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ABSTRACT

Referring Image Segmentation (RIS) – the problem of identifying objects in images
through natural language sentences – is a challenging task currently mostly solved
through supervised learning. However, while collecting referred annotation masks
is a time-consuming process, the few existing weakly-supervised and zero-shot
approaches fall significantly short in performance compared to fully-supervised
learning ones. To bridge the performance gap without mask annotations, we
propose a novel weakly-supervised framework that tackles RIS by decomposing
it into three steps: obtaining instance masks for the object mentioned in the
referencing instruction (segment), using zero-shot learning to select a potentially
correct mask for the given instruction (select), and bootstrapping a model which
allows for fixing the mistakes of zero-shot selection (correct). In our experiments,
using only the first two steps (zero-shot segment and select) outperforms other
zero-shot baselines by as much as 19%, while our full method improves upon this
much stronger baseline and sets the new state-of-the-art for weakly-supervised RIS,
reducing the gap between the weakly-supervised and fully-supervised methods in
some cases from around 33% to as little as 14%.

1 INTRODUCTION

Identifying particular object instances in images using natural language expressions – defined in the
literature as referring image segmentation (RIS) (Wang et al., 2022b; Yang et al., 2022; Wu et al.,
2022; Yu et al., 2023) – is an important problem that has many real-world applications including
autonomous driving, general human-robot interactions (Wang et al., 2019) or natural language-driven
image editing (Chen et al., 2018) to name a few. This problem is typically solved by training
large vision and language models using supervised data from datasets of image, referring
expressions and referred mask triplets (Hu et al., 2016; Yang et al., 2022).

However, collecting the required annotation masks for this task can be difficult, since annotating
dense prediction masks given referring expressions is a time consuming process. Existing weakly-
supervised (Strudel et al., 2022) and zero-shot (Yu et al., 2023) approaches attempt to address this
problem by eliminating the need for using these masks, yet their performance is significantly worse
than fully-supervised learning alternatives.

In this work, we tackle the problem of learning a weakly-supervised referring image segmentation
model by leveraging the insight that fundamentally the problem can be divided into two steps: (i)
obtaining instance masks for the desired object class referred in the expression (e.g., given the
sentence "the car on the left of the person" the desired object class is car), and (ii) choosing the right
mask from the ones obtained based on the referencing instruction (e.g., in the previous example it
should be the car that is "on the left of the person" instead of any other ones in the image).

To solve (i), we design an open-vocabulary instance segmentation for referring expressions that
generates all instance segmentation masks for that object. Given an accurate selection mechanism, we
could solve (ii) directly, and to achieve this we first propose a zero-shot step based on work by Yang
et al. (2023). However, this mechanism – as the CLIP-based zero-shot selection proposed by Yu et al.
(2023) – makes mistakes which significantly reduce the performance of the overall system, despite
the fact that (i) generates strong candidate masks. To tackle this problem, we propose a corrective
step that trains a model to perform weakly-supervised RIS. This step pre-trains a model using the
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Figure 1: Segment, Select, Correct for Referring Image Segmentation: our three stage approach
consists of using an open-vocabulary segmentation step from referring expressions to obtain all the
candidate masks for the object in those sentences (segment, Stage 1), followed by a zero-shot instance
choice module to select the most likely right mask (select, Stage 2), and then training a corrected RIS
model using constrained greedy matching to fix the zero-shot mistakes (correct, Stage 3).

zero-shot selected masks from step (ii) and corrects potential mistakes using a constrained greedy
matching scheme. Our full method is summarized in Figure 1.

Our main contributions are: (1) we introduce segment, select, correct (S+S+C) as a three-stage
framework to perform referring image segmentation without supervised referring masks by training
a model on pseudo-masks obtained using a zero-shot pipeline; (2) we establish new state-of-the-art
performance in both zero-shot and weakly-supervised RIS, outperforming the zero-shot method by
Yu et al. (2023) by as much as 19%, and the weakly-supervised methods by Liu et al. (2023a); Kim
et al. (2023) by significant margins (up to 26%) in most testing sets in RefCOCO (Yu et al., 2016),
RefCOCO+ (Mao et al., 2016) and RefCOCOg (Nagaraja et al., 2016). Finally, we highlight the
benefits of our design choices in a series of ablations of the stages of the framework.

2 PRELIMINARIES AND RELATED WORK

2.1 PROBLEM SETUP AND NOTATION

Formally, the objective of referring image segmentation is to obtain a model f : RI × T → [0, 1]I ,
where for a given input image I ∈ RI and an expression T ∈ T the model outputs a binary,
pixel-level mask of 1 where the referred object in T exists, and 0 elsewhere. Most of the existing
literature treat this as a supervised learning problem, taking a dataset of image, referring sentences
and segmentation mask pairs, i.e., (Ii,Ti,Mi), and training a text-conditioned segmentation pipeline
end-to-end using a binary cross-entropy loss (Wang et al., 2022b; Wu et al., 2022; Yang et al., 2022).
Training and testing datasets commonly used include RefCOCO (Yu et al., 2016), RefCOCO+ (Mao
et al., 2016), and RefCOCOg (Nagaraja et al., 2016).

Crucially to our work, these datasets contain implicitly more information that is not leveraged in any
previous work which comes from the dataset building process. For example, on building RefCOCO,
the authors from Yu et al. (2016) started with an image from the COCO dataset (Lin et al., 2014),
selected 2− 3 segmentation masks from objects in that image, and asked users to create 3 sentences
referring to that specific instance of the object in the frame. In practice, this means that for each

image Ii in the dataset we have a set
{
Mi,j , {Ti,j,k}

nT
i,j

k=1

}
where for each object mask, Mi,j , for all

k, Ti,j,k are references to the same object.

Weakly-supervised setting. While these datasets are generated by augmenting existing segmentation
ones with descriptive sentences, it could be easier to obtain several referring sentences to the same
object than to annotate a dense mask for the objects of interest. In that case we might have a large

dataset of the form D = {Ii, {Ti,j,k}
nO
i,j

k=1}n
I

i=1, where each object Oi,j of the nOij existing objects is
implicitly described by the set of referring expressions without a priori knowledge of its mask. This
is the setup from previous works (Strudel et al., 2022; Liu et al., 2023a; Kim et al., 2023).

CLIP. We use the text and image encoders of CLIP (Radford et al., 2021), which we refer to as
ψCLIP : T → Re and ϕCLIP : RI → Re, respectively.
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2.2 RELATED WORK

Fully and Weakly-Supervised Referring Image Segmentation. The problem of segmenting target
objects in images using natural language expressions was first tackled by Hu et al. (2016) using a
recurrent neural network. Since then, a variety of fully-supervised solutions (i.e., using both referring
expressions and pixel-dense masks) have been introduced in the literature (Margffoy-Tuay et al.,
2018; Li et al., 2018; Jing et al., 2021; Chen et al., 2022; Ding et al., 2021; Feng et al., 2021; Yang
et al., 2022; Liu et al., 2023b). Most recent methods within this category tend to focus on extracting
language features using Transformer (Vaswani et al., 2017; Devlin et al., 2018) based models (Jing
et al., 2021; Ye et al., 2019; Yang et al., 2022; Ouyang et al., 2023), which are then fused with
initial image features obtained using convolutional networks (Jing et al., 2021; Ye et al., 2019) or
transformer-based encoders (Yang et al., 2022; Ouyang et al., 2023; Liu et al., 2023b) in a cross-modal
pipeline. Wang et al. (2022b) proposed a contrastive pre-training framework similar to CLIP (Radford
et al., 2021) to learn separate image and text transformers in a fully-supervised setting. Strudel et al.
(2022) proposed TSEG, the first weakly-supervised approach to this problem by training a model
without the use of pixel-dense segmentation masks, a setting more recently explored by Liu et al.
(2023a) and Kim et al. (2023).

Zero-shot Pixel-Dense Tasks and Referring Image Segmentation. Recent zero-shot approaches
use large-scale pre-pretraining to transfer the learned skills to previously unseen tasks without explicit
training. CLIP (Radford et al., 2021) is an example of such an approach on image-text pairs. This idea
has also been applied to language-driven pixel-dense prediction tasks, such as open-vocabulary object
detection (Gu et al., 2021; Bangalath et al., 2022; Liu et al., 2023c; Minderer et al., 2023) or semantic
segmentation (Mukhoti et al., 2023; Chen et al., 2023; Liang et al., 2023); and to class-agnostic
instance segmentation (Wang et al., 2022a; 2023; Kirillov et al., 2023). In Yu et al. (2023) the authors
introduce the first zero-shot approach to referring image segmentation by combining FreeSolo (Wang
et al., 2022a) to generate object instance masks and selecting one using a CLIP-based approach.

3 THREE-STAGE FRAMEWORK FOR REFERRING IMAGE SEGMENTATION

Our approach consists of three stages, as shown in Figure 1. Stages 1 and 2 leverage existing
pre-trained models in a zero-shot manner to obtain two sets of masks from the original, mask-less
dataset (D in Figure 1): one containing all instance masks of the referred object in the original
dataset expressions (S1 in Figure 1), and the other containing a zero-shot choice of which mask is
referenced in the expression (S2 in Figure 1). Both of these are used as input to Stage 3, where we
first use set S2 to pre-train a grounded model, and then use set S1 (containing all instance masks)
within a constrained greedy matching training framework to bootstrap and correct zero-shot selection
mistakes. Stages 1, 2 and 3 are described in detail in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Segment: OPEN-VOCABULARY SEGMENTATION FROM REFERRING EXPRESSIONS

The goal of this section is to establish a method to extract all instance segmentation masks for image
Ii given a set of referring expressions Ti,j,k from the D dataset. Throughout this process, we assume
these sentences explicitly include the object being referred in the expression. To achieve this, we
introduce a three-step, zero-shot process (presented in Figure 2):

1. Noun Extraction (NE): in a similar fashion to Yu et al. (2023), we use a text dependency
parser such as spaCy (Honnibal and Johnson, 2015) to extract the key noun phrase in each
of the referring expressions Ti,j,k.

2. Dataset Class Projection (CP): using CLIP’s text encoder (Radford et al., 2021), we project
the extracted noun phrase to a set of objects specific to the dataset context by picking the label
which has the maximum similarity with each extracted phrase. For performance reasons,
we consider a contextualized version of both the dataset labels and noun phrases, using "a
picture of [CLS]" as input to ψCLIP ahead of computing the embedding similarity.

3. Open-Vocabulary Instance Segmentation (OS): all the projected nouns corresponding to
Ti,j,k,∀k and the image Ii are then passed to an open-vocabulary instance segmentation
model. We obtain it by combining an open-set object detector (e.g., Grounding DINO Liu
et al. (2023c)) and a class-agnostic object segmentation model (e.g., SAM (Kirillov et al.,
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Figure 2: Open-Vocabulary Segmentation from Referring Expressions: given a referring expres-
sion, we first extract the key noun phrase, project it to a set of context-specific classes, and then use
open-vocabulary instance segmentation to obtain all the candidate masks for the object.

2023) or FreeSOLO Wang et al. (2022a)) to obtain all the possible instance segmentation
masks for the referring object. The output of this process is a set of pseudo-ground-truth
instance segmentation masks for each Ti,j,k defined as {mc

i,j,k}C1 with mc
i,j,k ∈ [0, 1]I .

As a result of these steps, we will have successfully constructed set S1 which will be used in Stages 2
and 3. In Section 4.2 we perform an ablation over each of these steps.

3.2 Select: ZERO-SHOT CHOICE FOR REFERRING IMAGE SEGMENTATION

Zero-shot Instance Choice
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Figure 3: Zero-Shot Choice for Referring Im-
age Segmentation: following the main idea from
(Yang et al., 2023), we choose a zero-shot mask
from the candidate ones by performing a visual
prompting to obtain images with the object high-
lighted via reverse blurring, and then use CLIP sim-
ilarity to determine the most likely mask choice.

Given the mechanism in Stage 1, for each im-
age Ii and referring expression Ti,j,k we now
have a set of binary masks {m1

i,j,k, . . . ,m
C
i,j,k}.

The goal in Stage 2 is to determine which of
these candidate masks corresponds to the sin-
gle object referred in Ti,j,k. Shtedritski et al.
(2023) and Yang et al. (2023) observe that CLIP,
potentially due to its large training dataset, con-
tains some visual-textual referring information.
Yang et al. (2023) note that CLIP when visually
prompted using a reverse blurring mechanism
(i.e., when everything but the object instance is
blurred) achieves good zero-shot performance
on the similar task of Referring Expression Com-
prehension.

With this insight, we apply the same visual prompting technique to the instance selection problem, as
shown visually in Figure 3. Given Ti,j,k, we compute its CLIP text embedding, ψCLIP(Ti,j,k) and
choose the mask that satisfies:

max
c∈{1,...,C}

SIM
(
ϕCLIP(I

c
i,j,k), ψCLIP(Ti,j,k)

)
, (1)

where SIM is the cosine similarity, defined as SIM(u, v) = u⊤v/∥u∥∥v∥ for vectors u and v, and
Ici,j,k is the visually prompted version of Ii for mc

i,j,k using the reverse blurring mechanism (with
σ = 50) as in Yang et al. (2023). This effectively constructs the pre-training set S2 which is used in
Stage 3. In Section 4.3 we perform ablations over this stage’s zero-shot instance choice pipeline.

3.3 Correct: CONSTRAINED GREEDY MATCHING FOR WEAKLY-SUPVERVISED RIS

In practice, we have a complete, zero-shot referring image segmentation method using just Stages
1 and 2 of the pipeline. While this might yield good performance already, the zero-shot choice
mechanism from Stage 2 will inevitably make mistakes due to a lack of explicit modeling of reference
information in the CLIP embedding similarity. We introduce in Stage 3 (Figure 4) a training scheme
that attempts to (i) pre-train a grounded model with the information already available in the zero-shot
chosen masks of Stage 2, and (ii) correct some of those mistakes through a constrained greedy
matching loss with all the possible masks of Stage 1.

To achieve (i), we simply take set S2 and train a bootstrapped model (e.g., with the LAVT architecture
(Yang et al., 2022)) using a cross-entropy loss. The idea is that the resulting model – referred
throughout as ZSBOOTSTRAP – should generalize over the training data, grounding it on the concept
of referring instructions from the zero-shot outputs of Stage 2.
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Figure 4: Grounding + Constrained Greedy Matching: using set S2 masks, we start by pre-training
a zero-shot bootstrapped model (ZSBOOTSTRAP) that grounds referring concepts which is used to
initialize a corrected model trained using set S1 masks with constrained greedy matching.

To achieve (ii) and correct the mistakes of the zero-shot choice we can use the data from set S1, which
(ideally) contains the instance masks of all the objects of the same category as the referenced one in a
scene. Given we do not have access to the ground-truth masks, we cannot know which masks are
incorrect. However, from the weakly-supervised dataset format described in Section 2.1, we know
that two references corresponding to the same object Oi,j should have the same mask, and those
corresponding to different objects Oi,j and Oi,j′ , j ̸= j′, should not have the same mask.

For ease of notation we will drop the image index i for the rest of this section (given the loss is
defined per image) and consider m̂j,k = f(I,Tj,k). We design a loss that simultaneously drives the
model towards the most likely mask from set S1 (i.e., from the set {m1

j,k, . . . ,m
C
j,k}), while ensuring

that different objects in the same image choose different masks. We take inspiration from the work
of Romera-Paredes and Torr (2016), in which the authors use the Hungarian method to solve the
bipartite matching problem of outputting segmentation masks using a recurrent network. Similarly,
we define our matching problem as:

max
δ∈∆

ℓmatch(m̂j,k, {m1
j,k, . . . ,m

C
j,k}, δ) =

∑
j,k,c

ℓIoU(m̂j,k,m
c
j,k)δj,k,c, (2)

where ℓIoU is a differentiable IoU loss as defined by Romera-Paredes and Torr (2016), and δj,k,c is a
binary variable defining whether the mask mc

j,k for c ∈ {1, . . . , C} has been matched to object Oj

for all k, subject to the constraint that δ ∈ ∆ where:

∆ =

{
δj,k,c ∈ {0, 1},

∑
c

δj,k,c = 1 ∀j, k︸ ︷︷ ︸
1 choose one mask

per output prediction

, δj,k,c = δj,k′,c ∀c, j, k ̸= k′︸ ︷︷ ︸
2 every reference of the same

object has the same mask

,
∑
j

δj,k,c ≤ 1,∀k, c︸ ︷︷ ︸
3 references to different

objects have different masks

}
.

Note that while the perfect matching problem from Romera-Paredes and Torr (2016) admits an
optimal solution under Hungarian matching, this is not the case in our setup as the number of
set S1 masks might be smaller than the number of objects if Stage 1 fails to segment one or
more instances of the object in the scene. So instead we perform constrained greedy matching by
taking j1, k1, c1 = max lIoU(m̂j,k,m

c
j,k) across all sentences and candidate masks, and assigning

δ∗j1,k,c1 = 1, for all k – thus guaranteeing 2 . (j1, c1) then get added to an exclusion set C, and
the next matching occurs by considering j2, k2, c2 = max(j,c)/∈C lIoU(m̂j,k,m

c
j,k) – guaranteeing

1 and 3 . This process continues until the full matching, δ∗, has been determined (pseudocode
presented in Appendix A). While constrained greedy matching does not guarantee the optimality of
the problem solution, empirically it often yields the same one as Hungarian matching at a fraction of
the running time. With the matching determined, the loss per image becomes:

Li =
∑
j,k,c

LCE
(
m̂j,k,m

c
j,k

)
δ∗j,k,c, (3)

where LCE is the cross-entropy loss. Assuming f already has some referring information from
pre-training, this is expected to improve the performance of the overall model as it will force it to
satisfy conditions 1 , 2 and 3 .
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Table 1: Zero-shot and Weakly-Supervised Comparison: oIoU (top) and mIoU (bottom) results on
benchmark datasets for our corrected model trained using constrained greedy matching (S+S+C), as
well as our zero-shot (S+S) method, along with the existing baselines GL CLIP (Yu et al., 2023),
TSEG (Strudel et al., 2022), TRIS (Liu et al., 2023a), Shatter&Gather (Kim et al., 2023), and LAVT
(Yang et al., 2022), and ablations. The first column refers to the type of method: zero-shot (ZS),
weakly-supervised (WS) or fully-supervised (FS). Best zero-shot results are highlighted in purple,
and the best weakly-supervised ones in green. For RefCOCOg, U and G refer to the UMD and
Google partitions, respectively.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val(U) test(U) val(G)

oIoU

ZS
GL CLIP 24.88 23.61 24.66 26.16 24.90 25.83 31.11 30.96 30.69
GL CLIP (SAM) 24.50 26.00 21.00 26.88 29.95 22.14 28.92 30.41 28.92
S+S (Ours) 33.31 40.35 26.14 34.84 43.16 28.22 35.71 42.10 41.70

WS TRIS 31.17 32.43 29.56 30.90 30.42 30.80 36.00 36.19 36.23
S+S+C (Ours) 50.13 60.70 43.46 40.61 49.68 29.54 41.96 42.59 42.18

FS LAVT 72.73 75.82 68.79 62.14 63.38 55.10 61.24 62.09 60.50

mIoU

ZS
GL CLIP 26.20 24.94 26.56 27.80 25.64 27.84 33.52 33.67 33.61
GL CLIP (SAM) 30.79 33.08 27.51 32.99 37.17 29.47 39.45 40.85 40.66
S+S (Ours) 36.95 43.77 27.97 37.68 46.24 29.31 41.41 47.18 47.57

WS
TSEG 25.95 – – 22.62 – – 23.41 – –
Shatter&Gather 34.76 34.58 35.01 28.48 28.60 27.98 – – 28.87
S+S+C (Ours) 56.03 64.73 38.64 46.89 55.45 33.88 48.18 48.61 49.41

FS LAVT 74.46 76.89 70.94 65.81 70.97 59.23 63.34 63.62 63.66

4 EXPERIMENTS

The aim of this section is to showcase the effectiveness of our method in closing the gap of zero-shot
and weakly-supervised methods with the fully-supervised state-of-the-art using only images and
referring sentences. To achieve this, we report results on:

• Segment+Select (S+S – zero-shot): using the open-vocabulary instance segmentation paired
with the zero-shot instance choice to perform zero-shot RIS on each sample of the validation
and test datasets (Stages 1 and 2 of Figure 1), and

• Segment+Select+Correct (S+S+C – weakly-supervised): the full pipeline described in
Section 3, including the grounding/pre-training step using set S2 masks to generate a Zero-
shot Bootstrapped (ZSBOOTSTRAP) model and the constrained greedy training stage using
set S1 masks to obtain the final corrected model (Stages 1, 2 and 3 of Figure 1).

To justify the design choices taken at each step, we perform ablations on the open-vocabulary instance
mask generation from Stage 1 in Section 4.2, on the zero-shot instance choice mechanism from Stage
2 in Section 4.3, and on the constrained greedy matching loss used in Stage 3 in Section 4.4.

Datasets and Evaluation. Following the established literature, we report results on RefCOCO (Yu
et al., 2016), RefCOCO+ (Mao et al., 2016) and RefCOCOg (Nagaraja et al., 2016), which have
19,994, 19,992 and 26,711 images in total with 142,210, 141,564, 104,560 referring expressions,
respectively. As mentioned in Section 2.1, each image in these datasets includes a certain number
of object instances, which in turn include 3 referring expressions each. In Appendix B we analyze
the number of object instances per image in the datasets. In terms of evaluation metrics, following
previous works we report mean and overall Intersection over Union (mIoU and oIoU, respectively).

Baselines. We compare with previously established baselines: the zero-shot method Global-Local
CLIP (GL CLIP, (Yu et al., 2023)), the weakly-supervised baselines TSEG (Strudel et al., 2022), TRIS
(Liu et al., 2023a) and Shatter&Gather (Kim et al., 2023), and the fully-supervised method LAVT
(Yang et al., 2022). The first step of GL CLIP generates a pool of class-agnostic segmentation masks
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using FreeSOLO (Wang et al., 2022a), which is followed by a selection step using a global-local CLIP
similarity mechanism. Since our method uses SAM (Kirillov et al., 2023) in Stage 1, for fairness
of comparison, we also report results on an ablation of GL CLIP which uses SAM to generate the
candidate masks – we refer to it as GL CLIP (SAM).

Implementation Details. The models trained in Stage 3 follow the cross-modal architecture of LAVT
(Yang et al., 2022). They use a BERT (Wolf et al., 2020) encoder, and we initialize the Transformer
layers with the weights of the Swin Transformer (Liu et al., 2021) pre-trained on ImageNet-22k
(Deng et al., 2009). The optimizer (AdamW), learning rate (5 × 10−4), weight decay (10−2) and
other initialization details follow the ones of LAVT (Yang et al., 2022), with the exception of the
batch size which we set at 60 instead of the original 32. Given we use 4 NVIDIA A40 GPUs (48GB
VRAM each), this batch size change leads to significant speed-ups without noticeable performance
changes. We pre-train our bootstrapped model (ZSBOOTSTRAP) for 40 epochs, and subsequently
train the corrected constrained greedy matching one for a further 40 epochs.

4.1 ZERO-SHOT (S+S) AND WEAKLY-SUPERVISED (S+S+C) EXPERIMENTS

In Table 1 we report the performance of our zero-shot method, S+S, our main trained method, S+S+C,
and other existing methods and ablations. Overall, our zero-shot and weakly-supervised method
outperform the baselines in a majority of the test sets, establishing new state-of-the-art results in both.

Zero-shot Performance. We observe that our zero-shot method outperforms the FreeSOLO version
of Global-Local CLIP in most of the validation and test sets considered, with oIoU improvements
ranging from 1.5% to over 19%, and mostly still significantly outperforms GL CLIP (SAM) with
improvements as high as 14% in RefCOCO. This highlights that a better class-agnostic instance
segmentation method is not the main driver behind our improved performance. In several scenarios,
we also observe that S+S improves upon the weakly-supervised TRIS and Shatter&Gather.

Weakly-supervised Performance. By pre-training and correcting the potential zero-shot mistakes
using the constrained greedy loss, the performance improves significantly. Our weakly-supervised
method leads to oIoU improvements ranging from 1.3% to over 20% over S+S, all without using any
supervised referring segmentation masks. As expected, this is still below the fully-supervised results,
yet note that, for example, in RefCOCO+ testA our model’s oIoU only lags the fully-supervised
LAVT by less than 14%, a significant improvement from the previous 33% gap of TRIS in that same
test set. In all cases except for oIoU in RefCOCO+ testB, S+S+C establishes a new state-of-the-art in
weakly-supervised RIS, outperforming both TRIS and Shatter&Gather by margins as high as 26%.

Table 2: Open-Vocabulary Instance Mask
Generation: ablation of the steps of mask
generation Noun Extraction (NE), Dataset
Class Projection (CP) and Class-agnostic In-
stance Segmentation (CS) on the first 1, 000
samples of the RefCOCO training set. Evalu-
ation metrics computed by selecting the high-
est mIoU mask compared to the ground-truth.

NE CP CS oIoU mIoU

spaCy ✓ SAM 60.32 61.53
nltk ✓ SAM 52.56 58.27

spaCy ✗ SAM 48.82 43.90
spaCy ✓ FreeSOLO 56.19 58.63

Efficiency Comparison. A key difference between
the zero-shot baselines (including our S+S) and our
full method S+S+C is that the latter requires a "pre-
processing" step (Stages 1 and 2) to be applied to
the full training set followed by two training steps
(Stage 3). This induces a one-time overhead of train-
ing our weakly-supervised model which is approxi-
mately 2.5× that of the fully-supervised LAVT (with
the same architecture). However, once either model
is trained, the average inference time per sample is
2.4−14× faster than the zero-shot methods and com-
parable to that of TRIS. A forward pass on a sin-
gle NVIDIA A40 GPU only takes 0.2s compared
to 0.49s, 2.95s and 1.78s for GL CLIP, GL CLIP
(SAM), and S+S+C, respectively. GL CLIP (SAM)
is ∼ 6× slower than GL CLIP due to the increased inference time and number of candidate masks
per dataset sample for SAM vs. FreeSOLO (111 vs. 49 on average, respectively).

4.2 ABLATION ON STAGE 1: OPEN-VOCABULARY INSTANCE MASK GENERATION

In this section, we validate our design choices in generating the grounding instance masks using the
procedure from Section 3.1. To do so, we perform experiments on RefCOCO by varying the noun
extraction mechanism – using nltk (Loper and Bird, 2002) instead of spaCy (Honnibal and Johnson,
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2015) –, with or without context dataset projection and ablations on the open-vocabulary instance
segmentation module – using FreeSOLO (Wang et al., 2022a) instead of SAM (Kirillov et al., 2023).
In Table 2, we present the results of these ablations of Stage 1 of our method evaluated on the first
1, 000 examples of the RefCOCO training set by choosing the closest mask to the ground-truth ones
per referring sentence. We observe that our choice performs the best in terms of oIoU and mIoU on
this set, and that context dataset projections are an important factor in achieving that performance.
Note that while Yu et al. (2023) put the FreeSOLO upper bound limit on RefCOCO val set at 42.08%
oIoU, we achieve significantly better masks with FreeSOLO (56.19% oIoU) since we do not query
the method on the full image, but rather a cropped version around the bounding box initially obtained
by GroundingDINO (part of step 3 described in Section 3.1).

4.3 ABLATION ON STAGE 2: ZERO-SHOT INSTANCE CHOICE

Table 3: Zero-shot Instance Choice: ablation
of the zero-shot instance choice options on the
first 1, 000 examples of the RefCOCO training set.
Oracle is in gray as it provides a benchmark by
comparing to the inaccessible at inference time
ground-truth masks (copied from Table 2). ViT-
B32 and ViT-L14 refer to the ViT-B/32 and ViT-
L/14@336px CLIP visual backbones.

Choice Prompt Backbone oIoU mIoU

Oracle – – 60.32 61.53
Random – – 23.92 24.32

ZS Red Ellipse ViT-B32 24.84 26.34
ViT-L14 32.91 34.77

ZS Reverse Blur ViT-B32 34.35 35.97
ViT-L14 36.88 38.46

To study the effect of the zero-shot instance
choice in producing good grounding masks for
our model given the masks produced by Stage
1 from Section 3.1, we perform ablations us-
ing different visual prompting mechanisms –
Red Ellipse from (Shtedritski et al., 2023) and
Reverse Blur from (Yang et al., 2023) – with
different CLIP visual backbones, and compare
them to simple baselines like randomly choos-
ing the right mask (Random) or by accessing the
ground-truth ones (Oracle). The results are pre-
sented in Table 3. Note that on average there are
3.65 object instances per image, so as expected
Random achieves approximately 1/3 of the per-
formance of Oracle. With the exception of Or-
acle, which is inaccessible at inference time, the
Reverse Blur approach from (Yang et al., 2023)
with a CLIP ViT-L/14@336px visual backbone
outperforms all other approaches, validating our choice at the level of Stage 2. However, the gap
between the best and our zero-shot choice highlights there is room for improvement in Stage 3.

A natural question at this point is whether we can correct the zero-shot choice earlier than the training
time at Stage 3, and then simply train a model on those masks. To test this, we apply the constrained
greedy matching algorithm by replacing ℓmatch from Eq. 2 with the CLIP similarity from Eq. 1 to
the generation of masks for the first 1, 000 training set examples of RefCOCO, obtaining an oIoU
of 36.34 and an mIoU of 38.11. This suggests that attempting to correct the zero-shot choice is not
nearly as effective as our Stage 3.

4.4 ABLATION ON STAGE 3: CORRECTION VIA CONSTRAINED GREEDY MATCHING

Table 4: Constrained Greedy Matching Ablation: com-
parison of fine-tuning ZSBOOTSTRAP (pre-trained on set S2
masks) using the same zero-shot selected masks for 40 fur-
ther epochs (+40 EPOCHS) and constrained greedy matching
(S+S+C) on RefCOCO.

oIoU mIoU
val testA testB val testA testB

ZSBOOTSTRAP 33.61 42.20 26.12 37.29 44.18 28.43

+40 EPOCHS 34.62 44.47 25.87 38.62 46.34 28.44
S+S+C 50.13 60.70 43.46 56.03 64.73 38.64

With the goal of understanding how
effective constrained greedy matching
is to the performance of our method,
we ablate over that second training
step of Stage 3. Starting from the
pre-trained model using set S2 masks,
ZSBOOTSTRAP, we report in Table 4
the effect of training on those masks
for 40 further epochs to match the to-
tal compute used in our method (+40
EPOCHS) as well as training with con-
strained greedy matching (S+S+C)
performance on RefCOCO. Observe that training for 40 epochs on set S2 masks leads to a minimal
increment over the baseline performance, while allowing the model to choose the greedy match from
all the instance masks (set S1 masks) via the loss from Section 3.3 leads to a boost in performance.
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(a) +40 epochs (b) S+S+C

Figure 5: Qualitative Constrained Greedy Matching Ablation: qualitative training set examples
of the RefCOCO dataset with all the masks available (Mask Options), the model’s output (Model
Prediction) and the mask which will be used in the cross-entropy loss term in the training (CE Mask).
In (a) +40 EPOCHS, the training is limited to the single zero-choice mask, which in this case is
incorrect for one example per pair. Our constrained greedy matching loss in (b) (S+S+C) can choose
between different instances of the class, allowing it to correct the initial zero-shot error.

To qualitatively understand the significant improvement brought by constrained greedy matching,
in Figure 5 we showcase RefCOCO training dataset examples where S+S was originally wrong for
one of them. For example, in rows 1 and 2 of Figure 5 both "catcher" and "umpire" are matched
to the catcher by S+S, which means the +40 EPOCHS model is always forced to choose that mask
(CE Mask is always that zero-shot one). By contrast, our constrained greedy matching loss allows
the model to choose from all the players in the field, such that when the catcher mask is matched to
the prediction from row 1, "umpire" is now matched to the umpire mask given the mIoU is greater
with that one than with any of the remaining ones. By allowing the model to choose between the
training masks in greedy matching, the model is able to recover from the incorrect zero-shot choice
in these cases – this effect is compounded over the training epochs as better matching initially leads
to quicker correction of future mistakes.

5 CONCLUSIVE REMARKS

We propose a three stage pipeline for weakly-supervised RIS that obtains all the instance masks for
the referred object (segment), gets a good first guess on the right one using a zero-shot instance choice
method (select), and then bootstrap and corrects it through the constrained greedy matching loss
(correct). Our zero-shot method (S+S) outperforms other zero-shot baselines by as much as 19%,
and our full method (S+S+C) sets the new state-of-the-art for this task, reducing the gap between
weakly-supervised and fully-supervised models to as little as 13% in some cases from nearly 33%
with TRIS (Liu et al., 2023a). Despite the need for a one-off cost for training, inference on our
weakly-supervised model is 2.4− 14× faster than other competitive zero-shot baselines.
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Figure 6: Object Instances per Image: histograms of the distribution of the number of object
instances referenced in each image within the training sets of the studied datasets.

A CONSTRAINED GREEDY MATCHING ALGORITHM

The details of our constrained greedy matching algorithm are presented in 1. For the sake of simplicity
of notation, the image index i is dropped as this matching only occurs for all objects within an image.

Algorithm 1 Constrained Greedy Matching
1: Input: mask choices {mc

j,k}c, model predictions m̂j,k

2: Result: greedy matching δ∗j,k,c
3: δ∗j,k,c ← 0

4: C ← ∅ ▷ Initialize the exclusion set
5: M←

{
j, k, c : ℓIoU

(
m̂j,k,m

c
j,k

)}
▷ Compute pseudo-IoU for all mask & prediction pairs

6: SORT(M) ▷ Sort them in descending order
7: whileM ≠ ∅ do
8: j′, k′, c′ ← POP(M) ▷ Get the next highest IoU mask choice
9: if c ∈ C or j ∈ C then ▷ If either the object or mask has been matched, skip it

10: continue
11: end if
12: for k do ▷ Match it for all expressions of the same object
13: δ∗j′,k,c′ ← 1
14: end for
15: C ← C ∪ {(j′, c′)} ▷ Add object & mask to the exclusion set to avoid re-matching them
16: end while
17: return δ∗j,k,c

B NUMBER OF OBJECT INSTANCES PER IMAGE

In Figure 6 we show the distribution of the number of objects per image in the training sets of
RefCOCO, RefCOCO+ and RefCOCOg (umd and google splits). Note that this average is higher for
RefCOCO and RefCOCO+ than for RefCOCOg. The higher the average number of object instances
per image, the more effective we expect the loss from Stage 3 to be in correcting the zero-shot
mistakes due to the matching mechanism. This intuition is backed by the experimental results
presented in Section 4.1 of the main paper, where the improvement in RefCOCO and RefCOCO+
from S+S+C is higher than the one in RefCOCOg (umd and google partitions).

C PIXEL-LEVEL CONTRASTIVE ABLATION

On top of the constrained greedy matching results, we also experimented with a pixel-dense con-
trastive loss term. This contrastive term, L↔ has the goal of regularizing the output by explicitly
leveraging the insight that references to the same object (positive examples) in an image should have
the same output, and that other objects in the same image (negative examples) should have a different
output.
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Table 5: Zero-shot and Weakly-Supervised Comparison with L↔: oIoU (top) and mIoU (bottom)
results on benchmark datasets for our zero-shot method (S+S), our full method (S+S+C), the zero-shot
bootstrapped models from Stage 3 (ZSBOOTSTRAP), and an ablation with the proposed pixel-dense
contrastive loss L↔, along with existing baselines and ablations. The first column refers to the type
of method: zero-shot (ZS), weakly-supervised (WS) or fully-supervised (FS). Best zero-shot results
are highlighted in purple, and the best weakly-supervised ones in green. For RefCOCOg, U refers to
the UMD partion, and G refers to the Google partion.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val(U) test(U) val(G)

oIoU

ZS
GL CLIP 24.88 23.61 24.66 26.16 24.90 25.83 31.11 30.96 30.69
GL CLIP (SAM) 24.50 26.00 21.00 26.88 29.95 22.14 28.92 30.41 28.92
S+S (Ours) 33.31 40.35 26.14 34.84 43.16 28.22 35.71 42.10 41.70

WS

TRIS 31.17 32.43 29.56 30.90 30.42 30.80 36.00 36.19 36.23
ZSBOOTSTRAP (Ours) 33.61 42.20 26.12 34.13 42.03 26.60 38.27 40.09 37.03
S+S+C (Ours) 50.13 60.70 43.46 40.61 49.68 29.54 41.96 42.59 42.18
S+S+C + L↔ (Ours) 50.43 61.66 43.28 39.47 48.97 30.08 41.62 42.48 42.26

FS LAVT 72.73 75.82 68.79 62.14 63.38 55.10 61.24 62.09 60.50

mIoU

ZS

GL CLIP 26.20 24.94 26.56 27.80 25.64 27.84 33.52 33.67 33.61
GL CLIP (SAM) 30.79 33.08 27.51 32.99 37.17 29.47 39.45 40.85 40.66
S+S (Ours) 36.95 43.77 27.97 37.68 46.24 29.31 41.41 47.18 47.57

WS

TSEG 25.95 – – 22.26 – – 23.41 – –
Shatter&Gather 34.76 34.58 35.01 28.48 28.60 27.98 – – 28.87
ZSBOOTSTRAP (Ours) 37.29 44.18 28.43 38.84 46.13 29.60 43.41 44.78 42.72
S+S+C (Ours) 56.03 64.73 38.64 46.89 55.45 33.88 48.18 48.61 49.41
S+S+C + L↔ (Ours) 55.46 64.45 38.54 46.56 55.96 34.61 48.53 48.71 49.84

FS LAVT 74.46 76.89 70.94 65.81 70.97 59.23 63.34 63.62 63.66

However, note that for negative examples considered pairwise, the output of the network should
only be distinct in locations where the instance chosen masks from Equation 3 are active, as it
should be 0 elsewhere for both. Given the full matching δ∗, we can obtain the chosen mask
for each input as mi,j,k =

∑
c m

c
i,j,kδ

∗
j,k,c. Now consider a pair of negative examples for an

object j, k and j−, k−. The "active" pixels in either of the chosen, pseudo-ground-truth masks as
A(i, j, k, j−, k−) = mi,j,k ∪mi,j−,k− . These are then used to slice each of the masks such that
m̃i,j,k = m̂i,j,k|A(i,j,k,j−,k−) (and similarly for j−, k−). We can then write the contrastive loss as:

L↔(i, j, k) =
∑
k+ ̸=k

KL(m̂i,j,k ∥ m̂i,j,k+) +
∑

j− ̸=j,k−

[γKL(m̃i,j,k ∥ m̃i,j−,k−)]
−1
, (4)

where γ ∈ R+ is a hyperparameter to tune the balance of negative and positive examples in the
contrastive term.

We present the full results in Table 5. As can be observed, the L↔ loss does not lead to an clear
improvement of the results, which is why we have decided to omit it from the main method.
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