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ABSTRACT

We study the prophet inequality, a fundamental problem in online decision-
making and optimal stopping, in a practical setting where rewards are observed
only through noisy realizations and reward distributions are unknown. At each
stage, the decision-maker receives a noisy reward whose true value follows a lin-
ear model with an unknown latent parameter, and observes a feature vector drawn
from a distribution. To address this challenge, we propose algorithms that inte-
grate learning and decision-making via lower-confidence-bound (LCB) threshold-
ing. In the i.i.d. setting, we establish that both an Explore-then-Decide strategy
and an e-Greedy variant achieve the sharp competitive ratio of 1 — 1/e. For non-
identical distributions, we show that a competitive ratio of 1/2 can be guaranteed
against a relaxed benchmark. Moreover, with window access to past rewards, the
optimal ratio of 1/2 against the optimal benchmark is achieved. Experiments on
synthetic datasets confirm our theoretical results and demonstrate the efficiency of
our algorithms.

1 INTRODUCTION

The prophet inequality is a fundamental problem in online decision-making and optimal stopping
(Hill & Kertz,|1992). A decision-maker (or gambler) sequentially observes a stream of random vari-
ables (or rewards) revealed one by one and must decide at each stage whether to accept the current
value and stop, or continue to the next stage. The benchmark is the prophet, an omniscient agent
who knows all realizations in advance. The objective of the gambler is to design an online stopping
rule whose expected payoff is competitive with that of the prophet, aiming to maximize the compet-
itive ratio. This framework has been extensively studied, owing to its rich mathematical structure
and broad applications such as posted-price mechanisms (Lucier, 2017, online ad allocation (Alaei
et al.| 2012)), and hiring processes in labor markets (Arsenis & Kleinberg] [2022).

Classical work has established sharp guarantees when the underlying distributions are known. In
particular, Samuel-Cahn| (1984)) showed that a single-threshold strategy achieves the optimal ratio of
1/2 for independent but non-identical distributions, while in the i.i.d. case, 1 — 1/e was achieved in
Hill & Kertz (1982) and later improved by |Abolhassani et al.| (2017)); |Correa et al.[(2017).

Crucially, all these results rely on full knowledge of the distributions, an assumption that rarely
holds in practice. More recently, attention has shifted toward the prophet inequality under unknown
distributions (Correa et al., [2019; 2020; |Goldenshluger & Zeevi, 2022; Immorlica et al., [2023). In
particular, |Correa et al.|(2019) showed that, in the unknown-distribution setting, a competitive ratio
of 1/e(~ 0.368) can be achieved by the classical optimal algorithm for the secretary problem. To
obtain the higher ratio of 1 — 1/e(= 0.632), however, ©(n) additional offline reward samples are
required. Such requirements limit the applicability of these results in real-world scenarios.

In this work, we study the prophet inequality in a novel and practical setting, in which at each stage
only a noisy realization of the random variable is observed, and reward distributions are unknown
without available offline reward samples. Instead, the decision-maker has access to observable fea-
ture vectors drawn from distributions, and the rewards follow a linear model with an unknown latent
parameter. This structural information enables estimation of the reward distribution and fundamen-
tally distinguishes our setting from the classical unknown-distribution model (Correa et al.l 2019).
This feature-based formulation is motivated by applications such as online advertising, hiring, and
recommendation systems, where contextual information (e.g., ad profiles, candidate attributes, or
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item descriptions) and noisy feedback are observable, while the underlying reward distributions re-
main unknown.

To address these challenges, we integrate learning and decision-making under noisy reward obser-
vations and feature information. Furthermore, we employ a lower-confidence-bound (LCB) thresh-
olding strategy to handle the uncertainty in the estimator. The main contributions are as follows:

Summary of Contributions.

» Motivated by practical scenarios, we introduce a novel setting of the prophet inequality
where the gambler only observes noisy rewards together with feature information and re-
ward distributions are unknown.

* In the i.i.d. case, we propose learning-decision algorithms that integrate lower-confidence-
bound (LCB) thresholding, achieving the sharp competitive ratio of 1 — 1/e against the
optimal benchmark.

* For the non-identical case, we analyze an algorithm that attains a competitive ratio of 1/2
against a relaxed benchmark. Furthermore, with window access to past rewards, the algo-
rithm achieves the optimal competitive ratio of 1/2 against the optimal benchmark.

* We validate our algorithms through experiments on synthetic datasets.

2 RELATED WORK

Prophet Inequalities under Known Reward Distributions. The study of prophet inequalities
originates from [Krengel & Sucheston| (1977;[1978). A key milestone was established by [Samuel-
Cahn| (1984), who showed that a single-threshold strategy achieves the optimal competitive ratio of
1/2 in the case of independent but non-identical distributions. In the order-selection variant, where
the gambler can choose the order of arrivals,|(Chawla et al.| (2010) achieved a ratio of 1 —1/e. For the
i.i.d. case, Hill & Kertz (1982)) established a ratio of 1 — 1/e, which was subsequently improved by
Abolhassani et al.[(2017)) and|Correa et al.|(2017). Extending beyond exact observations, |Assaf et al.
(1998)) demonstrated that analogous guarantees remain valid under noisy observations, though only
with respect to a Bayesian version of the prophet benchmark, which is weaker than the classical one.
Indeed, under noisy observations, any non-trivial guarantee with respect to the classical benchmark
becomes impossible without additional structural assumptions, as we will show later. Finally, all of
these results assume full knowledge of the underlying reward distributions—an assumption rarely
satisfied in practical applications.

Prophet Inequalities under Unknown Reward Distributions. To address this limitation, recent
work has studied prophet inequalities under unknown reward distributions (Correa et al.,[2019;2020;
Goldenshluger & Zeevil, 2022} Immorlica et al., 2023} |Gatmiry et al., 2024; [Li et al., 2022). For the
i.i.d. setting, (Correa et al.| (2019) showed that a competitive ratio of 1/e(~ 0.368) can be achieved
by the classical optimal algorithm for the secretary problem as the horizon grows. To obtain the
higher ratio of 1 — 1/e(~ 0.632), however, ©(n) additional offline reward samples are required.
Building on this, |Goldenshluger & Zeevi| (2022)) showed that an asymptotic ratio approaching 1
is attainable, but only for fixed distributions whose maxima lie in the Gumbel or reverse-Weibull
domains of attraction as the horizon grows.

The case of unknown non-identical distributions was studied by |Gatmiry et al.| (2024); [Liu et al.
(2025), but their setting involves repeated sequences of rounds rather than a single sequence. This
repetition allows information to be aggregated across rounds, making the learning problem tractable
under bandit feedback. In contrast, our setting involves only a single sequence, and is therefore
fundamentally different. Prophet inequalities under unknown and non-independent distributions
were also studied in [Immorlica et al. (2023), achieving a ratio of 1/(2er) for r-sparse correlated
structures, but their model still assumes distributional knowledge of the independent components of
the rewards.

In contrast, we study a novel and practical setting that targets the optimal prophet under noisy reward
observations and unknown reward distributions without available offline reward samples. Instead,
we exploit observable feature vectors and their distribution, a setting motivated by real-world appli-
cations where feature information are available but the reward distribution is unknown.
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3 PROBLEM STATEMENT

We consider n non-negative random variables (or rewards) X1, ..., X,,, where each X; is indepen-
dently drawn from an unknown distribution D;. In particular, we assume that

X, =10, ic]n],

where z; € R is a feature vector drawn independently from a known distribution D, ;, and 6 € R¢
is an unknown latent parameter. Since 6 is unknown, the induced distributions D; of the X; are also
unknown to the gambler.

At each stage 4, the gambler does not observe X; directly. Instead, it observes a noisy measurement
Yi = Xi + i,

where the noise 7; is i.i.d drawn from a o-sub-Gaussian distribution for o > 0. The noisy observa-
tions y1, Yo, . . . are revealed sequentially.

After observing y; and x; at stage ¢, the gambler must make an irrevocable decision on whether to
accept index ¢ (and stop) or continue to the next stage. We denote by 7 € [n + 1] the stopping
time at which the gambler accepts an index, with 7 = n + 1 meaning that the gambler rejects all
variables. For completeness, we allow X, ;; to be any non-negative value, so that our analysis
applies uniformly in this case.

The gambler’s expected payoff is E[X;]. As a benchmark, we consider the prophet—an omniscient

decision maker who knows all values X1, ..., X,, in advance—which achieves [E [maxie[n] XZ-] .
The goal of the gambler is to maximize the asymptotic competitive ratio against the prophet, defined:
E[ X,
lim X .

n—00 E[maxie[n] Xi]

Notation. For a square matrix M, Ay (M) denotes its minimum eigenvalue.

We consider regularization conditions as follows.

Assumption 3.1. There exists S > 0 such that ||]|3 < S.

Assumption 3.2 (Matrix mgf bound). There exists L > 0 such that, for all i € [n] and x ~ Dy,
E[e*%zﬂ} < I;— (1 - %) 1 E[zz ).

Remark 3.3. Our regularization assumptions are standard and in fact encompass those commonly
used in the online linear learning literature (Abbasi-Yadkori et al.| [2011} |Ruan et al.| 2021} |Liu
et all [2025)). In particular, Assumption[3.2) holds in the following two common cases. (a) Bounded
case: If ||z||3 < L almost surely (a standard assumption in online linear learning), the assumption
is satisfied from the convexity of the exponential. (b) Fourth moment bound: If E||z|3] < L’ from

some L' > 0, then a Taylor expansion shows that the assumption holds with L > W@LE[MT])

We emphasize that in our setting L may depend on n and can diverge as n — oo, this point will be
revisited later. Clearly, case (a) is a special case of (b). Further details are provided in Appendix[A]

4 THE I.I.D. SETTING

Here, we focus on the case where all reward distributions are identical, i.e., D; = D forevery i € [n].
This holds, for instance, when the feature distributions are identical across stages, i.e., Dy ; = D,
for i € [n]. Under this setting, we propose algorithms and analyze their competitive ratios.

4.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

We first propose an algorithm (Algorithm [I)) based on Explore-then-Decide with lower confidence
bound (LCB) thresholding. To address the unknown distribution D, the algorithm begins with an
exploration phase of length [,,, provided as an input. Afterward, during the decision phase, it com-
putes an LCB for the reward and applies an LCB-based thresholding rule to decide at each stage
whether to stop or continue. The details of this procedure are described below.
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Algorithm 1 Explore-Then-Decide with LCB Thresholding (ETD-LCBT)

Input: Exploration length [,,; regularization parameter 3
Output: Stopping time 7
fori=1,...,ndo
if : <1, then
Observe (y;, x;)
if i = [,, then
L Vi« 25;1 wtth + B1g; 0 V! Zi;1 YTt
Compute « from @) (or () for non-i.i.d.)

else
Observe (y;, ;)
Compute X “F from
if XCF > o then

| Stop and set 7 < i

4.1.1 STRATEGY

Exploration. With setting [,, = o(n), during the first /,, stages, we collect pairs of noisy rewards
y: and features x; at each stage ¢t. Using these observations, we estimate the unknown parameter

as = VI gy, where V = Y 2] + BI, for a constant 8 > 0.

After this exploration phase, the algorithm enters the decision phase, where it determines at each
stage whether to stop or continue. The details regarding LCB Thresholding are given below.

Lower Confidence Bound (LCB). We define the lower confidence bound for X; as
XFOB = 20— ¢(ay), (1)

where £(;) = \/x:V*lxi(a\/dlog(n + nZi":l llzs||3/dB) + /SB).

Decision with LCB Threshold. Using the CDF of P..p, (ZXC8 < |, V) where ZLCB =
276 — £(z), we set threshold « s.t. X

P.p, (ZXCB < alf,V)=1— - )

The algorithm stops at stage i > I,, if X “B > q, in which case we set 7 = i. By definition, if no
stopping occurs throughout the horizon, we set 7 = n + 1.

4.1.2 THEORETICAL ANALYSIS

Now we provide theoretical analyses. In this setting, a fundamental difficulty emerges due to noisy
observations. In fact, it is possible to construct instances where the observation noise drives the
competitive ratio to a trivial limit, as formalized below (see Appendix for the proof).

Proposition 4.1. There exists a bounded i.i.d. distribution for (X;)_, together with an observa-
tion noise model such that, for any (possibly randomized) algorithm T based on the observations,

11mn*>00 E[max,ie[n] Xl] -

The trivial outcome in Proposition 4. T|explains why [Assaf et al.| (I998) studied a Bayesian version of
the prophet inequality rather than the classical one (IE[max;¢[,) X;]) under the noisy observation. As
Proposition .1 shows, even with full knowledge of the reward distribution, no algorithm can avoid
this collapse to a trivial competitive ratio. To overcome this fundamental challenge—both in target-
ing the classical prophet under noisy observation and in the presence of an unknown latent parameter
in the reward distribution—we later impose a mild non-degeneracy condition on reward scaling.

For notational convenience, let A = Apin (Ex~p, [z2 ']) , the minimum eigenvalue of the covariance
matrix of the feature distribution. Without loss of generality, we restrict attention to the case A > 0,
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ensuring non-degeneracy of the feature covariance. Under this notation, we can now state our main
guarantee on the competitive ratio (see Appendix for the proof).

Theorem 4.2. Algorithmwith I, = o(n), 1, = w(%), and a constant 5 > 0, achieves an
asymptotic competitive ratio of
E[X,] 1 1 \/ Ld(o%d + S) log(Ln)

lm ——>1—---0 |l
rimo0 E[max;cp,,) Xi| — e T E[max;epn X Aly,

This result highlights the critical role of the optimal value OPT = E[max;¢,) X;] in determining
the competitive ratio under noisy learning. As shown in Proposition .1} without further structural
assumptions, the competitive ratio can collapse to zero. To circumvent this issue, we impose a
non-degeneracy condition on reward scaling, specifically on the growth of OPT, which ensures
learnability under noise and allows us to recover the sharp bound established in Theorem §.2]

Corollary 4.3. We set I,, = w f(n)log(Ln) for some function f(n) (e.g., f(n) =
O(log? n) for p > 0, or ©(n?) for 0 < q < 1) satisfying l,, = o(n). If OPT = w(1/+/f(n)), then

Algorithm|l|achieves an asymptotic competitive ratio of
E[X;] 1

lim ———>1— —.
nl—{%o E[maxie[n] Xz] B e

The growth condition of OPT = w(1/4/f(n)) in Corollary 4.3[is mild in practice. For example,

by using f(n) = n?/3 for setting I,,, the requirement is satisfied in most applications since O PT
typically remains bounded away from zero. In particular, it suffices that OPT > C for some
constant C' > 0 and all sufficiently large n.

Our competitive ratio of 1 — 1/e matches that of Hill & Kertz (1982) in the known i.i.d. setting
and that of (Correa et al.| (2019) in the unknown i.i.d. setting but with ©(n) additional offline reward
samples. Without such samples, only a 1/e ratio can be guaranteed (Correa et al., 2019), which is
strictly weaker than our result. Moreover, because rewards in our setting are observed only through
noisy realizations, these prior guarantees no longer apply.

Remark 4.4. Importantly, while|Correa et al.|(2019) show that 1/e is optimal for unknown distri-
butions without sufficiently many offline reward samples of Q(n), we demonstrate that by exploiting
feature information under structural assumptions, the sharp bound of 1—1/e can in fact be achieved.
Moreover, our analysis accommodates distributions whose support grows with the horizon n (e.g.,
L = \/n when setting f(n) = logn in Corollary , so that both the support and the variance of
D may diverge as n — oo. This highlights that our framework is not restricted to the fixed distri-
butional domains considered in|Goldenshluger & Zeevi|(12022)), but instead applies more broadly to
settings where distributions may evolve with the horizon.

4.2 e-GREEDY WITH LCB THRESHOLDING

While the Explore-then-Decide method achieves a sharp competitive ratio, its deterministic separa-
tion between exploration and decision phases—and the fact that exploration is confined to the early
stages—limits its practicality in applications where exploration spread across time is preferable,
such as online advertising or sequential recommendation systems. To address this, we propose an
e-Greedy approach (Algorithm [2) that selects decision stages uniformly at random over the time
horizon. The details of the strategy are described as follows.

Randomized Exploration. At each stage ¢ € [n], we draw a Bernoulli random variable b; ~
Bernoulli(e), where € = \/1,,/n with setting [,, = o(n).

e If b; = 1, we perform exploration by observing the noisy reward y; and feature x;, and
update, 0; = Vi_1 ZteL- Y2y, Where V; = ZteL- xx] + BI4 for a constant 3 > 0.

e If b; = 0, we enter the decision phase and determine whether to stop based on an dynamic
threshold.
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Algorithm 2 e-Greedy with LCB Thresholding (e-Greedy—-LCBT)
Input: Bernoulli parameter ¢; regularization parameter 3
Output: Stopping time 7
fori=1,...,ndo
Sample b; ~ Bernoulli(g)
if b; = 1 then

I, + 1, 1 U {Z}

Observe (z;, y;)
| Vi Ztezi zw) + Bla; 0; + Vi_l ZteL YTt
else
Ti<Zi1,0i < 0i1, Vi < Vi
Observe (z;, ;)
Compute X*“B from (@) and «; using @)
if X8 > «; then

| Stop with 7 < i

Unlike the Explore-then-Decide method, here the exploration rounds are distributed over the entire

horizon. Consequently, 6; and V; are updated continuously, which in turn affects both the LCB and
the threshold dynamically, described below.

Lower Confidence Bound. We redefine the LCB for X; = x 0 as
X =l - &i(w), 3)

where &;(z;) 1= 4/ z Vi (a\/dlog(n + 1Y ez, l2sll5/dB) +/SB).

Dynamic Threshold. Using a CDF of P, p, (ZLCB < a | 0;,V;) where ZLOB = 270, — £,(=),
for each ¢ € [n], we set the dynamic threshold «; such that
- 1
oo, (ZFF < ai | 0;,Vi) =1~ —. )
n

The algorithm stops at stage i if X“® > «;, in which case we set 7 = i. Unlike Explore-then-
Decide, this procedure employs a dynamic threshold. By definition, if no stopping occurs over the
entire horizon, we set 7 = n + 1. Recall A = Ain (Ez~p, [27]). Then, the algorithm satisfies the
following theorem (see Appendix [A.4]for the proof).

Theorem 4.5. Algorithm @ with e = \/l,/n, l, = o(n), I, = Q(%), and a constant
B > 0, achieves an asymptotic competitive ratio of

) E[X] 1 ) 1 Ld(o2%d + S)log(Ln)
lim ———>1— - — 1 .
rimsoo E[max;epm Xi] — e O( lfffip E[max;en) X \/ A, )

Furthermore, by setting l,, = wf(n) log(Ln) for some function f(n) (e.g., f(n) =

O(log? n) for p > 0, or O(n?) for 0 < q < 1) satisfying l,, = o(n), if OPT = w(1/+/f(n)),
then Algorithm |2 achieves the asymptotic ratio
E[X.] 1

Iim ——— > 1——.
no Elmaxiep) Xs] e

Notably, the e-Greedy approach achieves the same competitive ratio as established for the Explore-
then-Decide method in Corollary while ensuring uniformly random decision stages.

5 NON-IDENTICAL DISTRIBUTIONS

In this section, we consider the setting where the distributions D; are not identical across ¢ € [n]. In
what follows, we propose algorithms and analyze their competitive ratios.
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5.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

We build on the Explore-then-Decide framework in Algorithm |1} adapting the thresholding pol-
icy accordingly. In the initial exploration phase of length [,,, we collect data and estimate § =

V‘lzi’;l yswt, where V' = Zi’;l z¢x; + BI for a constant 3 > 0. In the subsequent decision
phase, we apply LCB-based thresholding for non-identical distributions, as described below.

Decision with LCB Threshold. For each time i > 1,,, for z, ~ D, forall s € [l,, + 1,n], we
define the threshold:

2 |s€[lnt1,n]
Recall the lower confidence bound for X; in the Explore-then-Deicide framework: X €5 = 2T —

&(x;), where &(z;) = \/xiTV—lxi(a\/dlog(n—i— n S xsl12/dB) + V/SB). The algorithm

stops at stage i if X*“F > a.

o= 1IE [ max z;ré | HA} 5)

For notational convenience, let A’ = min;¢p,) Amin (EINDM [xxTD Then, the algorithm satisfies
with the following theorem (see Appendix for the proof).

Theorem 5.1. Consider Algorithm with 1, = o(n), l,, = w( L I;’,gd), and a constant 3 > 0, where
the threshold value is chosen according to (3). Then the algorithm achieves the following asymptotic
competitive ratio:

E/X 1 1 2 log(L
lim K] > — — O | limsup (0°d + ) log(Ln)
n—00 E[maxie[ln+1,n] X — 2 n—o0o E[maxie[ln-&-l,n] X Ny,
Furthermore, by setting l,, = w]‘(n) log(Ln) for some function f(n) (e.g, f(n) =

O(log? n) for p > 0, or O(n?) for 0 < q < 1) satisfying l,, = o(n), if OPT = w(1/+/f(n)),
then Algorithm[I)with threshold (B) achieves the following asymptotic competitive ratio:

. E[X,] 1

lim > -,

n—oo E[maxie(, 11,0 Xi] — 2

In the theorem, we target the relaxed prophet of E[maxie[lnﬂyn] X;] due to the inherent difficulty
of the non-i.i.d. setting against the original prophet, as shown in Proposition [5.2] (see Appendix[A.3|
for the proof).

Proposition 5.2. There exist non-identical distributions {D,, ; }_, for the feature vectors x;’s, and
a parameter vector 0, such that when observing noise-free rewards X; = ] 0 for i € [n), the
following holds: for any stopping rule T, E[X;]/E [maxiew Xi] < %. Furthermore, there exists
{Dy,i}_, and 0 such that, for any stopping rule 7, lim,,_, E[X;]/E [maxie{dﬂ’wn} Xi] < %
Propositionshows that, even in the noise-free case (¢ = 0), the initial stages must be sacrificed to
learn . For the prophet of max;¢(,) E[X;], the competitive ratio approaches zero with large enough
d (e.g. d = log(n)). For the relaxed prophet of max;c(q41,,)[X;], the upper bound becomes non-
trivially 1/2. The noise enhances this effect. In our setting with noise, the first I,, observations are
necessarily reserved for learning and are thus excluded from the stopping decision. This motivates
our focus on a relaxed prophet benchmark based on E[max;c;, +1,,) X;], which allows for non-
trivial guarantees.

Furthermore, based on Proposition {.1] noisy observations also lead to trivial outcomes in the case
of non-identical distributions without any structural assumptions. To address this, we impose a mild
non-degeneracy condition on reward scaling—specifically on the growth of O PT—which allows us
to recover the sharp bound stated in Theorem [5.1]

The optimal competitive ratio for non-identical distributions is known to be 1/2 (Samuel-Cahn,
1984). In our setting with unknown distributions, Theorem E] shows that attaining this ratio re-
quires relaxing the prophet benchmark by excluding the initial exploration phase. Equivalently, if ,,
offline reward samples with features were available, the original optimal prophet benchmark could
be targeted while still achieving the 1/2 ratio. In the next subsection, we present another practical
condition under which the optimal prophet benchmark can be attained in our learning setting without
relying on additional offline reward samples.
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5.2 EXPLORE-THEN-DECIDE WITH WINDOW ACCESS

In the standard non-identical distribution setting, items are revealed sequentially, and the gambler
must decide immediately whether to accept or reject the current observation. As discussed in|Mar-
shall et al.[(2020); Benomar et al|(2024), this assumption, however, can be overly pessimistic: in
many practical scenarios, early opportunities are not irrevocably lost but may remain available for a
short period of time. For instance, in a hiring process, one may be able to interview several candi-
dates sequentially before making a final choice among them.

Window Access. Motivated by this observation, we consider a mild relaxation of the standard
setting by using window access for the previous time steps, same as Marshall et al.| (2020). More
specifically, for a window size of w,, at time 7, the decision-maker is allowed to choose among the
first w,, values {X;_y, +1,...,X;} before deciding whether to continue. Interestingly, for w,, <
n — 1, the optimal competitive ratio in the non-i.i.d. distributions is the same with the standard
setting (i.e. window size 1) as shown in the following (see Appendix [A.7|for the proof).

Proposition 5.3. In the non-i.i.d. setting with window access of size w, < n—1, for any algorithm,
there always exist non-identical distributions such that the competitive ratio is bounded above by
E[X.]/E[max;c(, Xi] < 3.

These observations raise the following question: Can the optimal competitive ratio under window
access also be achieved in the setting of unknown non-identical distributions and noisy reward ob-
servations? If so, what window size w,, is required, and how frequently is window access required?

To handle this setting, we propose an algorithm (Algorithm [3] in Appendix [A.8) adopting the
Explore-then-Decide method. After the exploration phase, at time [,, + 1 the decision-maker, with
window size w,, = l,, + 1, may select from the values {X1, ..., X;, 11} before deciding whether
to continue. From this perspective, the early observations collected during exploration are no longer
wasted but can be revisited together with the (I, + 1)-st observation, thereby mitigating the inef-
ficiency of pure exploration. Notably, our algorithm requires only a single window access at time
l, + 1, with window size [,, + 1. Due to space constraints, we defer the detailed description of the
algorithm to Appendix [A.8] In what follows, we provide a theorem for the competitive ratio of the
method with window access (see Appendix [A.9]for the proof).

Theorem 5.4. In the non-i.i.d. setting with unknown distributions and window access of size w, >
ln, Algorithm 3| with ln = o(n), l, = w(“f,gd), and a constant A > 0 achieves the following
asymptotic competitive ratio:

E|X 1 1 L(c? log(L
i~ Lo [ gy (0%d 1 5) log(Ln)
28 Bmaiey Xi] © 2 | nre Blmaxigun X X,
Furthermore, by setting 1,, = wf(n) log(Ln) for some function f(n) (e.g., f(n) =

O(log? n) for p > 0, or O(n?) for 0 < q < 1) satisfying l,, = o(n), if OPT = w(1/+/f(n)),
then Algorithm[3|achieves the following asymptotic competitive ratio:

. E[X,] 1

lim —————— > —.
00 E[max;epm Xi] — 2

Notably, Algorithm [3|achieves the optimal competitive ratio, matching the upper bound established
in Proposition[5.3]

6 EXPERIMENTS

In this section, we evaluate our algorithms on synthetic datasets. Gaussian noise with variance o2

is added to the rewards, and each experiment is repeated 10 times. We consider dimension d = 2
for the feature and latent parameter. For our algorithms, we set I, = n?/3 and 3 = 1. Since no
existing algorithm directly applies to our setting with noisy rewards and without additional reward
samples under unknown distributions, we adopt the rule of Gusein-Zade (Gusein-Zade, [1966)
as a benchmark. This rule observes the first n/e stages and then stops at the first record exceeding
the maximum among these initial n/e values. Although it does not handle noisy rewards, it has
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Figure 1: Competitive ratio under i.i.d. distribution setting with noise variance o.
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Figure 2: Competitive ratios under non-identical distributions with noise variance o.

been shown to extend to the prophet inequality with unknown i.i.d. distributions without additional
reward samples. In particular, it guarantees a competitive ratio of 1/e in the worst case (Correa et al.,
2019), and can even achieve an asymptotic ratio of 1 under certain problem-specific distributions
(Goldenshluger & Zeevi, [2022)).

We first consider the i.i.d. setting with n = 100000, where 6 and each x; are drawn uniformly over
each dimension and then normalized. Figure [l| shows that our algorithms of ETD-LCBT (1id)
(Algorithm and e-Greedy-LCBT (Algorithm achieve competitive ratios exceeding 1 — 1/e,
consistent with the theoretical guarantees in Corollary .3]and Theorem {.5] and significantly out-
perform the benchmark of Gusein-Zade. Furthermore, as the noise variance increases, the per-
formance gap between our algorithms and the benchmark becomes even larger, highlighting the
robustness of our methods to noise.

Next, we consider the non-identical distribution setting with n = 30000, where 6 is drawn uniformly
over each dimension, but each z; is drawn from a distinct distribution: the range of each dimen-
sion is randomly sampled, and each coordinate is then drawn uniformly within its range. Figure
demonstrates that ETD-LCBT-WA (Algorithm [3)) achieves a competitive ratio exceeding 1/2, con-
sistent with the theoretical guarantee in Theorem|5.4] Even ETD-LCBT (non-1iid) (Algorithmﬂ]),
which is guaranteed only against the relaxed benchmark (Theorem [5.1), empirically attains a ratio
above 1/2. As expected, ETD-LCBT-WA outperforms ETD-LCBT (non-1iid) due to its access to
the window. Notably, both algorithms outperform the benchmark of Gusein-Zade. Furthermore,
as the noise variance increases, the performance gap between our algorithms and the benchmark
becomes even larger, highlighting the robustness of our methods to noise.

7 CONCLUSION

We introduced a new framework for prophet inequalities under noisy observations and unknown
reward distributions, motivated by real-world applications where noisy reward and contextual in-
formation are observable but reward distributions are not. By combining learning with LCB-based
stopping rules, we achieved the sharp competitive ratio of 1 — 1/e in the i.i.d. setting. For non-
identical distributions, we showed that the optimal bound of 1/2 can be attained under window
access. Our empirical results demonstrate the efficiency of our algorithms.

Future Directions. Several directions remain open for future work, including extensions to corre-
lated rewards and applications to richer contextual models beyond linear structure. We believe that
bridging prophet inequalities with modern online learning techniques will continue to uncover new
insights at the interface of optimal stopping, learning, and decision-making.
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REPRODUCIBILITY STATEMENT

All theoretical claims are stated with explicit assumptions and are accompanied by complete proofs
in the appendix. Algorithmic details, including pseudocode, are provided in the main paper and
supplementary materials. For the experimental results, we describe the data generation process in
the main, and we attach source code for reproducing all figures and numerical results as part of the
supplementary material.
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A APPENDIX

A.1 DISCUSSION OF ASSUMPTION[3.2]

Assumption [3.2]is satisfied in the following common situations.

(a) Bounded case. If ||z||3 < L almost surely, then 0 < faz =< I,. For any o € R and any

s € Lr ], the scalar convexity of ¢ — e yields e** < 1 + (e* — 1)s. Applying this eigenwise to
+xz' gives

S A (e* — 1)%wa.
With o = —1 and then taking expectations,
E[e*%mf} < I;,— (1 — %) % E[zz '],
which is Assumption[3.2}

(b) Finite 4th moment. If E[|| x||2T1 < L’ for some L’ > 0, then by the matrix Taylor expansion
and the fact that (z2")? = ||z||5 2z

L/
212

1
E[e 7] < Ii— 1 EleaT + sy Blaliar’] < (1+

1 T
oV = )Id—ZE[xx ].

Hence Assumption [3.2lholds whenever

(1+ L )I —lE[xa;T] =<1 —(1—l>lE[xxT]
212) ¢ L = <)L ’
which is equivalent to
i/I = 1114:[ T
2L d = e e
Letting M := E[zz ], it suffices to choose
L> L
- 2)\min(M).

A.2 PROOF OF PROPOSITION[4.]]

To show this proposition, we follow the example in |Assaf et al.| (1998). Let X, ..., X, be i.i.d.
Bernoulli with success probability p,, = ¢/n for some fixed ¢ € (0,00). Let the observations be
obtained through a symmetric flip-noise channel:

7 X, with probability 1/2,

! 1 — X;, with probability 1/2,
independently across ¢ and independently of (X;)! ,. Then Z; 1 X, and in fact Z; ~
Bernoulli(1/2) regardless of p,,.
Let 7 be any (possibly randomized) index valued in {1,...,n} that is measurable with respect to
(Zy,...,Zy,). Write P,(Z) := Pr(r = i|Z) where Z = (Zy,...,Z,). By independence and
E[X; | 2] = [X‘] = Dns

X1 2] = ZXP Zl:ZE[XiIZ]E[PAZ)\Z]=anE[Pi(Z)|Z]=pn:§,

hence E[X,] =¢ / n for every algorithm 7.

On the other hand, the oracle that sees the true X’s obtains the maximum max; X;, which equals 1
iff at least one success occurs. Therefore
E[max Xl} 1 (1—p)"=1— (1—5) 1 > 0.
1<i<n
Combining the two displays,
E[X;] c/n 0
Elmax; X;]  1—(1—c¢/n)" n—oo’
Since T was arbitrary, the conclusion holds for any algorithm.

12
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A.3 PROOF OF THEOREM [4.2]

We first provide a lemma for estimation error.
Lemma A.1 (Theorem 2 in|Abbasi-Yadkori et al.| (2011)). For 6 > 0, we have

5 1+ S0 )13/
PLIO—0lv <vVSB+o dlog( +Zl=15”:” 2/ ﬁ) >1-4.

Proof. This lemma follows from Theorem 2 in |Abbasi-Yadkori et al.|(2011), using the inequality
det(V) < (Te(V)/d)* = (B4 0, [|z4]|2/d)?, where Tr(V) denotes the trace of V. O

The above lemma implies that

ln
P ’xT(é - 9)‘ <VaTVz o] dlogn+nY " [l2ill3/d8) + /5B | Vo € RY | =1~ 1/n.
=1

(6)

We define an event & = {|z7(6 — 0)] < \/xTV—lx(a\/dlog(n+nZi*;l llz:|13/dB) +
V/5B), ¥z € R?}, which holds with P(&;) > 1 — 1.

We define g; := / ||a:z-||§HV—1||2(a\/dlog(n +n Y |lasl2/dB) + v/SB). Recall

In
E(wi) = \fa] Vlilor | dlog(n +n Y llsl3/d5) + V/5B).
s=1

Then we have £(x;) < g;. Under &, for any i > [,, we have
X;—2g; <a]0—g < X}[P <X, (7

We define a* s.t. Px.p(X < a*) =1-—
bounds for the threshold value.

%. Then we have the following lemma regarding the

Lemma A.2. Under &1, for any given 6 and V, fori > 1, we have
a* —2g; <a<a.
Proof. For z ~ 729;, we define Z = 20 and Z = 2T 4. Then, under &, for any given V; and é, we
have Z — 2g; < Z — g; < Z with {(y) < g;.
Since Z —g; < ZandP(Z —g; > a | 0,V) =P(Z > a* | ,V) = 1/n, we can easily obtain
a<a’.

Likewise, for o/ s.t. P(Z —2¢g; > o/ | 0,V) = L from Z — 2¢g; < Z—giand P(Z — 2g; > o |
0,V)=P(Z—g; > a|6,V)=1/n, wehave o’ < a. Therefore, with o/ + 2g; = a*, we have

a” 7291 S a,

which concludes the proof. O

Lemma A3. For | > 1, let 21,...,z %" D, satisfying Assumption Recall \ —
Amin(Eznp, [227]) > 0. Then

l
1 A A
P azl =51 >1- S
(ls_lzszs _2d>_ dexP( 8L>

13
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Proof. Let pimin = )\min(E[Zl 1 252)]). By the matrix Chernoff bound (Theorem 5.1.1 in |Tropp

S

et al|(2015)) for sums of independent PSD matrices with Assumption[A.1] for any § € [0,1],

l T e’ pmin/ 6% fimin
Pr [ Amin Zzszs < (1 - 6>Nmin <d ((15)15> < deXp<—2~ 7 ) .
s=1

Choosing § = 1 yields

l
T /’Lmil’l ,U/min l)\
Amin (;zszs ) < > 1 < dexp(— S ) < dexp <_8L> ,
where the last inequality is obtained from Weyl’s eigenvalue inequalities. Equivalently, with proba-
bility at least 1 — dexp(—Al/(8L)),

Pr

2

1
min IA

S gzl Hming, 5 la,

s=1
which completes the proof. O
Let & = {Zi’;lxsm;r = ’\ZT”Id}, which holds with probability at least 1 — EMW% from
Lemma Then under &, we have [V~ [» < (X0, z2]) 7 |2 < 251 Then for i > I, we
have

ln
&) < \fllzslBIVa(oy | dlogn+n ) |l|3/dB) + Sv/B)(= g:)
s=1

D) ln
< ([lwil35— (o | dlog(n+ 1Y llos[13/d8) + Sv/B).
n s=1

Here we define h; := ,/||xi||§%(a\/dlog(n + nzls’;l llzsl|3/dB) + Sv/B) and € := & U &s.
For analyzing X, we first examine the probability that the stopping time 7 equals i given £. We
denote H;, = {0, {Zs}sen}-

Lemma A.4. Fori > [, we have

i—ln,—1
1 o1
P(r=i|Hy,)= (1_> =
n n

Proof. Fori > [,, we have

P(r=1i|H,)

=P(XFE <o, . . XFPP <a, X[OP > a | H,,)

=P(XF9E <a,. . XEGP <a | H, )P(XFOE > a | Hy,)

= B(XEE <o XEGE <o)
where the first equality is obtained from the fact that, given 6 and {zs}sep) X LCB 5 independent
to X lﬁﬁ’f, ..., XEGE. Similarly, for the last term above, we have

1

]P’(Xan(i]f < Q... 7XiLfclB <a | Hln)ﬁ
1
=P(X[Y <o XEGP <a | M, )P(XESP <o Hi,) o

1\ 1
=P(X}/ <a,... . X[SP <a|H,) (1 - n) o

14
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which concludes the proof. O

Lemma A.5. Assumption implies E||z||3] < dL%l/e'

Proof. From Assumption , we have (1 - %) %]E[acmT] < Iy - ]E[e’%mq . This implies

that Tr ((1 - %) +E[zz"]) =< d, where Tr(:) denotes the trace. Then from Tr(E[zz"]) =

E[Tr(zx )] = E[||z||3], we can conclude the proof. O

From the exploration phase in the algorithm, we have P(7 = i | £) = Oforall 1 < i < [,,.
Therefore, given £ we have

EE[X,1(E) | Ha,]]

=E ZP(T =1i] {ﬁs}se[ln])E[Xil(E) | 7= i,’Hln]‘|
=1

=E _ Z P(r =i | {xs}sepn, ) E[XGL(E) | 7= i,'Hln]‘|

ZE| > P(r =i {2}sen, ) EBXCPLE) | 7= i,Hln]]

n i—lp—1
>E| ) (11) 1E[XfCBn<£>r—i,w].
) 1

n n

®)

E Z_% (1 - 1)i_ln_1 %E[X%CBﬂ(g) EE L’Hln]]

=" iﬂ <1 - i)ilnl — x (E[al(€) | 7 =i, H1,] + E[(X[P —a)1(&) | X[OF > a,Hln])]
—E| 3 (1-3) T R e ) B o 1) | X 20

o 5 (2) e e s Bt

>E :i:lztjﬂ <1 - i)i_ln_l % x (E [0 1(E) — 2g;1(€) | Hy,] + nE [(Xi g — ") 1(8) | 'HlD ] |

(©))

where the second inequality is obtained from independency between 7 = ¢ for ¢ > [,, and £ given
¢ and {4} se[1,,), and the last inequality is obtained from Lemrna and (7). Note that, fori > [,
and a constant C’ > 0, we have

2 n
Elh] < y/Ellail3] - (04| dlog(n+n ) E[l|zx||3]/d5) + \/SB)
2 ., g kZ:l kll2
<y /dL%(U\/dlog(n +n2L/B) + \/SB), (10)
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in which the first inequality holds from the independency between z; for ¢ > [,, and z, for k < [,,,
and the second inequality is from Lemma[A.3] Let l,, = o(n) and Z, ~ D for s € [n]. Then, for the
last term in (9), we have

Y

Y

I V

I \%

I V

I V

5 (-

i=ln+

x E |E[a"1(€) | H1,] — 2E[h1(E) | Hy, ]+ E[ D (Zs — 2h; — o) T 1(E) | Hy,]

SN

i=ln+1

)I L (Bl - 21(E) | o]+ [~ 25— )T 1(6) |HI"III

n

ln—1
) L xE[EatE) [ 1,) - 2ERAE) | ) + (2~ 2h - a*) 1(E) | %0,

>i—l"—1 1

3|

n

s€n]

i—l,—1 1
n

x E [E[a*]l(f)) | H;, ] — 2E[R;1(E) | Hy,] + EIE%?;I(ZS —2h; —a*) T 1(E) | Hln]]

( 1
n
i=lp+1
( 1
1 —_
n
i=lp+1
( 1
1 —_
n
i=lp+1

SI*—‘

(1
i=l,+1

10—

1/n

i—lp—1 1
n s€[n]

i—lp—1 1

R
e
RN
e

[0*1(E)] — 2E[h;1(E)] + E Imax (Zy — 2h; — o) I(f:)D
[0*1(E)] — 2E[h;1(E)] + E Imax zs] P(E) — E[(2h; + a*)]l(S)])

s€[n]

3 I

[max XS] P(E) — 4E[hi]>

s€[n]

E Imax XSI P(£) — O ( %ﬁf”m(mﬁ + \@)) )

3 I

i—lyp—1

3II—‘

s€[n]

1 1 d dLlog(nL)

Y

where the first inequality is obtained from g; < h; and second last inequality is obtained from (T0).
Finally, from (8), (9), and (TI), we have

L EX]_ E[EX (]
n—oo B[max;cpy Xi]  n—oo E[max;ep,) X
o EELX1E) [#,]

>

n—oo  E[max;cp,) X

1—(1—

lim

(20

)nfln

1 1 1 d 1 log(Ln)
im ————n/ (1=~ ) L
n—oo 1/n n < n eAln,/8L> © E[max;epn) X d Al (oVd+S)

lim su 1 Ld(o%d + S)log(Ln)
el Elmaxe ) Xi] N, :

12)
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where the last inequality is obtained from limits limy, o0 (1 —1/n)" = 1/e and limy,o0(1 —
1/n)t» =1 (since I,, = o(n)) and [, = w(%)_

A.4 PROOF OF THEOREM [4.3]

Lemma A.6 (Theorem 2 in|Abbasi-Yadkori et al.| (2011)). We have

1+ ZSEL‘
1)

>1-46

A~ s 2 d
P | Vi€ [n],|10; = 0llv, <V/SB+o dlog( zsllz/ 5)

The above lemma implies that

P ’xT(éi—H)‘S\/xTv;_lm o dlog(n—l—nZHxs%/dB)—i—\/Sﬁ NreRULVien]| >1—1/n.

seT;
(13)
We define an event & = {|zT(6; — 0)| < y/xﬁ/;*lx(a\/dlog(n—knzsezl zs||3/dB) +

V5B),Yz € R% Vi € [a, + 1,n]}. From (13), we have P(€1) > 1 — 1. Let a,, = [v/nl,,]. Then
we define g; := \/||z:]|3]|Va,! \2(0\/d10g(n +nY ez, lzill3/dB) + /SB) so that, for i > an,
&i(x) < g; (recall &;(x;) = ,/xiTViflxi(g\/dlog(n +nY e, zs||3/dB) + /SB)). We denote

H; = {ézv {xs}SGIi}'
Lemma A.7. Under &1, for any i > a,,, and any given ‘H,;, we have

a" —2g; <oy <ot

Proof. For z ~ D, we define Z = 2 6 and ZAl = zTéi. Then, under &, for any given V; and QAZ we
have Z — 2g; < Z; — g; < Z with &;(2) < g;.

Let o* be the oracle threshold satisfying P(Z > o”[H;)(=P(Z > a”)) = 1/n. From Zi—gi<Z
andP(Z; — g; > o | Hy) =P(Z > o* | H;)(= 1/n), we can easily obtain
a; < at.
Likewise, for o’ s.t. P(Z — 2¢g; > o' | H;) = %, from Z — 2¢; < Z; — ¢; and P(Z —2g; > o |
H)) =P(Z; — g; > o; | H;), we have o’ < «;. Therefore, with o’ + 2g; = a*, we have
o —2g; < ay,
which concludes the proof. O

Lemma A.8 (Multiplicative Chernoff Bound). Let Z1, ... Z; be Bernoulli random variables with
mean (1. Then for 0 < § < 1 we have

'

l
> Zo—lp
s=1

> 5lu> < 2exp(—0%1u/3)

From the above lemma, we define £5 = {’\L\ — i\/ln/n‘ < %i\/ln/n,i € {an,n}},which holds

with probability at least 1 — 2 exp(_l—l;) -2 exp(;vlgl").

From Lemma for any [ > 1, suppose z1, ...,z ~ D, are i.i.d drawn from a distribution D,
satisfying Assumption Recall A = A\pin (E.wp, [227]) > 0. We have that

l
1 A A
P azl =51 >1- S
(ls_lzszs _2d>_ dexP( 8L>
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Then, we define &5 = {Zseza” Tl = @)\Id}, which holds, under &, with prob-
ability at least 1 — %ML This implies P(&; N &) = P& | &E)P(E) >
(1 — m) (1 — 2€Xp< ) — 2€Xp( nl”)).

Then under & N &, we have ||Va*nl||2 < I
i > a,, we have

zszl )72 € 2574 < 45+ Then for

s€la,

s€T;

<\ fleilB5- (o \/dlognJrnZIstIIQ/dB )+ V/5B) (14)

§i(w:) < IIIiIEIIVallllz(U\/dlog(n +n Y |lzsl3/dB) + V/SB)(= g:)

s€Z,

Here we define h; := \/||mi||%ﬁ(a\/dlog(n +nd 12/dB)++/SB) and £ := £ UELUEs.

We define the set of decision stages until ¢ as 7; := [i]\Z; so that J; UZ; = [i]and J1 C Ja,...,C
Jn. Then, we analyze the stopping probability at ¢ in the following lemma.

Lemma A.9. Fori € [J,, with any given J; = {j1, jo, - - -, j|7,| }» we have

‘ 1\l
P(T:z|$):<1—n> .

n

Proof. For notation simplicity, we define ji(k) = {j1,...,Jk} C J; for k € [|F;|]. Then, for
i € J,, we have
P(r=i|J)
=E[P(r =i|Hi, Ti) | Ti]
EP({X; " < avte JIVIT}L XEP > a | H;, 74) | T
E [ {XECB <avte gV | 1, TOPXECE > o | 1, T) | Ji]

—E [M{Xﬁw <avte 70y (1, 7 | 7]
n
:P({XtLCB < aVt e $(|Jl|—1)} ‘ ‘Z)l
n

=EP({XF <avte VY (1w, L, T0) | T

S|

J\J\l_

(-3

1

n
—EI|P XLCB < aVt j(‘jz|*2) H. P LC’B H Ti Ti
({ t S € [ }| ]\Jl 19 )X ( al J\ji|—1’ Z)‘ 7

—E [PUXFOP <avte 707172} | w4y

]\JI 17
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From the decision strategy of the algorithm, we have P(7 =i | J,,) = 0 for all i € Z,,. Therefore,
for analyzing X, we have

E[X-1(E)]

—E| > P(r=i| HEXAE) | 7 = MJ]
Li=1

—E| Y P(r=i| JEXAE) | 7= i,m]]
Li€Tn

>E| Y Pr=i| HEXALE) | T=1iT]
_’iEJn,\[a7z]

>E| Y Pr=i| HE[EXFOPLE) | r=iHi Ti] | T =i, 7]
_iEJn,\[an]

I SR () R e )
- n 7 T_’Lv 19 J1 T_Za 7

_iEJn,\[an] "

|Ti|—1
>E| ) (1—1> %E[E[XfCBﬂ(S)|T:z‘,Hi,m]|T:¢,$—]. (15)

n
_16\7n,\[an,]

For the last term above, for i € J,,\[a,], we have

EX/PLE) | T =i, Hi, Ti]
=E[a1(€) | =i, Hi, i) + E [(X[F —a)1(E) | X[P > oy, Hi, T
E[(X} P —a)T1(E) | Hi
P(XFOB > o | M)
> E[a*1(€) — 2¢:1(€) | Hi] + nE [(Xi ~2g; — )T 1(E) | 7—[1} (16)

=E[a;1(E) | Hi] +

where the last term is obtained from Lemma & (x;) < gi, and the definition of «;.

In what follows, we consider the case of E[max;¢[,) X;] — O <\/dL(o'2d + S)log)\(li")) > 0, be-

cause otherwise, it is trivially holds:

Vil n—3vali—1
E[X, | €, . > ((1 - i) - (1 - 1) ) E[max X;] — O \/Ld(a2d+ g)los(Ln)

Let Zy, ~ D for k € [n]. Note that, for i > a,, and a constant C’ > 0, we have
Elg:1(E) | Hi] < E[h; | Hi

4
<\ [Ell=il3l5- 0\/d10g(n+n2|lws%/d5)+\/@

SET;
<y /dL% U\/dlog(n +n Y |lasl3/dB) +\/SB
n SEZ;
— 1, a7

in which the first inequality holds from the independency between z; for ¢ > a, and
zy, for k < a,, and the second inequality is from Lemma [A3] We define H, =
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C'\/dLﬁ” (a\/dlog(n + 1Y e lzsl3/dB) + \/Sﬁ). Then, for the last term above in (I3)
with (T6), we have

VRS
=
|
3=
~
Q
T
L
3=
N

E[a*1(€) - 20:1(E) | 1] +nE |(X; —2g; — ")  1(E) | Hi])

1€Tn \[an]
|Til—1

1 1 .

- ¥ (1—n E(]E £) - 2¢i1 (€)|Hi]+nE[(Z1—2gi—a)+]l(€)|Hi])
i€ Tn \[an]

1 |Til—1 1 .
> _ = - _ . 9. — o* )
= Z 1 - - E [« 2¢;1(€) | Hs) +E Lmez[%(Zk 2g; — ™) 11(5)|7-[2]>

(s
(E max Zy 1(€) | Hy) — AE[RLL(E) | Hi])

ke(n]

|Til—1
! (E[% Ze1(€) | Hi] — AE[H, () | ’Hi])

~— O~ " ~—
T
R
S|

n ke[n]

- ;)j"1> E Kkme% Z1(E) — 4Hn]1(5)> | ”H]

\Z| 1) . [(ﬁ?ﬁ Zi1(E) — 4Hn1(5)) | Hz}

ﬁl) 18 | (s 21(6) - 4,1) ) | 74

k€e[n]

Finally, from (T3), (16), and (T8), we have
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i XA
n—oo B[max;epn) Xi]
n—oo E[max;ep, X
1 1 vVnly, n——\/nln 1
> lim ——— 1—-— —1-- P& X | P(&) — E|H, i
= ntroo E[max;en) Xi] < n) ( irézﬁ k] () [Hn | HZ]])
1 1 Vnl, n——\/m 1
= lim —— 1—— —1-- P& Xi| P(E) — H
Vnly n—3vnl,—1 o2
—— ((1_1> _(1_1> )IP’(&‘) ( \/Ld d+S)log(Ln)
n—o0 n n maxle[n] X;
1 . 1 Ld(o2d + S)log(Ln)
=|1-=)|1- 1 1
( e) ( O( lrrlnjogp E[max;em) Xi \/ Ay, (9)
where the last equality is obtained from [, = Q(%W) and I, = o(n), and P(&) >

(1 — % — (1 — (1 — eﬂﬂ%) (1 —2exp(%) — 2exp(—

7))

A.5 PROOF OF PROPOSITION[3.2]

% < L. Letf = (6,...,64) € R% Consider a non-

identical distribution D,, ; that generates the following deterministic points:

We first provide a proof for

z1=(1,0,...,0), x5 =1(0,1,0,...,0), ..., xg=(0,...,0,1), a;=(0,...,0) fori e {d+1,...

For any algorithm, let 7 denote its stopping time.

Casel.Set6, > 0.If P(r =1) < 1/d,wesetfy =--- =64 =0. Then

E[maxx 9} =6, [Elzl6]<

1€[n]

01
d )
so the competitive ratio satisfies CR < 1/d.

Case 2. Otherwise if P(1 = 1) > 1/d we set 03 = 6, /e forsome 0 < e < 1. If P(7 = 2) < 1/d,
then we set 3 = 04 = --- = 64 = 0. Then

E[maxx 9} = 0o, E[z6] < %2,

i€[n]

again yielding ]E]E% <1/d.

[max;epn) ) 0] —

Case 3. Likewise, otherwise if P(7 = 2) > 1/d, we set 3 = 03 /e. If P(7 = 3) < 1/d, the we set
94:95:~~-:9d:0,Then

0
E[maxx 9} =0, Elz] 0] < =2,
i€[n] d
again yielding ﬁ% <1/d.
There must exist some ¢ € {1,...,d} such that P(7 = i) < 1/d. Therefore, in a similar way, by

choosing 6 to place the largest mass of 6, /¢ on that coordinate, we can easily show that

E[z] 6] < 1
E[max;ep, 2] 0] ~ d
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Thus, in all cases, one can construct # such that the competitive ratio satisfies W <1/d.
Now we provide a proof for E[X.]/E[max;c(411,.. .0} Xi|] < 3. We can construct D, ; for
i €[d+ 1] suchthat zy = 29 = --- = x441 = (1,0,...,0) are drawn deterministically. We also
consider § = (1,0,...,0) such that X; = Xy = --- = X441 = 1. We also consider D, 442 such
that it generates z442 = (1/¢,0,...,0) with probability € and otherwise, z412 = (0,0, ...,0) with
probability 1 — e. For i > d + 2, we consider z; = (0, .. .,0).

Then for any algorithm 7 which does know X; for i € [n] in advance, we have E[z] 0] < 1
On the other hands, the prophet who knows X in advance can stop at 7 = 1 with X = 1 if
Xd+2 = 0 with probability 1 — € or stop at d + 2 if X442 = 1/e with probability e. This implies

that % 1/(2 — €). With e = 1/n, we can conclude lim,, _, % 1/2.

A.6 PROOF OF THEOREM[3.1]

From Lemma[A.T] we can show that

In
P ’J(éfe)\g STV (o) dlog(n+nS leg3/d8) + /S5 | Vr e R | = 1-1/n.

We define an event & = {|z7 (6 — )] < \/xTV*lx(U\/dlog(n—ﬁ—nZi":l lzsl|3/dB) +
V/5B), Yz € R}, which holds with P(£;) > 1 — L. Then under €1, we have

Xi—&(wi) < a] 0 < X, + €(xy). (20)

Lemma A.10. Forl > 1, let z; ~ Dy for t € [I] be independent random vectors (not necessarily
i.i.d.) satisfying Assumption[3.2} Then

1< N
T /
Pr(l ;1Zt2t = )\Zd> > 1—dexp<—8 )

Proof. Let fimin = Amin(E [Zt 2z, |). By the matrix Chernoff bound (Theorem 5.1.1 in Tropp
et al.[(2015)) for sums of 1ndependent PSD matrices with Assumption[A.1] for any ¢ € [0, 1],

! T 6—5 /U'min/L 62 lu, )
min <(1-— min| < - < _Z | Hmin}
' ;tht o d<(1—5)”> dexP( 2 L )

Choosing § = 3 yields

!
Prl min (Z ) 'umm] < dexp(—ugzn) < dexp (—?L/),

Pr

where the last inequality is obtained from Weyl’s eigenvalue inequalities. Equivalently, with proba-
bility at least 1 — dexp(—\'1/(8L)),

min lA/
Zztzt _M 1 >-7Id,

which completes the proof.
O

Let & {Zt LT = X 21a1,}, which holds with probability at least 1 - %/SL from
Lemrna Then under &>, we have |V 71| < ||(Zt Lzl )72 < 257 Then for i > I,
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we have

ln
(i) < /llzlBIV—l2(e Jdlog(nﬂLnZIstII%/dﬁH\/@)(ZZ

2||ill3

In
Xl'ﬂ?(a\ldlog(n+n;||xs||§/d5) +/SB). o

Here we define h; = \/2%1‘3 (J\/dlog(nJr n S lwsl12/dB) + /SB). Let z; ~ D, ; and
o = 1E [max;ep, 11, 24 0]. Then for i > I,,, from 20) and 2}, we have

1 1
o — ihi <a<a*+ th (22)

Let € :=& U& and My, = {0, {%s}sepi,}- Then for i > I,,, we have

E[XLOBUE) | 7 =i, Hy, JP(T =i | Hy,)
=E[al(E) | Hy, P(r =i | Hy, ) + E(XEOPL(E) — al(&) | 7 =14, Hy, |P(r =i | Hy,)
=E[a1(€) | Hi, |P(T =i | Hi,)

+E[(X[OP =) 1(E) | X[OP > a, 1y, IP(XP > o | Hy,) [ POXOP <oy,

jEfi—1]
> Elal(€) | Hy, JP(r =i | Hi,) + E[(X[F —a), 1(E) | Hy, JP(r =n+1|Hy,)
> E[al(€) | Hi, JP(r =i | Hy,)
JrIE[( —28(xi) — ) 1(E) |’HZWJ}P’(T:n+1 | Hi,)
>1E[(a —%h) & )|Hln] P(r=i|H,,)
+ (IE (Xi —af - Zhi>+ 1(€) | HzD P(r=n+1[H,) (23)

where the last inequality is obtained from 22) and &(z;) < h;.

Note that, for ¢ > [,, and a constant C’ > 0, we have

Elh: | #1,] <\ [Ellil3l - \/dlogn+nz 2413 161/d5) + 5+/B)

s€(lyn]
< cq/dLMw\/dlog(nm > lesl3/ds) +5V/B), o)
" s€(ln]

in which the first inequality holds from the independency between z; for ¢ > [, and
zs for s < [,, and the second inequality is from Lemma We define H, :=

C’\/dLM ( \/dlog ”"‘”Zse[ln] [EAE /dﬂ)‘k\/i)
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Using the above, we have

E[X71(E) [ Ha,]

> ZE EXFOPLE) |7 =i Hy,] P(r =i | Hi,) | Ha,]

> Z E [E[X[OPLE) |7 =14, Hy,] - P(r =i | H1,) | Ha,] (29)
i=l,+1

>y EE[a —oh) ()W} (r=i|H,)
i=l,+1

+ <E <AXZ —af = Zhi>+ ]1(5) | Hln‘|> IP’(T =n+1 | Hzn) | Hln]

(Elotie) 17,1 - 3. ) S BGr=i|H,)

i=l,+1

>FE

5
+ max E l(Xi —a - 2hi) 1(€) | Hln] P(r=n+1|Hy) | ’Hlnl
+

i€[ln+1,n]

>E _(E [a*1(E) | Hy,] — ;H> (I-P(r=n+1|Hy,))

+ ( max E[X;1(E) | H;,] —Ela*1(E) | Hy,] — an) P(r=n+1|H;,) | ’Hln]

i€[ln+1,n]

1

> B |(a"P(E | Hy,) ~ 5 Ha)(1 - B(r =n+ 1] Hy,))
) )

+< max E[X;|P(E | H;,) — «"P(E |Hln)—Hn) P(r=n+1]|H,) |7—[ln}
i€[ln,+1,n] 2

)
o*P(E | Hy,) — iE[Hn | Hy,,]- (26)

Finally, using the above, we have

lim E[X] > fim EEXALE)H]]
n—»00 E[maxie[ln+17n] X;] T nooo E[maxie[ln+1,n} Xi]
1 5
> lim o*P(€) — -E[H,
- oo E[maxie[ln+l,n] X’L] ( ( ) 2 [ ])
. 1 1 d 1 Ldlog(Ln)

> 1 - (1-—-———1-0 d g
=13 ( n emn/sL) Efmaxeer, 11 Xi] N1, (cVd+VS)

! 1 Ld(o%d + S)log(Ln)
=-—-0|1l

2 lfrln—zip E[maxze[l +1,n] Xi] \/ N,

A.7 PROOF OF PROPOSITION[3.3]

The argument follows the statement used inMarshall et al.|(2020). For completeness, we provide the
details here. Consider the instance where X; = 1 deterministically, Xo = X3 =--- = X,,_1 =0
deterministically, and X, takes value 1/¢ with probability € (for any 0 < e¢ < 1) and 0 otherwise.
For any w,, < n — 1, the gambler receives an expected payoff of 1, while the prophet receives an
expected payoff of 2 — e. Thus, the ratio satisfies E[X,]/E[max;cp,) Xi] < 1/(2 —€). We can
conclude the proof with € — 0.
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Algorithm 3 Explore-Then-Decide with LCB Thresholding under Window Access

(ETD-LCBT-WA)

Input: Exploration length [,,; regularization parameter 3

Output: Stopping time 7
fori=1,...,ndo
if : <1, then

| Observe (zi,:)

elseif i = [,, + 1 then

if maxyer,+1) XF¢P > o then

else
Observe (z;, ;)
Compute X“F from (29).
if X/¢B > o then
| Stop with 7 < i

| Stop with 7 +— arg maxyeq1, 11 XF<P

Compute ) and V) for k € [l,, 4 1] from
Compute o from 28) and X5 for k < 1,, + 1 from (29).

A.8 DETAILS OF AN ALGORITHM FOR NON-IID DISTRIBUTIONS UNDER WINDOW ACCESS

Individual Estimators. After the [,, exploration stages, we define for each i € [l,, + 1]

gm:(vm)‘l S

telln+1)\{i}

where V(%) = Z xtx: + B1,.

telln+1)\{i}

27)

This construction ensures that the estimator 6% is independent of (x;,y;). For ease of presentation,
fori > 1, + 2, we define (9 := (ntD) and V(O = Y ntl)

Decision with LCB Threshold under Window Access. Let z;, ~ D, for k € [n].

threshold value is set to

o= % E [max z,;ré(

ken]

and we define LCBs as

ln+1)

é(l,ﬁrl)} ’

XZ-LCB = x?é(i) —&i(y),

where &;(2;) := /2, Vi ey (0\/d10g(n2 123 1\ (i) |zs13/dB) + v/SB).

At stage I, + 1, the algorithm checks whether maxye(11,, 1 1] XkLCB > a. If so, it stops with
T = arg maxpe[1,i, +1] X kLCB; otherwise, it continues. For ¢ > [,, 4 1, the algorithm stops at stage

iif XFOB > a.

A.9 PROOF OF THEOREM[3.4]

Lemma A.11. We have

P (Vk € [l, + 1,10 — 0]y < /SB+ 0| dlog (

Then the

(28)

(29)

n(L+ e+ gy 12sl13/dB)

5

) S

Proof. We can show this lemma easily by using Theorem 2 in|Abbasi- Yadkori et al.| (201 1)) with the

union bound for each §*) for k € (ln +1].

25
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From Lemma[A T1] we can show that

P ’xT(é@—e)‘g\/xTv(w*lm a\/dlog(n2+n2 S llwliZ/dB) + V/SB | Vx € RLVi € (1,1, + 1]

s€lln+1\{s}
>1—1/n.

We define an event

&= {700 —0)| < Vv a\/dlog(n2+n2 S lwl3/d8) + /5B | Ve € RLVi € [1, 1, + 1]

s€[ln+1\{i}

We have P(€1) > 1 — 1. Then under &, for i € [n] we have

Xi — &i(z) <o) 09 < X; + &(y).

Let & = {Zte[l L1\ (i wox] = Nla T, Vi€ [l, + 1]}, which holds with probability at least 1 —

2
:A(/l{j;z from Lemma|A.10l Then under &2, we have ||V(i)_1||2 <N iy Tewd )Ml <

Qﬁ. Then for ¢ > [,, + 1, we have

fi<xi><%Hxina||V<f>‘1||z<°'\/d10g<n2+n2 S lwsll3/dB) + V/SB) (= g)

s€[ln+1]\ {4}

2
< Il <o\/dlog<n2 w2 Y el3/ds) +v/55). (30)
" se

[ln+1\ {4}

Here we define h; := \/||xi||§/\,iln(a\/dlog(n2 + 123 gy [12s13/dB) +/SB) and € ==
& U&.

Let z; ~ Dy ; and o* = 1E [max;c(1 ) 2; 0]. Then at time [,, + 1, by following the step in (23),

we have for i € [I,, + 1],
E[XEOPLE) |7 =1,09 {2} scpnrp g JP(T =i | 0D, {2 }oep, 11\ (i})

* 1 n(i -1 (i
> (0 = G0LE) |9, (ot 0] P =109, (e anio)

oz

For ease of presentation, recall that we define O = §atD) for all i > l,, + 1. Then we also have,
fori > 1, +1,

E[XECBL(E) | 7 =1,00, {zs}sepnrn\a]P(T =1 | 01, {zs}sen+1\(iy)

* 1 n(i - (e
> (0 = 30LE) |9, (ot o] P =10 (o) e sanio)

oz

Let H,, := C’\/dL%n (g\/dlog(n + nZse[ln-s-l] llzs|3/dB) + wSﬁ). Combining them all, by
following the steps in (26)), we obtain:

* ) ) (i H(%
<Xi —a*— 2h¢> 1(€) | 69, {xs}se[znm\{i}}) P(r=n+1]0" {z}scu,+1\(i})s
+

* ) ) (i H(3
<Xi —a*— 2h¢> 1(€) | 69, {xs}se[ln+1}\{i}]> P(r=n+1]09 {2}, +1\(i})s
+

E[X,1(E)] > o P(E) — SE[H,].
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Finally, using the above, we have

i E[X,]
im
n— 00 E[maxie[anan] Xi]
1 5
= nggo E[max;e,, +1,n) X <a 2 . >
| . LA, +1 Ldlog(Ln)
> 1 s\1-——- -0 ! ’
2 nLH;O 2 ( n eNln /SL ( maxle[l +1,n) Xi] Ny (G\f " \F)
2
:1_(’) lim sup LdUdJFS Jogtln)
2 s 00 E[maxzez +1,0) Xi]
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