider a non-identical distribution $\mathcal{D}_{x,i}$ that generates the following deterministic points:

$x_1 = (1, 0, \dots, 0)$, $x_2 = (0, 1, 0, \dots, 0)$, \dots , $x_d = (0, \dots, 0, 1)$, $x_i = (0, \dots, 0)$ for $i \in \{d+1, \dots, n\}$.

For any algorithm, let τ denote its stopping time.

Case 1. Set $\theta_1 = \epsilon$ for $\epsilon > 0$. If $\mathbb{P}(\tau = 1) \leq 1/d$, we set $\theta_2 = \dots = \theta_d = 0$. Then

$$\mathbb{E} \left[\max_{i \in [n]} x_i^\top \theta \right] = \theta_1, \quad \mathbb{E}[x_\tau^\top \theta] \leq \frac{\theta_1}{d},$$

so the competitive ratio satisfies $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/d$.

Case 2. Otherwise if $\mathbb{P}(\tau = 1) > 1/d$ we set $\theta_2 = \theta_1/\epsilon$ for some $0 < \epsilon < 1$. If $\mathbb{P}(\tau = 2) \leq 1/d$, then we set $\theta_3 = \theta_4 = \dots = \theta_d = 0$. Then

$$\mathbb{E} \left[\max_{i \in [n]} x_i^\top \theta \right] = \theta_2, \quad \mathbb{E}[x_\tau^\top \theta] \leq \frac{\theta_2}{d} + \epsilon = \frac{1}{d} + \epsilon,$$

again yielding, as $\epsilon \rightarrow 0$, $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/d$.

Case 3. Likewise, otherwise if $\mathbb{P}(\tau = 2) > 1/d$, we set $\theta_3 = \theta_2/\epsilon = 1/\epsilon$. If $\mathbb{P}(\tau = 3) \leq 1/d$, the we set $\theta_4 = \theta_5 = \dots = \theta_d = 0$, Then

$$\mathbb{E} \left[\max_{i \in [n]} x_i^\top \theta \right] = \theta_3, \quad \mathbb{E}[x_\tau^\top \theta] \leq \frac{\theta_3}{d} + 1 + \epsilon,$$

again yielding, as $\epsilon \rightarrow 0$, $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/d$.

There must exist some $i \in \{1, \dots, d\}$ such that $\mathbb{P}(\tau = i) \leq 1/d$. Therefore, in a similar way, by choosing θ to place the largest mass of θ_{i-1}/ϵ on that coordinate, as $\epsilon \rightarrow 0$, we can easily show that

$$\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq \frac{1}{d}.$$

Thus, in all cases, one can construct θ such that the competitive ratio satisfies $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/d$.

1080 We next provide a proof for $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq \frac{1}{2}$. We can construct $D_{x,1}$ such that $x_1 =$
 1081 $(1, 0, \dots, 0)$ are drawn deterministically. We also consider $\theta = (1, 0, \dots, 0)$ such that $X_1 = 1$.
 1082 We also consider $\mathcal{D}_{x,2}$ such that it generates $x_2 = (1/\epsilon, 0, \dots, 0)$ with probability ϵ and otherwise,
 1083 $x_2 = (0, 0, \dots, 0)$ with probability $1 - \epsilon$. For $i \geq 3$, we consider $x_i = (0, \dots, 0)$.
 1084

1085 Then for any algorithm τ which does know X_i for $i \in [n]$ in advance, we have $\mathbb{E}[x_\tau^\top \theta] \leq 1$.
 1086 On the other hands, the prophet who knows X_i in advance can stop at $\tau = 1$ with $X_1 = 1$ if
 1087 $X_2 = 0$ with probability $1 - \epsilon$ or stop at $d + 2$ if $X_2 = 1/\epsilon$ with probability ϵ . This implies that
 1088 $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/(2 - \epsilon)$. As $\epsilon \rightarrow 0$, we can conclude $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/2$.
 1089

1090 **Lastly, we provide a proof for $\mathbb{E}[X_\tau]/\mathbb{E}[\max_{i \in \{d+1, \dots, n\}} X_i] \leq \frac{1}{2}$.** We can construct $D_{x,i}$ for
 1091 $i \in [d+1]$ such that $x_1 = x_2 = \dots = x_{d+1} = (1, 0, \dots, 0)$ are drawn deterministically. We also
 1092 consider $\theta = (1, 0, \dots, 0)$ such that $X_1 = X_2 = \dots = X_{d+1} = 1$. We also consider $\mathcal{D}_{x,d+2}$ such
 1093 that it generates $x_{d+2} = (1/\epsilon, 0, \dots, 0)$ with probability ϵ and otherwise, $x_{d+2} = (0, 0, \dots, 0)$ with
 1094 probability $1 - \epsilon$. For $i \geq d + 2$, we consider $x_i = (0, \dots, 0)$.
 1095

1096 Then for any algorithm τ which does know X_i for $i \in [n]$ in advance, we have $\mathbb{E}[x_\tau^\top \theta] \leq 1$.
 1097 On the other hands, the prophet who knows X_i in advance can stop at $\tau = 1$ with $X_1 = 1$ if
 1098 $X_{d+2} = 0$ with probability $1 - \epsilon$ or stop at $d + 2$ if $X_{d+2} = 1/\epsilon$ with probability ϵ . This implies that
 1099 $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/(2 - \epsilon)$. As $\epsilon \rightarrow 0$, we can conclude $\frac{\mathbb{E}[x_\tau^\top \theta]}{\mathbb{E}[\max_{i \in [n]} x_i^\top \theta]} \leq 1/2$.
 1100

A.5 PROOF OF THEOREM 5.1

1102 From Lemma A.1, we can show that

$$1103 \mathbb{P} \left(\left| x^\top (\hat{\theta} - \theta) \right| \leq \sqrt{x^\top V^{-1} x} \left(\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta} \right), \forall x \in \mathbb{R}^d \right) \geq 1 - 1/n. \\ 1104$$

1106 We define an event $\mathcal{E}_1 = \{ |x^\top (\hat{\theta} - \theta)| \leq \sqrt{x^\top V^{-1} x} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}), \forall x \in \mathbb{R}^d \}$,
 1107 which holds with $\mathbb{P}(\mathcal{E}_1) \geq 1 - \frac{1}{n}$. Then under \mathcal{E}_1 , we have
 1108

$$1109 X_i - \xi(x_i) \leq x_i^\top \hat{\theta} \leq X_i + \xi(x_i). \quad (18)$$

1110 **Lemma A.9.** For $l \geq 1$, let $z_t \sim \mathcal{D}_{x,t}$ for $t \in [l]$ be independent random vectors (not necessarily
 1111 i.i.d.) satisfying Assumption 3.2. Then

$$1113 \Pr \left(\frac{1}{l} \sum_{t=1}^l z_t z_t^\top \succeq \lambda' I_d \right) \geq 1 - d \exp \left(- \frac{\lambda' l}{8L} \right). \\ 1114$$

1116 *Proof.* Let $\mu_{\min} = \lambda_{\min}(\mathbb{E}[\sum_{t=1}^l z_t z_t^\top])$. By the matrix Chernoff bound (Theorem 5.1.1 in Tropp
 1117 et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any $\delta \in [0, 1]$,

$$1119 \Pr \left[\lambda_{\min} \left(\sum_{t=1}^l z_t z_t^\top \right) \leq (1 - \delta) \mu_{\min} \right] \leq d \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}} \right)^{\mu_{\min}/L} \leq d \exp \left(- \frac{\delta^2}{2} \cdot \frac{\mu_{\min}}{L} \right). \\ 1120$$

1122 Choosing $\delta = \frac{1}{2}$ yields

$$1124 \Pr \left[\lambda_{\min} \left(\sum_{t=1}^l z_t z_t^\top \right) \leq \frac{\mu_{\min}}{2} \right] \leq d \exp \left(- \frac{\mu_{\min}}{8L} \right) \leq d \exp \left(- \frac{l\lambda'}{8L} \right), \\ 1125$$

1127 where the last inequality is obtained from Weyl's eigenvalue inequalities. Equivalently, with proba-
 1128 bility at least $1 - d \exp(-\lambda' l/(8L))$,

$$1129 \sum_{t=1}^l z_t z_t^\top \succeq \frac{\mu_{\min}}{2} I_d \succeq \frac{l\lambda'}{2} I_d, \\ 1130$$

1132 which completes the proof. □

1134 Let $\mathcal{E}_2 = \{\sum_{t=1}^{l_n} x_t x_t^\top \succeq \frac{\lambda' l_n}{2} I_d\}$, which holds with probability at least $1 - \frac{d}{e^{\lambda' l_n / 8L}}$ from
 1135 Lemma A.9. Then under \mathcal{E}_2 , we have $\|V^{-1}\|_2 \leq \|(\sum_{t=1}^{l_n} x_t x_t^\top)^{-1}\|_2 \leq 2 \frac{1}{\lambda' l_n}$. Then for $i > l_n$, we
 1136 have
 1137

$$\begin{aligned} 1141 \xi(x_i) &\leq \sqrt{\|x_i\|_2^2 \|V^{-1}\|_2} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta}) (= g_i) \\ 1142 &\leq \sqrt{\frac{2L}{\lambda' l_n}} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta}). \end{aligned} \quad (19)$$

1146
 1147
 1148
 1149
 1150 Here we define $h := \sqrt{\frac{2L}{\lambda' l_n}} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta})$. Let $z_i \sim \mathcal{D}_{x,i}$ and $\alpha^* =$
 1151 $\frac{1}{2} \mathbb{E} [\max_{i \in [l_n + 1, n]} z_i^\top \theta]$. Then, from (18) and (19), we have
 1152

$$\alpha^* - \frac{1}{2}h \leq \alpha \leq \alpha^* + \frac{1}{2}h. \quad (20)$$

1163 Let $\mathcal{E} := \mathcal{E}_1 \cup \mathcal{E}_2$ and $\mathcal{H}_{l_n} = \{\hat{\theta}, V\}$. Then for $i > l_n$, we have
 1164

$$\begin{aligned} 1165 \mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1166 &= \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) + \mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) - \alpha \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1167 &= \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1168 &\quad + \mathbb{E}[(X_i^{LCB} - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid X_i^{LCB} \geq \alpha, \mathcal{H}_{l_n}] \mathbb{P}(X_i^{LCB} \geq \alpha \mid \mathcal{H}_{l_n}) \prod_{j \in [i-1]} \mathbb{P}(X_j^{LCB} < \alpha_j \mid \mathcal{H}_{l_n}) \\ 1169 &\geq \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) + \mathbb{E}[(X_i^{LCB} - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \\ 1170 &\geq \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1171 &\quad + \mathbb{E}[(X_i - 2\xi(x_i) - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \\ 1172 &\geq \mathbb{E} \left[(\alpha^* - \frac{1}{2}h) \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1173 &\quad + \left(\mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2}h \right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}), \end{aligned} \quad (21)$$

1184
 1185
 1186
 1187 where the last inequality is obtained from (20) and $\xi(x_i) \leq h$.

1188 Using the above, we have
 1189

$$\begin{aligned}
 1190 \quad & \mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \\
 1191 \quad & \geq \sum_{i=1}^n \mathbb{E}[\mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \cdot \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}] \\
 1192 \quad & \geq \sum_{i=l_n+1}^n \mathbb{E}[\mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \cdot \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}] \\
 1193 \quad & \geq \sum_{i=l_n+1}^n \mathbb{E}\left[\mathbb{E}\left[(\alpha^* - \frac{1}{2}h) \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}\right] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n})\right. \\
 1194 \quad & \quad \left. + \left(\mathbb{E}\left[\left(X_i - \alpha^* - \frac{5}{2}h\right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}\right]\right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}\right] \\
 1195 \quad & \geq \mathbb{E}\left[\left(\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{1}{2}h\right) \sum_{i=l_n+1}^n \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n})\right. \\
 1196 \quad & \quad \left. + \max_{i \in [l_n+1, n]} \mathbb{E}\left[\left(X_i - \alpha^* - \frac{5}{2}h\right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}\right] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}\right] \\
 1197 \quad & \geq \mathbb{E}\left[\left(\mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{1}{2}h\right) (1 - \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}))\right. \\
 1198 \quad & \quad \left. + \left(\max_{i \in [l_n+1, n]} \mathbb{E}[X_i \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \mathbb{E}[\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{5}{2}h\right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}\right] \\
 1199 \quad & \geq \mathbb{E}\left[(\alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{1}{2}h)(1 - \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}))\right. \\
 1200 \quad & \quad \left. + \left(\max_{i \in [l_n+1, n]} \mathbb{E}[X_i] \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{5}{2}h\right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}\right] \\
 1201 \quad & \geq \alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{5}{2}h. \tag{22}
 1202 \\
 1203 \quad & \\
 1204 \quad & \\
 1205 \quad & \\
 1206 \quad & \\
 1207 \quad & \\
 1208 \quad & \\
 1209 \quad & \\
 1210 \quad & \\
 1211 \quad & \\
 1212 \quad & \\
 1213 \quad & \\
 1214 \quad & \\
 1215 \quad & \\
 1216 \quad & \\
 1217 \quad & \\
 1218 \quad & \\
 1219 \quad & \\
 1220 \quad & \\
 1221 \quad & \\
 1222 \quad & \\
 1223 \quad & \\
 1224 \quad & \\
 1225 \quad & \\
 1226 \quad & \\
 1227 \quad & \\
 1228 \quad & \\
 1229 \quad & \\
 1230 \quad & \\
 1231 \quad & \\
 1232 \quad & \\
 1233 \quad & \\
 1234 \quad & \\
 1235 \quad & \\
 1236 \quad & \\
 1237 \quad & \\
 1238 \quad & \\
 1239 \quad & \\
 1240 \quad & \\
 1241 \quad &
 \end{aligned}$$

Finally, using the above, we have

$$\begin{aligned}
 1223 \quad & \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [l_n+1, n]} X_i]} \geq \lim_{n \rightarrow \infty} \frac{\mathbb{E}[\mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]]}{\mathbb{E}[\max_{i \in [l_n+1, n]} X_i]} \\
 1224 \quad & \geq \lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [l_n+1, n]} X_i]} \left(\alpha^* \mathbb{P}(\mathcal{E}) - \frac{5}{2}h \right) \\
 1225 \quad & \geq \lim_{n \rightarrow \infty} \left(\frac{1}{2} \left(1 - \frac{1}{n} - \frac{d}{e^{\lambda' l_n / 8L}} \right) - \mathcal{O} \left(\frac{1}{\mathbb{E}[\max_{i \in [l_n+1, n]} X_i]} \sqrt{\frac{Ld \log(Ln)}{\lambda' l_n}} (\sigma \sqrt{d} + \sqrt{S}) \right) \right) \\
 1226 \quad & = \frac{1}{2} - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [l_n+1, n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda' l_n}} \right).
 1227 \\
 1228 \quad & \\
 1229 \quad & \\
 1230 \quad & \\
 1231 \quad & \\
 1232 \quad & \\
 1233 \quad & \\
 1234 \quad & \\
 1235 \quad & \\
 1236 \quad & \\
 1237 \quad & \\
 1238 \quad & \\
 1239 \quad & \\
 1240 \quad & \\
 1241 \quad &
 \end{aligned}$$

A.6 PROOF OF PROPOSITION 5.3

The argument follows the statement used in Marshall et al. (2020). For completeness, we provide the details here. Consider the instance where $X_1 = 1$ deterministically, $X_2 = X_3 = \dots = X_{n-1} = 0$ deterministically, and X_n takes value $1/\epsilon$ with probability ϵ (for any $0 < \epsilon < 1$) and 0 otherwise. For any $w_n \leq n-1$, the gambler receives an expected payoff of 1, while the prophet receives an expected payoff of $2 - \epsilon$. Thus, the ratio satisfies $\mathbb{E}[X_\tau]/\mathbb{E}[\max_{i \in [n]} X_i] \leq 1/(2 - \epsilon)$. We can conclude the proof with $\epsilon \rightarrow 0$.

1242 **Algorithm 3** Explore-Then-Decide with LCB Thresholding under Window Access
1243 (ETD-LCBT-WA)

1244 **Input:** Exploration length l_n ; regularization parameter β
1245 **Output:** Stopping time τ

1246 **for** $i = 1, \dots, n$ **do**

1247 **if** $i \leq l_n$ **then**
1248 Observe (x_i, y_i)

1249 **else if** $i = l_n + 1$ **then**
1250 Compute $\hat{\theta}^{(k)}$ and $V^{(k)}$ for $k \in [l_n + 1]$ from (23)
1251 Compute α from (24) and X_k^{LCB} for $k \leq l_n + 1$ from (25).
1252 **if** $\max_{k \in [1, l_n + 1]} X_k^{LCB} \geq \alpha$ **then**
1253 Stop with $\tau \leftarrow \arg \max_{k \in [1, l_n + 1]} X_k^{LCB}$

1254 **else**
1255 Observe (x_i, y_i)
1256 Compute X_i^{LCB} from (25).
1257 **if** $X_i^{LCB} \geq \alpha$ **then**
1258 Stop with $\tau \leftarrow i$

1259

1260

A.7 DETAILS OF AN ALGORITHM FOR NON-IID DISTRIBUTIONS UNDER WINDOW ACCESS

Individual Estimators. After the l_n exploration stages, we define for each $i \in [l_n + 1]$

$$\hat{\theta}^{(i)} = \left(V^{(i)} \right)^{-1} \sum_{t \in [l_n + 1] \setminus \{i\}} y_t x_t, \quad \text{where } V^{(i)} = \sum_{t \in [l_n + 1] \setminus \{i\}} x_t x_t^\top + \beta I_d. \quad (23)$$

This construction ensures that the estimator $\hat{\theta}^{(i)}$ is independent of (x_i, y_i) . For ease of presentation, for $i \geq l_n + 2$, we define $\hat{\theta}^{(i)} := \hat{\theta}^{(l_n + 1)}$ and $V^{(i)} := V^{(l_n + 1)}$.

Decision with LCB Threshold under Window Access. Let $z_k \sim \mathcal{D}_{x,k}$ for $k \in [n]$. Then the threshold value is set to

$$\alpha = \frac{1}{2} \mathbb{E} \left[\max_{k \in [n]} z_k^\top \hat{\theta}^{(l_n + 1)} \mid \hat{\theta}^{(l_n + 1)} \right], \quad (24)$$

and we define LCBs as

$$X_i^{LCB} = x_i^\top \hat{\theta}^{(i)} - \xi_i(x_i), \quad (25)$$

where $\xi_i(x_i) := \sqrt{x_i^\top V_i^{-1} x_i} (\sigma \sqrt{d \log(n^2 + n^2 l_n L / d\beta)} + \sqrt{S\beta})$.

At stage $l_n + 1$, the algorithm checks whether $\max_{k \in [1, l_n + 1]} X_k^{LCB} \geq \alpha$. If so, it stops with $\tau = \arg \max_{k \in [1, l_n + 1]} X_k^{LCB}$; otherwise, it continues. For $i > l_n + 1$, the algorithm stops at stage i if $X_i^{LCB} \geq \alpha$.

A.8 PROOF OF THEOREM 5.4

Lemma A.10. We have

$$\mathbb{P} \left(\forall k \in [l_n + 1], \|\hat{\theta}^{(k)} - \theta\|_{V^{(k)}} \leq \sqrt{S\beta} + \sigma \sqrt{d \log \left(\frac{n(1 + \sum_{s \in [l_n + 1] \setminus \{i\}} \|x_s\|_2^2 / d\beta)}{\delta} \right)} \right) \geq 1 - \delta$$

Proof. We can show this lemma easily by using Theorem 2 in Abbasi-Yadkori et al. (2011) with the union bound for each $\hat{\theta}^{(k)}$ for $k \in [l_n + 1]$. \square

1296 From Lemma A.10, we can show that

$$1297 \mathbb{P} \left(\left| x^\top (\hat{\theta}^{(i)} - \theta) \right| \leq \sqrt{x^\top V^{(i)-1} x} \left(\sigma \sqrt{d \log(n^2 + n^2 l_n L / d\beta)} + \sqrt{S\beta} \right), \forall x \in \mathbb{R}^d, \forall i \in [1, l_n + 1] \right) \\ 1298 \geq 1 - 1/n.$$

1300 We define an event

$$1302 \mathcal{E}_1 = \left\{ \left| x^\top (\hat{\theta}^{(i)} - \theta) \right| \leq \sqrt{x^\top V^{(i)-1} x} \left(\sigma \sqrt{d \log(n^2 + n^2 l_n L / d\beta)} + \sqrt{S\beta} \right), \forall x \in \mathbb{R}^d, \forall i \in [1, l_n + 1] \right\}.$$

1304 We have $\mathbb{P}(\mathcal{E}_1) > 1 - \frac{1}{n}$. Then under \mathcal{E}_1 , for $i \in [n]$ we have

$$1306 X_i - \xi_i(x_i) \leq x_i^\top \hat{\theta}^{(i)} \leq X_i + \xi_i(x_i).$$

1307 Let $\mathcal{E}_2 = \{\sum_{t \in [1, l_n + 1] \setminus \{i\}} x_t x_t^\top \succeq \frac{\lambda' l_n}{2} I_d, \forall i \in [l_n + 1]\}$, which holds with probability at least

1308 $1 - \frac{d(l_n + 1)}{e^{\lambda' l_n / 8L}}$ from Lemma A.9. Then under \mathcal{E}_2 , we have $\|V^{(i)-1}\|_2 \leq \|(\sum_{t \in [l_n + 1] \setminus \{i\}} x_t x_t^\top)^{-1}\|_2 \leq$
1309 $2 \frac{1}{\lambda' l_n}$. Then for $i \geq l_n + 1$, we have

$$1312 \xi_i(x_i) \leq \sqrt{\|x_i\|_2^2 \|V^{(i)-1}\|_2} (\sigma \sqrt{d \log(n^2 + n^2 l_n L / d\beta)} + \sqrt{S\beta}) (= g_i) \\ 1313 \leq \sqrt{\frac{2}{\lambda' l_n}} (\sigma \sqrt{d \log(n^2 + n^3 L / d\beta)} + \sqrt{S\beta}). \quad (26)$$

1316 Here we define $h := \sqrt{\frac{2}{\lambda' l_n}} (\sigma \sqrt{d \log(n^2 + n^3 L / d\beta)} + \sqrt{S\beta})$ and $\mathcal{E} := \mathcal{E}_1 \cup \mathcal{E}_2$.

1317 Let $z_i \sim \mathcal{D}_{x,i}$ and $\alpha^* = \frac{1}{2} \mathbb{E} [\max_{i \in [1, n]} z_i^\top \theta]$. Then at time $l_n + 1$, by following the step in (21),
1318 we have for $i \in [l_n + 1]$,

$$1320 \mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \hat{\theta}^{(i)}, \{x_s\}_{s \in [l_n + 1] \setminus \{i\}}] \mathbb{P}(\tau = i \mid \hat{\theta}^{(i)}, V^{(i)}) \\ 1321 \geq \mathbb{E} \left[(\alpha^* - \frac{1}{2} h_i) \mathbb{1}(\mathcal{E}) \mid \hat{\theta}^{(i)}, \{x_s\}_{s \in [l_n + 1] \setminus \{i\}} \right] \mathbb{P}(\tau = i \mid \hat{\theta}^{(i)}, V^{(i)}) \\ 1322 + \left(\mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2} h_i \right)_+ \mathbb{1}(\mathcal{E}) \mid \hat{\theta}^{(i)}, V^{(i)} \right] \right) \mathbb{P}(\tau = n + 1 \mid \hat{\theta}^{(i)}, V^{(i)}),$$

1326 For ease of presentation, recall that we define $\hat{\theta}^{(i)} = \hat{\theta}^{(l_n + 1)}$ for all $i > l_n + 1$. Then we also have,
1327 for $i > l_n + 1$,

$$1329 \mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \hat{\theta}^{(i)}, V^{(i)}] \mathbb{P}(\tau = i \mid \hat{\theta}^{(i)}, V^{(i)}) \\ 1330 \geq \mathbb{E} \left[(\alpha^* - \frac{1}{2} h) \mathbb{1}(\mathcal{E}) \mid \hat{\theta}^{(i)}, V^{(i)} \right] \mathbb{P}(\tau = i \mid \hat{\theta}^{(i)}, V^{(i)}) \\ 1331 + \left(\mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2} h \right)_+ \mathbb{1}(\mathcal{E}) \mid \hat{\theta}^{(i)}, V^{(i)} \right] \right) \mathbb{P}(\tau = n + 1 \mid \hat{\theta}^{(i)}, V^{(i)}),$$

1335 Combining them all, by following the steps in (22), we obtain:

$$1336 \mathbb{E}[X_\tau \mathbb{1}(\mathcal{E})] \geq \alpha^* \mathbb{P}(\mathcal{E}) - \frac{5}{2} h.$$

1338 Finally, using the above, we have

$$1339 \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \\ 1340 \geq \lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \left(\alpha^* \mathbb{P}(\mathcal{E}) - \frac{5}{2} h \right) \\ 1341 \geq \lim_{n \rightarrow \infty} \left(\frac{1}{2} \left(1 - \frac{1}{n} - \frac{d(l_n + 1)}{e^{\lambda' l_n / 8L}} \right) - \mathcal{O} \left(\frac{1}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \sqrt{\frac{L d \log(Ln)}{\lambda' l_n}} (\sigma \sqrt{d} + \sqrt{S}) \right) \right) \\ 1342 = \frac{1}{2} - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [l_n + 1, n]} X_i]} \sqrt{\frac{L d (\sigma^2 d + S) \log(Ln)}{\lambda' l_n}} \right).$$

1350	Algorithm 4 Decide with Offline Samples and LCB Thresholding (DOS-LCBT)
1351	Input: Offline samples (x_t^o, y_t^o) for $t \in \mathcal{S}$; regularization parameter β
1352	Output: Stopping time τ
1353	37 $V \leftarrow \sum_{t=1}^{l_n} x_t^o x_t^{o\top} + \beta I_d$; $\hat{\theta} \leftarrow V^{-1} \sum_{t=1}^{l_n} y_t^o x_t^o$
1354	38 Compute α from (27)
1355	39 for $i = 1, \dots, n$ do
1356	40 Observe (y_i, x_i)
1357	41 Compute X_i^{LCB} from (1)
1358	42 if $X_i^{LCB} \geq \alpha$ then
1359	43 Stop and set $\tau \leftarrow i$
1360	
1361	
1362	

1363 **A.9 FURTHER DETAILS ON THE METHOD USING OFFLINE SAMPLES UNDER NON-I.I.D.**
1364 **DISTRIBUTIONS**

1365 For any $\mathcal{S} \subseteq [n]$ such that $|\mathcal{S}| = l_n$ for $l_n > 0$ (specified later), we assume that the gambler receives
1366 offline samples (x_t^o, y_t^o) where $x_t^o \sim \mathcal{D}_t$ for $t \in \mathcal{S}$ and $y_t^o = x_t^{o\top} \theta + \eta_t$. In Algorithm 4, using this
1367 offline samples, we obtain $V = \sum_{t=1}^{l_n} x_t^o x_t^{o\top} + \beta I_d$ and $\hat{\theta} = V^{-1} \sum_{t=1}^{l_n} y_t^o x_t^o$ for constant $\beta > 0$.
1368 Then we follow the following decision strategy.

1369
1370 **Decision with LCB Threshold.** For each time $i \geq 1$, for $z_s \sim \mathcal{D}_{x,s}$ for all $s \in [1, n]$, we define
1371 the threshold:

$$\alpha = \frac{1}{2} \mathbb{E} \left[\max_{s \in [n]} z_s^\top \hat{\theta} \mid \hat{\theta} \right] \quad (27)$$

1372 Recall the lower confidence bound for X_i in the Explore-then-Deicide framework: $X_i^{LCB} = x_i^\top \hat{\theta} -$
1373 $\xi(x_i) := \sqrt{x_i^\top V^{-1} x_i} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta})$. The algorithm stops at stage
1374 *i* if $X_i^{LCB} \geq \alpha$.

1375 **Theorem A.11.** *In the non-i.i.d. setting with unknown distributions and window access of size $w_n >$
1376 l_n , Algorithm 4 with $l_n = o(n)$, $l_n = \omega(\frac{L \log d}{\lambda})$, and a constant $\lambda > 0$ achieves the following
1377 asymptotic competitive ratio:*

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq \frac{1}{2} - \mathcal{O} \left(\lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [1, n]} X_i]} \sqrt{\frac{L(\sigma^2 d + S) \log(Ln)}{\lambda' l_n}} \right).$$

1378 Furthermore, by setting $l_n = \frac{L(\sigma^2 d + S)}{\lambda} f(n) \log(Ln)$ for some function $f(n)$ (e.g., $f(n) =$
1379 $\Theta(\log^p n)$ for $p > 0$, or $\Theta(n^q)$ for $0 < q < 1$) satisfying $l_n = o(n)$, if $OPT = \omega(1/\sqrt{f(n)})$,
1380 then Algorithm 4 achieves the following asymptotic competitive ratio:

$$\lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq \frac{1}{2}.$$

1381
1382 **Proof.** From Lemma A.1, we can show that

$$\mathbb{P} \left(|x^\top (\hat{\theta} - \theta)| \leq \sqrt{x^\top V^{-1} x} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}), \forall x \in \mathbb{R}^d \right) \geq 1 - 1/n.$$

1383
1384 We define an event $\mathcal{E}_1 = \{|x^\top (\hat{\theta} - \theta)| \leq \sqrt{x^\top V^{-1} x} (\sigma \sqrt{d \log(n + nl_n L/d\beta)} + \sqrt{S\beta}), \forall x \in \mathbb{R}^d\}$,
1385 which holds with $\mathbb{P}(\mathcal{E}_1) \geq 1 - \frac{1}{n}$. Then under \mathcal{E}_1 , we have

$$X_i - \xi(x_i) \leq x_i^\top \hat{\theta} \leq X_i + \xi(x_i). \quad (28)$$

1386 **Lemma A.12.** *For any $\mathcal{S} \subset [n]$ with $|\mathcal{S}| = l$ for $l > 0$, let $z_t \sim \mathcal{D}_{x,t}$ for $t \in \mathcal{S}$ be independent
1387 random vectors (not necessarily i.i.d.) satisfying Assumption 3.2. Then*

$$\Pr \left(\frac{1}{l} \sum_{t \in \mathcal{S}} z_t z_t^\top \succeq \lambda' I_d \right) \geq 1 - d \exp \left(- \frac{\lambda' l}{8L} \right).$$

1404 *Proof.* Let $\mu_{\min} = \lambda_{\min}(\mathbb{E}[\sum_{t \in \mathcal{S}} z_t z_t^\top])$. By the matrix Chernoff bound (Theorem 5.1.1 in Tropp
1405 et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any $\delta \in [0, 1]$,
1406

$$1407 \Pr \left[\lambda_{\min} \left(\sum_{t \in \mathcal{S}} z_t z_t^\top \right) \leq (1 - \delta) \mu_{\min} \right] \leq d \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}} \right)^{\mu_{\min}/L} \leq d \exp \left(-\frac{\delta^2}{2} \cdot \frac{\mu_{\min}}{L} \right).$$

1410 Choosing $\delta = \frac{1}{2}$ yields
1411

$$1412 \Pr \left[\lambda_{\min} \left(\sum_{t \in \mathcal{S}} z_t z_t^\top \right) \leq \frac{\mu_{\min}}{2} \right] \leq d \exp \left(-\frac{\mu_{\min}}{8L} \right) \leq d \exp \left(-\frac{l\lambda'}{8L} \right),$$

1415 where the last inequality is obtained from Weyl's eigenvalue inequalities. Equivalently, with proba-
1416 bility at least $1 - d \exp(-\lambda' l / (8L))$,
1417

$$1418 \sum_{t \in \mathcal{S}} z_t z_t^\top \succeq \frac{\mu_{\min}}{2} I_d \succeq \frac{l\lambda'}{2} I_d,$$

1421 which completes the proof.
1422 \square
1423

1424 Let $\mathcal{E}_2 = \{\sum_{t \in \mathcal{S}} x_t^o x_t^{o\top} \succeq \frac{\lambda' l_n}{2} I_d\}$, which holds with probability at least $1 - \frac{d}{e^{\lambda' l_n / 8L}}$ from
1425 Lemma A.12. Then under \mathcal{E}_2 , we have $\|V^{-1}\|_2 \leq \|(\sum_{t \in \mathcal{S}} x_t^o x_t^{o\top})^{-1}\|_2 \leq 2 \frac{1}{\lambda' l_n}$. Then for $i > l_n$,
1426 we have
1427

$$1428 \xi(x_i) \leq \sqrt{\|x_i\|_2^2 \|V^{-1}\|_2} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta}) (= g_i) \\ 1429 \leq \sqrt{\frac{2L}{\lambda' l_n}} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta}). \quad (29)$$

1430 Here we define $h := \sqrt{\frac{2L}{\lambda' l_n}} (\sigma \sqrt{d \log(n + nl_n L / d\beta)} + \sqrt{S\beta})$. Let $z_i \sim \mathcal{D}_{x,i}$ and $\alpha^* = \frac{1}{2} \mathbb{E} [\max_{i \in [n]} z_i^\top \theta]$. Then, from (28) and (29), we have
1431

$$1432 \alpha^* - \frac{1}{2} h \leq \alpha \leq \alpha^* + \frac{1}{2} h. \quad (30)$$

1433 Let $\mathcal{E} := \mathcal{E}_1 \cup \mathcal{E}_2$ and $\mathcal{H}_{l_n} = \{\hat{\theta}, V\}$. Then for $i \geq 1$, we have
1434

$$1435 \mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1436 = \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) + \mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) - \alpha \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1437 = \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1438 + \mathbb{E}[(X_i^{LCB} - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid X_i^{LCB} \geq \alpha, \mathcal{H}_{l_n}] \mathbb{P}(X_i^{LCB} \geq \alpha \mid \mathcal{H}_{l_n}) \prod_{j \in [i-1]} \mathbb{P}(X_j^{LCB} < \alpha_j \mid \mathcal{H}_{l_n}) \\ 1439 \geq \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) + \mathbb{E}[(X_i^{LCB} - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \\ 1440 \geq \mathbb{E}[\alpha \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1441 + \mathbb{E}[(X_i - 2\xi(x_i) - \alpha)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \\ 1442 \geq \mathbb{E} \left[(\alpha^* - \frac{1}{2} h) \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \\ 1443 + \left(\mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2} h \right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}),$$

1444 where the last inequality is obtained from (30) and $\xi(x_i) \leq h$.
1445

1458

Using the above, we have

1459

$$\begin{aligned}
1460 \quad & \mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] \\
1461 \quad & \geq \sum_{i=1}^n \mathbb{E} [\mathbb{E}[X_\tau^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \cdot \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}] \\
1462 \quad & = \sum_{i=1}^n \mathbb{E} [\mathbb{E}[X_i^{LCB} \mathbb{1}(\mathcal{E}) \mid \tau = i, \mathcal{H}_{l_n}] \cdot \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n}] \\
1463 \quad & \geq \sum_{i=1}^n \mathbb{E} \left[\mathbb{E} \left[(\alpha^* - \frac{1}{2}h) \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \right. \\
1464 \quad & \quad \left. + \left(\mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2}h \right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n} \right] \\
1465 \quad & \geq \mathbb{E} \left[\left(\mathbb{E} [\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{1}{2}h \right) \sum_{i=1}^n \mathbb{P}(\tau = i \mid \mathcal{H}_{l_n}) \right. \\
1466 \quad & \quad \left. + \max_{i \in [n]} \mathbb{E} \left[\left(X_i - \alpha^* - \frac{5}{2}h \right)_+ \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n} \right] \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n} \right] \\
1467 \quad & \geq \mathbb{E} \left[\left(\mathbb{E} [\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{1}{2}h \right) (1 - \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n})) \right. \\
1468 \quad & \quad \left. + \left(\max_{i \in [n]} \mathbb{E} [X_i \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \mathbb{E} [\alpha^* \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}] - \frac{5}{2}h \right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n} \right] \\
1469 \quad & \geq \mathbb{E} \left[(\alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{1}{2}h) (1 - \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n})) \right. \\
1470 \quad & \quad \left. + \left(\max_{i \in [n]} \mathbb{E} [X_i] \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{5}{2}h \right) \mathbb{P}(\tau = n+1 \mid \mathcal{H}_{l_n}) \mid \mathcal{H}_{l_n} \right] \\
1471 \quad & \geq \alpha^* \mathbb{P}(\mathcal{E} \mid \mathcal{H}_{l_n}) - \frac{5}{2}h.
\end{aligned}$$

1489

Finally, using the above, we have

1490

$$\begin{aligned}
1491 \quad & \lim_{n \rightarrow \infty} \frac{\mathbb{E}[X_\tau]}{\mathbb{E}[\max_{i \in [n]} X_i]} \geq \lim_{n \rightarrow \infty} \frac{\mathbb{E}[\mathbb{E}[X_\tau \mathbb{1}(\mathcal{E}) \mid \mathcal{H}_{l_n}]]}{\mathbb{E}[\max_{i \in [n]} X_i]} \\
1492 \quad & \geq \lim_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \left(\alpha^* \mathbb{P}(\mathcal{E}) - \frac{5}{2}h \right) \\
1493 \quad & \geq \lim_{n \rightarrow \infty} \left(\frac{1}{2} \left(1 - \frac{1}{n} - \frac{d}{e^{\lambda' l_n / 8L}} \right) - \mathcal{O} \left(\frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld \log(Ln)}{\lambda' l_n}} (\sigma \sqrt{d} + \sqrt{S}) \right) \right) \\
1494 \quad & = \frac{1}{2} - \mathcal{O} \left(\limsup_{n \rightarrow \infty} \frac{1}{\mathbb{E}[\max_{i \in [n]} X_i]} \sqrt{\frac{Ld(\sigma^2 d + S) \log(Ln)}{\lambda' l_n}} \right).
\end{aligned}$$

1503

1504

1505

1506

1507

1508

1509

1510

1511

□