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Abstract. Sources of commonsense knowledge support applications in
natural language understanding, computer vision, and knowledge graphs.
Given their complementarity, their integration is desired. Yet, their dif-
ferent foci, modeling approaches, and sparse overlap make integration
difficult. In this paper, we consolidate commonsense knowledge by fol-
lowing five principles, which we apply to combine seven key sources into
a first integrated CommonSense Knowledge Graph (CSKG). We analyze
CSKG and its various text and graph embeddings, showing that CSKG
is well-connected and that its embeddings provide a useful entry point to
the graph. We demonstrate how CSKG can provide evidence for gener-
alizable downstream reasoning and for pre-training of language models.
CSKG and all its embeddings are made publicly available to support
further research on commonsense knowledge integration and reasoning.
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1 Introduction

Recent commonsense reasoning benchmarks [27,3] and neural advancements [17,16]
shed a new light on the longstanding task of capturing, representing, and rea-
soning over commonsense knowledge. While state-of-the-art language models
[8,17] capture linguistic patterns that allow them to perform well on common-
sense reasoning tasks after fine-tuning, their robustness and explainability could
benefit from integration with structured knowledge, as shown by KagNet [16]
and HyKAS [18]. Let us consider an example task question from the SWAG
dataset [38],1 which describes a woman that takes a sit at the piano:

Q: On stage, a woman takes a seat at the piano. She:
1. sits on a bench as her sister plays with the doll.
2. smiles with someone as the music plays.
3. is in the crowd, watching the dancers.
-> 4. nervously sets her fingers on the keys.

1The multiple-choice task of choosing an intuitive follow-up scene is customary
called question answering [19,38], despite the absence of a formal question.

https://doi.org/10.5281/zenodo.4331372
https://github.com/usc-isi-i2/cskg
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Answering this question requires knowledge that humans possess and apply,
but machines cannot distill directly in communication. Luckily, graphs of (com-
monsense) knowledge contain such knowledge. ConceptNet’s [29] triples state
that pianos have keys and are used to perform music, which supports the cor-
rect option and discourages answer 2. WordNet [21] states specifically, though
in natural language, that pianos are played by pressing keys. According to an
image description in Visual Genome, a person could play piano while sitting and
having their hands on the keyboard. In natural language, ATOMIC [26] indi-
cates that before a person plays piano, they need to sit at it, be on stage, and
reach for the keys. ATOMIC also lists strong feelings associated with playing
piano. FrameNet’s [1] frame of a performance contains two separate roles for the
performer and the audience, meaning that these two are distinct entities, which
can be seen as evidence against answer 3.

While these sources clearly provide complementary knowledge that can help
commonsense reasoning, their different foci, representation formats, and sparse
overlap makes integration difficult. Taxonomies, like WordNet , organize concep-
tual knowledge into a hierarchy of classes. An independent ontology, coupled with
rich instance-level knowledge, is provided by Wikidata [34], a structured counter-
part to Wikipedia. FrameNet, on the other hand, defines an orthogonal structure
of frames and roles; each of which can be filled with a WordNet/Wikidata class
or instance. Sources like ConceptNet or WebChild [31], provide more ‘episodic’
commonsense knowledge, whereas ATOMIC captures pre- and post-situations
for an event. Image description datasets, like Visual Genome [14], contain vi-
sual commonsense knowledge. While links between these sources exist (mostly
through WordNet synsets), the majority of their nodes and edges are disjoint.

In this paper, we propose an approach for integrating these (and more sources)
into a single Common Sense Knowledge Graph (CSKG). We suvey existing
sources of commonsense knowledge to understand their particularities and we
summarize the key challenges on the road to their integration (section 2). Next,
we devise five principles and a representation model for a consolidated CSKG
(section 3). We apply our approach to build the first version of CSKG, by com-
bining seven complementary, yet disjoint, sources. We compute several graph
and text embeddings to facilitate reasoning over the graph. In section 4, we ana-
lyze the content of the graph and the generated embeddings. We provide insights
into the utility of CSKG for downstream reasoning on commonsense Question
Answering (QA) tasks in section 5. In section 6 we reflect on the learned lessons
and list the next steps for CSKG. We conclude in section 7.

2 Problem statement

2.1 Sources of Common Sense Knowledge

Table 1 summarizes the content, creation method, size, external mappings, and
example resources for representative public commonsense sources: ConceptNet [29],
WebChild [31], ATOMIC [26], Wikidata [34], WordNet [21], Roget [13], Verb-
Net [28], FrameNet [1], Visual Genome [14], and ImageNet [7]. Primarily, we
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Table 1. Survey of existing sources of commonsense knowledge.

describes creation size mappings examples

Concept
Net

everyday ob-
jects, actions,
states, relations
(multilingual)

crowd-
sourcing

36 relations, 8M
nodes, 21M edges

WordNet,
DBpedia,
OpenCyc,
Wiktionary

/c/en/piano
/c/en/piano/n
/c/en/piano/n/wn
/r/relatedTo

Web
Child

everyday ob-
jects, actions,
states, relations

curated
automatic
extraction

4 relation groups, 2M
nodes, 18M edges

WordNet hasTaste
fasterThan

ATOMIC event pre/post-
conditions

crowd-
sourcing

9 relations, 300k
nodes, 877k edges

ConceptNet,
Cyc

wanted-to
impressed

Wikidata instances, con-
cepts, relations

crowd-
sourcing

1.2k relations, 75M
objects, 900M edges

various wd:Q1234 wdt:P31

WordNet words, concepts,
relations

manual 10 relations, 155k
words, 176k synsets

dog.n.01
hypernymy

Roget words, relations manual 2 relations, 72k
words, 1.4M edges

truncate
antonym

VerbNet verbs, rela-
tions

manual 273 top classes 23
roles, 5.3k senses

FrameNet,
WordNet

perform-v
performance-26.7-1

FrameNet frames, roles, re-
lations

manual 1.9k edges, 1.2k
frames, 12k roles,
13k lexical units

Activity
Change of leadership
New leader

Visual
Genome

image objects,
relations, at-
tributes

crowd-
sourcing

42k relations, 3.8M
nodes, 2.3M edges,
2.8M attributes

WordNet fire hydrant
white dog

ImageNet image objects crowd-
sourcing

14M images, 22k
synsets

WordNet dog.n.01

observe that the commonsense knowledge is spread over a number of sources
with different focus: commonsense knowledge graphs (e.g., ConceptNet), general-
domain knowledge graphs (e.g., Wikidata), lexical resources (e.g., WordNet,
FrameNet), taxonomies (e.g., Wikidata, WordNet), and visual datasets (e.g.,
Visual Genome) [11]. Therefore, these sources together cover a rich spectrum of
knowledge, ranging from everyday knowledge, through event-centric knowledge
and taxonomies, to visual knowledge. While the taxonomies have been created
manually by experts, most of the commonsense and visual sources have been
created by crowdsourcing or curated automatic extraction. Commonsense and
common knowledge graphs (KGs) tend to be relatively large, with millions of
nodes and edges; whereas the taxonomies and the lexical sources are notably
smaller. Despite the diverse nature of these sources, we note that many contain
mappings to WordNet, as well as a number of other sources. These mappings
might be incomplete, e.g., only a small portion of ATOMIC can be mapped to
ConceptNet. Nevertheless, these high-quality mappings provide an opening for
consolidation of commonsense knowledge, a goal we pursue in this paper.
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2.2 Challenges

Combining these sources in a single KG faces three key challenges:
1. The sources follow different knowledge modeling approaches. One such
difference concerns the relation set: there are very few relations in ConceptNet
and WordNet, but (tens of) thousands of them in Wikidata and Visual Genome.
Consolidation requires a global decision on how to model the relations. The gran-
ularity of knowledge is another factor of variance. While regular RDF triples fit
some sources (e.g., ConceptNet), representing entire frames (e.g., in FrameNet),
event conditions (e.g., in ATOMIC), or compositional image data (e.g., Visual
Genome) might benefit from a more open format. An ideal representation would
support the entire granularity spectrum.
2. As a number of these sources have been created to support natural language
applications, they often contain imprecise descriptions. Natural language
phrases are often the main node types in the provided knowledge sources, which
provides the benefit of easier access for natural language algorithms, but it intro-
duces ambiguity which might be undesired from a formal semantics perspective.
An ideal representation would harmonize various phrasings of a concept, while
retaining easy and efficient linguistic access to these concepts via their labels.
3. Although these sources contain links to existing ones, we observe sparse
overlap. As these external links are typically to WordNet, and vary in terms
of their version (3.0 or 3.1) or target (lemma or synset), the sources are still
disjoint and establishing (identity) connections is difficult. Bridging these gaps,
through optimally leveraging existing links, or extending them with additional
ones automatically, is a modeling and integration challenge.

2.3 Prior consolidation efforts

Prior efforts that combine pairs or small sets of (mostly lexical) commonsense
sources exist. A unidirectional manual mapping from VerbNet classes to Word-
Net and FrameNet is provided by the Unified Verb Index [33]. The Predicate
Matrix [6] has a full automatic mapping between lexical resources, including
FrameNet, WordNet, and VerbNet. PreMOn [5] formalizes these in RDF. In [20],
the authors produce partial mappings between WordNet and Wikipedia/DBpedia.
Zareian et al. [37] combine edges from Visual Genome, WordNet, and Concept-
Net to improve scene graph generation from an image. None of these efforts
aspires to build a consolidated KG of commonsense knowledge.

Most similar to our effort, BabelNet [22] integrates many sources, covers a
wide range of 284 languages, and primarily focuses on lexical and general-purpose
resources, like WordNet, VerbNet, and Wiktionary. While we share the goal of in-
tegrating valuable sources for downstream reasoning, and some of these sources
(e.g., WordNet) overlap with BabelNet, our ambition is to support common-
sense reasoning applications. For this reason, we focus on commonsense knowl-
edge graphs, like ConceptNet and ATOMIC, or even visual sources, like Visual
Genome, none of which are found in BabelNet.
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3 The Common Sense Knowledge Graph

3.1 Principles

Question answering and natural language inference tasks require knowledge from
heterogeneous sources (section 2). To enable their joint usage, the sources need
to be harmonized in a way that will allow straightforward access by linguistic
tools [18,16], easy splitting into arbitrary subsets, and computation of common
operations, like (graph and word) embeddings or KG paths. For this purpose,
we devise five principles for consolidatation of sources into a single commonsense
KG (CSKG), driven by pragmatic goals of simplicity, modularity, and utility:
P1. Embrace heterogeneity of nodes One should preserve the natural node
diversity inherent to the variety of sources considered, which entails blurring
the distinction between objects (such as those in Visual Genome or Wikidata),
classes (such as those in WordNet or ConceptNet), words (in Roget), actions (in
ATOMIC or ConceptNet), frames (in FrameNet), and states (as in ATOMIC). It
also allows formal nodes, describing unique objects, to co-exist with fuzzy nodes
describing ambiguous lexical expressions.
P2. Reuse edge types across resources To support reasoning algorithms
like KagNet [16], the set of edge types should be kept to minimum and reused
across resources wherever possible. For instance, the ConceptNet edge type
/r/LocatedNear could be reused to express spatial proximity in Visual Genome.
P3. Leverage external links The individual graphs are mostly disjoint ac-
cording to their formal knowledge. However, high-quality links may exist or may
be easily inferred, in order to connect these KGs and enable path finding. For
instance, while ConceptNet and Visual Genome do not have direct connections,
they can be partially aligned, as both have links to WordNet synsets.
P4. Generate high-quality probabilistic links Inclusion of additional prob-
abilistic links, either with off-the-shelf link prediction algorithms or with spe-
cialized algorithms (e.g., see section 3.3), would improve the connectedness of
CSKG and help path finding algorithms reason over it. Given the heterogeneity
of nodes (cf. P1), a ‘one-method-fits-all’ node resolution might not be suitable.
P5. Enable access to labels The CSKG format should support easy and
efficient natural language access. Labels and aliases associated with KG nodes
provide application-friendly and human-readable access to the CSKG, and can
help us unify descriptions of the same/similar concept across sources.

3.2 Representation

We model CSKG as a hyper-relational graph, describing edges in a tabular
KGTK [10] format. We opted for this representation rather than the traditional
RDF/OWL2 because it allows us to fulfill our goals (of simplicity and utility)
and follow our principles more directly, without compromising on the format. For
instance, natural language access (principle P5) to RDF/OWL2 nodes requires
graph traversal over its rdfs:label relations. Including both reliable and prob-
abilistic nodes (P3 and P4) would require a mechanism to easily indicate edge
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weights, which in RDF/OWL2 entails inclusion of blank nodes, and a number
of additional edges. Moreover, the simplicity of our tabular format allows us to
use standard off-the-shelf functionalities and mature tooling, like the pandas2

and graph-tool3 libraries in Python, or graph embedding tools like [15], which
have been conveniently wrapped by the KGTK [10] toolkit.4

The edges in CSKG are described by ten columns. Following KGTK, the
primary information about an edge consists of its id, node1, relation, and
node2. Next, we include four “lifted” edge columns, using KGTK’s abbreviated
way of representing triples about the primary elements, such as node1;label or
relation;label (label of node1 and of relation). Each edge is completed by
two qualifiers: source, which specifies the source(s) of the edge (e.g., “CN”
for ConceptNet), and sentence, containing the linguistic lexicalization of a
triple, if given by the original source. Auxiliary KGTK files can be added to
describe additional knowledge about some edges, such as their weight, through
the corresponding edge ids. We provide further documentation at: https://
cskg.readthedocs.io/.

3.3 Consolidation

Currently, CSKG integrates seven sources, selected based on their popularity
in existing QA work: a commonsense knowledge graph ConceptNet, a visual
commonsense source Visual Genome, a procedural source ATOMIC, a general-
domain source Wikidata, and three lexical sources, WordNet, Roget, and FrameNet.
Here, we briefly present our design decisions per source, the mappings that fa-
cilitate their integration, and further refinements on CSKG.

3.3.1 Individual sources We keep the original edges of ConceptNet 5.7
expressed with 47 relations in total. We also include the entire ATOMIC KG,
preserving the original nodes and its nine relations. To enhance lexical match-
ing between ATOMIC and other sources, we add normalized labels of its nodes,
e.g., adding a second label “accepts invitation” to the original one “personX ac-
cepts personY’s invitation”. We import four node types from FrameNet: frames,
frame elements (FEs), lexical units (LUs), and semantic types (STs), and we
reuse 5 categories of FrameNet edges: frame-frame (13 edge types), frame-FE (1
edge type), frame-LU (1 edge type), FE-ST (1 edge type), and ST-ST (3 edge
types). Following principle P2 on edge type reuse, we map these 19 edge types
to 9 relations in ConceptNet, e.g., is causative of is converted to /r/Causes.
Roget We include all synonyms and antonyms between words in Roget, by
reusing the ConceptNet relations /r/Synonym and /r/Antonym (P2). We rep-
resent Visual Genome as a KG, by representing its image objects as Word-
Net synsets (e.g., wn:shoe.n.01). We express relationships between objects via
ConceptNet’s /r/LocatedNear edge type. Object attributes are represented by

2https://pandas.pydata.org/
3https://graph-tool.skewed.de/
4CSKG can be transformed to RDF with kgtk generate-wikidata-triples.

https://cskg.readthedocs.io/
https://cskg.readthedocs.io/
https://pandas.pydata.org/
https://graph-tool.skewed.de/
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different edge types, conditioned on their part-of-speech: we reuse ConceptNet’s
/r/CapableOf for verbs, while we introduce a new relation mw:MayHaveProperty
for adjective attributes. We include the Wikidata-CS subset of Wikidata, ex-
tracted in [12]. Its 101k statements have been manually mapped to 15 Concept-
Net relations. We include four relations from WordNet v3.0 by mapping them
to three ConceptNet relations: hypernymy (using /r/IsA), part and member
holonymy (through /r/PartOf), and substance meronymy (with /r/MadeOf).

3.3.2 Mappings We perform node resolution by applying existing identity
mappings (P3) and generating probabilistic mappings automatically (P4). We in-
troduce a dedicated relation, mw:SameAs, to indicate identity between two nodes.
WordNet-WordNet The WordNet v3.1 identifiers in ConceptNet and the
WordNet v3.0 synsets from Visual Genome are aligned by leveraging ILI: the
WordNet InterLingual Index,5 which generates 117,097 mw:SameAs mappings.
WordNet-Wikidata We generate links between WordNet synsets and Wiki-
data nodes as follows. For each synset, we retrieve 50 candidate nodes from a
customized index of Wikidata. Then, we compute sentence embeddings of the
descriptions of the synset and each of the Wikidata candidates by using a pre-
trained XLNet model [36]. We create a mw:SameAs edge between the synset and
the Wikidata candidate with highest cosine similarity of their embeddings. Each
mapping is validated by one student. In total, 17 students took part in this vali-
dation. Out of the 112k edges produced by the algorithm, the manual validation
marked 57,145 as correct. We keep these in CSKG and discard the rest.
FrameNet-ConceptNet We link FrameNet nodes to ConceptNet in two ways.
FrameNet LUs are mapped to ConceptNet nodes through the Predicate Ma-
trix [6] with 3, 016 mw:SameAs edges. Then, we use 200k hand-labeled sentences
from the FrameNet corpus, each annotated with a target frame, a set of FEs,
and their associated words. We treat these words as LUs of the corresponding
FE, and ground them to ConceptNet with the rule-based method of [16].
Lexical matching We establish 74,259 mw:SameAs links between nodes in ATOMIC,
ConceptNet, and Roget by exact lexical match of their labels. We restrict this
matching to lexical nodes (e.g., /c/en/cat and not /c/en/cat/n/wn/animal).

3.3.3 Refinement We consolidate the seven sources and their interlinks as
follows. After transforming them to the representation described in the past two
sections, we concatenate them in a single graph. We deduplicate this graph and
append all mappings, resulting in CSKG*. Finally, we apply the mappings to
merge identical nodes (connected with mw:SameAs) and perform a final dedupli-
cation of the edges, resulting in our consolidated CSKG graph. The entire pro-
cedure of importing the individual sources and consolidating them into CSKG
is implemented with KGTK operations [10], and can be found on our GitHub.6

5https://github.com/globalwordnet/ili
6https://github.com/usc-isi-i2/cskg/blob/master/consolidation/create_

cskg.sh

https://github.com/globalwordnet/ili
https://github.com/usc-isi-i2/cskg/blob/master/consolidation/create_cskg.sh
https://github.com/usc-isi-i2/cskg/blob/master/consolidation/create_cskg.sh
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Fig. 1. Snippet of CSKG for the example task of section 1. CSKG combines: 1) lexical
nodes (piano, keys, music; in blue), 2) synsets like piano (artifact), seat (dramaturgy)
(in green), and 3) frames (fn:noise makers) and frame elements (fn:fe:use) (in pur-
ple). The link between piano and piano (artifact) is missing, but trivial to infer.

3.4 Embeddings

Embeddings provide a convenient entry point to KGs and enable reasoning on
both intrinsic and downstream tasks. For instance, many reasoning applications
(cf. [18,16]) of ConceptNet leverage their NumberBatch embeddings [29].Motivated
by these observations, we aspire to produce high-quality embeddings of the
CSKG graph. We experiment with two families of embedding algorithms. On
the one hand, we produce variants of popular graph embeddings: TransE [4],
DistMult [35], ComplEx [32], and RESCAL [24]. On the other hand, we pro-
duce various text (Transformer-based) embeddings based on BERT-large [8].
For BERT, we first create a sentence for each node, based on a template that
encompasses its neighborhood, which is then encoded with BERT’s sentence
transformer model. All embeddings are computed with the KGTK operations
graph-embeddings and text-embeddings. We analyze them in section 4.2.

The CSKG embeddings are publicly available at http://shorturl.at/pAGX8.

4 Analysis

Figure 1 shows a snippet of CSKG that corresponds to the task in section 1. Fol-
lowing P1, CSKG combines: 1) lexical nodes (piano, keys, music), 2) synsets like
piano (artifact), seat (dramaturgy) (in green), and 3) frames (fn:noise makers)
and frame elements (fn:fe:use). According to P2, we reuse edge types where
applicable: for instance, we use ConceptNet’s LocatedNear relation to formal-
ize Visual Genome’s proximity information between a woman and a piano. We
leverage external links to WordNet to consolidate synsets across sources (P3). We
generate further links (P4) to connect FrameNet frames and frame elements to
ConceptNet nodes, and to consolidate the representation of piano (artifact)
between Wikidata and WordNet. In the remainder of this section, we perform
qualitative analysis of CSKG and its embeddings.

http://shorturl.at/pAGX8
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Table 2. CSKG statistics. Abbreviations: CN=ConceptNet, VG=Visual Genome,
WN=WordNet, RG=Roget, WD=Wikidata, FN=FrameNet, AT=ATOMIC. Relation
numbers in brackets are before consolidating to ConceptNet.

AT CN FN RG VG WD WN CSKG* CSKG

#nodes 304,909 1,787,373 15,652 71,804 11,264 91,294 71,243 2,414,813 2,160,968
#edges 732,723 3,423,004 29,873 1,403,955 2,587,623 111,276 101,771 6,349,731 6,001,531
#relations 9 47 9 (23) 2 3 (42k) 3 15 (45) 59 58
avg degree 4.81 3.83 3.82 39.1 459.45 2.44 2.86 5.26 5.55
std degree 0.07 0.02 0.13 0.34 35.81 0.02 0.05 0.02 0.03

Table 3. Nodes with highest centrality score according to PageRank and HITS. Node
labels indicated in bold.

PageRank HITS hubs HITS authorities

/c/en/chromatic/a/wn /c/en/red /c/en/blue
/c/en/organic compound /c/en/yellow /c/en/red
/c/en/chemical compound/n /c/en/green /c/en/silver
/c/en/change/n/wn/artifact /c/en/silver /c/en/green
/c/en/natural science/n/wn/cognition /c/en/blue /c/en/gold

4.1 Statistics

Basic statistics of CSKG are shown in Table 2. In total, our mappings produce
251,517 mw:SameAs links and 45,659 fn:HasLexicalUnit links. After refinement,
i.e., removal of the duplicates and merging of the identical nodes, CSKG consists
of 2.2 million nodes and 6 million edges. In terms of edges, its largest subgraph
is ConceptNet (3.4 million), whereas ATOMIC comes second with 733 thousand
edges. These two graphs also contribute the largest number of nodes to CSKG.
The three most common relations in CSKG are: /r/RelatedTo (1.7 million),
/r/Synonym (1.2 million), and /r/Antonym (401 thousand edges).

Connectivity and centrality The mean degree of CSKG grows by 5.5%
(from 5.26 to 5.55) after merging identical nodes. Compared to ConceptNet,
its degree is 45% higher, due to its increased number of edges while keeping
the number of nodes nearly constant. The best connected subgraphs are Vi-
sual Genome and Roget. CSKG’s high connectivity is owed largely to these two
sources and our mappings, as the other five sources have degrees below that of
CSKG. The abnormally large node degrees and variance of Visual Genome are
due to its annotation guidelines that dictate all concept-to-concept information
to be annotated, and our modeling choice to represent its nodes through their
synsets. We report that the in-degree and out-degree distributions of CSKG have
Zipfian shapes, a notable difference being that the maximal in degree is nearly
double compared to its maximal out degree (11k vs 6.4k). To understand better
the central nodes in CSKG, we compute PageRank and HITS metrics. The top-5
results are shown in Table 3. We observe that the node with highest PageRank
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Table 4. Top-5 most similar nodes for /c/en/turtle/n/wn/animal (E1) and
/c/en/happy (E2) according to TransE and BERT.

TransE BERT

E1 /c/en/chelonian/n/wn/animal /c/en/glyptemys/n
/c/en/mud turtle/n/wn/animal /c/en/pelocomastes/n
/c/en/cooter/n/wn/animal /c/en/staurotypus/n
/c/en/common snapping turtle/n/wn/animal /c/en/parahydraspis/n
/c/en/sea turtle/n/wn/animal /c/en/trachemys/n

E2 /c/en/excited /c/en/bring happiness
/c/en/satisfied /c/en/new happiness
/c/en/smile mood at:like a party is a good way to ...
/c/en/pleased /c/en/encouraging person’s talent
/c/en/joyful at:happy that they went to the party

Fig. 2. UMAP visualization of 5,000 randomly sampled nodes from CSKG, represented
by TransE (left) and BERT (right) embeddings. Colors signify node sources.

has label “chromatic”, while all dominant HITS hubs and authorities are colors,
revealing that knowledge on colors of real-world object is common in CSKG.
PageRank also reveals that knowledge on natural and chemical processes is well-
represented in CSKG. Finally, we note that the top-centrality nodes are generally
described by multiple subgraphs, e.g., c/en/natural science/n/wn/cognition
is found in ConceptNet and WordNet, whereas the color nodes (e.g., /c/en/red)
are shared between Roget and ConceptNet.

4.2 Analysis of the CSKG embeddings

We randomly sample 5,000 nodes from CSKG and visualize their embeddings
computed with an algorithm from each family: TransE and BERT. The results
are shown in Figure 2. We observe that graph embeddings group nodes from the
same source together. This is because graph embeddings tend to focus on the
graph structure, and because most links in CSKG are still within sources. We
observe that the sources are more intertwined in the case of the BERT embed-
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dings, because of the emphasis on lexical over structural similarity. Moreover,
in both plots Roget is dispersed around the ConceptNet nodes, which is likely
due to its broad coverage of concepts, that maps both structurally and lexically
to ConceptNet. At the same time, while ATOMIC overlaps with a subset of
ConceptNet [26], the two sources mostly cover different areas of the space.

Table 4 shows the top-5 most similar neighbors for /c/en/turtle/n/wn/animal
and /c/en/happy according to TransE and BERT. We note that while graph em-
beddings favor nodes that are structurally similar (e.g., /c/en/turtle/n/wn/animal
and /c/en/chelonian/n/wn/animal are both animals in WordNet), text em-
beddings give much higher importance to lexical similarity of nodes or their
neighbors, even when the nodes are disconnected in CSKG (e.g., /c/en/happy
and at:happy that they went to the party). These results are expected con-
sidering the approach behind each algorithm.

Word association with embeddings To quantify the utility of different
embeddings, we evaluate them on the USF-FAN [23] benchmark, which con-
tains crowdsourced common sense associations for 5,019 “stimulus” concepts in
English. For instance, the associations provided for day are: night, light, sun,
time, week, and break. The associations are ordered descendingly based on their
frequency. With each algorithm, we produce a top-K most similar neighbors list
based on the embedding of the stimulus concept. Here, K is the number of asso-
ciations for a concept, which varies across stimuli. If CSKG has multiple nodes
for the stimulus label, we average their embeddings. For the graph embeddings,
we use logistic loss function, using a dot comparator, a learning rate of 0.1, and
dimension 100. The BERT text embeddings have dimension 1024, which is the
native dimension of this language model. As the text embedding models often
favor surface form similarity (e.g., associations like daily for day), we devise
variants of this method that excludes associations with Levenshtein similarity
higher than a threshold t.

We evaluate by comparing the embedding-based list to the benchmark one,
through customary ranking metrics, like Mean Average Precision (MAP) and
Normalized Discounted Cumulative Gain (NDCG). Our investigations show that
TransE is the best-performing algorithm overall, with MAP of 0.207 and NDCG
of 0.530. The optimal BERT variant uses threshold of t = 0.9, scoring with MAP
of 0.209 and NDCG of 0.268. The obtained MAP scores indicate that the embed-
dings capture relevant signals, yet, a principled solution to USF-FAN requires a
more sophisticated embedding search method that can capture various forms of
both relatedness and similarity. In the future, we aim to investigate embedding
techniques that integrate structural and content information like RDF2Vec [25],
and evaluate on popular word similarity datasets like WordSim-353 [9].

5 Applications

As the creation of CSKG is largely driven by downstream reasoning needs, we
now investigate its relevance for commonsense question answering: 1) we measure
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Table 5. Number of triples retrieved with ConceptNet and CSKG on different datasets.

train dev
#Questions ConceptNet CSKG #Questions ConceptNet CSKG

CSQA 9,741 78,729 125,552 1,221 9,758 15,662
SIQA 33,410 126,596 266,937 1,954 7,850 16,149
PIQA 16,113 18,549 59,684 1,838 2,170 6,840
aNLI 169,654 257,163 638,841 1,532 5,603 13,582

its ability to contribute novel evidence to support reasoning, and 2) we measure
its role in pre-training language models for zero-shot downstream reasoning.

5.1 Retrieving evidence from CSKG

We measure the relevance of CSKG for commonsense question answering tasks,
by comparing the number of retrieved triples that connect keywords in the ques-
tion and in the answers. For this purpose, we adapt the lexical grounding in
HyKAS [18] to retrieve triples from CSKG instead of its default knowledge
source, ConceptNet. We expect that CSKG can provide much more evidence
than ConceptNet, both in terms of number of triples and their diversity. We
experiment with four commonsense datasets: CommonSense QA (CSQA) [30],
Social IQA (SIQA) [27], Physical IQA (PIQA) [3], and abductive NLI (aNLI) [2].
As shown in Table 5, CSKG significantly increases the number of evidence triples
that connect terms in questions with terms in answers, in comparison to Concept-
Net. We note that the increase is on average 2-3 times, the expected exception
being CSQA, which was inferred from ConceptNet.

We inspect a sample of questions to gain insight into whether the addi-
tional triples are relevant and could benefit reasoning. For instance, let us con-
sider the CSQA question “Bob the lizard lives in a warm place with lots of
water. Where does he probably live?”, whose correct answer is “tropical rainfor-
est”. In addition to the ConceptNet triple /c/en/lizard /c/en/AtLocation
/c/en/tropical rainforest, CSKG provides two additional triples, stating
that tropical is an instance of place and that water may have property trop-
ical. The first additional edge stems from our mappings from FrameNet to Con-
ceptNet, whereas the second comes from Visual Genome. We note that, while
CSKG increases the coverage with respect to available commonsense knowledge,
it is also incomplete: in the above example, useful information such as warm
temperatures being typical for tropical rainforests is still absent.

5.2 Pre-training language models with CSKG

We have studied the role of various subsets of CSKG for downstream QA reason-
ing extensively in [19]. Here, CSKG or its subsets were transformed into artificial
commonsense question answering tasks. These tasks were then used instead of
training data to pre-train language models, like RoBERTa and GPT-2. Such
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Table 6. Zero-shot evaluation results with different combinations of models and knowl-
edge sources, across five commonsense tasks, as reported in [19]. CWWV combines Con-
ceptNet, Wikidata, WordNet, and Visual Genome. CSKG is a union of ATOMIC and CWWV.
We report mean accuracy over three runs, with 95% confidence interval.

Model KG aNLI CSQA PIQA SIQA WG

GPT2-L ATOMIC 59.2(±0.3) 48.0(±0.9) 67.5(±0.7) 53.5(±0.4) 54.7(±0.6)
GPT2-L CWWV 58.3(±0.4) 46.2(±1.0) 68.6(±0.7) 48.0(±0.7) 52.8(±0.9)
GPT2-L CSKG 59.0(±0.5) 48.6(±1.0) 68.6(±0.9) 53.3(±0.5) 54.1(±0.5)
RoBERTa-L ATOMIC 70.8(±1.2) 64.2(±0.7) 72.1(±0.5) 63.1(±1.5) 59.6(±0.3)
RoBERTa-L CWWV 70.0(±0.3) 67.9(±0.8) 72.0(±0.7) 54.8(±1.2) 59.4(±0.5)
RoBERTa-L CSKG 70.5(±0.2) 67.4(±0.8) 72.4(±0.4) 63.2(±0.7) 60.9(±0.8)

Human - 91.4 88.9 94.9 86.9 94.1

a CSKG-based per-trained language model was then ‘frozen’ and evaluated in
a zero-shot manner across a wide variety of commonsense tasks, ranging from
question answering through pronoun resolution and natural language inference.

We select key results from these experiments in Table 6. The results demon-
strate that no single knowledge source suffices for all benchmarks and that using
CSKG is overall beneficial compared to using its subgraphs, thus directly showing
the benefit of commonsense knowledge consolidation. In a follow-up study [11],
we further exploit the consolidation in CSKG to pre-train the language models
with one dimension (knowledge type) at a time, noting that certain dimensions
of knowledge (e.g., temporal knowledge) are much more useful for reasoning than
others, like lexical knowledge. In both cases, the kind of knowledge that bene-
fits each task is ultimately conditioned on the alignment between this knowledge
and the targeted task, indicating that subsequent work should further investigate
how to dynamically align knowledge with the task at hand.

6 Discussion

Our analysis in section 4 revealed that the connectivity in CSKG is higher
than merely concatenation of the individual sources, due to our mappings across
sources and the merge of identical nodes. Its KGTK format allowed us to seam-
lessly compute and evaluate a series of embeddings, observing that TransE and
BERT with additional filtering are the two best-performing and complementary
algorithms. The novel evidence brought by CSKG on downstream QA tasks (sec-
tion 5) is a signal that can be exploited by reasoning systems to enhance their
performance and robustness, as shown in [19]. Yet, the quest to a rich, high-
coverage CSKG is far from completed. We briefly discuss two key challenges,
while broader discussion can be found in [11].

Node resolution As large part of CSKG consists of lexical nodes, it suf-
fers from the standard challenges of linguistic ambiguity and variance. For in-
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stance, there are 18 nodes in CSKG that have the label ‘scene’, which includes
WordNet or OpenCyc synsets, Wikidata Qnodes, frame elements, and a lexical
node. Variance is another challenge, as /c/en/caffeine, /c/en/caffine, and
/c/en/the active ingredient caffeine are all separate nodes in ConceptNet
(and in CSKG). We are currently investigating techniques for node resolution
applicable to the heterogeneity of commonsense knowledge in CSKG.

Semantic enrichment We have normalized the edge types across sources to
a single, ConceptNet-centric, set of 58 relations. In [11], we classify all CSKG’s
relations into 13 dimensions, enabling us to consolidate the edge types further.
At the same time, some of these relations hide fine-grained distinctions, for exam-
ple, WebChild [31] defines 19 specific property relations, including temperature,
shape, and color, all of which correspond to ConceptNet’s /r/HasProperty. A
novel future direction is to produce hierarchy for each of the relations, and re-
fine existing triples by using a more specific relation (e.g., use the predicate
‘temperature’ instead of ‘property’ when the object of the triple is ‘cold’).

7 Conclusions and Future Work

While current commonsense knowledge sources contain complementary knowl-
edge that would be beneficial as a whole for downstream tasks, such usage is
prevented by different modeling approaches, foci, and sparsity of available map-
pings. Optimizing for simplicity, modularity, and utility, we proposed a hyper-
relational graph representation that describes many nodes with a few edge types,
maximizes the high-quality links across subgraphs, and enables natural language
access. We applied this representation approach to consolidate a commonsense
knowledge graph (CSKG) from seven very diverse and disjoint sources: a text-
based commonsense knowledge graph ConceptNet, a general-purpose taxonomy
Wikidata, an image description dataset Visual Genome, a procedural knowledge
source ATOMIC, and three lexical sources: WordNet, Roget, and FrameNet.
CSKG describes 2.2 million nodes with 6 million statements. Our analysis showed
that CSKG is a well-connected graph and more than ‘a simple sum of its parts’.
Together with CSKG, we also publicly release a series of graph and text embed-
dings of the CSKG nodes, to facilitate future usage of the graph. Our analysis
showed that graph and text embeddings of CSKG have complementary notions
of similarity, as the former focus on structural patterns, while the latter on lex-
ical features of the node’s label and of its neighborhood. Applying CSKG on
downstream commonsense reasoning tasks, like QA, showed an increased recall
as well as an advantage when pre-training a language model to reason across
datasets in a zero-shot fashion. Key standing challenges for CSKG include se-
mantic consolidation of its nodes and refinement of its property hierarchy. Note-
books for analyzing these resources can be found on our public GitHub page:
https://github.com/usc-isi-i2/cskg/tree/master/ESWC2021.

https://github.com/usc-isi-i2/cskg/tree/master/ESWC2021


CSKG: The CommonSense Knowledge Graph 15

Acknowledgements

This work is sponsored by the DARPA MCS program under Contract No.
N660011924033 with the United States Office Of Naval Research, and by the
Air Force Research Laboratory under agreement number FA8750-20-2-10002.

References

1. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Pro-
ceedings of the 17th international conference on Computational linguistics (1998)

2. Bhagavatula, C., Bras, R.L., Malaviya, C., Sakaguchi, K., Holtzman, A., Rashkin,
H., Downey, D., Yih, S.W.t., Choi, Y.: Abductive commonsense reasoning. arXiv
preprint arXiv:1908.05739 (2019)

3. Bisk, Y., Zellers, R., Bras, R.L., Gao, J., Choi, Y.: Piqa: Reasoning about physical
commonsense in natural language. arXiv preprint arXiv:1911.11641 (2019)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. Advances in neural information
processing systems 26, 2787–2795 (2013)

5. Corcoglioniti, F., Rospocher, M., Aprosio, A.P., Tonelli, S.: Premon: a lemon exten-
sion for exposing predicate models as linked data. In: Proceedings of the Tenth In-
ternational Conference on Language Resources and Evaluation (LREC’16) (2016)

6. De Lacalle, M.L., Laparra, E., Aldabe, I., Rigau, G.: Predicate matrix: automat-
ically extending the semantic interoperability between predicate resources. Lan-
guage Resources and Evaluation 50(2), 263–289 (2016)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

9. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. In: Proceedings of
the 10th international conference on World Wide Web. pp. 406–414 (2001)

10. Ilievski, F., Garijo, D., Chalupsky, H., Divvala, N.T., Yao, Y., Rogers, C., Li, R.,
Liu, J., Singh, A., Schwabe, D., Szekely, P.: Kgtk: A toolkit for large knowledge
graph manipulation and analysis. ISWC (2020)

11. Ilievski, F., Oltramari, A., Ma, K., Zhang, B., McGuinness, D.L., Szekely, P.: Di-
mensions of commonsense knowledge. arXiv preprint arXiv:2101.04640 (2021)

12. Ilievski, F., Szekely, P., Schwabe, D.: Commonsense knowledge in wikidata. Pro-
ceedings of the Wikidata workshop, ISWC (2020)

13. Kipfer, B.: Roget’s 21st century thesaurus in dictionary form (éd. 3). (2005)
14. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,

Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International Journal of
Computer Vision 123(1), 32–73 (2017)

15. Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A., Peysakhovich,
A.: Pytorch-biggraph: A large-scale graph embedding system. arXiv preprint
arXiv:1903.12287 (2019)



16 Filip Ilievski, Pedro Szekely, and Bin Zhang

16. Lin, B.Y., Chen, X., Chen, J., Ren, X.: Kagnet: Knowledge-aware graph networks
for commonsense reasoning. arXiv preprint arXiv:1909.02151 (2019)

17. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692 (2019)

18. Ma, K., Francis, J., Lu, Q., Nyberg, E., Oltramari, A.: Towards generalizable neuro-
symbolic systems for commonsense question answering. EMNLP-COIN (2019)

19. Ma, K., Ilievski, F., Francis, J., Bisk, Y., Nyberg, E., Oltramari, A.: Knowledge-
driven Data Construction for Zero-shot Evaluation in Commonsense Question An-
swering. In: 35th AAAI Conference on Artificial Intelligence (2021)

20. McCrae, J.P.: Mapping wordnet instances to wikipedia. In: Proceedings of the 9th
Global WordNet Conference (GWC 2018). pp. 62–69 (2018)

21. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

22. Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual semantic
network. In: Proceedings of ACL (2010)

23. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The university of south florida free
association, rhyme, and word fragment norms. Behavior Research Methods, In-
struments, & Computers 36(3), 402–407 (2004)

24. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: Icml. vol. 11, pp. 809–816 (2011)

25. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In:
International Semantic Web Conference. pp. 498–514. Springer (2016)

26. Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H., Roof,
B., Smith, N.A., Choi, Y.: Atomic: An atlas of machine commonsense for if-then
reasoning. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

27. Sap, M., Rashkin, H., Chen, D., LeBras, R., Choi, Y.: Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728 (2019)

28. Schuler, K.K.: Verbnet: A broad-coverage, comprehensive verb lexicon (2005)
29. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: An open multilingual graph of gen-

eral knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
30. Talmor, A., Herzig, J., Lourie, N., Berant, J.: Commonsenseqa: A question answer-

ing challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937
(2018)

31. Tandon, N., De Melo, G., Weikum, G.: Webchild 2.0: Fine-grained commonsense
knowledge distillation. In: ACL 2017, System Demonstrations (2017)

32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
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