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ABSTRACT

We study the prophet inequality, a fundamental problem in online decision-
making and optimal stopping, in a practical setting where rewards are observed
only through noisy realizations and reward distributions are unknown. At each
stage, the decision-maker receives a noisy reward whose true value follows a lin-
ear model with an unknown latent parameter, and observes a feature vector drawn
from a distribution. To address this challenge, we propose algorithms that inte-
grate learning and decision-making via lower-confidence-bound (LCB) threshold-
ing. In the i.i.d. setting, we establish that both an Explore-then-Decide strategy
and an ε-Greedy variant achieve the sharp competitive ratio of 1− 1/e. For non-
identical distributions, we show that a competitive ratio of 1/2 can be guaranteed
against a relaxed benchmark. Moreover, with window access to past rewards, the
optimal ratio of 1/2 against the optimal benchmark is achieved. Experiments on
synthetic datasets confirm our theoretical results and demonstrate the efficiency of
our algorithms.

1 INTRODUCTION

The prophet inequality is a fundamental problem in online decision-making and optimal stopping
(Hill & Kertz, 1992). A decision-maker (or gambler) sequentially observes a stream of random vari-
ables (or rewards) revealed one by one and must decide at each stage whether to accept the current
value and stop, or continue to the next stage. The benchmark is the prophet, an omniscient agent
who knows all realizations in advance. The objective of the gambler is to design an online stopping
rule whose expected payoff is competitive with that of the prophet, aiming to maximize the compet-
itive ratio. This framework has been extensively studied, owing to its rich mathematical structure
and broad applications such as posted-price mechanisms (Lucier, 2017), online ad allocation (Alaei
et al., 2012), and hiring processes in labor markets (Arsenis & Kleinberg, 2022).

Classical work has established sharp guarantees when the underlying distributions are known. In
particular, Samuel-Cahn (1984) showed that a single-threshold strategy achieves the optimal ratio of
1/2 for independent but non-identical distributions, while in the i.i.d. case, 1− 1/e was achieved in
Hill & Kertz (1982) and later improved by Abolhassani et al. (2017); Correa et al. (2017).

Crucially, all these results rely on full knowledge of the distributions, an assumption that rarely
holds in practice. More recently, attention has shifted toward the prophet inequality under unknown
distributions (Correa et al., 2019a; 2020; Goldenshluger & Zeevi, 2022; Immorlica et al., 2023). In
particular, Correa et al. (2019a) showed that, in the unknown-distribution setting, a competitive ratio
of 1/e(≈ 0.368) can be achieved by the classical optimal algorithm for the secretary problem. To
obtain the higher ratio of 1 − 1/e(≈ 0.632) in the i.i.d. reward distribution setting, however, Θ(n)
additional offline reward samples are required. Likewise, in the non-i.i.d. setting with unknown
distribution, attaining 1/2 competitive ratio also demands Θ(n) offline samples (Rubinstein et al.,
2019). Such requirements limit the applicability of these results in real-world scenarios.

In this work, we study the prophet inequality in a novel and practical setting, in which at each stage
only a noisy realization of the random variable is observed, and reward distributions are unknown
without available offline reward samples. Instead, the decision-maker has access to observable fea-
ture vectors drawn from distributions, and the rewards follow a linear model with an unknown latent
parameter. This structural information enables estimation of the reward distribution and fundamen-
tally distinguishes our setting from the classical unknown-distribution model (Correa et al., 2019a).
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This feature-based formulation is motivated by applications such as online advertising, hiring, and
recommendation systems, where contextual information (e.g., ad profiles, candidate attributes, or
item descriptions) and noisy feedback are observable, while the underlying reward distributions re-
main unknown.

To address these challenges, we integrate learning and decision-making under noisy reward obser-
vations and feature information. Furthermore, we employ a lower-confidence-bound (LCB) thresh-
olding strategy to handle the uncertainty in the estimator. The main contributions are as follows:

Summary of Contributions.

• Motivated by practical scenarios, we introduce a novel setting of the prophet inequality
where the gambler only observes noisy rewards together with feature information and re-
ward distributions are unknown.

• In the i.i.d. case, we propose learning-decision algorithms that integrate lower-confidence-
bound (LCB) thresholding, achieving the sharp competitive ratio of 1 − 1/e against the
optimal benchmark.

• For the non-identical case, we analyze an algorithm that attains a competitive ratio of 1/2
against a relaxed benchmark. Furthermore, with window access to past rewards, the algo-
rithm achieves the optimal competitive ratio of 1/2 against the optimal benchmark.

• We validate our algorithms through experiments on synthetic datasets.

2 RELATED WORK

Prophet Inequalities under Known Reward Distributions. The study of prophet inequalities
originates from Krengel & Sucheston (1977; 1978). A key milestone was established by Samuel-
Cahn (1984), who showed that a single-threshold strategy achieves the optimal competitive ratio of
1/2 in the case of independent but non-identical distributions. In the order-selection variant, where
the gambler can choose the order of arrivals, Chawla et al. (2010) achieved a ratio of 1−1/e. For the
i.i.d. case, Hill & Kertz (1982) established a ratio of 1− 1/e, which was subsequently improved by
Abolhassani et al. (2017) and Correa et al. (2017). Extending beyond exact observations, Assaf et al.
(1998) demonstrated that analogous guarantees remain valid under noisy observations, though only
with respect to a Bayesian version of the prophet benchmark, which is weaker than the classical one.
Indeed, under noisy observations, any non-trivial guarantee with respect to the classical benchmark
becomes impossible without additional structural assumptions, as we will show later. Finally, all of
these results assume full knowledge of the underlying reward distributions—an assumption rarely
satisfied in practical applications.

Prophet Inequalities under Unknown Reward Distributions. To address this limitation, recent
work has studied prophet inequalities under unknown reward distributions (Correa et al., 2019a;
2020; Goldenshluger & Zeevi, 2022; Immorlica et al., 2023; Gatmiry et al., 2024; Li et al., 2022).
For the i.i.d. setting, Correa et al. (2019a) showed that a competitive ratio of 1/e(≈ 0.368) can be
achieved by the classical optimal algorithm for the secretary problem as the horizon grows. To obtain
the higher ratio of 1− 1/e(≈ 0.632), however, Θ(n) additional offline reward samples are required.
Building on this, Goldenshluger & Zeevi (2022) showed that an asymptotic ratio approaching 1
is attainable, but only for fixed distributions whose maxima lie in the Gumbel or reverse-Weibull
domains of attraction as the horizon grows.

The case of unknown non-identical distributions has been examined in Kaplan et al. (2020); Rubin-
stein et al. (2019); Gatmiry et al. (2024); Liu et al. (2025). However, achieving a 1/2 competitive
ratio requires Θ(n) offline samples. Although Gatmiry et al. (2024) and Liu et al. (2025) avoid of-
fline samples, their setting involves repeated sequences of rounds rather than a single sequence. This
repetition allows information to be aggregated across rounds, making the learning problem tractable
under bandit feedback. In contrast, our setting involves only a single sequence, and is therefore fun-
damentally different. Prophet inequalities under unknown and non-independent distributions were
also studied in Immorlica et al. (2023), achieving a ratio of 1/(2er) for r-sparse correlated struc-
tures, but their model still assumes distributional knowledge of the independent components of the
rewards.
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In contrast, we study a novel and practical setting that targets the optimal prophet under noisy reward
observations and unknown reward distributions without available offline reward samples. Instead,
we exploit observable feature vectors and their distribution, a setting motivated by real-world appli-
cations where feature information are available but the reward distribution is unknown.

3 PROBLEM STATEMENT

We consider n non-negative random variables (or rewards) X1, . . . , Xn, where each Xi is indepen-
dently drawn from an unknown distribution Di. In particular, we assume that

Xi = x⊤
i θ, i ∈ [n],

where xi ∈ Rd is a feature vector drawn independently from a known distribution Dx,i, and θ ∈ Rd

is an unknown latent parameter. Since θ is unknown, the induced distributions Di of the Xi are also
unknown to the gambler.

At each stage i, the gambler does not observe Xi directly. Instead, it observes a noisy measurement

yi = Xi + ηi,

where the noise ηi is i.i.d drawn from a σ-sub-Gaussian distribution for σ > 0. The noisy observa-
tions y1, y2, . . . are revealed sequentially.

After observing yi and xi at stage i, the gambler must make an irrevocable decision on whether to
accept index i (and stop) or continue to the next stage. We denote by τ ∈ [n + 1] the stopping
time at which the gambler accepts an index, with τ = n + 1 meaning that the gambler rejects all
variables. For completeness, we allow Xn+1 to be any non-negative value, so that our analysis
applies uniformly in this case.

The gambler’s expected payoff is E[Xτ ]. As a benchmark, we consider the prophet—an omniscient
decision maker who knows all values X1, . . . , Xn in advance—which achieves E

[
maxi∈[n] Xi

]
.

The goal of the gambler is to maximize the asymptotic competitive ratio against the prophet, defined:

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
.

Notation. For a square matrix M , λmin(M) denotes its minimum eigenvalue.

We consider regularization conditions as follows.

Assumption 3.1. There exists S > 0 such that ∥θ∥22 ≤ S.

Assumption 3.2. There exists L > 0 such that, for all i ∈ [n] and x ∼ Dx,i, ∥xi∥22 ≤ L

Remark 3.3. Our regularization assumptions are standard in the online linear learning literature
(Abbasi-Yadkori et al., 2011; Ruan et al., 2021; Liu et al., 2025). We emphasize that in our setting
L may depend on n and can diverge as n→∞; this point will be revisited later.

4 THE I.I.D. SETTING

Here, we focus on the case where all reward distributions are identical, i.e.,Di = D for every i ∈ [n].
This holds, for instance, when the feature distributions are identical across stages, i.e., Dx,i = Dx

for i ∈ [n]. Under this setting, we propose algorithms and analyze their competitive ratios.

4.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

We first propose an algorithm (Algorithm 1) based on Explore-then-Decide with lower confidence
bound (LCB) thresholding. To address the unknown distribution D, the algorithm begins with an
exploration phase of length ln, provided as an input. Afterward, during the decision phase, it com-
putes an LCB for the reward and applies an LCB-based thresholding rule to decide at each stage
whether to stop or continue. The details of this procedure are described below.

3
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Algorithm 1 Explore-Then-Decide with LCB Thresholding (ETD-LCBT)
Input: Exploration length ln; regularization parameter β
Output: Stopping time τ

1 for i = 1, . . . , n do
2 if i ≤ ln then
3 Observe (yi, xi)
4 if i = ln then
5 V ←

∑ln
t=1 xtx

⊤
t + βId; θ̂ ← V −1

∑ln
t=1 ytxt

6 Compute α from (2) (or (5) for non-i.i.d.)

7 else
8 Observe (yi, xi)

9 Compute XLCB
i from (1)

10 if XLCB
i ≥ α then

11 Stop and set τ ← i

4.1.1 STRATEGY

Exploration. With setting ln = o(n), during the first ln stages, we collect pairs of noisy rewards
yt and features xt at each stage t. Using these observations, we estimate the unknown parameter θ
as θ̂ = V −1

∑ln
t=1 ytxt, where V =

∑ln
t=1 xtx

⊤
t + βId for a constant β > 0.

After this exploration phase, the algorithm enters the decision phase, where it determines at each
stage whether to stop or continue. The details regarding LCB Thresholding are given below.

Lower Confidence Bound (LCB). We define the lower confidence bound for Xi as

XLCB
i = x⊤

i θ̂ − ξ(xi), (1)

where ξ(xi) :=
√

x⊤
i V

−1xi(σ
√
d log(n+ nlnL/dβ) +

√
Sβ).

Decision with LCB Threshold. Using the CDF of Pz∼Dx(Z
LCB ≤ α|θ̂, V ) where ZLCB =

z⊤θ̂ − ξ(z), we set threshold α s.t.

Pz∼Dx
(ZLCB ≤ α|θ̂, V ) = 1− 1

n
(2)

The algorithm stops at stage i > ln if XLCB
i ≥ α, in which case we set τ = i. By definition, if no

stopping occurs throughout the horizon, we set τ = n+ 1.

4.1.2 THEORETICAL ANALYSIS

Now we provide theoretical analyses. In this setting, a fundamental difficulty emerges due to noisy
observations. In fact, it is possible to construct instances where the observation noise drives the
competitive ratio to a trivial limit, as formalized below (see Appendix A.1 for the proof).
Proposition 4.1. There exists a bounded i.i.d. distribution for (Xi)

n
i=1 together with an observa-

tion noise model such that, for any (possibly randomized) algorithm τ based on the observations,
limn→∞

E[Xτ ]
E[maxi∈[n] Xi]

= 0.

The trivial outcome in Proposition 4.1 explains why Assaf et al. (1998) studied a Bayesian version of
the prophet inequality rather than the classical one (E[maxi∈[n] Xi]) under the noisy observation. As
Proposition 4.1 shows, even with full knowledge of the reward distribution, no algorithm can avoid
this collapse to a trivial competitive ratio. To overcome this fundamental challenge—both in target-
ing the classical prophet under noisy observation and in the presence of an unknown latent parameter
in the reward distribution—we later impose a mild non-degeneracy condition on reward scaling.

For notational convenience, let λ = λmin

(
Ex∼Dx

[xx⊤]
)
, the minimum eigenvalue of the covariance

matrix of the feature distribution. Without loss of generality, we restrict attention to the case λ > 0,

4
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ensuring non-degeneracy of the feature covariance. Under this notation, we can now state our main
guarantee on the competitive ratio (see Appendix A.2 for the proof).

Theorem 4.2. Algorithm 1 with ln = o(n), ln = ω(L log d
λ ), and a constant β > 0, achieves an

asymptotic competitive ratio of

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1− 1

e
−O

(
lim sup
n→∞

1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λln

)
.

This result highlights the critical role of the optimal value OPT = E[maxi∈[n] Xi] in determining
the competitive ratio under noisy learning. As shown in Proposition 4.1, without further structural
assumptions, the competitive ratio can collapse to zero. To circumvent this issue, we impose a
non-degeneracy condition on reward scaling, specifically on the growth of OPT , which ensures
learnability under noise and allows us to recover the sharp bound established in Theorem 4.2.

Corollary 4.3. We set ln = Ld(σ2d+S)
λ f(n) log(Ln) for some function f(n) (e.g., f(n) =

Θ(logp n) for p > 0, or Θ(nq) for 0 < q < 1) satisfying ln = o(n). If OPT = ω(1/
√
f(n)), then

Algorithm 1 achieves an asymptotic competitive ratio of

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1− 1

e
.

The growth condition of OPT = ω(1/
√

f(n)) in Corollary 4.3 is mild in practice. For example,
by using f(n) = n2/3 for setting ln, the requirement is satisfied in most applications since OPT
typically remains bounded away from zero. In particular, it suffices that OPT ≥ C for some
constant C > 0 and all sufficiently large n.

Our competitive ratio of 1− 1/e matches that of Hill & Kertz (1982) in the known i.i.d. setting and
that of Correa et al. (2019a) in the unknown i.i.d. setting but with Θ(n) additional offline reward
samples. Without such samples, only a 1/e ratio can be guaranteed (Correa et al., 2019a), which is
strictly weaker than our result. Moreover, because rewards in our setting are observed only through
noisy realizations, these prior guarantees no longer apply. Also note that 1− 1/e is the best possible
competitive ratio attainable by single quantile-threshold policies (Correa et al., 2019b; 2017), and
our algorithm provides a close approximation to this class of policies.
Remark 4.4. Importantly, while Correa et al. (2019a) show that 1/e is optimal for unknown distri-
butions without sufficiently many offline reward samples of Ω(n), we demonstrate that by exploiting
feature information under structural assumptions, the sharp bound of 1−1/e can in fact be achieved.
Moreover, our analysis accommodates distributions whose support grows with the horizon n (e.g.,
L =

√
n when setting f(n) = log n in Corollary 4.3), so that both the support and the variance of

D may diverge as n → ∞. This highlights that our framework is not restricted to the fixed distri-
butional domains considered in Goldenshluger & Zeevi (2022), but instead applies more broadly to
settings where distributions may evolve with the horizon.

4.2 ε-GREEDY WITH LCB THRESHOLDING

While the Explore-then-Decide method achieves a sharp competitive ratio, its deterministic separa-
tion between exploration and decision phases—and the fact that exploration is confined to the early
stages—limits its practicality in applications where exploration spread across time is preferable,
such as online advertising or sequential recommendation systems. To address this, we propose an
ε-Greedy approach (Algorithm 2) that selects decision stages uniformly at random over the time
horizon. The details of the strategy are described as follows.

Randomized Exploration. At each stage i ∈ [n], we draw a Bernoulli random variable bi ∼
Bernoulli(ε), where ε =

√
ln/n with setting ln = o(n).

• If bi = 1, we perform exploration by observing the noisy reward yi and feature xi, and
update, θ̂i = V −1

i

∑
t∈Ii

ytxt, where Vi =
∑

t∈Ii
xtx

⊤
t + βId for a constant β > 0.

• If bi = 0, we enter the decision phase and determine whether to stop based on an dynamic
threshold.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 ε-Greedy with LCB Thresholding (ε-Greedy-LCBT)
Input: Bernoulli parameter ε; regularization parameter β
Output: Stopping time τ

12 for i = 1, . . . , n do
13 Sample bi ∼ Bernoulli(ε)
14 if bi = 1 then
15 Ii ← Ii−1 ∪ {i}
16 Observe (xi, yi)

17 Vi ←
∑

t∈Ii
xtx

⊤
t + βId; θ̂i ← V −1

i

∑
t∈Ii

ytxt

18 else
19 Ii ← Ii−1, θ̂i ← θ̂i−1, Vi ← Vi−1

20 Observe (xi, yi)

21 Compute XLCB
i from (3) and αi using (4)

22 if XLCB
i ≥ αi then

23 Stop with τ ← i

Unlike the Explore-then-Decide method, here the exploration rounds are distributed over the entire
horizon. Consequently, θ̂i and Vi are updated continuously, which in turn affects both the LCB and
the threshold dynamically, described below.

Lower Confidence Bound. We redefine the LCB for Xi = x⊤
i θ as

XLCB
i = x⊤

i θ̂i − ξi(xi), (3)

where ξi(xi) :=
√

x⊤
i V

−1
i xi

(
σ
√
d log(n+ n|Ii|L/dβ) +

√
Sβ
)
.

Dynamic Threshold. Using a CDF of Pz∼Dx(Z
LCB
i ≤ α | θ̂i, Vi, Ii) where ZLCB

i = z⊤θ̂i −
ξi(z), for each i ∈ [n], we set the dynamic threshold αi such that

Pz∼Dx(Z
LCB
i ≤ αi | θ̂i, Vi, Ii) = 1− 1

n
. (4)

The algorithm stops at stage i if XLCB
i ≥ αi, in which case we set τ = i. Unlike Explore-then-

Decide, this procedure employs a dynamic threshold. By definition, if no stopping occurs over the
entire horizon, we set τ = n+ 1. Recall λ = λmin

(
Ex∼Dx [xx

⊤]
)
. Then, the algorithm satisfies the

following theorem (see Appendix A.3 for the proof).

Theorem 4.5. Algorithm 2 with ε =
√
ln/n, ln = o(n), ln = Ω(L log d logn

λ ), and a constant
β > 0, achieves an asymptotic competitive ratio of

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1− 1

e
−O

(
lim sup
n→∞

1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λln

)
.

Furthermore, by setting ln = Ld(σ2d+S)
λ f(n) log(Ln) for some function f(n) (e.g., f(n) =

Θ(logp n) for p > 0, or Θ(nq) for 0 < q < 1) satisfying ln = o(n), if OPT = ω(1/
√
f(n)),

then Algorithm 2 achieves the asymptotic ratio

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1− 1

e
.

Notably, the ε-Greedy approach achieves the same competitive ratio as established for the Explore-
then-Decide method in Corollary 4.3, while ensuring uniformly random decision stages.

5 NON-IDENTICAL DISTRIBUTIONS

In this section, we consider the setting where the distributions Di are not identical across i ∈ [n]. In
what follows, we propose algorithms and analyze their competitive ratios.

6
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5.1 EXPLORE-THEN-DECIDE WITH LCB THRESHOLDING

We build on the Explore-then-Decide framework in Algorithm 1, adapting the thresholding pol-
icy accordingly. In the initial exploration phase of length ln, we collect data and estimate θ̂ =

V −1
∑ln

t=1 ytxt, where V =
∑ln

t=1 xtx
⊤
t + βI for a constant β > 0. In the subsequent decision

phase, we apply LCB-based thresholding for non-identical distributions, as described below.

Decision with LCB Threshold. For each time i > ln, for zs ∼ Dx,s for all s ∈ [ln + 1, n], we
define the threshold:

α =
1

2
E
[

max
s∈[ln+1,n]

z⊤s θ̂ | θ̂
]

(5)

Recall the lower confidence bound for Xi in the Explore-then-Deicide framework: XLCB
i = x⊤

i θ̂−
ξ(xi), where ξ(xi) :=

√
x⊤
i V

−1xi(σ
√

d log(n+ nlnL/dβ)+
√
Sβ). The algorithm stops at stage

i if XLCB
i ≥ α.

For notational convenience, let λ′ = mini∈[n] λmin

(
Ex∼Dx,i [xx

⊤]
)
. Then, the algorithm satisfies

with the following theorem (see Appendix A.5 for the proof).
Theorem 5.1. Consider Algorithm 1 with ln = o(n), ln = ω(L log d

λ′ ), and a constant β > 0, where
the threshold value is chosen according to (5). Then the algorithm achieves the following asymptotic
competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[ln+1,n] Xi]
≥ 1

2
−O

(
lim sup
n→∞

1

E[maxi∈[ln+1,n] Xi]

√
(σ2d+ S) log(Ln)

λ′ln

)
.

Furthermore, by setting ln = L(σ2d+S)
λ f(n) log(Ln) for some function f(n) (e.g., f(n) =

Θ(logp n) for p > 0, or Θ(nq) for 0 < q < 1) satisfying ln = o(n), if OPT = ω(1/
√
f(n)),

then Algorithm 1 with threshold (5) achieves the following asymptotic competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[ln+1,n] Xi]
≥ 1

2
.

In the theorem, we target the relaxed prophet of E[maxi∈[ln+1,n] Xi] due to the inherent difficulty
of the non-i.i.d. setting against the original prophet, as shown in Proposition 5.2 (see Appendix A.4
for the proof).
Proposition 5.2. There exist non-identical distributions {Dx,i}ni=1 for the feature vectors xi’s, and
a parameter vector θ, such that when observing noise-free rewards Xi = x⊤

i θ for i ∈ [n], the
following holds: for any stopping rule τ , E[Xτ ]/E

[
maxi∈[n] Xi

]
≤ min{ 12 ,

1
d}. Furthermore, there

exists {Dx,i}ni=1 and θ such that, for any stopping rule τ , limn→∞ E[Xτ ]/E
[
maxi∈[d+1,n] Xi

]
≤

1/2.

Proposition 5.2 shows that, even in the noise-free case (σ = 0), the initial stages must be sacrificed to
learn θ. For the prophet of E[maxi∈[n] Xi], the competitive ratio approaches zero with large enough
d (e.g. d = log(n)). For the relaxed prophet of E[maxi∈[d+1,n] Xi], the upper bound becomes non-
trivially 1/2. The noise enhances this effect. In our setting with noise, the first ln observations are
necessarily reserved for learning and are thus excluded from the stopping decision. This motivates
our focus on a relaxed prophet benchmark based on E[maxi∈[ln+1,n] Xi], which allows for non-
trivial guarantees.

Furthermore, based on Proposition 4.1, noisy observations also lead to trivial outcomes in the case
of non-identical distributions without any structural assumptions. To address this, we impose a mild
non-degeneracy condition on reward scaling—specifically on the growth of OPT—which allows us
to recover the sharp bound stated in Theorem 5.1.

The optimal competitive ratio for non-identical distributions is known to be 1/2 (Samuel-Cahn,
1984). In our setting with unknown distributions, Theorem 5.1 shows that attaining this ratio re-
quires relaxing the prophet benchmark by excluding the initial exploration phase. Equivalently, if ln
offline reward samples with features were available, the original optimal prophet benchmark could
be targeted while still achieving the 1/2 ratio. In the next subsection, we present another practical
condition under which the optimal prophet benchmark can be attained in our learning setting without
relying on additional offline reward samples.

7
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5.2 EXPLORE-THEN-DECIDE WITH WINDOW ACCESS

In the standard non-identical distribution setting, items are revealed sequentially, and the gambler
must decide immediately whether to accept or reject the current observation. As discussed in Mar-
shall et al. (2020); Benomar et al. (2024), this assumption, however, can be overly pessimistic: in
many practical scenarios, early opportunities are not irrevocably lost but may remain available for a
short period of time. For instance, in a hiring process, one may be able to interview several candi-
dates sequentially before making a final choice among them.

Window Access. Motivated by this observation, we consider a mild relaxation of the standard
setting by using window access for the previous time steps, same as Marshall et al. (2020). More
specifically, for a window size of wn, at time i, the decision-maker is allowed to choose among the
first wn values {Xi−wn+1, . . . , Xi} before deciding whether to continue. Interestingly, for wn ≤
n − 1, the optimal competitive ratio in the non-i.i.d. distributions is the same with the standard
setting (i.e. window size 1) as shown in the following (see Appendix A.6 for the proof).
Proposition 5.3. In the non-i.i.d. setting with window access of size wn ≤ n−1, for any algorithm,
there always exist non-identical distributions such that the competitive ratio is bounded above by
E[Xτ ]/E[maxi∈[n] Xi] ≤ 1/2.

These observations raise the following question: Can the optimal competitive ratio under window
access also be achieved in the setting of unknown non-identical distributions and noisy reward ob-
servations? If so, what window size wn is required, and how frequently is window access required?

To handle this setting, we propose an algorithm (Algorithm 3 in Appendix A.7) adopting the
Explore-then-Decide method. After the exploration phase, at time ln + 1 the decision-maker, with
window size wn = ln + 1, may select from the values {X1, . . . , Xln+1} before deciding whether
to continue. From this perspective, the early observations collected during exploration are no longer
wasted but can be revisited together with the (ln + 1)-st observation, thereby mitigating the inef-
ficiency of pure exploration. Notably, our algorithm requires only a single window access at time
ln + 1, with window size ln + 1. Due to space constraints, we defer the detailed description of the
algorithm to Appendix A.7. In what follows, we provide a theorem for the competitive ratio of the
method with window access (see Appendix A.8 for the proof).
Theorem 5.4. In the non-i.i.d. setting with unknown distributions and window access of size wn >
ln, Algorithm 3 with ln = o(n), ln = ω(L log d

λ′ ), and a constant λ > 0 achieves the following
asymptotic competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1

2
−O

(
lim

n→∞

1

E[maxi∈[n] Xi]

√
L(σ2d+ S) log(Ln)

λ′ln

)
.

Furthermore, by setting ln = (L(σ2d+ S)/λ)f(n) log(Ln) for some function f(n) (e.g., f(n) =
Θ(logp n) for p > 0, or Θ(nq) for 0 < q < 1) satisfying ln = o(n), if OPT = ω(1/

√
f(n)), then

Algorithm 3 achieves the following asymptotic competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1

2
.

Notably, Algorithm 3 achieves the optimal ratio, matching the upper bound in Proposition 5.3.
Remark 5.5. The guarantees in Theorem 5.4 can also be obtained by running LCB-Thresholding
with ln offline samples, without window access. In prior work, the non-i.i.d. setting requires Θ(n)
offline samples to achieve a 1/2 competitive ratio (Rubinstein et al., 2019). In contrast, exploiting
the linear structure allows our method to achieve the optimal 1/2 ratio using only ln samples, which
can be significantly smaller—for example, ln = O(logp+1 n) when f(n) = Θ(logp n) for p > 0.
Further details are provided in Appendix A.9.

6 EXPERIMENTS

In this section, we evaluate our algorithms on synthetic datasets. Gaussian noise with variance σ2

is added to the rewards, and each experiment is repeated 10 times. We consider dimension d = 2
for the feature and latent parameter. For our algorithms, we set ln = n2/3 and β = 1. Since no
existing algorithm directly applies to our setting with noisy rewards and without additional reward

8
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Figure 1: Competitive ratio under i.i.d. distribution setting with noise variance σ.
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Figure 2: Competitive ratios under non-identical distributions with noise variance σ.

samples under unknown distributions, we adopt the rule of Gusein-Zade (Gusein-Zade, 1966)
as a benchmark. This rule observes the first n/e stages and then stops at the first record exceeding
the maximum among these initial n/e values. Although it does not handle noisy rewards, it has
been shown to extend to the prophet inequality with unknown i.i.d. distributions without additional
reward samples. In particular, it guarantees a competitive ratio of 1/e in the worst case (Correa et al.,
2019a), and can even achieve an asymptotic ratio of 1 under certain problem-specific distributions
(Goldenshluger & Zeevi, 2022).

We first consider the i.i.d. setting with n = 100000, where θ and each xi are drawn uniformly over
each dimension and then normalized. Figure 1 shows that our algorithms of ETD-LCBT(iid)
(Algorithm 1) and ε-Greedy-LCBT (Algorithm 2) achieve competitive ratios exceeding 1− 1/e,
consistent with the theoretical guarantees in Corollary 4.3 and Theorem 4.5, and significantly out-
perform the benchmark of Gusein-Zade. Furthermore, as the noise variance increases, the per-
formance gap between our algorithms and the benchmark becomes even larger, highlighting the
robustness of our methods to noise.

Next, we consider the non-identical distribution setting with n = 30000, where θ is drawn uniformly
over each dimension, but each xi is drawn from a distinct distribution: the range of each dimen-
sion is randomly sampled, and each coordinate is then drawn uniformly within its range. Figure 2
demonstrates that ETD-LCBT-WA (Algorithm 3) achieves a competitive ratio exceeding 1/2, con-
sistent with the theoretical guarantee in Theorem 5.4. Even ETD-LCBT(non-iid) (Algorithm 1),
which is guaranteed only against the relaxed benchmark (Theorem 5.1), empirically attains a ratio
above 1/2. As expected, ETD-LCBT-WA outperforms ETD-LCBT(non-iid) due to its access to
the window. Notably, both algorithms outperform the benchmark of Gusein-Zade. Furthermore,
as the noise variance increases, the performance gap between our algorithms and the benchmark
becomes even larger, highlighting the robustness of our methods to noise.

7 CONCLUSION

We introduced a new framework for prophet inequalities under noisy observations and unknown
reward distributions, motivated by real-world applications where noisy reward and contextual in-
formation are observable but reward distributions are not. By combining learning with LCB-based
stopping rules, we achieved the sharp competitive ratio of 1 − 1/e in the i.i.d. setting. For non-
identical distributions, we showed that the optimal bound of 1/2 can be attained under window
access. Our empirical results demonstrate the efficiency of our algorithms. (Future Directions)
Several directions remain open for future work, including extensions to correlated rewards and ap-
plications to richer contextual models beyond linear structure. We believe that bridging prophet
inequalities with modern online learning techniques will continue to uncover new insights at the
interface of optimal stopping, learning, and decision-making.
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REPRODUCIBILITY STATEMENT

All theoretical claims are stated with explicit assumptions and are accompanied by complete proofs
in the appendix. Algorithmic details, including pseudocode, are provided in the main paper and
supplementary materials. For the experimental results, we describe the data generation process in
the main, and we attach source code for reproducing all figures and numerical results as part of the
supplementary material.
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A APPENDIX

A.1 PROOF OF PROPOSITION 4.1

To show this proposition, we follow the example in Assaf et al. (1998). Let X1, . . . , Xn be i.i.d.
Bernoulli with success probability pn = c/n for some fixed c ∈ (0,∞). Let the observations be
obtained through a symmetric flip-noise channel:

Zi =

{
Xi, with probability 1/2,

1−Xi, with probability 1/2,

independently across i and independently of (Xi)
n
i=1. Then Zi ⊥ Xi and in fact Zi ∼

Bernoulli(1/2) regardless of pn.

Let τ be any (possibly randomized) index valued in {1, . . . , n} that is measurable with respect to
(Z1, . . . , Zn). Write Pi(Z) := Pr(τ = i |Z) where Z = (Z1, . . . , Zn). By independence and
E[Xi | Z] = E[Xi] = pn,

E[Xτ | Z] = E[
n∑

i=1

XiPi(Z) | Z] =

n∑
i=1

E[Xi | Z]E[Pi(Z) | Z] =

n∑
i=1

pnE[Pi(Z) | Z] = pn =
c

n
,

hence E[Xτ ] = c/n for every algorithm τ .

On the other hand, the oracle that sees the true X’s obtains the maximum maxi Xi, which equals 1
iff at least one success occurs. Therefore

E
[
max
1≤i≤n

Xi

]
= 1− (1− pn)

n = 1−
(
1− c

n

)n
−−−−→
n→∞

1− e−c > 0.

Combining the two displays,
E[Xτ ]

E[maxi Xi]
=

c/n

1− (1− c/n)n
−−−−→
n→∞

0.

Since τ was arbitrary, the conclusion holds for any algorithm.

A.2 PROOF OF THEOREM 4.2

We first provide a lemma for estimation error.
Lemma A.1 (Theorem 2 in Abbasi-Yadkori et al. (2011)). For δ > 0, we have

P

∥θ̂ − θ∥V ≤
√

Sβ + σ

√√√√d log

(
1 +

∑ln
i=1 ∥xi∥22/dβ

δ

) ≥ 1− δ.

Proof. This lemma follows from Theorem 2 in Abbasi-Yadkori et al. (2011), using the inequality
det(V ) ≤ (Tr(V )/d)d = (β +

∑ln
s=1 ∥xs∥22/d)d, where Tr(V ) denotes the trace of V .

The above lemma implies that

P
(∣∣∣x⊤(θ̂ − θ)

∣∣∣ ≤ √x⊤V −1x
(
σ
√
d log(n+ nlnL/dβ) +

√
Sβ
)
,∀x ∈ Rd

)
≥ 1− 1/n. (6)

We define an event E1 = {|x⊤(θ̂− θ)| ≤
√
x⊤V −1x(σ

√
d log(n+ nlnL/dβ)+

√
Sβ),∀x ∈ Rd},

which holds with P(E1) ≥ 1− 1
n .

We define g :=
√
L∥V −1∥2(σ

√
d log(n+ nlnL/dβ) +

√
Sβ). Recall

ξ(xi) =
√
x⊤
i V

−1xi(σ
√
d log(n+ nlnL/dβ) +

√
Sβ).

Then we have ξ(xi) ≤ g. Under E1, for any i > ln we have

Xi − 2g ≤ x⊤
i θ̂ − g ≤ x⊤

i θ̂ − ξ(xi) ≤ XLCB
i ≤ Xi. (7)

We define α∗ s.t. PX∼D(X ≤ α∗) = 1 − 1
n . Then we have the following lemma regarding the

bounds for the threshold value. We denoteHln = {θ̂, V }.

12
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Lemma A.2. Under E1, for any givenHln , we have

α∗ − 2g ≤ α ≤ α∗.

Proof. For z ∼ Dx, we define Z = z⊤θ and Ẑ = z⊤θ̂. Then, under E1, for any givenHln , we have
Z − 2g ≤ Ẑ − g ≤ Ẑ − ξ(z) ≤ Z with ξ(z) ≤ g.

Since Ẑ − ξ(z) ≤ Z and P(Ẑ − ξ(z) ≥ α | Hln) = P(Z ≥ α∗ | Hln) = 1/n, we can easily obtain

α ≤ α∗.

Likewise, for α′ s.t. P(Z − 2g ≥ α′ | Hln) =
1
n , from Z − 2g ≤ Ẑ − ξ(z) and P(Z − 2g ≥ α′ |

Hln) = P(Ẑ − ξ(z) ≥ α | Hln) = 1/n, we have α′ ≤ α. Therefore, with α′ + 2g = α∗ from
P(Z ≥ α∗ | Hln) = P(Z − 2g ≥ α′ | Hln) = 1/n, we have

α∗ − 2g ≤ α,

which concludes the proof.

Lemma A.3. For l ≥ 1, let z1, . . . , zl
i.i.d.∼ Dx satisfying Assumption 3.2. Recall λ =

λmin(Ez∼Dx
[zz⊤]) > 0. Then

P

(
1

l

l∑
s=1

zsz
⊤
s ⪰

λ

2
Id

)
≥ 1− d exp

(
− λl

8L

)
.

Proof. Let µmin = λmin(E[
∑l

s=1 zsz
⊤
s ]). By the matrix Chernoff bound (Theorem 5.1.1 in Tropp

et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any δ ∈ [0, 1],

Pr

[
λmin

(
l∑

s=1

zsz
⊤
s

)
≤ (1− δ)µmin

]
≤ d

(
e−δ

(1− δ) 1−δ

)µmin/L

≤ d exp

(
−δ2

2
· µmin

L

)
.

Choosing δ = 1
2 yields

Pr

[
λmin

(
l∑

s=1

zsz
⊤
s

)
≤ µmin

2

]
≤ d exp

(
−µmin

8L

)
≤ d exp

(
− lλ

8L

)
,

where the last inequality is obtained from Weyl’s eigenvalue inequalities. Equivalently, with proba-
bility at least 1− d exp(−λl/(8L)),

l∑
s=1

zsz
⊤
s ⪰

µmin

2
Id ⪰

lλ

2
Id,

which completes the proof.

Let E2 = {
∑ln

s=1 xsx
⊤
s ⪰ λln

2 Id}, which holds with probability at least 1 − d
eλln/8L from

Lemma A.3. Then under E2, we have ∥V −1∥2 ≤ ∥(
∑ln

s=1 xsx
⊤
s )

−1∥2 ≤ 2 1
λln

. Then, we have

ξ(xi) ≤
√

L∥V −1∥2(σ
√
d log(n+ nlnL/dβ) + S

√
β)(= g)

≤
√
L

2

λln
(σ
√

d log(n+ n2L/dβ) + S
√
β).

Here we define h :=
√

L 2
λln

(σ
√

d log(n+ n2L/dβ) + S
√
β) and E := E1 ∪ E2. For analyzing

Xτ , we first examine the probability that the stopping time τ equals i given E . Recall Hln =

{θ̂, {xs}s∈[ln]}.
Lemma A.4. For i > ln, we have

P(τ = i | Hln) =

(
1− 1

n

)i−ln−1
1

n
.
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Proof. For i > ln, we have

P(τ = i | Hln)

= P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−1 ≤ α,XLCB
i > α | Hln)

= P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−1 ≤ α | Hln)P(XLCB
i > α | Hln)

= P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−1 ≤ α | Hln)
1

n
,

where the first equality is obtained from the fact that, given θ̂ and {xs}s∈[ln], X
LCB
i is independent

to XLCB
ln+1 , . . . , X

LCB
i−1 . Similarly, for the last term above, we have

P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−1 ≤ α | Hln)
1

n

= P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−2 ≤ α | Hln)P(XLCB
i−1 ≤ α | Hln)

1

n

= P(XLCB
ln+1 ≤ α, . . . ,XLCB

i−2 ≤ α | Hln)

(
1− 1

n

)
1

n

...

=

(
1− 1

n

)i−ln−1
1

n
,

which concludes the proof.

From the exploration phase in the algorithm, we have P(τ = i | E) = 0 for all 1 ≤ i ≤ ln.
Therefore, given E we have

E [E[Xτ1(E) | Hln ]]

= E

[
n∑

i=1

P(τ = i | {xs}s∈[ln])E[Xi1(E) | τ = i,Hln ]

]

= E

[
n∑

i=ln+1

P(τ = i | {xs}s∈[ln])E[Xi1(E) | τ = i,Hln ]

]

≥ E

[
n∑

i=ln+1

P(τ = i | {xs}s∈[ln])E[X
LCB
i 1(E) | τ = i,Hln ]

]

≥ E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
E[XLCB

i 1(E) | τ = i,Hln ]

]
.

(8)
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For the last term above, we have

E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
E[XLCB

i 1(E) | τ = i,Hln ]

]

= E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E [α1(E) | τ = i,Hln ] + E[(XLCB

i − α)1(E) | XLCB
i ≥ α,Hln ]

) ]

= E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E [α1(E) | Hln ] + E[(XLCB

i − α)+1(E) | XLCB
i ≥ α,Hln ]

) ]

= E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E [α1(E) | Hln ] +

E[(XLCB
i − α)+1(E) | Hln ]

P(XLCB
i ≥ α | Hln)

)]

≥ E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E [α∗

1(E)− 2g1(E) | Hln ] + nE
[
(Xi − 2g − α∗)

+
1(E) | Hln

])]
,

(9)

where the second inequality is obtained from independency between τ = i for i > ln and E given θ̂
and {xs}s∈[ln], and the last inequality is obtained from Lemma A.2 and (7). Let Zs ∼ D for s ∈ [n].
Then, with ln = o(n), for the last term in (9), we have

E

[
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E [(α∗ − 2g)1(E) | Hln ] + nE

[
(Xi − 2g − α∗)

+
1(E) | Hln

])]

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
× E

[
E[α∗

1(E) | Hln ]− 2E[h1(E) | Hln ] + nE[(Xi − 2h− α∗)
+
1(E) | Hln ]

]

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
× E

E[α∗
1(E) | Hln ]− 2E[h1(E) | Hln ] + E[

∑
s∈[n]

(Zs − 2h− α∗)
+
1(E) | Hln ]


≥

n∑
i=ln+1

(
1− 1

n

)i−ln−1
1

n
E
[
E[α∗

1(E) | Hln ]− 2E[h1(E) | Hln ] + E[max
s∈[n]

(Zs − 2h− α∗)
+
1(E) | Hln ]

]

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
α∗P(E)− 2hP(E) + E

[
max
s∈[n]

(Zs − 2h− α∗)1(E)
])

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
α∗P(E)− 2hP(E) + E

[
max
s∈[n]

Zs

]
P(E)− (2h+ α∗)P(E)

)

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×
(
E
[
max
s∈[n]

Xs

]
P(E)− 4h

)

≥
n∑

i=ln+1

(
1− 1

n

)i−ln−1
1

n
×

E
[
max
s∈[n]

Xs

]
P(E)−O

√dL log(nL)

λln
(σ
√
d+
√
S)


≥

1− (1− 1
n )

n−ln

1/n

1

n

E
[
max
s∈[n]

Xs

](
1− 1

n
− d

eλln/8L

)
−O

√dL log(nL)

λln
(σ
√
d+
√
S)

 ,

(10)

where the first inequality is obtained from g ≤ h and the second last inequality is obtained from the
definition of h.
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Finally, from (8), (9), and (10), we have

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
= lim

n→∞

E [E[Xτ | Hln ]]

E[maxi∈[n] Xi]

≥ lim
n→∞

E [E[Xτ1(E) | Hln ]]

E[maxi∈[n] Xi]

≥ lim
n→∞

1− (1− 1
n )

n−ln

1/n

1

n

(1− 1

n
− d

eλln/8L

)
−O

 1

E[maxi∈[n] Xi]

√
Ld

log(Ln)

λln
(σ
√
d+
√
S)


=

(
1− 1

e

)
−O

lim sup
n→∞

1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λln

 ,

(11)

where the last inequality is obtained from limits limn→∞(1 − 1/n)n = 1/e and limn→∞(1 −
1/n)ln = 1 (since ln = o(n)) and ln = ω(L log d

λ ).

A.3 PROOF OF THEOREM 4.5

Lemma A.5 (Theorem 2 in Abbasi-Yadkori et al. (2011)). We have

P

∀i ∈ [n], ∥θ̂i − θ∥Vi
≤
√
Sβ + σ

√√√√d log

(
1 +

∑
s∈Ii
∥xs∥22/dβ

δ

) ≥ 1− δ

The above lemma implies that

P
(∣∣∣x⊤(θ̂i − θ)

∣∣∣ ≤√x⊤V −1
i x

(
σ
√
d log (n+ n|Ii|L/dβ) +

√
Sβ
)
,∀x ∈ Rd,∀i ∈ [n]

)
≥ 1− 1/n.

(12)

We define an event E1 = {|x⊤(θ̂i − θ)| ≤
√
x⊤V −1

i x(σ
√
d log(n+ n|Ii|L/dβ) +

√
Sβ),∀x ∈

Rd,∀i ∈ [an + 1, n]}. From (12), we have P(E1) ≥ 1 − 1
n . Let an = ⌈

√
nln⌉. Then we define

gi :=
√
L∥V −1

an ∥2(σ
√
d log(n+ n|Ii|L/dβ) +

√
Sβ) so that, for i > an, ξi(xi) ≤ gi (recall

ξi(xi) =
√
x⊤
i V

−1
i xi(σ

√
d log(n+ n|Ii|L/dβ) +

√
Sβ)). We denoteHi = {θ̂i, Vi, Ii}.

Lemma A.6. Under E1, for any i > an, and any givenHi, we have

α∗ − 2gi ≤ αi ≤ α∗.

Proof. For z ∼ D, we define Z = z⊤θ and Ẑi = z⊤θ̂i. Then, under E1, for any given Vi and θ̂i, we
have Z − 2gi ≤ Ẑi − gi ≤ Ẑi − ξi(z) ≤ Z with ξi(z) ≤ gi.

Let α∗ be the oracle threshold satisfying P(Z ≥ α∗|Hi)(= P(Z ≥ α∗)) = 1/n. From Ẑi− ξi(z) ≤
Z and P(Ẑi − ξi(z) ≥ αi | Hi) = P(Z ≥ α∗ | Hi)(= 1/n), we can easily obtain

αi ≤ α∗.

Likewise, for α′ s.t. P(Z − 2gi ≥ α′ | Hi) = 1
n , from Z − 2gi ≤ Ẑi − gi ≤ Ẑi − ξi(z) and

P(Z−2gi ≥ α′ | Hi) = P(Ẑi−ξi(z) ≥ αi | Hi), we have α′ ≤ αi. Therefore, with α′+2gi = α∗

from P(Z − 2gi ≥ α′ | Hi) = P(Z ≥ α∗ | Hi) = 1/n, we have

α∗ − 2gi ≤ αi,

which concludes the proof.
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Lemma A.7 (Multiplicative Chernoff Bound). Let Z1, . . . Zl be Bernoulli random variables with
mean µ. Then for 0 ≤ δ ≤ 1 we have

P

(∣∣∣∣∣
l∑

s=1

Zs − lµ

∣∣∣∣∣ ≥ δlµ

)
≤ 2 exp(−δ2lµ/3)

From the above lemma, we define E2 =
{∣∣∣|Ii| − i

√
ln/n

∣∣∣ ≤ 1
2 i
√

ln/n , i ∈ {an, n}
}

, which holds

with probability at least 1− 2 exp(−ln
12 )− 2 exp(−

√
nln

12 ).

From Lemma A.3, for any l ≥ 1, suppose z1, . . . , zl ∼ Dx are i.i.d drawn from a distribution Dx

satisfying Assumption 3.2. Recall λ = λmin(Ez∼Dx [zz
⊤]) > 0. We have that

P

(
1

l

l∑
s=1

zsz
⊤
s ⪰

λ

2
Id

)
≥ 1− d exp

(
− λl

8L

)
.

Then, we define E3 = {
∑

s∈Ian
xsx

⊤
s ⪰

|Ian |
2 λId}, which holds, under E2, with prob-

ability at least 1 − d
eλln/4L . This implies P(E2 ∩ E3) = P(E3 | E2)P(E2) ≥(

1− d
eλln/4L

) (
1− 2 exp(−ln

12 )− 2 exp(−
√
nln

12 )
)

.

Then under E2 ∩ E3, we have ∥V −1
an
∥2 ≤ ∥(

∑
s∈Ian

xsx
⊤
s )

−1∥2 ≤ 2 1
λ|Ian | ≤ 4 1

λln
. Then for

i > an, we have

ξi(xi) ≤
√

L∥V −1
an ∥2(σ

√
d log(n+ n|Ii|L/dβ) +

√
Sβ)(= gi)

≤
√
L

4

λln
(σ
√
d log(n+ n2L/dβ) +

√
Sβ). (13)

Here we define h :=
√
L 4

λln
(σ
√

d log(n+ n2L/dβ) +
√
Sβ) and E := E1 ∪ E2 ∪ E3.

We define the set of decision stages until i as Ji := [i]\Ii so that Ji ∪Ii = [i] and J1 ⊆ J2, . . . ,⊆
Jn. Then, we analyze the stopping probability at i in the following lemma.

Lemma A.8. For i ∈ Jn with any given Ji = {j1, j2, . . . , j|Ji|}, we have

P(τ = i | Ji, E) =
(
1− 1

n

)|Ji|−1
1

n
.
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Proof. For notation simplicity, we define J (k)
i := {j1, . . . , jk} ⊆ Ji for k ∈ [|Ji|]. Then, for

i ∈ Jn, we have

P(τ = i | Ji, E)
= E[P(τ = i | Hi,Ji, E) | Ji, E ]

= E[P({XLCB
t ≤ α ∀t ∈ J (|Ji|−1)

i }, XLCB
i > α | Hi,Ji, E) | Ji, E ]

= E
[
P({XLCB

t ≤ α ∀t ∈ J (|Ji|−1)
i } | Hi,Ji, E)P(XLCB

i > α | Hi,Ji, E) | Ji, E
]

= E
[
P({XLCB

t ≤ α ∀t ∈ J (|Ji|−1)
i } | Hi,Ji, E) | Ji, E

] 1
n

= P({XLCB
t ≤ α ∀t ∈ J (|Ji|−1)

i } | Ji, E)
1

n

= E[P({XLCB
t ≤ α ∀t ∈ J (|Ji|−1)

i } | Hj|Ji|−1
,Ji, E) | Ji, E ]

1

n

= E
[
P({XLCB

t ≤ α ∀t ∈ J (|Ji|−2)
i } | Hj|Ji|−1

,Ji, E)× P(XLCB
j|Ji|−1

≤ α | Hj|Ji|−1
,Ji, E) | Ji, E

] 1
n

= E
[
P({XLCB

t ≤ α ∀t ∈ J (|Ji|−2)
i } | Hj|Ji|−1

,Ji, E) | Ji, E
](

1− 1

n

)
1

n

= P({XLCB
t ≤ α ∀t ∈ J (|Ji|−2)

i } | Ji, E)
(
1− 1

n

)
1

n

...

=

(
1− 1

n

)|Ji|−1
1

n

From the decision strategy of the algorithm, we have P(τ = i | Jn) = 0 for all i ∈ In. Therefore,
for analyzing Xτ , we have

E[Xτ | E ]

= E

[
n∑

i=1

P(τ = i | Ji, E)E[Xi | τ = i,Ji, E ] | E

]

= E

[∑
i∈Jn

P(τ = i | Ji, E)E[Xi | τ = i,Ji, E ] | E

]

≥ E

 ∑
i∈Jn\[an]

P(τ = i | Ji, E)E[Xi | τ = i,Ji, E ] | E


≥ E

 ∑
i∈Jn\[an]

P(τ = i | Ji, E)E
[
E[XLCB

i | τ = i,Hi,Ji, E ] | τ = i,Ji, E
]
| E


≥ E

 ∑
i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n
E
[
E[XLCB

i | τ = i,Hi,Ji, E ] | τ = i,Ji, E
]
| E


≥ E

 ∑
i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n
E
[
E[XLCB

i | τ = i,Hi,Ji, E ] | τ = i,Ji, E
]
| E

 . (14)

For the last term above, for i ∈ Jn\[an], we have
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E[XLCB
i | τ = i,Hi,Ji, E ]

= E [αi | τ = i,Hi,Ji, E ] + E
[
XLCB

i − αi | XLCB
i ≥ αi,Hi,Ji, E

]
= E [αi | Hi, E ] +

E[(XLCB
i − αi)

+ | Hi, E ]
P(XLCB

i ≥ αi | Hi, E)

≥ E [α∗ − 2gi | Hi, E ] + nE
[
(Xi − 2gi − α∗)

+ | Hi, E
]

(15)

where the last term is obtained from Lemma A.6, ξi(xi) ≤ gi, and the definition of αi.

In what follows, we consider the case of E[maxi∈[n] Xi] − O
(√

dL(σ2d+ S) log(Ln)
λln

)
> 0, be-

cause otherwise, it is trivially holds:

E[Xτ | E ] ≥

((
1− 1

n

)√
nln

−
(
1− 1

n

)n− 3
2

√
nln−1

)E[max
i∈[n]

Xi]−O

√Ld(σ2d+ S)
log(Ln)

λln

 .

Recall h :=
√

L 4
λln

(σ
√

d log(n+ n2L/dβ) +
√
Sβ). Let Zk ∼ D for k ∈ [n]. Then, for the last

term above in (14) with (15), under E , we have

∑
i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n

(
E [α∗ − 2gi | Hi, E ] + nE

[
(Xi − 2gi − α∗)

+ | Hi, E
])

=
∑

i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n

(
E [α∗ − 2gi | Hi, E ] + nE

[
(Z1 − 2gi − α∗)

+ | Hi, E
])

≥
∑

i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n

(
E [α∗ − 2gi | Hi, E ] + E

[
max
k∈[n]

(Zk − 2gi − α∗)
+ | Hi, E

])

≥
∑

i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n

(
E[max

k∈[n]
Zk | Hi, E ]− 4h

)

≥
∑

i∈Jn\[an]

(
1− 1

n

)|Ji|−1
1

n

(
E[max

k∈[n]
Zk | Hi, E ]− 4h

)

≥

((
1− 1

n

)√
nln

−
(
1− 1

n

)|Jn|−1
)(

E
[
max
k∈[n]

Zk | Hi, E
]
− 4h

)

=

((
1− 1

n

)√
nln

−
(
1− 1

n

)n−|In|−1
)(

E
[
max
k∈[n]

Zk

]
− 4h

)

≥

((
1− 1

n

)√
nln

−
(
1− 1

n

)n− 3
2

√
nln−1

)(
E
[
max
k∈[n]

Zk

]
− 4h

)
, (16)

where the last inequality is obtained from E
Finally, from (14), (15), and (16), we have
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lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]

≥ lim
n→∞

E[Xτ | E ]P(E)
E[maxi∈[n] Xi]

≥ lim
n→∞

1

E[maxi∈[n] Xi]

((
1− 1

n

)√
nln

−
(
1− 1

n

)n− 3
2

√
nln−1

)(
E
[
max
k∈[n]

Xk

]
− 4h

)
P(E)

≥ lim
n→∞

((
1− 1

n

)√
nln

−
(
1− 1

n

)n− 3
2

√
nln−1

)1−O

 1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λln

P(E)

≥
(
1− 1

e

)(
1−O

(
lim sup
n→∞

1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λln

))
, (17)

where the last equality is obtained from ln = Ω(L log d logn
λ ) and ln = o(n), and P(E) ≥(

1− 1
n −

(
1−

(
1− d

eλln/4L

) (
1− 2 exp(−ln

12 )− 2 exp(−
√
nln

12 )
)))

.

A.4 PROOF OF PROPOSITION 5.2

We first provide a proof for E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1

d . Let θ = (θ1, . . . , θd) ∈ Rd. Consider a non-
identical distribution Dx,i that generates the following deterministic points:

x1 = (1, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), . . . , xd = (0, . . . , 0, 1), xi = (0, . . . , 0) for i ∈ {d+1, . . . , n}.

For any algorithm, let τ denote its stopping time.

Case 1. Set θ1 = ϵ for ϵ > 0. If P(τ = 1) ≤ 1/d, we set θ2 = · · · = θd = 0. Then

E
[
max
i∈[n]

x⊤
i θ

]
= θ1, E[x⊤

τ θ] ≤
θ1
d
,

so the competitive ratio satisfies E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/d.

Case 2. Otherwise if P(τ = 1) > 1/d we set θ2 = θ1/ϵ for some 0 < ϵ < 1. If P(τ = 2) ≤ 1/d,
then we set θ3 = θ4 = · · · = θd = 0. Then

E
[
max
i∈[n]

x⊤
i θ

]
= θ2, E[x⊤

τ θ] ≤
θ2
d

+ ϵ =
1

d
+ ϵ,

again yielding, as ϵ→ 0, E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/d.

Case 3. Likewise, otherwise if P(τ = 2) > 1/d, we set θ3 = θ2/ϵ = 1/ϵ. If P(τ = 3) ≤ 1/d, the
we set θ4 = θ5 = · · · = θd = 0, Then

E
[
max
i∈[n]

x⊤
i θ

]
= θ3, E[x⊤

τ θ] ≤
θ3
d

+ 1 + ϵ,

again yielding, as ϵ→ 0, E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/d.

There must exist some i ∈ {1, . . . , d} such that P(τ = i) ≤ 1/d. Therefore, in a similar way, by
choosing θ to place the largest mass of θi−1/ϵ on that coordinate, as ϵ→ 0, we can easily show that

E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1

d
.

Thus, in all cases, one can construct θ such that the competitive ratio satisfies E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/d.
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We next provide a proof for E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]

≤ 1
2 . We can construct Dx,1 such that x1 =

(1, 0, . . . , 0) are drawn deterministically. We also consider θ = (1, 0, . . . , 0) such that X1 = 1.
We also consider Dx,2 such that it generates x2 = (1/ϵ, 0, . . . , 0) with probability ϵ and otherwise,
x2 = (0, 0, . . . , 0) with probability 1− ϵ. For i ≥ 3, we consider xi = (0, . . . , 0).

Then for any algorithm τ which does know Xi for i ∈ [n] in advance, we have E[x⊤
τ θ] ≤ 1.

On the other hands, the prophet who knows Xi in advance can stop at τ = 1 with X1 = 1 if
X2 = 0 with probability 1 − ϵ or stop at d + 2 if X2 = 1/ϵ with probability ϵ. This implies that

E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/(2− ϵ). As ϵ→ 0, we can conclude E[x⊤

τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/2.

Lastly, we provide a proof for E[Xτ ]/E
[
maxi∈{d+1,...,n} Xi

]
≤ 1

2 . We can construct Dx,i for
i ∈ [d + 1] such that x1 = x2 = · · · = xd+1 = (1, 0, . . . , 0) are drawn deterministically. We also
consider θ = (1, 0, . . . , 0) such that X1 = X2 = · · · = Xd+1 = 1. We also consider Dx,d+2 such
that it generates xd+2 = (1/ϵ, 0, . . . , 0) with probability ϵ and otherwise, xd+2 = (0, 0, . . . , 0) with
probability 1− ϵ. For i ≥ d+ 2, we consider xi = (0, . . . , 0).

Then for any algorithm τ which does know Xi for i ∈ [n] in advance, we have E[x⊤
τ θ] ≤ 1.

On the other hands, the prophet who knows Xi in advance can stop at τ = 1 with X1 = 1 if
Xd+2 = 0 with probability 1 − ϵ or stop at d + 2 if Xd+2 = 1/ϵ with probability ϵ. This implies

that E[x⊤
τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/(2− ϵ). As ϵ→ 0, we can conclude E[x⊤

τ θ]

E[maxi∈[n] x
⊤
i θ]
≤ 1/2.

A.5 PROOF OF THEOREM 5.1

From Lemma A.1, we can show that

P
(∣∣∣x⊤(θ̂ − θ)

∣∣∣ ≤ √x⊤V −1x
(
σ
√

d log(n+ nlnL/dβ) +
√
Sβ
)
,∀x ∈ Rd

)
≥ 1− 1/n.

We define an event E1 = {|x⊤(θ̂− θ)| ≤
√
x⊤V −1x(σ

√
d log(n+ nlnL/dβ)+

√
Sβ),∀x ∈ Rd},

which holds with P(E1) ≥ 1− 1
n . Then under E1, we have

Xi − ξ(xi) ≤ x⊤
i θ̂ ≤ Xi + ξ(xi). (18)

Lemma A.9. For l ≥ 1, let zt ∼ Dx,t for t ∈ [l] be independent random vectors (not necessarily
i.i.d.) satisfying Assumption 3.2. Then

Pr

(
1

l

l∑
t=1

ztz
⊤
t ⪰ λ′Id

)
≥ 1− d exp

(
−λ′l

8L

)
.

Proof. Let µmin = λmin(E[
∑l

t=1 ztz
⊤
t ]). By the matrix Chernoff bound (Theorem 5.1.1 in Tropp

et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any δ ∈ [0, 1],

Pr

[
λmin

(
l∑

t=1

ztz
⊤
t

)
≤ (1− δ)µmin

]
≤ d

(
e−δ

(1− δ) 1−δ

)µmin/L

≤ d exp

(
−δ2

2
· µmin

L

)
.

Choosing δ = 1
2 yields

Pr

[
λmin

(
l∑

t=1

ztz
⊤
t

)
≤ µmin

2

]
≤ d exp

(
−µmin

8L

)
≤ d exp

(
− lλ′

8L

)
,

where the last inequality is obtained from Weyl’s eigenvalue inequalities. Equivalently, with proba-
bility at least 1− d exp(−λ′l/(8L)),

l∑
t=1

ztz
⊤
t ⪰

µmin

2
Id ⪰

lλ′

2
Id,

which completes the proof.
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Let E2 = {
∑ln

t=1 xtx
⊤
t ⪰ λ′ln

2 Id}, which holds with probability at least 1 − d
eλ′ln/8L from

Lemma A.9. Then under E2, we have ∥V −1∥2 ≤ ∥(
∑ln

t=1 xtx
⊤
t )

−1∥2 ≤ 2 1
λ′ln

. Then for i > ln, we
have

ξ(xi) ≤
√
∥xi∥22∥V −1∥2(σ

√
d log(n+ nlnL/dβ) +

√
Sβ)(:= gi)

≤
√

2L

λ′ln
(σ
√
d log(n+ nlnL/dβ) +

√
Sβ). (19)

Here we define h :=
√

2L
λ′ln

(σ
√
d log(n+ nlnL/dβ) +

√
Sβ). Let zi ∼ Dx,i and α∗ =

1
2E
[
maxi∈[ln+1,n] z

⊤
i θ
]
. Then, from (18) and (19), we have

α∗ − 1

2
h ≤ α ≤ α∗ +

1

2
h. (20)

Let E := E1 ∪ E2 andHln = {θ̂, V }. Then for i > ln, we have

E[XLCB
τ 1(E) | τ = i,Hln ]P(τ = i | Hln)

= E[α1(E) | Hln ]P(τ = i | Hln) + E[XLCB
i 1(E)− α1(E) | τ = i,Hln ]P(τ = i | Hln)

= E[α1(E) | Hln ]P(τ = i | Hln)

+ E[(XLCB
i − α)+1(E) | XLCB

i ≥ α,Hln ]P(XLCB
i ≥ α | Hln)

∏
j∈[i−1]

P(XLCB
j < αj |Hln)

≥ E[α1(E) | Hln ]P(τ = i | Hln) + E[(XLCB
i − α)+1(E) | Hln ]P(τ = n+ 1 | Hln)

≥ E[α1(E) | Hln ]P(τ = i | Hln)

+ E
[
(Xi − 2ξ(xi)− α)+ 1(E) | Hln

]
P(τ = n+ 1 | Hln)

≥ E
[
(α∗ − 1

2
h)1(E) | Hln

]
P(τ = i | Hln)

+

(
E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

])
P(τ = n+ 1 | Hln), (21)

where the last inequality is obtained from (20) and ξ(xi) ≤ h.
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Using the above, we have

E[Xτ1(E) | Hln ]

≥
n∑

i=1

E
[
E[XLCB

τ 1(E) | τ = i,Hln ] · P(τ = i | Hln) | Hln

]
≥

n∑
i=ln+1

E
[
E[XLCB

i 1(E) | τ = i,Hln ] · P(τ = i | Hln) | Hln

]
≥

n∑
i=ln+1

E

[
E
[
(α∗ − 1

2
h)1(E) | Hln

]
P(τ = i | Hln)

+

(
E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

])
P(τ = n+ 1 | Hln) | Hln

]

≥ E

[(
E [α∗

1(E) | Hln ]−
1

2
h

) n∑
i=ln+1

P(τ = i | Hln)

+ max
i∈[ln+1,n]

E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

]
P(τ = n+ 1 | Hln) | Hln

]

≥ E
[(

E [α∗
1(E) | Hln ]−

1

2
h

)
(1− P(τ = n+ 1 | Hln))

+

(
max

i∈[ln+1,n]
E [Xi1(E) | Hln ]− E[α∗

1(E) | Hln ]−
5

2
h

)
P(τ = n+ 1 | Hln) | Hln

]
≥ E

[
(α∗P(E | Hln)−

1

2
h)(1− P(τ = n+ 1 | Hln))

+

(
max

i∈[ln+1,n]
E[Xi]P(E | Hln)− α∗P(E | Hln)−

5

2
h

)
P(τ = n+ 1 | Hln) | Hln

]
≥ α∗P(E | Hln)−

5

2
h. (22)

Finally, using the above, we have

lim
n→∞

E[Xτ ]

E[maxi∈[ln+1,n] Xi]
≥ lim

n→∞

E[E[Xτ1(E)|Hln ]]

E[maxi∈[ln+1,n] Xi]

≥ lim
n→∞

1

E[maxi∈[ln+1,n] Xi]

(
α∗P(E)− 5

2
h

)

≥ lim
n→∞

1

2

(
1− 1

n
− d

eλ′ln/8L

)
−O

 1

E[maxi∈[ln+1,n] Xi]

√
Ld log(Ln)

λ′ln
(σ
√
d+
√
S)


=

1

2
−O

lim sup
n→∞

1

E[maxi∈[ln+1,n] Xi]

√
Ld(σ2d+ S) log(Ln)

λ′ln

 .

A.6 PROOF OF PROPOSITION 5.3

The argument follows the statement used in Marshall et al. (2020). For completeness, we provide the
details here. Consider the instance where X1 = 1 deterministically, X2 = X3 = · · · = Xn−1 = 0
deterministically, and Xn takes value 1/ϵ with probability ϵ (for any 0 < ϵ < 1) and 0 otherwise.
For any wn ≤ n − 1, the gambler receives an expected payoff of 1, while the prophet receives an
expected payoff of 2 − ϵ. Thus, the ratio satisfies E[Xτ ]/E[maxi∈[n] Xi] ≤ 1/(2 − ϵ). We can
conclude the proof with ϵ→ 0.
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Algorithm 3 Explore-Then-Decide with LCB Thresholding under Window Access
(ETD-LCBT-WA)
Input: Exploration length ln; regularization parameter β
Output: Stopping time τ

24 for i = 1, . . . , n do
25 if i ≤ ln then
26 Observe (xi, yi)

27 else if i = ln + 1 then
28 Compute θ̂(k) and V (k) for k ∈ [ln + 1] from (23)
29 Compute α from (24) and XLCB

k for k ≤ ln + 1 from (25).
30 if maxk∈[1,ln+1] X

LCB
k ≥ α then

31 Stop with τ ← argmaxk∈[1,ln+1] X
LCB
i

32 else
33 Observe (xi, yi)

34 Compute XLCB
i from (25).

35 if XLCB
i ≥ α then

36 Stop with τ ← i

A.7 DETAILS OF AN ALGORITHM FOR NON-IID DISTRIBUTIONS UNDER WINDOW ACCESS

Individual Estimators. After the ln exploration stages, we define for each i ∈ [ln + 1]

θ̂(i) =
(
V (i)

)−1 ∑
t∈[ln+1]\{i}

ytxt, where V (i) =
∑

t∈[ln+1]\{i}

xtx
⊤
t + βId. (23)

This construction ensures that the estimator θ̂(i) is independent of (xi, yi). For ease of presentation,
for i ≥ ln + 2, we define θ̂(i) := θ̂(ln+1) and V (i) := V (ln+1).

Decision with LCB Threshold under Window Access. Let zk ∼ Dx,k for k ∈ [n]. Then the
threshold value is set to

α = 1
2 E
[
max
k∈[n]

z⊤k θ̂(ln+1)

∣∣∣∣ θ̂(ln+1)

]
, (24)

and we define LCBs as

XLCB
i = x⊤

i θ̂
(i) − ξi(xi), (25)

where ξi(xi) :=
√

x⊤
i V

−1
i xi

(
σ
√
d log(n2 + n2lnL/dβ) +

√
Sβ
)
.

At stage ln + 1, the algorithm checks whether maxk∈[1,ln+1] X
LCB
k ≥ α. If so, it stops with

τ = argmaxk∈[1,ln+1] X
LCB
k ; otherwise, it continues. For i > ln + 1, the algorithm stops at stage

i if XLCB
i ≥ α.

A.8 PROOF OF THEOREM 5.4

Lemma A.10. We have

P

∀k ∈ [ln + 1], ∥θ̂(i) − θ∥V (k) ≤
√

Sβ + σ

√√√√d log

(
n(1 +

∑
s∈[ln+1]\{i} ∥xs∥22/dβ)

δ

) ≥ 1− δ

Proof. We can show this lemma easily by using Theorem 2 in Abbasi-Yadkori et al. (2011) with the
union bound for each θ̂(k) for k ∈ [ln + 1].
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From Lemma A.10, we can show that

P
(∣∣∣x⊤(θ̂(i) − θ)

∣∣∣ ≤√x⊤V (i)−1
x
(
σ
√
d log(n2 + n2lnL/dβ) +

√
Sβ
)
,∀x ∈ Rd,∀i ∈ [1, ln + 1]

)
≥ 1− 1/n.

We define an event

E1 =

{∣∣∣x⊤(θ̂(i) − θ)
∣∣∣ ≤√x⊤V (i)−1

x
(
σ
√
d log(n2 + n2lnL/dβ) +

√
Sβ
)
,∀x ∈ Rd,∀i ∈ [1, ln + 1]

}
.

We have P(E1) > 1− 1
n . Then under E1, for i ∈ [n] we have

Xi − ξi(xi) ≤ x⊤
i θ̂

(i) ≤ Xi + ξi(xi).

Let E2 = {
∑

t∈[1,ln+1]\{i} xtx
⊤
t ⪰ λ′ln

2 Id,∀i ∈ [ln + 1]}, which holds with probability at least

1− d(ln+1)

eλ′ln/8L from Lemma A.9. Then under E2, we have ∥V (i)−1∥2 ≤ ∥(
∑

t∈[ln+1]\{i} xtx
⊤
t )

−1∥2 ≤
2 1
λ′ln

. Then for i ≥ ln + 1, we have

ξi(xi) ≤
√
∥xi∥22∥V (i)−1∥2(σ

√
d log(n2 + n2lnL/dβ) +

√
Sβ)(= gi)

≤
√
L

2

λ′ln
(σ
√
d log(n2 + n3L/dβ) +

√
Sβ). (26)

Here we define h :=
√

L 2
λ′ln

(σ
√
d log(n2 + n3L/dβ) +

√
Sβ) and E := E1 ∪ E2.

Let zi ∼ Dx,i and α∗ = 1
2E
[
maxi∈[1,n] z

⊤
i θ
]
. Then at time ln + 1, by following the step in (21),

we have for i ∈ [ln + 1],

E[XLCB
τ 1(E) | τ = i, θ̂(i), {xs}s∈[ln+1]\{i}]P(τ = i | θ̂(i), V (i))

≥ E
[
(α∗ − 1

2
hi)1(E) | θ̂(i), {xs}s∈[ln+1]\{i}

]
P(τ = i | θ̂(i), V (i))

+

(
E

[(
Xi − α∗ − 5

2
hi

)
+

1(E) | θ̂(i), V (i)

])
P(τ = n+ 1 | θ̂(i), V (i)),

For ease of presentation, recall that we define θ̂(i) = θ̂(ln+1) for all i > ln + 1. Then we also have,
for i > ln + 1,

E[XLCB
τ 1(E) | τ = i, θ̂(i), V (i)]P(τ = i | θ̂(i), V (i))

≥ E
[
(α∗ − 1

2
h)1(E) | θ̂(i), V (i)

]
P(τ = i | θ̂(i), V (i))

+

(
E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | θ̂(i), V (i)

])
P(τ = n+ 1 | θ̂(i), V (i)),

Combining them all, by following the steps in (22), we obtain:

E[Xτ1(E)] ≥ α∗P(E)− 5

2
h.

Finally, using the above, we have

lim
n→∞

E[Xτ ]

E[maxi∈[ln+1,n] Xi]

≥ lim
n→∞

1

E[maxi∈[ln+1,n] Xi]

(
α∗P(E)− 5

2
h

)

≥ lim
n→∞

1

2

(
1− 1

n
− d(ln + 1)

eλ′ln/8L

)
−O

 1

E[maxi∈[ln+1,n] Xi]

√
Ld log(Ln)

λ′ln
(σ
√
d+
√
S)


=

1

2
−O

lim sup
n→∞

1

E[maxi∈[ln+1,n] Xi]

√
Ld(σ2d+ S) log(Ln)

λ′ln

 .
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Algorithm 4 Decide with Offline Samples and LCB Thresholding (DOS-LCBT)
Input: Offline samples (xo

t , y
o
t ) for t ∈ S; regularization parameter β

Output: Stopping time τ

37 V ←
∑ln

t=1 x
o
tx

o
t
⊤ + βId; θ̂ ← V −1

∑ln
t=1 y

o
t x

o
t

38 Compute α from (27)
39 for i = 1, . . . , n do
40 Observe (yi, xi)

41 Compute XLCB
i from (1)

42 if XLCB
i ≥ α then

43 Stop and set τ ← i

A.9 FURTHER DETAILS ON THE METHOD USING OFFLINE SAMPLES UNDER NON-I.I.D.
DISTRIBUTIONS

For any S ⊆ [n] such that |S| = ln for ln > 0 (specified later), we assume that the gambler receives
offline samples (xo

t , y
o
t ) where xo

t ∼ Dt for t ∈ S and yot = xo
t
⊤θ + ηt. In Algorithm 4, using this

offline samples, we obtain V =
∑ln

t=1 x
o
tx

o
t
⊤ + βId and θ̂ = V −1

∑ln
t=1 y

o
t x

o
t for constant β > 0.

Then we follow the following decision strategy.

Decision with LCB Threshold. For each time i ≥ 1, for zs ∼ Dx,s for all s ∈ [1, n], we define
the threshold:

α =
1

2
E
[
max
s∈[n]

z⊤s θ̂ | θ̂
]

(27)

Recall the lower confidence bound for Xi in the Explore-then-Deicide framework: XLCB
i = x⊤

i θ̂−
ξ(xi), where ξ(xi) :=

√
x⊤
i V

−1xi(σ
√

d log(n+ nlnL/dβ)+
√
Sβ). The algorithm stops at stage

i if XLCB
i ≥ α.

Theorem A.11. In the non-i.i.d. setting with unknown distributions and window access of size wn >
ln, Algorithm 4 with ln = o(n), ln = ω(L log d

λ′ ), and a constant λ > 0 achieves the following
asymptotic competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1

2
−O

 lim
n→∞

1

E[maxi∈[1,n] Xi]

√
L(σ2d+ S) log(Ln)

λ′ln

 .

Furthermore, by setting ln = L(σ2d+S)
λ f(n) log(Ln) for some function f(n) (e.g., f(n) =

Θ(logp n) for p > 0, or Θ(nq) for 0 < q < 1) satisfying ln = o(n), if OPT = ω(1/
√
f(n)),

then Algorithm 4 achieves the following asymptotic competitive ratio:

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ 1

2
.

Proof. From Lemma A.1, we can show that

P
(∣∣∣x⊤(θ̂ − θ)

∣∣∣ ≤ √x⊤V −1x
(
σ
√

d log(n+ nlnL/dβ) +
√
Sβ
)
,∀x ∈ Rd

)
≥ 1− 1/n.

We define an event E1 = {|x⊤(θ̂− θ)| ≤
√
x⊤V −1x(σ

√
d log(n+ nlnL/dβ)+

√
Sβ),∀x ∈ Rd},

which holds with P(E1) ≥ 1− 1
n . Then under E1, we have

Xi − ξ(xi) ≤ x⊤
i θ̂ ≤ Xi + ξ(xi). (28)

Lemma A.12. For any S ⊂ [n] with |S| = l for l > 0, let zt ∼ Dx,t for t ∈ S be independent
random vectors (not necessarily i.i.d.) satisfying Assumption 3.2. Then

Pr

(
1

l

∑
t∈S

ztz
⊤
t ⪰ λ′Id

)
≥ 1− d exp

(
−λ′l

8L

)
.
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Proof. Let µmin = λmin(E[
∑

t∈S ztz
⊤
t ]). By the matrix Chernoff bound (Theorem 5.1.1 in Tropp

et al. (2015)) for sums of independent PSD matrices with Assumption 3.2, for any δ ∈ [0, 1],

Pr

[
λmin

(∑
t∈S

ztz
⊤
t

)
≤ (1− δ)µmin

]
≤ d

(
e−δ

(1− δ) 1−δ

)µmin/L

≤ d exp

(
−δ2

2
· µmin

L

)
.

Choosing δ = 1
2 yields

Pr

[
λmin

(∑
t∈S

ztz
⊤
t

)
≤ µmin

2

]
≤ d exp

(
−µmin

8L

)
≤ d exp

(
− lλ′

8L

)
,

where the last inequality is obtained from Weyl’s eigenvalue inequalities. Equivalently, with proba-
bility at least 1− d exp(−λ′l/(8L)),∑

t∈S
ztz

⊤
t ⪰

µmin

2
Id ⪰

lλ′

2
Id,

which completes the proof.

Let E2 = {
∑

t∈S xo
tx

o
t
⊤ ⪰ λ′ln

2 Id}, which holds with probability at least 1 − d
eλ′ln/8L from

Lemma A.12. Then under E2, we have ∥V −1∥2 ≤ ∥(
∑

t∈S xo
tx

o
t
⊤)−1∥2 ≤ 2 1

λ′ln
. Then for i > ln,

we have

ξ(xi) ≤
√
∥xi∥22∥V −1∥2(σ

√
d log(n+ nlnL/dβ) +

√
Sβ)(:= gi)

≤
√

2L

λ′ln
(σ
√
d log(n+ nlnL/dβ) +

√
Sβ). (29)

Here we define h :=
√

2L
λ′ln

(σ
√
d log(n+ nlnL/dβ) +

√
Sβ). Let zi ∼ Dx,i and α∗ =

1
2E
[
maxi∈[n] z

⊤
i θ
]
. Then, from (28) and (29), we have

α∗ − 1

2
h ≤ α ≤ α∗ +

1

2
h. (30)

Let E := E1 ∪ E2 andHln = {θ̂, V }. Then for i ≥ 1, we have

E[XLCB
τ 1(E) | τ = i,Hln ]P(τ = i | Hln)

= E[α1(E) | Hln ]P(τ = i | Hln) + E[XLCB
i 1(E)− α1(E) | τ = i,Hln ]P(τ = i | Hln)

= E[α1(E) | Hln ]P(τ = i | Hln)

+ E[(XLCB
i − α)+1(E) | XLCB

i ≥ α,Hln ]P(XLCB
i ≥ α | Hln)

∏
j∈[i−1]

P(XLCB
j < αj |Hln)

≥ E[α1(E) | Hln ]P(τ = i | Hln) + E[(XLCB
i − α)+1(E) | Hln ]P(τ = n+ 1 | Hln)

≥ E[α1(E) | Hln ]P(τ = i | Hln)

+ E
[
(Xi − 2ξ(xi)− α)+ 1(E) | Hln

]
P(τ = n+ 1 | Hln)

≥ E
[
(α∗ − 1

2
h)1(E) | Hln

]
P(τ = i | Hln)

+

(
E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

])
P(τ = n+ 1 | Hln),

where the last inequality is obtained from (30) and ξ(xi) ≤ h.
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Using the above, we have

E[Xτ1(E) | Hln ]

≥
n∑

i=1

E
[
E[XLCB

τ 1(E) | τ = i,Hln ] · P(τ = i | Hln) | Hln

]
=

n∑
i=1

E
[
E[XLCB

i 1(E) | τ = i,Hln ] · P(τ = i | Hln) | Hln

]
≥

n∑
i=1

E

[
E
[
(α∗ − 1

2
h)1(E) | Hln

]
P(τ = i | Hln)

+

(
E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

])
P(τ = n+ 1 | Hln) | Hln

]

≥ E

[(
E [α∗

1(E) | Hln ]−
1

2
h

) n∑
i=1

P(τ = i | Hln)

+max
i∈[n]

E

[(
Xi − α∗ − 5

2
h

)
+

1(E) | Hln

]
P(τ = n+ 1 | Hln) | Hln

]

≥ E
[(

E [α∗
1(E) | Hln ]−

1

2
h

)
(1− P(τ = n+ 1 | Hln))

+

(
max
i∈[n]

E [Xi1(E) | Hln ]− E[α∗
1(E) | Hln ]−

5

2
h

)
P(τ = n+ 1 | Hln) | Hln

]
≥ E

[
(α∗P(E | Hln)−

1

2
h)(1− P(τ = n+ 1 | Hln))

+

(
max
i∈[n]

E[Xi]P(E | Hln)− α∗P(E | Hln)−
5

2
h

)
P(τ = n+ 1 | Hln) | Hln

]
≥ α∗P(E | Hln)−

5

2
h.

Finally, using the above, we have

lim
n→∞

E[Xτ ]

E[maxi∈[n] Xi]
≥ lim

n→∞

E[E[Xτ1(E)|Hln ]]

E[maxi∈[n] Xi]

≥ lim
n→∞

1

E[maxi∈[n] Xi]

(
α∗P(E)− 5

2
h

)

≥ lim
n→∞

1

2

(
1− 1

n
− d

eλ′ln/8L

)
−O

 1

E[maxi∈[n] Xi]

√
Ld log(Ln)

λ′ln
(σ
√
d+
√
S)


=

1

2
−O

lim sup
n→∞

1

E[maxi∈[n] Xi]

√
Ld(σ2d+ S) log(Ln)

λ′ln

 .
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