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Abstract

Shape priors have long been known to be effective
when reconstructing 3D shapes from noisy or in-
complete data. When using a deep-learning based
shape representation, this often involves learning
a latent representation, which can be either in the
form of a single global vector or of multiple local
ones. The latter allows more flexibility but is prone
to overfitting. In this paper, we advocate a hybrid
approach representing shapes in terms of 3D meshes
with a separate latent vector at each vertex. During
training the latent vectors are constrained to have
the same value, which avoids overfitting. For infer-
ence, the latent vectors are updated independently
while imposing spatial regularization constraints.
We show that this gives us both flexibility and gen-
eralization capabilities, which we demonstrate on
several medical image processing tasks.

1 Introduction

3D shape reconstruction from noisy or incomplete
data often benefits from shape priors. With deep-
learning, this usually means searching for an ap-
propriate latent representation under regularization
losses. This representation can be a single global
latent vector per shape or a grid of latent vectors.

In both cases, balancing the quality of fit against
regularization strength is challenging. Too much
regularization results in overly smooth shapes. Too
little damages robustness and generalization. Our in-
sight is to use multiple latent vectors but impose the
regularity constraints on the latent vectors instead
of the surface. This is effective because, if a latent
vector models a sharp feature, requiring that this
vector be similar to its neighbors will not detract
from that. To this end, we represent surfaces as tri-
angulated meshes and advocate using separate latent
vectors at each vertex. We then impose smoothness
on the latent vectors by using regularization ideas
from early 3D shape modelling [1-3].

More specifically, during training, we use an
auto-decoding approach [4] to jointly learn network
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Figure 1. DALS overview. (top) We use an auto-
decoding approach to learn a latent space of shapes from
a training set. (bottom left) Each training shape is
associated with a single latent vector z that encodes a
translation for each vertex of sphere to minimize the
distance to the training shape. (bottom right) During
inference, the latent vectors z1, z2, . . . , Zn at each sphere
vertex can change independently to minimize a weighted
sum of a data loss function and a regularization term that
enforces similarity between neighboring latent vectors.

weights and a single latent vector for all vertices of
each training sample. At inference time, we then
allow the latent vectors to be different at each ver-
tex while enforcing consistency of the vectors via
a regularization loss during fitting. Our Deep Ac-
tive Latent Surfaces (DALS) approach, illustrated
in fig. 1, is both easy to train from relatively small
datasets and very expressive. By learning a single
latent vector per shape, we do not require huge train-
ing sets. At model fitting time, we can smoothly
blend latent vectors to model complex shapes with
sharp features. Finally, using a triangulated mesh
instead of a latent vector grid makes our model more
compact and simpler to train because it does not
have to waste capacity on modeling empty regions.

2 Related Work

Active Surface Models Active contour models
refine contours according to local image properties
while remaining smooth. They were first introduced
in [1] for interactive delineation and then extended
for many different purposes [5]. Active surface mod-
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els [2, 3] replace contours by triangulated meshes to
instead model 3D surfaces. They have proved very
successful for, e.g., medical [6, 7] and cartographic
applications [8], and are still being improved [9-
11]. Recently, Deep Neural Networks (DNNs) have
been used to evaluate the energy that active con-
tours minimize [12, 13] and to directly predict vertex
offsets [14-16]. In [17], active surface models are
embedded in special purpose network layers that reg-
ularize surface meshes using the same semi-implicit
scheme as the original active contours [1].
Balancing data and regularization terms to avoid
over-smoothing while being robust to noise remains
a challenge. In [15] smoothing is added as a training
loss but not during inference. In [17], smoothing is
made adaptive to allow sharp edges. Finally, [18]
replaces smoothing with preconditioned gradient de-
scent of the external energy. In all these approaches,
the regularization tends to flatten sharp geometric
features, i.e., over-smooth. In our work, we side step
these issues by only smoothing in the latent space.

Neural Shape Modeling Deep-learning is now
routinely used to model 3D shapes, via models that
transform latent vectors into a target shapes param-
eterized in terms of, e.g., triangulated meshes [19-
22], tetrahedral meshes [23, 24], surface patches [25],
point clouds [26, 27], voxel grids [28, 29], occupancy
functions [30-32], signed and unsigned distance fields
[33, 34], or neural splines [35].

Methods may represent a shape with one or several
latent vectors. Those that use one obtain the latent
vector for a shape with an encoder [30, 36] or by
directly optimizing a latent vector [4, 19, 34, 36, 37].
While effective, accurately representing fine details is
difficult. Instead, the methods of [32, 33, 38, 39] use
a grid of latent vectors and a shared decoder, which
greatly increases the model flexibility. However, this
wastes latent vectors on representing empty space—
increasing memory use and training time. Sparse
grids [40, 41] or multiscale tree structures [42, 43]
mitigate this but complicate training. Spatial hash
encoding [44] implicitly allocates more capacity to
surface regions, but is not designed to model multiple
surfaces. Our work also relies on multiple latent
vectors. However, we store the latent vectors at the
vertices of a triangle mesh instead of a spatial grid.
This grants us high flexibility but avoids unnecessary
latent vectors and a complex training pipeline.

3 Deep Active Latent Surfaces

We now describe our Deep Active Latent Surface
(DALS) approach, illustrated in fig. 1. We represent
watertight 3D shapes by triangulated spheres with
a latent vector at each vertex. Each, latent vector
along with the vertex coordinate, is fed to a decoder
Dy that generates an offset vector that translates

the vertex to its final position. After translating all
vertices, we have the final shape (see top right of
fig. 1). During training, all vertices use the same
latent vector. During model fitting, we allow the
vectors to be different but impose spatial consistency.
This still allows modeling sharp features because
these can be predicted by individual latent vectors.

3.1 Training Scheme

Formally, let Dg be a neural network with weights
© that takes as input alatent vector z € R? and
a spatial location x € R3® and returns an offset
Do(z,x) € R3. Given a triangulated sphere with
V vertices and F facets, we denote by My(z) the
deformed mesh we obtain by translating each vertex
X, by De(z,%,) for all v between 1 and V.

Assume we are given a set of N training shapes
S ={S51,...,Sn}. Asin [4], we can simultaneously
learn © and a z; for each S; by looking for

N
©*,z],...,zy = argmin Zﬁdat(@,zi78i), (1)

0,z1,...,ZN i—1
‘Cdat(@a Z7 Sl) = LCf(MG(Z)a Sl) +
AregLireg(Mo(2)) + Az ]* |

(2)

where L¢ is the Chamfer distance [45], Lyeg is a
shape regularization term, and A,z and A, are
weighting constants.

In practice, we take Dg to be an MLP with three
hidden layers of size 724, 724, and 362, with ReLU
activations for the hidden layers and none for the
last layer. Before each ReLU activation we use layer
normalization [46]. The input is a concatenation
of x and z. Our initial spherical triangulation is a
subdivided icosahedron. We use a pointwise MLP
because we want to learn a general mapping from
the surface of a sphere conditioned on a latent vector
as this allows us to increase the mesh resolution at
inference time. To this end, we also randomly rotate
the template during training.

The Ly term in Eq. 2 is intended to encourage
the generation of high quality meshes. Experimen-
tally, we found that using the Laplacian did not allow
us to generate high quality meshes without losing
too many details in the reconstructions. Instead, as
in [47], we use

where F stands for the mesh facets, as,bs,cy for
the lengths of the three edges of facet f, and Ay
for its area. L;oz promotes regular triangles without
directly penalizing high frequency features [48], as
illustrated by fig. 2.
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Figure 2. Behavior of L;c;. Minimizing L., leaves
regular meshes (left) unchanged, despite sharp creases.
However, for low quality meshes (right), it increases the
regularity of the triangles and smoothes isolated outliers.

3.2 Fitting Scheme

Let D = Dg+ be the network we trained in Sec-
tion 3.1 and let Z € RV*? whose V rows are la-
tent vectors, one for each vertex of our triangulated
sphere. We now denote by M(Z) the mesh we ob-
tain by shifting each vertex x, by D(Z[v]). In other
words, we now assign to each vertex a different la-
tent vector and use it to compute the corresponding
translation from the initial sphere to where it should
be. Our goal is now to find Z such that the predicted
shape M(Z) solves a given downstream task, e.g.,
fitting a point cloud. Formally, we look for

Z* = arg min L, (M(Z)) +
z
Areg Lreg(M(Z)) + Adir Lair (Z)

where Liask is a task-specific loss function, Lieg is
the geometric regularization loss of Eq. 3, Lgi; is a
regularization term designed to enforce consistency
of the latent vectors across the surface, and Ayeg
and A are weighting constants. As an example,
to reconstruct a shape from a pointcloud (as in sec.
section 4.1), one may take L, to be the Chamfer
distance. However, Li,sx may be any differentiable
loss function. We give additional examples of Lisk
for our experiments in Section 4.

Inspired by active surfaces [1-3, 17], we use Dirich-
let energy [18, 49] to define Lg;;. We write

Lair(Z) = Tr(Z27LPZ) (5)

where L is the uniform Laplacian matrix and p is an
integer power. As VLg;:(Z) = LPZ, a gradient step
corresponds to p iterations of Laplacian smoothing
of the latent vectors. We found p = 2 to work well.

We study the sensitivity of Areg and Agir in ap-
pendix C.5 and found Aq;; to have the largest effect
on fitting results. Weight Aq;; controls how con-
strained the fitting is by the prior information mod-
eled by the latent space. When Aq;; — o0, all latent
vectors will be equal and our approach reverts to a
single latent vector approachs. For small values of
Adir, the model becomes more flexible as the values
of the latent vectors can more easily change from
vertex to vertex.

In practice, we solve the minimization problem
in (4) by initializing each row of Z to mean of all

training latent vectors. Specifically, Z; = (z] + z5 +
-+ 4 2z%)/N where z} are the latent vectors found
in eq. (1). We then iteratively update the latent
vectors using the Adam optimizer.

4 Experiments

We demonstrate the benefits of DALS on several
medical image processing tasks. We train all mod-
els to learn a latent representation of livers and
spleens using data from the Medical Segmentation
Decathlon [50]. To create ground-truth meshes, we
resampled the annotated images so that their voxel
size is 1x1x1 mm and used marching cubes [51] to
extract isosurfaces. We standardize the surfaces to
have zero mean and be contained in the unit sphere.
The datasets contains 111 livers and 41 spleens.
We use the first 71 livers for training and hold out
the last 40 for evaluation. We also train another
model on the first 31 spleens with the last 10 held out
for evaluation. We augment the training data using
the PointWOLF algorithm [52] to create 100 new
shapes for each training shape. PointWOLF applies
a smoothly varying non-rigid transformation to mesh
vertices yielding diverse and realistic augmentations.
We use 128 dimensional latent vectors and an
icosahedron subdivided 3 times for training and 4
times for fitting as a template for the decoder. To
learn these vectors and the decoder weights we solve
the minimization problem of Eq. 1 with Ajeg = 1074
and A\, = 1072, We use the ADAM optimizer [53],
with learning rate 0.002, momentum terms to 8; =
0.9, 82 = 0.999 and train for 24 hours on a single
NVIDIA Tesla V100 GPU (ca. 7,500 epochs). If
the loss does not improve for 100 epochs we half the
learning rate, down to a minimum of 107°.

Baselines We compare our model against the fol-
lowing baselines: DeepSDF [4], SIREN+DeepSDF
where training and inference are as in DeepSDF but
with a STREN [54] based decoder, and the DUAL-
MLP approach of [39]. These are all auto-decoder
based which foregoes the need to train separate
encoders for each experiment. We also compare
to DASM, the active surfaces of [17], along with
an improved version that we dub DASM+R which
adds a re-meshing step during fitting to avoid self-
intersections. DASM and DASM+R do not rely on a
learned shape prior and simply promote smoothness.

As the DUAL-MLP authors did not release code,
we implemented two separate versions of it, one that
uses one single latent vector per shape (global) and
one that uses several (local). All these methods were
trained as recommended in the relevant papers.

Beyond the experiments listed below, we also per-
form ablation experiments and analyze parameter
sensitivity in appendix C.
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(a) Ground truth. (b) DeepSDF.

(e) DASM+R.

(f) DUAL-MLP (global).

(d) DASM.

(¢) SIREN+DeepSDEF.

(g) DUAL-MLP

(local). (h) DALS (Ours).

Figure 3. Reconstruction of a previously unseen liver from 2500 3D points. For each method, we present
the full 3D volume and a version of it cut in the middle. The red outline denotes the ground-truth section and the
black one that of the reconstructed organ. Only ours is smooth while still following closely the ground-truth one.

Table 1. Quantitative results for reconstructing unseen livers from unoriented points. For each metric
we report the mean and standard deviation over the reconstructed shapes. DALS concistently produces better
reconstructions while still having very good mesh quality. Chamfer distances are multiplied with 10 000.

Chamferx10k |  Hausdorff] FQ1%t F@2%1t Qualityt %self. ints.)
DeepSDF [4] 40.7 £23.7 0.21+0.06 31.3+13.0 63.8+15.6 0.98 £ 0.00 0.00 + 0.00
SIREN+ DeepSDF [4, 54] 36.2+34.1 0.204+£0.04 51.4+£8.68 78.44+9.27 0.98 +0.00 0.00 + 0.00
DASM [17] 17.04+£10.0 0.23+£0.50 87.74+3.25 929+2.57 0.744+0.03 7.40+£4.57
DASM+R [17] 88+ 753 0.19+0.07 94.6 +£2.57 96.8+1.97 0.98 £ 0.00 0.00 + 0.00
DUAL-MLP (global) [39] 13.6 £5.67 0.16 £0.05 71.7+6.39 91.4+3.48 0.98 £ 0.00 0.00 + 0.00
DUAL-MLP (local) [39] 161.7 £39.6 0.434+0.04 44.5+4.05 62.1+4.08 0.98 + 0.00 0.00 + 0.00
DALS (Ours) 2.44+1.04 0.11 +0.04 95.4 + 2.06 99.0 £ 0.76 0.98 + 0.00 0.20 £+ 0.40
4.1 Shape Reconstruction from 3D Results. We report comparative results in ta-

Point Clouds

Experimental Setup. We test the ability of the
latent vector models to reconstruct unknown shapes
from a given class, here the liver and the spleen,
by randomly and uniformly sampling 2,500 points
across the test surface and attempting to reconstruct
from them by minimizing the loss of Eq. 4. For
DALS, DASM, and DASM+R that use a mesh-based
representation, we take L, to be the Chamfer
distance. For the other methods, we take it to be
the mean absolute SDF value at the sample points.
For all methods, we use the ADAM optimizer to
minimize their fitting losses. We set Ao = 0.001
and Agi; = 0.2. Finally, for DASM~+R and DALS
we post process the results using five iterations of
Botsch-Kobbelt remeshing [55].

To evaluate the reconstructions, we use the Cham-
fer distance, the Hausdorff distance, and the F-score
[56, 57] at 1% and 2% of the surface’s bounding
sphere diameter. We also evaluate the mesh quality
of the reconstructions using the quality measure of
Eq. 3 and the percentage of self-intersecting faces.

ble 1. DALS consistently outperforms the other
approaches, in part because it can model sharp fea-
tures more accurately, as can be seen in the quali-
tative results of fig. 3. Note especially the left side
point and the concavity in the lower middle part of
the liver. DALS also produces excellent mesh qual-
ity and keeps the number of intersecting triangles
very low although not zero.

We repeated the experiment on much simpler and
smoother spleen shapes. The data are again from
the Medical Segmentation Decathlon [50] prepared
the same way as the liver data. We focused on DALS
and DASM+R since they delivered the best results
on the liver. As can be seen in table 3 and fig. 5
DASM+R delivers very slightly better metrics but a
qualitatively worse reconstruction because it overfits
to the staircase artifacts on the ground-truth shape.
In contrast, DALS yields an organic shape that still
fits the data well which can be viewed as a more
realistic result. This effect also exists in the liver
dataset but did not significantly affect the metrics
as the original images were of higher resolution.



(a) Ground truth. (b) DeepSDF.

(e) Annotations. (f) DUAL-MLP (global).

(¢) SIREN+DeepSDF. (d) DASM+R.

(g) DUAL-MLP (local).

(h) DALS (Ours).

Figure 4. Reconstruction of a previously unseen liver from outlines in three different planes. The
outlines are shown in (e). Again, our reconstruction is smooth while matching the outlines very accurately.

Table 2. Quantitative results for reconstructing unseen livers from planar curve annotations. For
each metric (w.r.t. full ground truth) we report the mean and standard deviation over the reconstructed shapes.
DALS outperforms the baselines while retaining great mesh quality. Chamfer distances are multiplied with 1000.

Chamferx1k] Hausdorff] FQ1%t F@2%t QualityT %self. ints.|
DeepSDF' [4] 4.36 +£2.35 0.22+0.06 41.54+12.1 69.5+12.2 0.98 + 0.00 0.00 + 0.00
SIREN+DeepSDF [4, 54] 3.82+2.24 0.21 £0.05 47.0+7.67 74.4+8.25 0.98 + 0.00 0.00 + 0.00
DASM+R [17] 2741 +791 047+0.09 14.8+5.99 29.5+9.99 0.98 +0.00 0.02+0.07
DUAL-MLP (global) [39] 4.05+1.58 0.23+0.05 499+4+6.17 74.4+6.08 0.98 + 0.00 0.00 + 0.00
DUAL-MLP (local) [39] 1555 +4.53 0.39+£0.05 28.3+287 48.3+4.20 0.98 + 0.00 0.00 £+ 0.00
DALS (Ours) 3.27 +1.48 0.21 +£0.05 52.1 +6.56 77.2 +6.87 0.99 + 0.00 0.00 + 0.00

Table 3. Quantitative results for reconstructing
unseen spleens. Metrics are reported as in Tab. 1.

DASM+R [17) DALS (Ours)

Chamfer x 10k, 1.6 + 0.05 2.5+ 0.89
Hausdorff] 0.05 + 0.02 0.06 + 0.01
FQ1%1 97.8 £ 1.75 929+ 2.73
Fa2%7t 100 +£0.05 99.9+0.11
Qualityt 0.98 +£ 0.00 0.98 + 0.00
%self. ints.| 0.00 + 0.00 0.00 + 0.00

4.2 Shape Reconstruction from Pla-
nar Curve Annotations

Experimental Setup. When annotating medical
images, a common time-saving practice is to only
annotate three orthogonal 2D slices instead of the
entire 3D image. We test the ability of our model to
reconstruct shapes from such weak annotations by
fitting to the 2D planar boundary curves extracted
from the 2D slice annotations. We randomly sample
5000 points from the intersection curves between
each held out liver and three orthogonal axis-aligned
planes. As shown in fig. 4(e), this results in a very
sparse point set, making the quality of the embedded
shape priors key to obtaining good results.

For DALS, DASM, and DASM+R we take Lyaqx

(a) DASM+R.

(b) DALS (Ours).

Figure 5. Reconstruction of previously unseen
spleens from 2500 3D points. The inset shows the
ground truth in red.

to be a modified Chamfer distance that relies on dis-
tances within the annotation planes (see appendix A
for details). For the other methods, we again use
the mean absolute SDF value to compute Lyagk.
We again use the ADAM optimizer and Botsch-
Kobbelt remeshing as in the previous section. We
set Areg = 0.01 and Ag;; = 100 as we want to rely
heavily on the shape prior in this task.

Results. We report comparative results in table 2
and qualitative results in fig. 4. To generate these
results, we only used annotations in the three orthog-
onal axis-aligned planes. DALS results are consis-
tently better while retaining excellent mesh quality.



Table 4. Quantitative results for segmentation refinement.

For each metric we report the mean

and standard deviation over the 20 reconstructed shapes. Refinement with DALS consistently improves the

segmentations for all backbones and metrics.

Dicet Raw w/ DALS Hausdorff] Raw w/ DALS Cham.x10k] Raw w/ DALS
U-Net [58] 0.81 +£0.08 0.83 + 0.08 26.6 + 10.2 20.9 £+ 6.32 449 £51.0 26.0 £ 22.4
V-Net [59] 0.79+0.16 0.80 £+ 0.16 285+ 125 25.4+9.29 56.4 + 74.8 43.3 £ 54.8
nn-U-Net [60] 0.84 +0.09 0.85 + 0.07 25.2+11.3 19.5 £+ 8.08 38.7+484 22.3+204
UNETR [61] 0.74+0.13 0.75 £ 0.17 39.5+24.2 26.4+12.5 164.5 £ 266 52.7 £ 57.0

(a) U-Net.

(b) V-Net.

(¢) nn-U-Net. (d) UNETR.

Figure 6. Comparison of raw (top) and refined (bottom) segmentations. The black rings highlight

examples of DALS refinement correcting errors.

This is also the case as one annotates additional
planes, which we show in appendix A.1.

4.3 3D Image Segmentation with Lit-
tle Training Data

Experimental setup A common medical image
analysis task is to segment objects from very few
annotations. Here, we use DALS to refine a voxel
segmentation produced by a CNN backbone network
trained on a few 2D slice annotations. As backbones,
we use the standard U-Net [58] and V-Net [59], along
with the more recent nn-U-Net [60] and UNETR [61].

For this experiment, we use the 40 liver images
we held off for testing in the previous experiments.
We train the backbones on 20 images and test on
the remaining 20. This simulates a realistic scenario
with highly limited training data and they have not
been used to learn the shape priors.

Results. As the models are not sufficiently well
trained—a common occurrence in medical imaging—
the ‘raw’ segmentations reported in table 4 are sub-
optimal. To refine them via shape priors, we treat
them as noisy data to which we fit a DALS model.
We initialize the shape at the center and scale pre-
dicted by the raw segmentation. We then fit DALS
to an unsigned distance function computed from the
segmentation binary image (details in appendix B).
We use Aeg = 0, Agir = 00, and no remeshing to
heavily rely on the model’s learned prior.

As shown in fig. 6 and table 4, this significantly
improves the segmentations w.r.t. both visual ap-
pearance and quantitative metrics. Note that DALS

removes spurious growths and recovers missed con-
cavities, i.e., it does not simply smooth.

5 Conclusion

We have shown that DALS is an efficient approach
for learning a shape model for organic shapes rep-
resented as watertight surfaces. We use an auto-
decoder approach to learn a single latent vector per
training shape. However, at model-fitting time, we
allow the latent vectors to be different at each vertex

The key ingredient is that we enforce consistency
of the latent vectors across the triangulation but not
on the vertex 3D locations. This enables us to learn
the model from a relatively small training set while
giving the necessary flexibility to model complex 3D
shapes without over-smoothing.
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A Fitting DALS to Planar
Curve Annotations

When annotations are only provided in 2D planes,
we only wish to evaluate the reconstruction in these
planes. This is similar to how plane annotations are
handled for 3D voxel segmentations [58].

Figure A.1. Gradient propagation for samples
on the intersection between a triangle mesh and
a plane. The blue curve is the intersection of the mesh
and the plane, and the red curve is the ground truth
boundary curve. The highlighted triangle has vertices
u, v, and w and intersects the plane in the line segment
spanned by x; and x2.

Formally, assume we are given a plane P and a
triangle mesh M. To differentially sample points
on the intersection between P and M we first find
the intersection between the plane and each triangle
facet. The intersection of a plane and triangle is
either empty or a line segment spanned by two points
x; and x3. We ignore the degenerate cases where
the intersection is the entire triangle or only one of
its vertices. We can then sample a point p on the
intersecting line segment as p = rx; + (1 — r)xa,
where r € U(0,1). Let (aq,581,71) and (asg, 82,72)
be the barycentric coordinates of, respectively, x;
and x5. We can then write p in terms of the triangle
vertices u, v, and w as

a1 Qo r
p=[u v w||B B L_T} . (6)
Y172

As a result, p is a linear combination of the triangle
vertices and r is an independent stochastic term.
Therefore, we can propagate a gradient from the
point p to the triangle vertices u, v, and w [45], see
fig. A.1.

Now, let Sp(M) denote a set of M points sam-
pled differentially on the intersection of M and P.
Further, let 7p be a set of N points sampled uni-
formly on the planar curve annotations for plane P.
In this work we use M = 5000 sample points. The

loss for plane P is then

Let(Sp(M), Tp) =
1 . 2
T Jomin e —all+
q€Tr

=3

PESP (M)

. 2
min — )
o la —pll;
Note that the above is the Chamfer loss between
the plane sample points [45].

Finally, given a collection of planes Py, Pa, . ..
the fitting loss, Liagk, 1S

77)P7
1 P

Liaac(M) = 5 D Let(Sp (M), Tp) . (8)
i=1

A.1 Additional Results

In fig. A.2, we plot the same quality metrics as in
table 2 as a function of the number of annotated
planes for one of the livers. DASM results are con-
sistently better and improve almost monotonically
with the number of planes we provide, which is a
very desirable behavior in clinical practice.

B Fitting DALS to Voxel Seg-
mentations

To fit DALS to a binary 3D voxel image B €
RW*HXD we first use the Euclidean distance trans-
form to create a new image U € RW*HXD here
each voxel contains the unsigned distance to the
segmentation boundary. Given a mesh M with V
vertices, the fitting loss is then given by

1 14
»Ctask(M) = V Z U(X’U) ) (9)

where U(x,) is trilinear interpolation of U at vertex
position x,,.

To optimize the latent vectors Z € we re-
quire the gradient of U at x,. To get a robust
estimate, we use a Sobel operator to pre-compute
a gradient image G € RW*H*DPX3 which contains
the gradient of U at each voxel position. We then
use trilinear interpolation to evaluate the gradient
of U as VU(xy,) = G(xy).

We also attempted to fit DALS directly to the
binary segmentation or the softmax outputs of the
CNN backbone. In practice, we found that the
distance field gradients made it easier for the model
to fit the images.

RVXd

C Ablation experiments

To further explore the properties of our model, we
perform ablation experiments.

10



o

S 30 80 100

- 10 4 £ 0.4 o

o 2 = 40 X 60+

g 31 302 ® ©

IS (1] w

c 17 T 201

5 ———— 0.1 t——F—— . : — - 30 —f——
3 5 7 9 11 3 5 7 9 11 3 5 7 9 11 3 5 7 9 11

No. annot. planes No. annot. planes No. annot. planes No. annot. planes

—— DeepSDF ——— SIREN+DeepSDF —— DASM+R —— DUAL-MLP (global) —— DALS (Ours)

Figure A.2. Reconstruction metrics for a liver as a function of the number of annotated planes.
Unlike those of other approaches, DALS results, shown in purple, consistently improve as more planes are added.

However, they tend to saturate after 6 or 7.

C.1 Local inference and triangle qual-
ity loss

We perform an ablation study to investigate how
using a single or multiple latent vectors and our
triangle quality loss Lyeg affect performance. Addi-
tional ablations can be found in the supplementary
materials. To use a single vector, we constrain all
latent vectors to be the same during fitting. To
remove Ly We set A to 0 during training and
fitting.

Table C.1. Quantitative results of the ablation
study. Local inference results in a large boost to re-
construction accuracy and the Lyeg loss significantly
improves triangle quality. Adding remeshing further
boosts the triangle quality at some expense to recon-
struction accuracy. Chamfer distances are multiplied
with 10 000.

Local L;ez Remeshing Chamferx10k]  Quality?
7.89 +£2.75 0.75 £+ 0.03

v 1.89 + 0.63 0.72 + 0.02
v 5.41 4+ 1.77 0.83 £ 0.02

v v 1.50 +£0.49 0.87 +0.01
v v v 2.41 +£1.04 0.98 £+ 0.00

As shown in table C.1, both our local latent vec-
tor approach and L. loss significantly improves
reconstruction and mesh quality, even more so when
combined. Finally, adding remeshing results in ex-
cellent mesh quality at some cost to accuracy, as
Botsch-Kobbelt also optimizes vertex positions. In
this work, we prioritized mesh quality for our recon-
struction results.

C.2 Local latent vectors

We investigate whether DALS actually uses multiple
different latent vectors during fitting. We use DALS
to reconstruct a liver from unoriented points as in
section 4.1 and illustrate the result in fig. C.1. The
livers corresponding to the latent vectors at the four
highlighted vertices are noticeably different and the
coloring of the reconstruction clearly demonstrates

Figure C.1. DALS combining multiple shapes.
The large liver is colored according to the latent vector
at each vertex. For the highlighted vertices, we show
the corresponding decoded livers.

the smooth transition between latent vectors over
the surface.

C.3 Reconstruction time

We compare the reconstruction time for DALS
against its closest competitors for shape reconstruc-
tion: DUAL-MLP and DASM+R. We use the same
setup as in section 4.1 and vary the number of it-
erations used for fitting. Since each model need a
different number of iterations, we only report the
time used. Quantitative results are shown in fig. C.2
and DALS consistently provides better reconstruc-
tions at faster times than the compared baselines.

For the results in the paper, the number of fitting
iterations was set high enough to ensure convergence.
Specifically, for section 4.1, DASM+R used 2.9 sec-
onds, DUAL-MLP used 1.3 seconds, and DALS used
2.4 seconds.

C.4 Template mesh resolution

We investigate the effect of the template mesh resolu-
tion. Again, we use the same setup as in section 4.1
and vary the resolution of the template. Specifi-
cally, we use a subdivided icosahedron subdivided
n =2,...,6 times. Note that we use the same model
for all n, which was trained using an icosahedron
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Figure C.2. Metrics over time for reconstructing unseen livers from 2500 unoriented points. Each
point shows the mean metric over all shapes at the given time. DALS, shown in purple, is consistently better than
the compared methods.

subdivided 3 times — it is only the template used for
fitting that varies. Quantitative results are shown in
fig. C.3. Increasing the mesh resolution improves the
reconstruction metrics at the cost of higher fitting
time and worse mesh quality. We used n = 4 subdi-
vision for the experiments in this paper, as we find
it provides the best trade-off between reconstruction
quality, time, and mesh quality.

C.5 Sensitivity of fitting regulariza-
tion

Finally, we explore the sensitivity of the regulariza-
tion parameters Aoz and Agir from eq. (4) w.r.t. the
quality of the shape reconstruction. We use the same
setup as in section 4.1 and vary each regularization
parameter while keeping the other constant (set to
the value used in the paper). Results are shown in
fig. C.4. DALS outperforms the second best method
for each metric for a wide choice of parameter values,
indicating that our DALS is not overly sensitive to
the choice of regulularization strength.

Regarding Lgi,, the reconstruction metrics follow
a convex shape while the mesh quality (more or
less) monotonically improve as the regularization
strength is increased—although only slightly. I.e.,
if the strength is too small, the fitting suffers as
the latent vectors have too much freedom and the
fitting is less stable. If the strength is too large,
the latent vectors have too little freedom to fit the
target, but all latent vectors will have more similar
values. As the network is trained to generate high
quality meshes in the single latent vector case, this
then translates to slight higher mesh quality.

Regarding Lyeg, it has a limited but measurable ef-
fect on the metrics for smaller values. As it becomes
to large, however, it seems to become more unstable
and significantly worsens the reconstruction quality
as well as causing more self intersections. The mesh
quality, on the other hand, goes up since we are
putting more weight on it.

Based on this, our recommendation is to leave
Lycg at 0.001 or similar and focus hyperparameter
tuning on Lgj;.
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