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Bidder Selection Problem in Position Auctions: A Fast and Simple
Algorithm via Poisson Approximation

Anonymous Author(s)

ABSTRACT
In the Bidder Selection Problem (BSP) there is a large pool of 𝑛

potential advertisers competing for ad slots on the user’s web page.

Due to strict computational restrictions, the advertising platform

can run a proper auction only for a fraction 𝑘 < 𝑛 of advertisers.

We consider the basic optimization problem underlying BSP: given

𝑛 independent prior distributions, how to efficiently find a subset of

𝑘 with the objective of either maximizing expected social welfare or

revenue of the platform. We study BSP in the classic multi-winner

model of position auctions for welfare and revenue objectives using

the optimal (respectively, VCG mechanism, or Myerson’s auction)

format for the selected set of bidders. This is a natural generalization

of the fundamental problem of selecting 𝑘 out of 𝑛 random variables

in a way that the expected highest value is maximized. Previous

PTAS results ([Chen, Hu, Li, Li, Liu, Lu, NIPS 2016], [Mehta, Nadav,

Psomas, Rubinstein, NIPS 2020], [Segev and Singla, EC 2021]) for

BSP optimization were only known for single-item auctions and

in case of [Segev and Singla 2021] for 𝑙-unit auctions. More impor-

tantly, all of these PTASes were computational complexity results

with impractically large running times, which defeats the purpose

of using these algorithms under severe computational constraints.

We propose a novel Poisson relaxation of BSP for position auc-

tions that immediately implies that 1) BSP is polynomial-time solv-

able up to a vanishingly small error as the problem size 𝑘 grows; 2)

PTAS for position auctions after combining our relaxation with the

trivial brute force algorithm. Unlike all previous PTASes, we imple-

mented our algorithm and did extensive numerical experiments on

practically relevant input sizes. First, our experiments corroborate

the previous experimental findings of Mehta et al. that a few simple

heuristics used in practice (e.g., Greedy for general submodular

maximization) perform surprisingly well in terms of approximation

factor. Furthermore, our algorithm outperforms Greedy both in run-

ning time and approximation on medium and large-size instances,

i.e., its running time scales better with the instance size.
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1 INTRODUCTION
Online advertising is a big part of the modern e-commerce industry

and a key to the monetization of many online businesses. The

majority of ad slots on a user web page are sold in real time via an
automated auction to a group of candidate advertisers. The whole

process from the time when an auction is initiated based on the

impression about advertising opportunity up to the time when

ads are displayed on the user’s page usually has to be completed

in a few milliseconds. This makes it imperative for the platform

(Ad exchange ADX, or Demand side DSP) to keep the auction

processing and communication time under a strict limit. Meanwhile,

a platform usually runs a complex ML model on each advertiser to

get an accurate estimate of their auction score
1
. As some platforms

already have or anticipate to have in the near future an excessive

number of prospective advertisers, the comprehensive ML model

can only be run on a fraction 𝑘 of 𝑛 advertisers due to strict time
2

limit. In practice, the platform handles this by a two-stage selection

process: it filters out all but 𝑘 advertisers by running a much faster

and less accurate ML model, and then it runs a proper auction for

the remaining 𝑘 advertisers using the comprehensive and slow ML

model. E.g., for the ADX platforms 𝑛 may be in the range 20 − 50

and 𝑘 depends on the specific company, e.g., 𝑘 = 10 or 𝑘 = 20; in

the case of DSPs, 𝑛 may vary a lot and can reach thousands, while

𝑘 cannot be too large, e.g., 𝑘 = 100 or 𝑘 = 200.

This raises multiple practical challenges for the ADX and/or DSP

platforms. A platform first needs to get 𝑛 rough score estimates,

which can be viewed as 𝑛 distributions of the bidders’ accurate auc-

tion scores. One problem is how to obtain these estimates online

in a constantly changing environment. Another learning problem,

recently considered by Goel et al. [10] is how to retrieve this in-

formation from strategic agents, who might affect the selection

stage by adjusting their bids. Third, there is an underlying optimiza-

tion question: for 𝑛 prospective bidders with known independent

prior distributions (𝐷𝑖 )𝑖∈[𝑛] how to select 𝑘 < 𝑛 of them with the

objective of either maximizing expected score (social welfare) or

platform’s revenue. We focus on this basic optimization problem

termed the Bidder Selection Problem (BSP).

The welfare maximization BSP for the VCG single-item (or more

generally ℓ-unit) auction is equivalent to the following fundamental

algorithmic question: select 𝑘 out of 𝑛 independent random vari-

ables, with the objective of maximizing the expected maximum

(expected sum of top ℓ values). This question (for single-item) has

received significant attention under different names: model-driven

optimization [9], 𝑘-MAX [6], team selection with test scores [14],

subset selection for expected maximum [17], non-adaptive Probe-

Max [22], which extends to the top-ℓ-out-of-𝑘 problem.

1
An auction score is comprised of estimates for click-through-rate (CTR), ad relevance,

and value-per-click bid.

2
In some case, the platform may also estimate the bids to avoid communication lag.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

It is also natural to consider the selection problem with a more

general set of objectives given by linear combinations of the top-

ℓ objectives. The latter problem generalizes ℓ-unit auctions and

corresponds to the widely used position auction [8, 24] environment

as described, e.g., in [12]. In position auction, there are𝑚 sorted

positions that appear alongside the search results and 𝑛 advertisers

competing for these 𝑚 slots. Each slot 𝑗 ∈ [𝑚] has a different

click-through rate𝑤 𝑗 (additional multiplicative factor for the click

probability on 𝑗-th position), which translates into the value 𝑣𝑖 ·𝑤 𝑗

for advertiser 𝑖 if 𝑖’s ad is displayed at 𝑗-th position.

Prior Results for the BSP. The basic BSP of welfare maximization

(second-price auction) was shown to be NP-hard by Goel et al. [9]

and later by Mehta et al. [17]. On the positive side, there are a few

known Polynomial Time Approximation Schemes (PTAS). First,

Chen et al. [6] gave a dynamic programming-based polynomial

time approximation scheme (PTAS). Later, Mehta et al. [17] and

Segev and Singla [22] respectively proposed an Efficient PTAS (EP-

TAS) for the BSP. Both of their approaches are based on discretizing

and enumerating all possible distributions for the maximum of

a few random variables: [17] characterize all 𝑛 distributions into

one of 𝐶 (𝜀) bins (where 𝐶 (𝜀) = 𝑂 (1/𝜀)𝑂 (1/𝜀 )
depends on the ap-

proximation guarantee 1 − 𝜀) and then run a brute force search

with the complexity of 𝑂

(
𝑛 · log(𝑘)𝑂 (𝐶 (𝜀 ) )

)
; [22] use a complex

reduction to a multi-dimensional extension of Santa Claus problem

of [2] with at least 𝑂 (1/𝜀)𝑂 (1/𝜀 )𝑂 (1/𝜀2 )
running time

3
. We would

like to emphasize that the findings of Mehta et al. and Segev and

Singla could only be considered as purely computational complex-

ity results rather than real algorithms to be used in practice or

even in testing/numerical experiments. Indeed, their approaches

are rather involved and not very easy to implement, e.g., Segev and

Singla only state an existential result without explicitly describing

their algorithm. Furthermore, the running times of these EPTASes

even for the basic 𝑘-MAX problem and small values of 𝑛 and 𝑘 are

enormously large
4
. I.e., using any of the existing PTASes would

completely defeat the purpose of a two-stage selection process.

For the revenue objective, Mehta et al. [17] also considered BSP

for the second-price auction, which is equivalent to maximizing the

expectation of the second largest value among selected 𝑘 random

variables. They showed strong impossibility results: it is impossible

to get any constant factor approximation in polynomial time under

either of the exponential time, or the planted clique hypothesises.

Auction Formats. One of the most commonly used formats in

advertising industry is the Generalized Second Price (GSP) auction.

It was shown in [8, 24] that GSP of any position auction with any

set of bidders has a Nash equilibrium equivalent to the welfare-

maximizing outcome of the VCG. In some cases (e.g., Google’s

auction for selling contextual ads [25]) the platform’s auction format

is based directly on the VCG. Thus, in the BSP context with the

welfare-maximization objective, it is most natural to analyze the

3
We give a lower bound on the running time, as it is hard to say what is the exact

time complexity of their approach, as they did not specify it explicitly and their result

proceeds by a sequence of reductions with non-trivial running time dependencies.

4
Note that 𝑘-MAX is a special case of general submodular optimization which already

admits efficient 1 − 1/𝑒 approximation. Hence, 𝜀 < 1/𝑒 and the time complexity of

2
Θ(1/𝜀 )Θ(1/𝜀 )

> 2
9000

with conservative estimates of Θ(1/𝜀 ) = 2/𝜀 .

VCG mechanism. For the revenue objective, it is natural to study

the optimal Myerson’s auction, as it gives an upper bound on the

revenue of any other auction format. Then one can reduce revenue

maximization to welfare maximization of the VCG format. I.e., it

is w.l.o.g. to only study welfare-maximization BSP for the VCG

format, which we do in the rest of our paper. It is also natural to

study revenue maximization BSP for the GSP format (or by the

revenue equivalence of the VCG format). Unfortunately, it does

not admit polynomial time 𝑂 (1)-approximation even for the basic

single-item auction due to strong impossibility results of [17].

1.1 Our Results
Wepropose a novel relaxation of the BSP for amore general position

auction environment, which we call Poisson (or Poisson-Chernoff)

relaxation. It has the following theoretical guarantees.

(1) The relaxation is a continuous maximization problem with

a concave objective that can be solved in time polynomial

in 𝑛 and 𝑘 . In fact, the objective of this relaxation is a nicely

structured algebraic function that lends itself to efficient

convex minimization solvers.

(2) With small adjustments (summarized in Algorithm 1), the

relaxed objective converges at the rate 1 −𝑂 (𝑘−1/4) to the

actual social welfare of fractional BSP as the problem size 𝑘

grows (Theorem 4.4). The standard rounding of this fractional

solution suffers only a small loss of 𝑂 (𝑘−1/2), yielding
(
1 −

𝑂 (𝑘−1/4)
)
-approximation (Theorem 4.5) for the integral BSP.

(3) For the special case of the single-item auction, Algorithm 4

achieves better convergence of 1−𝑂
(√︁
ln𝑘/𝑘

)
(Theorem C.2).

These results have immediate theoretical implications and can be

implemented in practice unlike all previous PTAS algorithms, as

our approach has far superior running time to the point where it

outperforms some of the existing heuristics used in practice, such

as the Greedy algorithm for general submodular maximization.

Furthermore, our results bring new theoretical insight for BSP: the

BSP converges to a polynomial-time solvable optimization problem

as the problem size 𝑘 grows.

Theoretical Implications. Our Algorithm 1 gives a (1 − 𝜀) approx-
imation to the BSP for any position auction with 𝜀 = Ω(𝑘−1/4) and
works in polynomial time (independent of 𝜀). On the other hand,

for small values of 𝜀 (𝜀 = 𝑂 (𝑘−1/4)), a straightforward exhaustive

search algorithm gives a perfect solution in 𝑂 (𝑛𝑘 ) = 𝑛poly(1/𝜀 )

time. I.e., the combination of our relaxation with the brute force

algorithm yields a PTAS:

Corollary 1.1. BSP for any position auction admits a (1 − 𝜀)
PTAS that runs in 𝑛poly(1/𝜀 ) time.

Moreover, the algorithm as in Corollary 1.1 is an EPTAS with a

much better dependency on 𝜀 than previous PTASes under a mild

assumption that 𝑘 ≥ log𝑛:

Corollary 1.2. BSP for position auctions admits a (1 − 𝜀) EPTAS
for any 𝑘 ≥ log𝑛 that runs in 𝑂 (poly(𝑛, 𝑘)) + 2

𝑂 (𝜀−8 ) time.

Proof. Algorithm 1 runs in 𝑂 (poly(𝑛, 𝑘)). We run brute force

only when 𝜀 = 𝑂 (𝑘−1/4), i.e., when 𝑘2 = 𝑂 (𝜀−8). Then its running

time is not more than 𝑛𝑘 ≤ 2
𝑘2

= 2
𝑂 (𝜀−8 )

, since 𝑘 ≥ log𝑛. □

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Bidder Selection Problem in Position Auctions: A Fast and Simple Algorithm via Poisson Approximation Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Comparison with Previous Theoretical Results. Our novel Poisson
approximation approach yields more general theoretical results

than previous work. E.g., as Segev and Singla [22] briefly mention

how their scheme can be extended from 𝑘-MAX (i.e., single-item

auction) to ℓ-unit auctions, one may wonder if a similar approach

also extends to the more general position auction environment. To

the best of our knowledge, it does not. Indeed, their main idea is to

consider two regimes for ℓ : small (a constant) ℓ < 1/𝜀3, and large

ℓ > 1/𝜀3. They claim that the former case can be handled with a

similar approach (maybe with a significantly worse dependency of

the running time on 𝜀 than the case ℓ = 1), and in the later case,

one can use concentration bounds similar to the (3) case described

in Section 3.1. This argument cannot be used for the objective that

is a linear combination of welfare in 1-unit and 𝑘/2-unit auctions.

Relevance in Practice. Our relaxation is a white-box approach

that can be easily adapted to different scenarios. E.g., if some bidders

have to be included in the final solution (which is often the case in

industry because of contract obligations), then our approach gives

the same approximation with these additional constraints
5
. Also,

depending on the type of problem instances, a few steps of our

algorithm can be removed or simplified to fit the specific domain,

which results in simpler and more efficient solutions.

Furthermore, unlike the case with all previous PTASes, we actu-

ally implemented our algorithm and did numerical experiments on

several generated data sets of practically relevant sizes. Note that a

company cares much more about the implementability and running

time of their algorithms rather than its theoretical approximation

guarantees
6
, which has been the main focus of previous PTAS re-

sults. In contrast, our algorithm is not very complex and is based on

standard continuous convex maximization methods, which means

that it is much easier to understand and adopt by a platform’s prod-

uct team. The experiments are summarized in Section 5. We slightly

simplified our theoretical Algorithm 1 to avoid the hard-coded effi-

ciency loss of

(
1 −𝑂 (𝑘−1/4)

)
in the approximation factor (running

time was not affected).

We observed that among all tested algorithms, our algorithm pro-

duced solutions that were alwayswithin 0.1% of the best-performing

algorithm in terms of objective value. Furthermore, our algorithm’s

running time scales significantly slower than any other tested algo-

rithm. For large instances where 𝑛 = 1000, 𝑘 = 200, our algorithm

took less than 1 minute to complete, while even Greedy (which is a

subroutine in all previous PTASes) took more than 1 day and Local

Search could not finish within 1 week. These findings demonstrate

the practical relevance of our approach.

1.2 Other Related Work
Mehta et al. [17] mention a few other scenarios besides bidder

selection with similar mathematical formulations. The applica-

tions range from a two-tier solution for scoring documents in a

search result [5], to filtering initial proposals in procurement auc-

tions [21, 23], to voting theory [20]. Bei at al. [3] studied BSP with

the revenue objective under multiple auction formats including

5
In fact, the approximation guarantee holds not only for the global objective, but also

for the surplus objective, i.e., the additional gain to welfare from the non-fixed bidders.

6
In the context of BSP any reasonable heuristic is preferable to a complex and slow

algorithm with good approximation efficiency guarantees.

Myerson’s auction and gave constant factor approximation for the

second-price auction with anonymous reserve. They also intro-

duced another optimization framework for the BSP under costs,

which is more challenging than the BSP under capacity constraint.

Poisson approximation is a well-developed technique from prob-

ability theory and statistics. A survey [18] mentions at least twenty

different results on the basic question of approximating the sum of

independent Bernoulli random variables by the Poisson distribution.

In statistics, Poisson approximation is commonly used in Extreme

Value Theory (EVT) with applications to structural and geological

engineering, traffic prediction, and finance (see, e.g., a book [19]). It

has also been used in theoretical computer science, e.g., [16] used Le

Cam’s Poisson approximation theorem for stochastic bin packing

and knapsack problems and also for EUM introduced in [15].

In fact, the expected utility maximization (EUM) is closely related

to our objective. EUM is formulated as choosing a feasible subset 𝑆

out of 𝑛 random variables 𝑋1, . . . , 𝑋𝑛 to maximize E [𝑢 (∑𝑖∈𝑆 𝑋𝑖 )],
where 𝑢 is a given utility function. The problem has been studied

under capacity [4] or other combinatorial constraints [15, 16, 26]

with a non-linear (typically concave) utility function. The BSP for

single-item auction, i.e., the 𝑘-MAX problem, has a similar objective

E [max𝑖∈𝑆 {𝑋𝑖 }] to EUM but with max operator instead of the sum.

When the distributions of𝑋𝑖 are unknown, EUM becomes an online

learning problem. Chen et al. [6] gave the first PTAS for 𝑘-MAX,

but their main focus is on Combinatorial Multi-Armed Bandits.

2 PRELIMINARIES
A set of 𝑛 bidders wish to receive some service and each bidder 𝑖 ∈
[𝑛] has a private non-negative value 𝑣𝑖 ∈ R≥0 indicating howmuch

they are willing to pay for it. We denote the vector of bidder values

as v = (𝑣𝑖 )𝑖∈[𝑛] . By the revelation principle, we can restrict our

attention to incentive compatible and individually rational single-

round auctions A, where each bidder 𝑖 submits a sealed bid 𝑏𝑖 to

the auctioneer. The auctioneer then decides on a feasible allocation

vector a(b) = (𝑎𝑖 (b))𝑖∈[𝑛] and payments p(b) = (𝑝𝑖 (b))𝑖∈[𝑛] . The
incentive compatibility and individual rationality mean that by

bidding truthfully 𝑏𝑖 = 𝑣𝑖 , each bidder 𝑖 ∈ [𝑛] (a) maximizes her

utility 𝑢𝑖 (𝑏𝑖 , b-𝑖 )
def

== 𝑣𝑖 · 𝑎𝑖 (𝑏𝑖 , b-𝑖 ) − 𝑝𝑖 (𝑏𝑖 , b-𝑖 ) and (b) receives

non-negative utility 𝑢𝑖 (𝑣𝑖 , b-𝑖 ) ≥ 0. The seminal VCG mechanism

(a second-price auction in the case of single-item auction) is an

example of incentive compatible mechanism that also maximizes

social welfare SW(a, v) = ∑𝑛
𝑖=1 𝑎𝑖 · 𝑣𝑖 .

We study auctions in the Bayesian setting, where it is assumed

that bidder values are drawn independently from known prior distri-

butions v ∼ D =
∏

𝑖∈[𝑛] 𝐷𝑖 . We also use 𝐷𝑖 (𝜏) = Pr𝑣𝑖∼𝐷𝑖
[𝑣𝑖 ≤ 𝜏]

to denote the cumulative distribution function. The auction de-

signer is usually concerned about two objectives: the expected

social welfare SW = Ev∼D [SW(a(v), v)], and revenue Rev = Ev∼D
[∑𝑖∈[𝑛] 𝑝𝑖 (v)]. The VCG mechanism maximizes the welfare on

every valuation profile v, and thus maximizes SW in expectation

for any prior D. The well-known Myerson’s auction maximizes

Rev. This auction reduces the problem of revenue maximization to

virtual welfare maximization by transforming values (𝑣𝑖 )𝑖∈[𝑛] to
virtual values 𝜑𝑖 (𝑣𝑖 ) for regular distribution 𝐷𝑖 and by doing iron-

ing 𝜑𝑖 (𝑣𝑖 ) for irregular distribution 𝐷𝑖 . I.e., the expected revenue of

Myerson’s auction can be written as Rev = Ev [SW(a(v), 𝜑 (v))] for
3
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regular distributions and Rev = Ev [SW(a(v), 𝜑 (v))] for general
distributions.

Auction Environments. The single-item auction is an environ-

ment with the feasible allocations given by {a :

∑
𝑖∈[𝑛] 𝑎𝑖 ≤ 1}. A

more general ℓ-unit auction environment for ℓ ∈ N is given by the

feasibility constraints:

∑
𝑖∈[𝑛] 𝑎𝑖 ≤ ℓ and 𝑎𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑛].

A position auction environment further generalizes ℓ-unit auctions.

It is specified by a sorted weight vector w = (1 ≥ 𝑤1 ≥ 𝑤2 ≥ . . . ≥
𝑤𝑛 ≥ 0), which represents the click-through rate probabilities for

𝑛 advert positions
7
. Every bidder may get at most one position

and each advert position can be assigned to at most one advertiser.

Formally, the feasibility allocations can be specified with an assign-

ment function 𝜋 : [𝑛] → [𝑛] of 𝑛 advertisers to 𝑛 sorted slots as

follows: {a : ∃𝜋, 𝑎𝑖 ∈ [0,𝑤𝜋 (𝑖 ) ] for all 𝑖 ∈ [𝑛]}.

Bidder Selection. In the Bidder Selection Problem (BSP) the seller

first decides 𝑥𝑖 ∈ {0, 1} which bidders 𝑖 ∈ [𝑛] to invite to the

auction. The selected set of bidders 𝑆 may not exceed a certain

capacity 𝑘 ≥ |𝑆 |, i.e., ∑𝑖∈[𝑛] 𝑥𝑖 ≤ 𝑘 . Then the auctioneer runs an

optimal auctionA for the set 𝑆 of invited bidders: VCG mechanism

for the welfare objective, and Myerson for the revenue objective.

Since revenue of the Myerson’s auction can be rewritten as the

expected virtual welfare with independent (ironed) virtual values

(𝜑𝑖 (𝑣𝑖 ) : 𝑣𝑖 ∼ 𝐷𝑖 )𝑖∈𝑆 , the BSP for the revenue maximization is

equivalent to the BSP for the welfare maximization. Thus it suffices

to only consider the welfare maximization problem. Specifically,

we denote by v ∼ x · D the independent draws of 𝑣𝑖 ∼ 𝑥𝑖 · 𝐷𝑖 (i.e.,

𝑣𝑖 ∼ 𝐷𝑖 when 𝑥𝑖 = 1, and 𝑣𝑖 = 0 when 𝑥𝑖 = 0) for all 𝑖 ∈ [𝑛], then
the BSP of the VCG mechanism for any ℓ-unit/position auction

with weights w can be written as follows:

OPT(ℓ) def

== max

x∈{0,1}𝑛
|x |1≤𝑘

E
v∼x·D

[
ℓ∑︁

𝑖=1

𝑣 (𝑖 )

]
,

OPT(w) def

== max

x∈{0,1}𝑛
|x |1≤𝑘

E
v∼x·D

[
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑣 (𝑖 )

]
,

where 𝑣 (𝑖 ) is the 𝑖-th largest value among {𝑣𝑖 }𝑖∈[𝑛] . We want to

obtain good approximation algorithms for these BSPs. I.e., we would

like to find in polynomial time x ∈ {0, 1}𝑛 with |x|1 ≤ 𝑘 such that

Ev∼x·D [
∑ℓ
𝑖=1 𝑣 (𝑖 ) ] ≥ (1 − 𝜀)OPT(ℓ) and Ev∼x·D [

∑𝑛
𝑖=1𝑤𝑖 · 𝑣 (𝑖 ) ] ≥

(1 − 𝜀)OPT(w) for a small 𝜀 > 0. To simplify the presentation, we

assume that all distributions (𝐷𝑖 )𝑖∈[𝑛] have finite supports and are

given explicitly as the algorithm’s input.

It has been observed before that the BSP’s objective is a mono-

tone submodular function of the set 𝑆 = {𝑖 : 𝑥𝑖 = 1} of invited
bidders, i.e., SW(𝑆) + SW(𝑇 ) ≥ SW(𝑆 ∩ 𝑇 ) + SW(𝑆 ∪ 𝑇 ) for any
𝑆,𝑇 ⊆ [𝑛]. The same property holds for the ℓ-unit and position

auctions with an almost identical proof (see [6]).

We also consider the standard (in submodular optimization litera-

ture) multi-linear extension of the BSP objective. I.e., for a fractional

x ∈ [0, 1]𝑛 , we invite each bidder 𝑖 to the auction independently

with probability 𝑥𝑖 . We employ the same notation v ∼ x · D as in

the integral problem, where 𝑣𝑖 ∼ 𝑥𝑖 · 𝐷𝑖 means that we first decide

7
The number of available positions𝑚 is usually smaller than the number of bidders 𝑛,

in which case we simply let 𝑤𝑚+1 = · · · = 𝑤𝑛 = 0.

whether to invite 𝜉𝑖 ∈ {0, 1} bidder 𝑖 according to a Bernoulli distri-
bution 𝜉𝑖 ∼ Ber(𝑥𝑖 ), then draw their value 𝑣𝑖 ∼ 𝜉𝑖 ·𝐷𝑖 . The capacity

constraint transforms into the bound on the expected number of

invited bidders

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘 . We describe this new mathematical

formulation in Section 3. In Section 4, we first consider this frac-

tional relaxation of BSP and we discuss in Section 4.2 how to obtain

a good solution to the integral BSP from the fractional problem.

3 NEWMATHEMATICAL FORMULATION
In this section, we give a fractional relaxation of BSP. As the welfare

of any position auction can be written as a linear combination of

ℓ-unit auctions, we begin with a fractional relaxation of BSP for

the ℓ-unit auction. Specifically, the expected social welfare with

a fractional set of bidders x is SW(x, ℓ) = E
v∼x·D

[∑ℓ
𝑖=1 𝑣 (𝑖 ) ], where

𝑣 (𝑖 ) denotes the 𝑖-th largest value among {𝑣𝑖 }𝑖∈{1,2,...,𝑛} . Hence, the
following mathematical program represents BSP for ℓ-unit auction:

Maximize SW(x, ℓ)
Subject To

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘, 𝑥𝑖 ∈ [0, 1],∀𝑖 ∈ {1, 2, . . . , 𝑛}. (1)

As ℓ is fixed, whenever it is clear from the context, we will simply

write SW(x).

Bernoulli Representation. We now derive an explicit formula for

the social welfare SW(x). Fixing a threshold 𝜏 , the expected number

of bidders with values exceeding 𝜏 among the highest ℓ bidders

is Ev∼x·D [min(∑𝑛
𝑖=1 I[𝑣𝑖 ≥ 𝜏], ℓ)]. Therefore, by integrating

8
over

𝜏 ∈ [0, +∞), we get

SW(x) =
∫ +∞

0

E
v∼x·D

[
min

(
𝑛∑︁
𝑖=1

I
[
𝑣𝑖 ≥ 𝜏

]
, ℓ

)]
d𝜏 .

Note that I[𝑣𝑖 ≥ 𝜏] for 𝑣𝑖 ∼ 𝑥𝑖 · 𝐷𝑖 is a Bernoulli random variable,

and Ev∼x·D [min(∑𝑛
𝑖=1 I[𝑣𝑖 ≥ 𝜏], ℓ)] is the minimum of a sum of in-

dependent Bernoulli random variables and ℓ . To simplify notations,

we explicitly define the probabilities of Bernoulli random variables

I[𝑣𝑖 ≥ 𝜏]: 𝑞𝑖 (𝑥𝑖 , 𝜏)
def

== Pr
𝑣𝑖∼𝑥𝑖 ·𝐷𝑖

[𝑣𝑖 ≥ 𝜏] = 𝑥𝑖 · (1 − 𝐷𝑖 (𝜏))

and let q(x, 𝜏) def

== (𝑞𝑖 )𝑖∈[𝑛] . (2)

Definition 3.1 (Bernoulli Objective). For a vector q ∈ [0, 1]𝑛 and

ℓ , the Bernoulli objective term of q and ℓ is a function H
ber

(q, ℓ):

H
ber

(q, ℓ) def

== E
z∼Ber(q)

[
min

(
𝑛∑︁
𝑖=1

𝑧𝑖 , ℓ

)]
,

then SW(x) =
∫ +∞

0

H
ber

(q(x, 𝜏), ℓ) d𝜏 . (3)

Position Auctions. A position auction is given by a vector of non-

negative weights
9 w : (𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑛 ≥ 0). The highest

social welfare we get from the set 𝑆 of invited bidders is
∑ |𝑆 |
𝑖=1

𝑣 (𝑖 ) ·𝑤𝑖 ,

where 𝑣 (1) ≥ · · · ≥ 𝑣 ( |𝑆 | ) are ordered values of bidders in 𝑆 . Thus

the expected social welfare for a fractional set x is

SW(x,w) = E
v∼x·D

[
𝑛∑︁
𝑖=1

𝑣 (𝑖 ) ·𝑤𝑖

]
=

𝑛∑︁
ℓ=1

(𝑤ℓ −𝑤ℓ+1) · SW(x, ℓ),

8
The function inside the integral is piece-wise constant, i.e., it is constant between

consecutive values of the threshold 𝜏 in the supports of {𝐷𝑖 }𝑖∈ [𝑛] .
9
Usually weights are only for the first 𝑘 slots, as we only select a set of 𝑘 bidders. In

this case, we simply assume that 𝑤𝑘+1 = . . . = 𝑤𝑛 = 0.
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where𝑤𝑛+1
def

== 0. Then the respective fractional BSP program for

position auctions is as follows.

Maximize SW(x,w)
Subject To

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘, 𝑥𝑖 ∈ [0, 1],∀𝑖 ∈ {1, 2, . . . , 𝑛}. (4)

We will often omit dependency on w in SW whenever it is clear

from the context. We further consider the Bernoulli representation
for position auctions:

SW(x,w) =
∫ +∞

0

H
ber

(q(x, 𝜏),w) d𝜏,

where H
ber

(q,w) def

==

𝑛∑︁
ℓ=1

(𝑤ℓ −𝑤ℓ+1)Hber
(q, ℓ). (5)

As in (2), q(x, 𝜏) represents the probabilities of each bidder’s value

exceeding 𝜏 . H
ber

(q,w) is called the Bernoulli objective term for

position auctions.

3.1 Overview of Our Approach
The fractional relaxation (4) is still neither convex nor concave

and thus is too unwieldy. The central idea of our paper is to use

instead Poisson approximation to the Bernoulli objective terms

H
ber

(q(x, 𝜏),w). Specifically, we substitute each Bernoulli random

variable 𝑧 ∼ Ber(𝑝) with 𝑝 = 𝑞𝑖 (𝑥𝑖 , 𝜏) by the Poisson random vari-

able 𝑦 ∼ Pois(𝑝) with the same expectation as 𝑧. We use the follow-

ing Poisson objective term Hpois (q, ℓ) to approximate H
ber

(q, ℓ).

Hpois (q, ℓ)
def

== E
y∼Pois(q)

[
min

(
𝑛∑︁
𝑖=1

𝑦𝑖 , ℓ

)]
= E

𝑌∼Pois(∑𝑛
𝑖=1 𝑞𝑖 )

[min(𝑌, ℓ)] .

The advantage of the Poisson approximation Hpois (q, ℓ) is that the
resulting functions Hpois (q, ℓ) and Hpois (q,w) are concave in q.
This in turn allows us to efficiently solve the optimization prob-

lem for the Poisson approximation analogous to (4). This Poisson

approximation works well
10

in the following situations.

(1) When the probabilities 𝑝𝑖 = 𝑞𝑖 (𝑥𝑖 , 𝜏) of 𝑧𝑖 ∼ Ber(𝑝𝑖 ) are
small (i.e., 𝑝𝑖 ≤ 𝛿,∀𝑖 ∈ [𝑛]). This allows us to handle the

crucial contribution to the welfare comprised of small proba-

bility tail events for large thresholds 𝜏 .

(2) When E [∑𝑛
𝑖=1 𝑧𝑖 ] is large (when thresholds 𝜏 are small). In-

deed, by Chernoff bounds the sums of independent random

variables (both Bernoulli and Poisson)

∑𝑛
𝑖=1 𝑧𝑖 and

∑𝑛
𝑖=1 𝑦𝑖

are close to their expectations. In fact, we simply use Cher-

noff objective term H
cher

(q, ℓ) def

== min

(∑𝑛
𝑖=1 𝑞𝑖 , ℓ

)
instead of

Poisson approximation in this case.

(3) When ℓ is large. In this case, either the concentration in-

equality gives a good approximation when E [∑𝑛
𝑖=1 𝑧𝑖 ] =

E [∑𝑛
𝑖=1 𝑦𝑖 ] is large, or when this expectation is much smaller

than ℓ then the probability that either of

∑𝑛
𝑖=1 𝑧𝑖 or

∑𝑛
𝑖=1 𝑦𝑖

exceeds the threshold ℓ is small.

Then the algorithmic framework for the BSP is rather straightfor-

ward. We need to solve the following concave program of x:

Maximize

∑𝑛
ℓ=1 (𝑤ℓ −𝑤ℓ+1)

∫ +∞
0

Hpois (q(x, 𝜏), ℓ) d𝜏
Subject To

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘, 𝑥𝑖 ∈ [0, 1],∀𝑖 ∈ {1, 2, . . . , 𝑛}. (6)

10
The sum of Poisson random variables approaches the sum of Bernoulli random

variables in TV and other statistical distances.

We define the approximate social welfare S̃W(x,w) to be the objec-
tive of (6). Here, Hpois (q(x, 𝜏), ℓ) = E𝑌∼Pois(∑𝑞𝑖 ) [min(𝑌, ℓ)] and
all functions under the integral are piece-wise constant with the

number of pieces bounded by the size of the union of the sup-

ports of 𝐷𝑖 . The optimal fractional solution x can be computed

rather efficiently using continuous convex optimization. Finally,

we use a rounding procedure (similar to the multi-linear extension

of submodular function) to the fractional solution of (6) to obtain

an integral solution with only a small loss to the approximation

guarantee.

4 OUR ALGORITHM
Poisson approximation is the central idea of this paper. We use the

following Poisson Objective to approximate Bernoulli objective

terms.

Definition 4.1 (Poisson Objective). For q ∈ [0, 1]𝑛 and ℓ ∈ N, the
Poisson objective term is a function Hpois (q, ℓ) given by

Hpois (q, ℓ)
def

== E
y∼Pois(q)

[
min

(
𝑛∑︁
𝑖=1

𝑦𝑖 , ℓ

)]
= E

𝑌∼Pois(∑𝑛
𝑖=1 𝑞𝑖 )

[min(𝑌, ℓ)] .

Note that the latter equality is an important property of Poisson

distribution: the sum of independent Poisson random variables𝑦𝑖 ∼
Pois(𝑞𝑖 ) follows the Poisson distribution Pois(∑𝑛

𝑖=1 𝑞𝑖 ). Another
crucial property is the concavity of Poisson approximation.

Claim 4.2 (Concavity of Poisson). Hpois (q, ℓ) is a concave func-
tion in q ∈ [0, 1]𝑛 for ∀ℓ ∈ N.

Proof. Let 𝜆 =
∑𝑛
𝑖=1 𝑞𝑖 . Notice that Hpois (q, ℓ) only depends on

𝜆, which is linear in q. We use Hpois (𝜆) to represent this function.

Then, we only need to prove that Hpois (𝜆) is concave in 𝜆. Rewrite

Hpois (𝜆) = ℓ−
ℓ−1∑︁
𝑗=0

Pr
𝑌∼Pois(𝜆)

[𝑌 = 𝑗] · (ℓ− 𝑗) = ℓ−
ℓ−1∑︁
𝑗=0

𝜆 𝑗

𝑗 !
𝑒−𝜆 · (ℓ− 𝑗) .

By a straightforward differentiation of the partial series we get

d

d𝜆
Hpois =

ℓ−1∑︁
𝑗=0

𝜆 𝑗

𝑗 !
𝑒−𝜆,

d
2

d𝜆2
Hpois = −𝑒−𝜆 𝜆ℓ−1

(ℓ − 1)! < 0.

Therefore, Hpois (q, ℓ) is concave in 𝜆, and thus concave in q. □

Chernoff Approximation. As we mentioned earlier Poisson ap-

proximation is useful for small probabilities 𝑞𝑖 ≤ 𝛿 . For another ex-

treme case where 𝜆 =
∑𝑛
𝑖=1 𝑞𝑖 is large, due to concentration bounds,

Poisson approximation also works well with 𝑂 (𝜆−1/2) relative er-
ror, because both

∑𝑛
𝑖=1 Ber(𝑞𝑖 ) and Pois(𝜆) concentrate around 𝜆.

To optimize the presentation for an easier understanding, we will

use Chernoff objective term H
cher

(q, ℓ) def

== min

(∑𝑛
𝑖=1 𝑞𝑖 , ℓ

)
as an

alternative of Poisson in this case. It is also concave in q.
In a number of cases Hpois (q, ℓ) and Hcher

(q, ℓ) are good approx-
imations to H

ber
(q, ℓ). We present these approximation guarantees

in Appendix A along with a simple algorithm that illustrates our

approach in an important special case.

5
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4.1 Algorithm for Position Auctions
Below, we consider Bidder Section Problem for position auctions.

We first analyze the fractional BSP, and then explain in Section 4.2

how to do integral rounding of the fractional solution with only a

small loss to the approximation guarantee. For the fractional BSP,

we give an efficient polynomial time (1 −𝑂 (𝑘−4))-approximation

algorithm (see Theorem 4.4 for the exact statement).

Recall that the Bernoulli objective term for position auctions

H
ber

(q,w) is defined in Section 3. The expected welfare SW(x) =
SW(x,w) is written as an integral of H

ber
. Below, we will also need

the Chernoff objective term

H
cher

(q,w) def

==

𝑛∑︁
ℓ=1

(𝑤ℓ −𝑤ℓ+1)Hcher
(q, ℓ) .

We sometimes slightly abuse notations and write H
ber

(x, 𝜏) and
H
cher

(x, 𝜏) instead of H
ber

(q,w) and H
cher

(q,w).
In order to effectively use the Poisson approximation we would

like to have the small probability assumption 𝑞𝑖 ≤ 𝛿 , which is

achieved by fixing a small bidder set 𝑆
fix

properly (see Algorithm 3

in Appendix A and Lemma A.2 that provides good approximation

guarantees of H
ber

(q, ℓ) by Hpois (q, ℓ) for small 𝛿).

Fixing Small Bidder Set. We will fix a small set of bidders 𝑆
fix

(set

𝑥𝑖 = 1 for 𝑖 ∈ 𝑆
fix
) with |𝑆

fix
| = 𝜀 · 𝑘 and make sure that all other

bidders 𝑖 ∉ 𝑆
fix

have only a small probability Pr [𝑣𝑖 ≥ 𝜏] ≤ 𝛿 to

exceed any of the thresholds 𝜏 > 𝜂 for certain 𝜂 > 0. This allows us

to use Poisson approximation for the high range thresholds 𝜏 > 𝜂

and bidders 𝑖 ∈ 𝑀
def

== [𝑛] \ 𝑆
fix
. On the other hand, for the low

range thresholds 𝜏 ≤ 𝜂, we would like to see a certain number ℓ∗

of bidders 𝑖 ∈ 𝑆
fix

to exceed the threshold 𝑣𝑖 ≥ 𝜏 . To this end, we

choose 𝑆
fix

so that the expected number of bidders 𝑖 ∈ 𝑆
fix

with

𝑣𝑖 ≥ 𝜏 is at least ℓ∗. We can achieve the following guarantees for

𝜀, 𝛿, and ℓ∗.

Claim 4.3 (Small Bidder Set). Let 𝜀 ∈ [ ℓ∗

𝛿 ·𝑘 , 1) be a multiple of
1/𝑘 for ℓ∗ ∈ R≥0 : ℓ∗ < 𝑘 and 𝛿 ∈ (0, 1). We can find in polynomial
time a threshold 𝜂 ≥ 0 and a set 𝑆

fix
⊆ [𝑛] of size |𝑆

fix
| = 𝜀 · 𝑘 :

(a) ∀ 0 ≤ 𝜏 ≤ 𝜂,
∑︁
𝑖∈𝑆fix

Pr
𝑣𝑖∼𝐷𝑖

[𝑣𝑖 ≥ 𝜏] ≥ ℓ∗;

(b) ∀ 𝑖 ∉ 𝑆
fix
, Pr

𝑣𝑖∼𝐷𝑖

[𝑣𝑖 > 𝜂] < 𝛿.

Proof. We search through all thresholds 𝜏 in the supports of

{𝐷𝑖 }𝑖≥1 and find two consecutive threshold values 𝜂 and 𝜂+ > 𝜂

such that |{𝑖 : Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝛿}| ≥ 𝜀 · 𝑘 , but a similar number of

bidders |{𝑖 : Pr [𝑣𝑖 > 𝜂] = Pr [𝑣𝑖 ≥ 𝜂+] ≥ 𝛿}| < 𝜀 · 𝑘 for the next

value 𝜂+. We place each bidder 𝑖 with Pr [𝑣𝑖 > 𝜂] ≥ 𝛿 into 𝑆
fix

and

fill the remaining positions in 𝑆
fix

up to 𝜀 · 𝑘 with bidders from

{𝑖 : Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝛿 > Pr [𝑣𝑖 ≥ 𝜂+]}.
Thus, every bidder 𝑖 ∉ 𝑆

fix
has Pr [𝑣𝑖 > 𝜂] = Pr [𝑣𝑖 ≥ 𝜂+] < 𝛿

as required by condition (b). On the other hand, |𝑆
fix
| = 𝜀 · 𝑘 and

Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝛿 for every 𝑖 ∈ 𝑆
fix
, which implies (a), since ∀𝜏 ≤ 𝜂,∑︁

𝑖∈𝑆fix
Pr

𝑣𝑖∼𝐷𝑖

[𝑣𝑖 ≥ 𝜏] ≥
∑︁
𝑖∈𝑆fix

Pr
𝑣𝑖∼𝐷𝑖

[𝑣𝑖 ≥ 𝜂] ≥ 𝛿 · |𝑆
fix
| = 𝛿 · 𝜀 · 𝑘 ≥ ℓ∗ .

Thus we constructed in polynomial time the desired threshold 𝜂

and set 𝑆
fix
. □

We need to balance three parameters ℓ∗, 𝛿 , and 𝜀, which must

satisfy the conditions of Claim 4.3. Specifically, we choose ℓ∗ = 𝑘1/2,
𝜀 = 𝑘−1/4 rounded up to a multiple of 1/𝑘 , and 𝛿 = 𝜀 ≥ 𝑘−1/4.
Claim 4.3 leads to Algorithm 1 (which we will present shortly).

For thresholds 𝜏 > 𝜂, any bidder outside 𝑆
fix

has only ≤ 𝛿 prob-

ability to exceed the threshold, which is ideal for applying the

Poisson approximation. Therefore, to achieve the approximation

guarantees in Lemma A.1, we recalculate the adjusted Poisson
objective term by applying Poisson approximation only on these

bidders. Specifically, we let 𝑀
def

== [𝑛] \ 𝑆
fix

and define 𝑍
fix
(𝜏) def

==∑
𝑖∈𝑆fix I[𝑣𝑖 ≥ 𝜏] (as x𝑆fix = 1𝑆fix , random variable 𝑍

fix
(𝜏) has Pois-

son binomial distribution). Indeed, wemay calculate all probabilities

Pr [𝑍
fix
(𝜏) = 𝑗] for each 𝑗 ∈ [0, 𝜀 ·𝑘] in polynomial time, and define

the adjusted Poisson objective term as a conditional expectation

depending on 𝑍
fix
(𝜏):

Gpois (x𝑀 , 𝜏)
def

==

|𝑆fix |∑︁
𝑗=0

Pr [𝑍
fix
(𝜏) = 𝑗] ·

( 𝑗∑︁
ℓ=1

𝑤ℓ +

𝑛∑︁
ℓ=𝑗+1

(𝑤ℓ −𝑤ℓ+1) · Hpois (x𝑀 , ℓ− 𝑗, 𝜏)
)
, (7)

where Hpois (x𝑀 , ℓ − 𝑗, 𝜏) = E
𝑌∼Pois(𝜆𝑀 )

[min{𝑌, ℓ − 𝑗}], and 𝜆𝑀 =∑
𝑖∈𝑀 𝑞𝑖 (𝑥𝑖 , 𝜏). For the low-range thresholds 𝜏 ≤ 𝜂, we use Chernoff

objectiveH
cher

(x, 𝜏) = H
cher

(q(x, 𝜏),w) to approximateH
ber

(x, 𝜏) =
H
ber

(q(x, 𝜏),w) for x = (x𝑀 , 1𝑆fix ). Importantly, unlike the case of

high-range thresholds, we do not recalculate H
cher

as a function of

x𝑀 , but use Chernoff approximation for the entire 𝑛-dimensional

vector x = (x𝑀 , x𝑆fix ) with x𝑆fix = 1𝑆fix . Thus, as ℓ
∗ = 𝑘1/2 grows

with 𝑘 , H
cher

(x, 𝜏) → H
ber

(x, 𝜏) by Lemma A.3 (c).

Algorithm. Our main algorithm is summarized as Algorithm 1.

Algorithm 1: Fractional BSP for Position Auctions
Let ℓ∗ = 𝑘1/2; 𝜀 be 𝑘−1/4 rounded up to a multiple of 1/𝑘(
𝜀 =

⌈𝑘 ·𝑘−1/4 ⌉
𝑘

)
; 𝛿 = 𝜀.

(1) Find 𝜂 and 𝑆
fix

according to Claim 4.3. Set 𝑥𝑖 = 1 for

∀𝑖 ∈ 𝑆
fix
. Let𝑀

def

== [𝑛] \ 𝑆
fix
.

(2) Define the approximate welfare using adjusted Poisson

objective (7):

S̃W(x𝑀 )
def

==

∫ 𝜂

0

H
cher

((x𝑀 , 1𝑆fix ), 𝜏) d𝜏+
∫ +∞

𝜂

Gpois

(
x𝑀 , 𝜏

)
d𝜏,

(8)

(3) Return x̃∗ = (x̃∗𝑀 , 1𝑆fix ), where x̃∗𝑀 is the solution to the

concave program in x𝑀 :

Maximize S̃W(x𝑀 )
Subject To

∑
𝑖∈𝑀 𝑥𝑖 ≤ 𝑘 − 𝜀 · 𝑘, 𝑥𝑖 ∈ [0, 1] ∀𝑖 ∈ 𝑀.

(9)

Theorem 4.4. Algorithm 1 works in polynomial time and is a
(1 −𝑂 (𝜀))-approximation, i.e., (1 − 43𝑘−1/4)-approximation to the
fractional BSP for any position auction.

The proof of this theorem is deferred to Appendix B.1.
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4.2 Rounding
We conclude Section 4 by presenting the rounding algorithm, which

takes our solution x̃∗ to the fractional BSP produced by Algorithm 1

and returns a solution to the integral BSP.

Our fractional relaxation works as the standard multi-linear

extension of submodular functions, which corresponds to sampling

a random set of bidders 𝑆 ∼ ∏𝑛
𝑖=1 Ber(𝑥𝑖 ) in the integral BSP. To

align the notations for fractional and integral BSPs, we shall use

vectors y, z ∈ {0, 1}𝑛 for the respective sets of selected bidders.

Specifically, we use y ∼ Ber(x) to represent the random set 𝑆 in the

multi-linear extension. Our rounding procedure is quite standard

and proceeds as follows.

Algorithm 2: Rounding: algorithm for Integral BSP
(1) Run Algorithm 1 to obtain a fractional solution x.
(2) Sample an integral solution y ∼ Ber(x), with y ∈ {0, 1}𝑛 .
(3) • If |y|1 ≤ 𝑘 , return z = y,

• Else (|y|1 > 𝑘), return 𝑘 bidders z ∼
(y
𝑘

)
chosen

uniformly at random from y.

Theorem 4.5. Algorithm 2 works in polynomial time and in expec-
tation is a

(
1 − 43𝑘−1/4 −𝑂 (𝑘−1/2)

)
-approximation to the integral

BSP for any position auction.

The proof of Theorem 4.5 is deferred to Appendix B.2. Since

SW(z) ≤ OPT, by running the rounding algorithm a few times and

taking the best produced solution, we get a slightly worse approxi-

mation guarantee of (1 −𝑂 (𝑘−1/4))OPT with high probability.

5 NUMERICAL EXPERIMENTS
We focus on testing welfare maximization Bidder Selection Problem

for position auctions. In our experiments, we used synthetically

generated prior distributions, as (1) the BSP is a pure optimization

problem, which ignores the issue of data retrieval (2) due to compa-

nies’ strict nondisclosure rules, it is infeasible to experiment on real

historical data. We generally followed the AuctionGym [13] setup,

a popular online simulation environment for advertising auctions

run by Amazon, in the design of our synthetic data.

Implementation. We implemented Algorithms 1 and 2 as well as

its modified version for BSP. In this simpler modification, we used

a slightly different objective S̃W(x) def

==
∫ +∞
0

Hpois (x, 𝜏) d𝜏 than (8):

we did not fix any small bidder set, only applied Poisson approxi-

mation, and used the same rounding step. The original Algorithm 1

was designed with the worst-case theoretical guarantees in mind,

while the modified one is more practically oriented and retains only

the most important Poisson approximation. The modification did

not affect the run-time much, but allowed us to avoid hard-coded

approximation loss of 𝑂 (𝑘−1/4) due to the potentially suboptimal

decision of fixing a small bidder set 𝑆
fix
. We implemented the prac-

tical variant in Python with the help of Gurobi [11], a well-known

commercial convex optimization solver, and present its compari-

son
11

with benchmark algorithms in Table 1.

11
We also compared the performances of the modified version and the theoretical

version of our algorithm in Appendix D. The approximation efficiency of the theoretical

version was worse than the modified version as expected.

Benchmarks. Ideally, we would like to compare our solutions to

the optimum, which is usually not possible, as BSP is an NP-hard

problem even for the case of single-item auction [9]. It is also in-

feasible to use any of the existing PTAS algorithms, as only [6]

implemented their PTAS but could only run experiments on tiny

input sizes of (𝑛 = 9, 𝑘 = 3), while EPTASes of [17, 22] are pure
computational complexity results with unrealistically large esti-

mates on running times for inputs of any size. Instead, we used

two well-known heuristic algorithms as our benchmarks: Greedy
for submodular maximization following numerical experiments

in [6, 17], and Local Search mentioned in [3]. They are easy to im-

plement and run in feasible times on most of our datasets. Note that

if Local Search starts with the solution produced by Greedy, it can

only improve upon it, i.e., it seems reasonable to use Local Search as

a main reference point for approximation efficiency guarantees. We

also tested Local Search against the exact optimum computed by

Brute Force on small instances (𝑛 = 50, 𝑘 = 5) and found that they

always produced the same results. We implemented Greedy, Local

Search, and Brute Force in Python to ensure a fair comparison with

our algorithm. We also limited the number of threads used by our

algorithm to 1, as the benchmark algorithms are not parallelizable.

Datasets. We generated each of the 𝑛 prior distributions as a

log-normal distribution Lognormal(𝜇, 𝜎2) as in AuctionGym [13].

We selected parameters 𝜇 and 𝜎 of each individual distribution by

drawing them independently from continuous uniform distribu-

tionsU[0, 0.2] andU[0, 0.5], respectively.12 We then discretized

each distribution to a common, finite support {0} ∪ {1 + 𝑖
50

| 𝑖 =
0, 1, . . . , 49} by moving probability mass on each discretized inter-

val inside [0, 2] to its left point and by redistributing the mass on

(2, +∞) to the discrete points, proportional to their respective prob-
abilities

13
. The weights w of the position auction on each instance

were set as:𝑤𝑖 = 1 for 𝑖 ∈ [1, 0.2𝑘],𝑤𝑖 = 0.2 for 𝑖 ∈ (0.2𝑘, 0.6𝑘], and
𝑤𝑖 = 0 for 𝑖 ∈ (0.6𝑘, 𝑘]. We constructed datasets with 3 different

𝑛 ∈ {50, 200, 1000}. For each 𝑛, we used 3 different values of 𝑘 : for

𝑛 = 50, we set 𝑘 ∈ {5, 10, 20}; for 𝑛 = 200, we set 𝑘 ∈ {10, 20, 40};
and for 𝑛 = 1000, we set 𝑘 ∈ {50, 100, 200}. The general idea was
to capture practically relevant scenarios of different scales, and

also have our benchmarks solve them in a reasonable time. More-

over, we picked 𝑘 so that it is always significantly smaller than 𝑛.

Note that this puts our algorithm at a disadvantage, as our Poisson

relaxation gets more accurate as 𝑘 grows.

Results. The numerical experiments are given in Table 1. We ran

Local Search, Greedy, and our algorithm on all 9 combinations of 𝑛

and 𝑘 . We recorded the approximate efficiency (“solution” column)

and the running time of each algorithm (if an algorithm did not

terminate in 1 week, we would stop it and write “N/A” for the

respective dataset). We measure efficiency as the relative quality

12
AuctionGym uses comparable 𝜇 = 0.1 and 𝜎 = 0.2.

13
We picked this unusual discretization to make instances more challenging for Greedy,

as without it Greedy and other heuristics like our algorithm produce solutions with

nearly optimal approximation efficiency (over 99% for both algorithms). Indeed, two

distributions in a well-structured family of log-normal distributions are likely to

have strong dominance relation: a distribution 𝐷1 = Lognormal(𝜇1, 𝜎2

1
) is always

preferable to 𝐷2 = Lognormal(𝜇2, 𝜎2

2
) , whenever 𝜇1 ≥ 𝜇2 and 𝜎1 ≥ 𝜎2 . Our choice

of discretization was solely based on the comparison between Greedy and Local Search,

i.e., after a few empirical trials of different discretizations we simply stopped once the

average efficiency of Greedy was less than 99% that of the Local Search.
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Table 1: Experimental results of Local Search, Greedy, and our algorithm. The “solution” column for each algorithm denotes
the average relative quality of the produced solution to that of the best-performing algorithm that terminated in 1 week. Error
bars denote the standard deviation. The “time” column denotes the average running time of each algorithm.

Setting Local Search Greedy Our Algorithm

𝑛 𝑘 Solution Time Solution Time Solution Time

50

5 100.00% ± 0.00% 1.01 seconds 98.93% ± 0.50% 0.21 seconds 99.99% ± 0.03% 1.29 seconds

10 100.00% ± 0.00% 6.05 seconds 98.71% ± 0.38% 1.11 seconds 99.99% ± 0.04% 1.59 seconds

20 100.00% ± 0.00% 65.23 seconds 99.17% ± 0.28% 9.02 seconds 99.99% ± 0.01% 2.58 seconds

200

10 100.00% ± 0.00% 1.02 minutes 98.06% ± 0.35% 8.10 seconds 99.99% ± 0.01% 2.83 seconds
20 100.00% ± 0.00% 10.83 minutes 97.92% ± 0.24% 44.72 seconds 100.00% ± 0.00% 3.88 seconds
40 100.00% ± 0.00% 60.66 minutes 97.97% ± 0.26% 170.29 seconds 99.99% ± 0.00% 3.97 seconds

1000

50 100.00% ± 0.00% 33.71 hours 97.18% ± 0.14% 0.90 hours 99.99% ± 0.00% 21.54 seconds
100 N/A > 1 week 97.15% ± 0.15% 4.26 hours 100.00% ± 0.00% 41.21 seconds
200 N/A > 1 week 97.38% ± 0.11% 27.65 hours 100.00% ± 0.00% 45.16 seconds

of the produced solution with respect to the solution of the best-

performing algorithm that terminated in 1 week on that test case.

A few remarks about our empirical results are in order.

(1) As shown in Table 1, Greedy performs surprisingly well: on

each of the generated datasets, it produced solutions within

5% of the best-performing algorithm. It is much better than

the (1 − 1/𝑒)-approximation guarantee for general submod-

ular maximization. Similar observations have been made

in [17].

(2) Our modified algorithm produced solutions that were always

within 0.1% of the solution of the best-performing algorithm

and also had very small variance. I.e., our algorithm is effec-

tive and consistently produces good results. Moreover, its

effectiveness improves as the problem size 𝑘 grows, which

concurs with our theoretical analysis.

(3) The running time is the most crucial parameter in the context

of BSP, as the optimization algorithm must stop within strict

time limits and approximate efficiency is only a secondary

objective. According to Table 1, the running time of our

algorithm scales much slower than that of Greedy and Local

Search with 𝑛 and 𝑘 . The time complexities of Greedy and

one iteration of Local Search are both 𝑂 (𝑛𝑘3 · |Support|).
When 𝑘 is constant (𝑘 = 5), this time complexity is linear in

𝑛, but even then our algorithm has comparable running time

and when 𝑘 = Θ(𝑛), it is much faster than the benchmarks.

6 CONCLUDING REMARKS
In this paper, we studied a more general setting of position auc-

tion than all previous work on the Bidder Selection Problem. We

proposed a new relaxation that can be solved in time polynomial

in 𝑛 and 𝑘 , and the polynomial is rather small. The proposed Pois-

son approximation approach is much simpler than previous PTAS

complexity results for 𝑘-MAX or non-adaptive probing, and it can

be implemented in practice. We also did extensive numerical ex-

periments on inputs with practically relevant sizes and observed

that our algorithm outperforms some commonly used heuristics,

such as Greedy for general submodular maximization. Furthermore,

we showed that the Poisson approximation approach also yields

good theoretical guarantees. Namely, that BSP becomes solvable in

polynomial time for any fixed 𝜀, when the problem size 𝑘 grows.

Our algorithm is the first one with a nearly perfect efficiency guar-

antee of PTAS, that is relevant in the application domain of the BSP

and can be used by a company. Indeed, all previous PTASes had

enormous running times and high implementation complexities

that made them completely irrelevant to the problem, which was

motivated by getting a speedup of 𝑛/𝑘 magnitude.

A natural next step would be to consider BSP of various auction

environments under richer sets of feasibility constraints such as

matroid, matching, and intersection of matroids. Another interest-

ing direction is to identify conditions under which it is possible

to efficiently optimize the revenue objective of BSP for VCG/GSP

auction formats.
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A POISSON AND CHERNOFF APPROXIMATION OF BERNOULLI OBJECTIVE
In this section, we present approximation guarantees for Bernoulli objective term by the Poisson and Chernoff objectives. Poisson approxi-

mation is the central idea of this paper. It is defined in Section 4 as:

Hpois (q, ℓ)
def

== E
𝑌∼Pois(∑𝑛

𝑖=1 𝑞𝑖 )
[min(𝑌, ℓ)] .

We also will solve a special case of fractional Bidder Selection Problem for ℓ-unit auction to demonstrate how Poisson approximation can be

useful. In particular, we will assume that each bidder’s value has only ≤ 𝛿 probability to be nonzero. Our main goal here will be to illustrate

our approach and analysis ideas rather than to derive independent results for this special case.

Approximation Guarantees. There are many known Poisson approximation results (see, e.g., a survey [18]) for the sum of independent

Bernoulli random variables, e.g., in total variation, earth mover’s, uniform (a.k.a. Kolmogorov) distances. These are typically absolute

approximation guarantees, while we need relative approximations similar to Chernoff approximations from Lemma A.3. As our goal is

to handle small probability tail events, we assume that each bidder’s value 𝑣𝑖 has only a small probability 𝛿 to be greater than zero, i.e.,

∀𝑖 ∈ [𝑛], Pr [𝑣𝑖 >0] ≤ 𝛿 . The following Poisson absolute approximation result will be useful to us:

Lemma A.1 ([7, Lemma 11.3.V, p. 162]). Let (𝑧𝑖 ∼ Ber(𝑞𝑖 ))𝑛𝑖=1 be 𝑛 independent Bernoulli random variables with 𝑞𝑖 ≤ 𝛿 for ∀𝑖 ∈ [𝑛]. Let
𝑍

def

==
∑𝑛
𝑖=1 𝑧𝑖 and 𝑌 ∼ Pois(𝜆), where 𝜆 def

==
∑𝑛
𝑖=1 𝑞𝑖 . Then

(total variation distance)

∞∑︁
𝑗=0

|Pr[𝑍 = 𝑗] − Pr[𝑌 = 𝑗] | ≤ 𝛿. (10)

With Lemma A.1 we can derive relative approximations:

Lemma A.2. Suppose q ∈ [0, 𝛿]𝑛 and ℓ ∈ N. Then

(a)

��
H
ber

(q, ℓ) − Hpois (q, ℓ)
�� ≤ 17.5 · 𝛿 · H

ber
(q, ℓ) (∀𝛿, ℓ),

(b) 0 ≤ H
ber

(q, 1) − Hpois (q, 1) ≤ 𝛿 · H
ber

(q, 1) (ℓ = 1) .

Proof. (a). Let 𝑧𝑖 ∼ Ber(𝑞𝑖 ) be Bernoulli random variables and𝑍 =
∑𝑛
𝑖=1 𝑧𝑖 be their sum. Then we can rewrite H

ber
(q, ℓ) = E [min(𝑍, ℓ)] =∑ℓ

𝑗=1 Pr[𝑍 ≥ 𝑗] . Also let 𝑦𝑖 ∼ Pois(𝑞𝑖 ) and define 𝑌 =
∑𝑛
𝑖=1 𝑦𝑖 . Clearly, 𝑌 ∼ Pois(𝜆) for 𝜆 =

∑𝑛
𝑖=1 𝑞𝑖 . Then Hpois (q, ℓ) = E [min(𝑌, ℓ)] =∑ℓ

𝑗=1 Pr[𝑌 ≥ 𝑗] . Hence, we have ��
H
ber

(q, ℓ) − Hpois (q, ℓ)
�� ≤ ℓ∑︁

𝑗=1

|Pr[𝑍 ≥ 𝑗] − Pr[𝑌 ≥ 𝑗] |.

The RHS is similar to the earth mover’s distance between the sum of Bernoulli and Poisson random variables (the difference is that the

summation instead of +∞ goes only up to ℓ). Next, we shall prove the following inequality:

ℓ∑︁
𝑗=1

|Pr[𝑍 ≥ 𝑗] − Pr[𝑌 ≥ 𝑗] | ≤ 2.5𝛿 ·min(𝜆, ℓ),

which together with Lemma A.3 (a) immediately implies the desired result:��
H
ber

(q, ℓ) − Hpois (q, ℓ)
�� ≤ 2.5𝛿 ·min(𝜆, ℓ) ≤ 2.5𝛿 · 7H

ber
(q, ℓ) = 17.5𝛿 · H

ber
(q, ℓ).

We consider two cases. First, when 𝜆 ≥ ℓ . Then for any 𝑗 ∈ N+ we have by (10)

ℓ∑︁
𝑗=1

|Pr[𝑍 ≥ 𝑗] − Pr[𝑌 ≥ 𝑗] | ≤ ℓ ·
∞∑︁
𝑗 ′=0

��Pr[𝑍 = 𝑗 ′] − Pr[𝑌 = 𝑗 ′]
�� ≤ ℓ · 𝛿 = 𝛿 ·min(𝜆, ℓ).

Second, when min(𝜆, ℓ) = 𝜆 < ℓ , we use instead the earth mover’s distance 𝑑G (𝑍,𝑌 ) =
∑+∞

𝑗=0 |Pr[𝑍 ≥ 𝑗] − Pr[𝑌 ≥ 𝑗] |. We do not calculate

the cumulative density functions of 𝑍 =
∑𝑛
𝑖 𝑧𝑖 and 𝑌 =

∑𝑛
𝑖 𝑦𝑖 , but get an upper bound by coupling individual 𝑧𝑖 and 𝑦𝑖 . Specifically, we

couple 𝑧𝑖 and 𝑦𝑖 so that 𝑧𝑖 = 0 implies 𝑦𝑖 = 0 (note that Pr[𝑧𝑖 = 0] = 1 − 𝑞𝑖 ≤ Pr[𝑦𝑖 = 0] = 𝑒−𝑞𝑖 ). Conversely, if 𝑧𝑖 = 1 it is matched with all

𝑦𝑖 = 1, 2, . . . and the remaining probability for 𝑦𝑖 = 0. Then we have

𝑑G (𝑍,𝑌 ) ≤ E
(𝑧𝑖 ,𝑦𝑖 )𝑛𝑖=1

[|𝑍 − 𝑌 |] ≤
𝑛∑︁
𝑖=1

E
(𝑧𝑖 ,𝑦𝑖 )

[|𝑧𝑖 − 𝑦𝑖 |] .

10
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Since 𝑧𝑖 = 0 is matched to 𝑦𝑖 = 0, we get the following expression for the term E [|𝑧𝑖 − 𝑦𝑖 |],

E
(𝑧𝑖 ,𝑦𝑖 )

[|𝑧𝑖 − 𝑦𝑖 |] =
+∞∑︁
𝑗=0

Pr
(𝑧𝑖 ,𝑦𝑖 )

[𝑧𝑖 = 1 ∧ 𝑦𝑖 = 𝑗] · | 𝑗 − 1|

= Pr
(𝑧𝑖 ,𝑦𝑖 )

[𝑧𝑖 = 1 ∧ 𝑦𝑖 = 0] +
+∞∑︁
𝑗=2

Pr
𝑦𝑖
[𝑦𝑖 = 𝑗] · ( 𝑗 − 1)

≤
𝑞2
𝑖

2

+ 𝑞2𝑖
+∞∑︁
𝑗=2

2
−( 𝑗−1) ( 𝑗 − 1) ≤ 2.5𝑞2𝑖 ,

where the first inequality holds, since Pr [𝑧𝑖 = 1 ∧ 𝑦𝑖 = 0] = (Pr [𝑦𝑖 = 0] − Pr [𝑧𝑖 = 0]) = 𝑒−𝑞𝑖 − 1 + 𝑞𝑖 ≤ 𝑞2
𝑖
/2 and Pr [𝑦𝑖 = 𝑗] = 𝑒−𝑞𝑖𝑞 𝑗

𝑖
/ 𝑗 ! ≤

𝑞2
𝑖
/2𝑗−1 for 𝑗 ≥ 2. Therefore,

ℓ∑︁
𝑗=1

|Pr[𝑍 ≥ 𝑗] − Pr[𝑌 ≥ 𝑗] | ≤ 𝑑G (𝑍,𝑌 ) ≤
𝑛∑︁
𝑖=1

2.5𝑞2𝑖 ≤ 2.5 · 𝛿 ·
𝑛∑︁
𝑖=1

𝑞𝑖 = 2.5 · 𝛿 ·min(𝜆, ℓ),

which concludes the proof.

(b). As ℓ = 1, H
ber

(q, 1) = 1 − ∏𝑛
𝑖=1 (1 − 𝑞𝑖 )

def

== 1 − 𝑒−𝑠 , where 𝑠 = −∑𝑛
𝑖=1 ln(1 − 𝑞𝑖 ). Let 𝜆 =

∑𝑛
𝑖=1 𝑞𝑖 , then Hpois (q, 1) = 1 − 𝑒−𝜆 . Observe

that 𝑞𝑖 ≤ − ln(1 − 𝑞𝑖 ) ≤ 𝑞𝑖
1−𝑞𝑖 ≤ 𝑞𝑖

1−𝛿 . Thus 𝜆 ≤ 𝑠 ≤ 𝜆
1−𝛿 . The former inequality implies the desired lower bound H

ber
(q, 1) −Hpois (q, 1) ≥ 0.

To prove the required upper bound, observe that H
ber

(q, 1) = 𝑓 (𝑠), Hpois (q, 1) = 𝑓 (𝜆) for 𝑓 (𝑡) = 1 − 𝑒−𝑡 . As 𝑓 (𝑡) is a concave function
with 𝑓 (0) = 0, we have 𝑓 (𝜆) ≥ 𝑓 (𝑠) · 𝜆

𝑠 ≥ 𝑓 (𝑠) · (1 − 𝛿). Thus H
ber

(q, 1) − Hpois (q, 1) = 𝑓 (𝑠) − 𝑓 (𝜆) ≤ 𝛿 · 𝑓 (𝑠) = 𝛿 · H
ber

(q, 1), which
concludes the proof. □

Algorithm for Small Tail Probabilities. Assume that each bidder’s value 𝑣𝑖 has at most 𝛿 probability to be greater than zero. Then Lemma A.2

and Claim 4.2 (Concavity of Poisson) suggest Algorithm 3.

Algorithm 3: Approximation to Fractional BSP for Tail Probabilities ℓ-unit Auctions.
Return the optimal solution x̃∗ to the concave program:

Maximize S̃W(x, ℓ) def

==
∫ +∞
0

Hpois (q(x, 𝜏), ℓ) d𝜏
Subject To

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘, 𝑥𝑖 ∈ [0, 1],∀𝑖 ∈ {1, 2, . . . , 𝑛}.

We can solve the above program efficiently via standard concave function maximization methods, as the objective S̃W is concave in x.
Indeed, from Claim 4.2 we know that Hpois (q, ℓ) is concave in q and, since q(x, 𝜏) is linear in x for every fixed 𝜏 , Hpois is also concave in x.
As S̃W(x, ℓ) is an integral (non-negative linear combination) of Hpois (q(x, 𝜏), ℓ), S̃W is concave in x.

From Lemma A.2, we obtain the following approximation guarantees of SW(x, ℓ) by S̃W(x, ℓ).���SW(x, ℓ) − S̃W(x, ℓ)
��� ≤ ∫ +∞

0

��
H
ber

(q(x, 𝜏), ℓ) − Hpois (q(x, 𝜏), ℓ)
��
d𝜏

≤ 17.5𝛿 · SW(x, ℓ) . (11)

Let x∗ be the best solution of the original problem (1). We have

SW(x̃∗, ℓ) ≥ S̃W(x̃∗, ℓ) − 17.5𝛿 · SW(x̃∗, ℓ)

≥ S̃W(x∗, ℓ) − 17.5𝛿 · SW(x∗, ℓ) ≥ (1 − 35𝛿)SW(x∗, ℓ) .

Hence, Algorithm 3 is (1 − 35𝛿)-approximation.

Chernoff Approximation Guarantees. We recall the following definitions

H
ber

(q, ℓ) = E
z∼Ber(q)

[
min

(
𝑛∑︁
𝑖=1

𝑧𝑖 , ℓ

)]
, H

cher
(q, ℓ) = min

(
𝑛∑︁
𝑖=1

𝑞𝑖 , ℓ

)
.

Our main algorithm needs the following approximation guarantee of H
cher

:

11
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Lemma A.3. For all q ∈ [0, 1]𝑛, ℓ ∈ N+, let 𝜆 =
∑𝑛
𝑖=1 𝑞𝑖 , the following properties hold.

(a) H
ber

(q, ℓ) ≤ H
cher

(q, ℓ) ≤ 7 · H
ber

(q, ℓ) .

(b) H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 3

√
𝜆
· H

cher
(q, ℓ) ≤ 21

√
𝜆
· H

ber
(q, ℓ) .

(c) H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 5

√
ℓ
· H

cher
(q, ℓ) ≤ 35

√
ℓ
· H

ber
(q, ℓ).

In order to prove Lemma A.3, we first prove the following two auxiliary lemmas.

Lemma A.4. For all q ∈ [0, 1]𝑛, ℓ ∈ N+, let 𝜆 =
∑𝑛
𝑖=1 𝑞𝑖 , the following properties hold.

(a) H
ber

(q, ℓ) ≥ 𝜆(1 − 1

2
𝜆).

(b) If 𝜆 ≥ 1, H
ber

(q, ℓ) ≥ 1

2
.

(c) If ℓ ≥ 𝜆, then H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
𝑛∑︁

𝑖=ℓ+1
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆 , where 𝛿 (𝑖) = 𝑖−𝜆
𝜆

.

(d) If ℓ ≥ 𝜆 and 𝛼 ∈ (0, 1), then H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝛼𝜆 + 6

𝛼 𝑒
−𝛼2 · 𝜆

3 .

(e) If 𝜆 ≥ ℓ , then H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
ℓ−1∑︁
𝑖=0

𝑒−
(𝜆−𝑖 )2
2𝜆 .

(f) If 𝜆 ≥ ℓ and 𝛼 ∈ (0, 1), then H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝛼𝜆 + 4

𝛼 𝑒
−𝛼2 · 𝜆

2 .

Proof of Lemma A.4. (a). Since ℓ ≥ 1, We have the following lower bound on H
ber

(q, ℓ)

H
ber

(q, ℓ) ≥ Pr
z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[𝑍 ≥ 1] =
𝑛∑︁
𝑖=1

Pr
𝑧𝑖∼Ber(𝑞𝑖 )

[𝑧𝑖 = 1] · Pr
z∼Ber(q)

[
∀𝑗 < 𝑖, 𝑧 𝑗 = 0

]
≥

𝑛∑︁
𝑖=1

𝑞𝑖 · ©­«1 −
𝑖−1∑︁
𝑗=1

𝑞 𝑗
ª®¬ =

𝑛∑︁
𝑖=1

𝑞𝑖 −
∑︁
𝑗<𝑖

𝑞𝑖𝑞 𝑗 ≥ 𝜆

(
1 − 1

2

𝜆

)
.

(b). If 𝜆 ≥ 1, there exists q′ ∈ [0, 1]𝑛 such that 𝑞′
𝑖
≤ 𝑞𝑖 , ∀𝑖 ∈ {1, 2, . . . , 𝑛} and

∑𝑛
𝑖=1 𝑞

′
𝑖
= 1. Using Lemma A.4 (a), we can see that

H
ber

(q′, ℓ) ≥ 0.5. Then H
ber

(q, ℓ) ≥ H
ber

(q′, ℓ) ≥ 0.5.

(c). As ℓ ≥ 𝜆, we have H
cher

(q, ℓ) = 𝜆. Then

H
cher

(q, ℓ) − H
ber

(q, ℓ) = E
z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[𝑍 −min{𝑍, ℓ}] =
𝑛∑︁

𝑖=ℓ+1
Pr

z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[𝑍 ≥ 𝑖] .

We apply Chernoff bound to each tail probability 𝑍 ≥ 𝑖 under the sum. Thus

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
𝑛∑︁

𝑖=ℓ+1
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆, where 𝛿 (𝑖) = 𝑖 − 𝜆

𝜆

(d). By Lemma A.4 (c)

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
∞∑︁

𝑖=⌈𝜆+1⌉
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆 ≤ 𝛼𝜆 +
∞∑︁

𝑖=⌈ (1+𝛼 )𝜆⌉
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆 .

Note that inside the last summation, 𝛿 (𝑖) ≥ 𝛼 and
𝛿 (𝑖 )
2+𝛿 (𝑖 ) ≥ 𝛼

2+𝛼 ≥ 𝛼
3
. Therefore,

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝛼𝜆 +
∞∑︁

𝑖=⌈ (1+𝛼 )𝜆⌉
𝑒−

𝛼
2+𝛼 ·𝛿 (𝑖 )𝜆 ≤ 𝛼𝜆 +

∞∑︁
𝑖=⌈ (1+𝛼 )𝜆⌉

𝑒−(𝑖−𝜆) · 𝛼
3 .

As the summation in the right hand side becomes a geometric series, we get

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝛼𝜆 + 𝑒−𝛼
2 · 𝜆

3 · (1 − 𝑒−
𝛼
3 )−1 ≤ 𝛼𝜆 + 6

𝛼
𝑒−𝛼

2 · 𝜆
3 .

The last inequality holds as 1 − 𝑒−𝑥 ≥ 𝑥/2 for 𝑥 ∈ [0, 1]. Hence, Lemma A.4 (d) holds.

(e). If ℓ ≤ 𝜆, then H
cher

(q, ℓ) = ℓ . We have

H
cher

(q, ℓ) − H
ber

(q, ℓ) = E
z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[ℓ −min{𝑍, ℓ}] =
ℓ−1∑︁
𝑖=0

Pr
z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[𝑍 ≤ 𝑖] .
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We again apply Chernoff bound for each tail event 𝑍 ≤ 𝑖 under summation and get

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
ℓ−1∑︁
𝑖=0

𝑒−
(𝜆−𝑖 )2
2𝜆 .

(f). By Lemma A.4 (e), we have

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
ℓ−1∑︁
𝑖=0

𝑒−
(𝜆−𝑖 )2
2𝜆 ≤

∞∑︁
𝑖=1

𝑒−
𝑖2

2𝜆 ≤ 𝛼𝜆 +
∞∑︁

𝑖=⌈𝛼𝜆⌉
𝑒−

𝑖2

2𝜆 ≤ 𝛼𝜆 +
∞∑︁

𝑖=⌈𝛼𝜆⌉
𝑒−𝑖 ·

𝛼
2 .

The summation in the right hand side is again a geometric series, which allows us to get

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝛼𝜆 + 𝑒−𝛼
2 · 𝜆

2 · (1 − 𝑒−
𝛼
2 )−1 ≤ 𝛼𝜆 + 4

𝛼
𝑒−𝛼

2 · 𝜆
2 .

Hence Lemma A.4 (f) holds. □

Claim A.5. For any 𝛼 ≥ 3.4,
∞∑
𝑖=1

𝑒−
𝑖2

2𝛼+𝑖 ≤ 0.85𝛼.

Proof. When 𝛼, 𝑥 > 0, the function − 𝑥2

2𝛼+𝑥 is decreasing in 𝑥 . Therefore,

∞∑︁
𝑥=1

𝑒−
𝑥2

2𝛼+𝑥 ≤
∫ +∞

𝑦=0

𝑒
− 𝑦2

2𝛼+𝑦
d𝑦

[𝑦=𝛼 ·𝑧 ]
= 𝛼 ·

∫ +∞

𝑧=0

𝑒−
𝛼𝑧2

2+𝑧 d𝑧 ≤ 𝛼 ·
∫ +∞

𝑧=0

𝑒−
3.4𝑧2

2+𝑧 d𝑧 ≤ 𝛼 · 0.85. □

Now we are ready to prove Lemma A.3.

Lemma A.3. For all q ∈ [0, 1]𝑛, ℓ ∈ N+, let 𝜆 =
∑𝑛
𝑖=1 𝑞𝑖 , the following properties hold.

(a) H
ber

(q, ℓ) ≤ H
cher

(q, ℓ) ≤ 7 · H
ber

(q, ℓ) .

(b) H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 3

√
𝜆
· H

cher
(q, ℓ) ≤ 21

√
𝜆
· H

ber
(q, ℓ) .

(c) H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 5

√
ℓ
· H

cher
(q, ℓ) ≤ 35

√
ℓ
· H

ber
(q, ℓ).

Proof of Lemma A.3. (a). As min{ 𝑡, ℓ} is a concave function in 𝑡 , the Jensen inequality gives us

H
cher

(q, ℓ) = min

{
E

z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[𝑍 ], ℓ
}
≥ E

z∼Ber(q)
𝑍=

∑𝑛
𝑖=1 𝑧𝑖

[min{𝑍, ℓ}] = H
ber

(q, ℓ),

which gives the first inequality. To prove the second inequality we consider the following 4 cases:

• If 𝜆 ≤ 1, we use Lemma A.4 (a) to get H
ber

(q, ℓ) ≥ 𝜆

(
1 − 1

2
𝜆

)
≥ 1

2
𝜆 ≥ 1

2
· H

cher
(q, ℓ).

• If 𝜆 > 1 and min(𝜆, ℓ) ≤ 3.5, then Lemma A.4 (b) gives us H
ber

(q, ℓ) ≥ 1

2
≥ 1

7
·min(𝜆, ℓ) = 1

7
· H

cher
(q, ℓ).

• If min(𝜆, ℓ) > 3.5 and ℓ ≥ 𝜆, then Lemma A.4 (c) gives us

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
𝑛∑︁

𝑖=ℓ+1
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆 ≤
∞∑︁

𝑖=⌈𝜆+1⌉
𝑒
− (𝑖−𝜆)2

2𝜆+(𝑖−𝜆) ≤
∞∑︁
𝑖=1

𝑒−
𝑖2

2𝜆+𝑖 .

We apply Claim A.5 for 𝛼 = 𝜆 and get H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 0.85𝜆, which implies that H
ber

(q, ℓ) ≥ 0.15 · H
cher

(q, ℓ) for
H
cher

(q, ℓ) = 𝜆 ≤ ℓ .

• If min(𝜆, ℓ) > 3.5 and 𝜆 ≥ ℓ , then Lemma A.4 (e) gives us H
cher

(q, ℓ) −H
ber

(q, ℓ) ≤
ℓ−1∑
𝑖=0

𝑒−
1

2𝜆
(𝜆−𝑖 )2

. Note that
1

2𝜆
(𝜆 − 𝑖)2 ≥ 1

2ℓ (ℓ − 𝑖)2,

when 𝜆 ≥ ℓ ≥ 𝑖 . Thus

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
ℓ−1∑︁
𝑖=0

𝑒−
1

2ℓ
(ℓ−𝑖 )2 ≤

∞∑︁
𝑖=1

𝑒−
𝑖2

2ℓ ≤
∞∑︁
𝑖=1

𝑒−
𝑖2

2ℓ+𝑖 .

By applying Claim A.5 with 𝛼 = ℓ , we get H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 0.85ℓ, which implies that H
ber

(q, ℓ) ≥ 0.15 · H
cher

(q, ℓ), as
H
cher

(q, ℓ) = ℓ ≤ 𝜆.

In all 4 cases, 7H
ber

(q, ℓ) ≥ H
cher

(q, ℓ).
(b). Let 𝜀

def

== 1√
𝜆
. We consider three cases to show that H

cher
(q, ℓ) − H

ber
(q, ℓ) ≤ 3𝜀 · H

cher
(q, ℓ), then combine it with the inequality

7H
ber

(q, ℓ) ≥ H
cher

(q, ℓ) from Lemma A.3 (a) to conclude the proof. Without loss of generality, we may assume that 𝜀 < 1/3.
• If ℓ ≥ 𝜆, then Lemma A.4 (d) for 𝛼 = 1.8𝜀, gives us H

cher
(q, ℓ) − H

ber
(q, ℓ) ≤ 2.94𝜀𝜆 = 2.94𝜀 · H

cher
(q, ℓ).
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• If ℓ ≤ 3

4
𝜆, then by Lemma A.4 (e) we have

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
ℓ−1∑︁
𝑖=0

𝑒−
(𝜆−𝑖 )2
2𝜆 ≤ ℓ · 𝑒−

𝜆
32 ≤ 4𝑒−1/2

√
𝜆

· H
cher

(q, ℓ) ≤ 2.5 · 𝜀 · H
cher

(q, ℓ),

where the first inequality holds because 𝜆 − 𝑖 ≥ 𝜆/4; the second inequality holds, as H
cher

(q, ℓ) = ℓ and 𝑒−𝑥/𝑐
√
𝑥 ≤ 𝑒−1/2

√︁
𝑐/2 for all

𝑥, 𝑐 > 0.

• If ℓ ∈
(
3

4
𝜆, 𝜆

)
, by Lemma A.4 (f) for 𝛼 = 1.8𝜀 we have

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 2.24𝜀𝜆 ≤ 2.99𝜀ℓ = 2.99𝜀 · H
cher

(q, ℓ).

(c). Let 𝜀
def

== 1√
ℓ
. We first prove H

cher
(q, ℓ) − H

ber
(q, ℓ) ≤ 5𝜀 · H

cher
(q, ℓ) by considering the following four cases. It implies the second

bound when combined with inequality 7H
ber

(q, ℓ) ≥ H
cher

(q, ℓ) from Lemma A.3 (a). We may assume without loss of generality that 𝜀 < 1/5.
• If 𝜆 < 1√

ℓ
, then H

cher
(q, ℓ) = 𝜆 and Lemma A.4 (a) gives us

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝜆 − 𝜆

(
1 − 1

2

𝜆

)
=
𝜆2

2

<
𝜀𝜆

2

=
𝜀

2

· H
cher

(q, ℓ).

• If 𝜆 ∈ [ 1√
ℓ
, ℓ
3
), then H

cher
(q, ℓ) = 𝜆 and by Lemma A.4 (c) we have

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤
𝑛∑︁

𝑖=ℓ+1
𝑒
− 𝛿2 (𝑖 )

2+𝛿 (𝑖 ) ·𝜆 ≤
𝑛∑︁

𝑖=ℓ+1
𝑒−𝛿 (𝑖 ) ·

𝜆
2 ≤

+∞∑︁
𝑖=ℓ+1

𝑒−
𝑖−𝜆
2 ,

where the second inequality holds, as 𝛿 (𝑖) = 𝑖−𝜆
𝜆

≥ 2 for all 𝑖 ≥ ℓ + 1 and 𝜆 < ℓ/3. Furthermore,

H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ 𝑒−
ℓ
3 · (1 − 𝑒−

1

2 )−1 ≤ 3𝑒−1/ℓ
1 − 𝑒−1/2

≤ 2.81 · 𝜀 · H
cher

(q, ℓ),

where to get the first inequality we simply use the formula for the sum of geometric progression and estimate 𝑒−
ℓ+1−𝜆

2 ≤ 𝑒−ℓ/3; the
second inequality holds, because 𝑒−𝑥/𝑐 ≤ 𝑐 · 𝑒−1/𝑥 for any 𝑥, 𝑐 > 0; the last inequality holds, because H

cher
(q, ℓ) = 𝜆 ≥ 𝜀 = 1/

√
ℓ .

• If 𝜆 ∈ [ ℓ
3
, ℓ], then H

cher
(q, ℓ) = 𝜆 and by Lemma A.4 (d) for 𝛼 = 4𝜀 (𝛼 < 1, since 𝜀 ≤ 1/5) we get H

cher
(q, ℓ) − H

ber
(q, ℓ) ≤

4𝜀𝜆 + 6

4𝜀 𝑒
−16𝜀2 · 𝜆

3 ≤ 4.77𝜀𝜆 = 4.77𝜀 · H
cher

(q, ℓ), where the second inequality holds, since ℓ ≤ 3𝜆 and
6

4𝜀 𝑒
−16𝜀2 · 𝜆

3 = 3𝜀ℓ
2
𝑒−16·

𝜆
3ℓ ≤

9𝜀𝜆
2
𝑒−

16ℓ
9ℓ ≤ 0.77 · 𝜀𝜆.

• If 𝜆 > ℓ , then by considering q′ with 𝑞′
𝑖
≤ 𝑞𝑖 and

∑𝑛
𝑖=1 𝑞

′
𝑖
= ℓ , we get H

ber
(q) ≥ H

ber
(q′) and H

cher
(q) = H

cher
(q′) = ℓ . Then

according to the previous case, H
cher

(q, ℓ) − H
ber

(q, ℓ) ≤ H
cher

(q′, ℓ) − H
ber

(q′, ℓ) ≤ 4.77𝜀 · H
cher

(q′, ℓ) = 4.77𝜀 · H
cher

(q, ℓ).
These bounds combined with inequality 7H

ber
(q, ℓ) ≥ H

cher
(q, ℓ) conclude the proof of (c). □

B MISSING PROOFS
B.1 Proof of Theorem 4.4

Theorem 4.4. Algorithm 1 works in polynomial time and is a (1 −𝑂 (𝜀))-approximation, i.e., (1 − 43𝑘−1/4)-approximation to the fractional
BSP for any position auction.

Proof of Theorem 4.4. We first show that Algorithm 1 is polynomial. Indeed, step (1) works in polynomial time by Claim 4.3. For each 𝜏

in the support of {𝐷𝑖 }𝑖∈[𝑛] and x𝑀 we can efficiently calculate H
cher

((x𝑀 , 1𝑆fix ), 𝜏) and Gpois (x𝑀 , 𝜏), which allows us to compute S̃W(x𝑀 )
in polynomial time. It is easy to see that S̃W(x𝑀 ) is a concave function in x𝑀 , as Gpois is a non-negative linear combination of constant

terms and concave functions Hpois (x𝑀 , ℓ− 𝑗, 𝜏), and H
cher

is a non-negative linear combination of concave functions H
cher

(q(x, 𝜏), ℓ) in x.
Furthermore, given the representation of S̃W(x𝑀 ) as an integral of nice algebraic functions H

cher
and Gpois, we can also compute all first

and second order derivatives of S̃W(x𝑀 ) in polynomial time. This allows us to find the optimal solution x̃∗𝑀 to (9) in polynomial time using

standard concave (first or second order) maximization methods.

To get the stated approximation guarantee we first compare the original objective SW(x𝑀 , 1𝑆fix ) in (4) with S̃W(x𝑀 ) and get the following

Lemma.

Lemma B.1. For any x = (x𝑀 , 1𝑆fix ) with x𝑀 ∈ [0, 1] |𝑀 | and any weights vector w,���S̃W(x𝑀 ) − SW(x)
��� ≤ 21 𝜀 · SW(x) .
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Proof. We rewrite SW(x,w) for x = (x𝑀 , 1𝑆fix ) in the same form as (8).

SW(x) =
∫ 𝜂

0

H
ber

(x, 𝜏) d𝜏 +
∫ +∞

𝜂

G
ber

(x𝑀 , 𝜏) d𝜏,

where G
ber

(x𝑀 , 𝜏)
def

==

|𝑆fix |∑︁
𝑗=0

Pr [𝑍
fix
(𝜏) = 𝑗] ·

( 𝑗∑︁
ℓ=1

𝑤ℓ +
𝑛∑︁

ℓ=𝑗+1
(𝑤ℓ −𝑤ℓ+1) · Hber

(x𝑀 , ℓ− 𝑗, 𝜏)
)
.

We first compare the corresponding adjusted Bernoulli and Poisson terms. Observe that 𝑞𝑖 (x, 𝜏) ≤ 𝛿 = 𝜀 for each bidder 𝑖 ∈ 𝑀 and threshold

𝜏 > 𝜂 according to condition (b) in Claim 4.3. Thus by Lemma A.2 (a),��
Gpois (x𝑀 , 𝜏) − G

ber
(x𝑀 , 𝜏)

��
≤

|𝑆fix |∑︁
𝑗=0

Pr [𝑍
fix
(𝜏) = 𝑗] ·

𝑛∑︁
ℓ=𝑗+1

(𝑤ℓ −𝑤ℓ+1) ·
��
Hpois (x𝑀 , ℓ− 𝑗, 𝜏) − H

ber
(x𝑀 , ℓ− 𝑗, 𝜏)

��
≤

|𝑆fix |∑︁
𝑗=0

Pr [𝑍
fix
(𝜏) = 𝑗] ·

𝑛∑︁
ℓ=𝑗+1

(𝑤ℓ −𝑤ℓ+1) · 17.5𝛿 · H
ber

(x𝑀 , ℓ− 𝑗, 𝜏)

≤ 17.5 𝜀 · G
ber

(x𝑀 , 𝜏).

Next, we compare Chernoff and Bernoulli objectives (H
cher

and H
ber

) for low range thresholds 𝜏 ≤ 𝜂. As both H
cher

(q,w) and H
ber

(q,w) are
non-negative linear combinations of respective terms for ℓ-unit auctions with

∑
𝑖∈[𝑛] 𝑞𝑖 (𝑥𝑖 , 𝜏) ≥ ℓ∗ for 𝜏 ≤ 𝜂, we get by Lemma A.3 (b) that

|H
cher

(q,w) − H
ber

(q,w) | ≤ 21 · Hber
(q,w)

√
ℓ∗

≤ 21 𝜀 · H
ber

(q,w).

Thus after combining the two bounds for high and low ranges of thresholds 𝜏 we get���S̃W(x𝑀 ) − SW(x)
��� ≤ 21 𝜀 ·

∫ 𝜂

0

H
ber

(x, 𝜏) d𝜏 + 17.5 𝜀 ·
∫ +∞

𝜂

G
ber

(x𝑀 , 𝜏) d𝜏 ≤ 21 𝜀 · SW(x),

which concludes the proof of Lemma B.1. □

We proceed the proof of Theorem 4.4 by letting x∗ be the optimal solution to fractional BSP in (4). Then, we consider x∗+ ∈ R𝑛≥0 defined as

x∗+
def

== (x∗𝑀 , 1𝑆fix ), so that x∗+ ⪰ x∗. By Lemma B.1, for x = x∗+, we have

S̃W(x∗𝑀 ) ≥ (1 − 21 𝜀) · SW(x∗+) ≥ (1 − 21 𝜀) · SW(x∗) .

On the other hand, by Lemma B.1 for x = x̃∗ we have

(1 + 21 𝜀) · SW(x̃∗) ≥ S̃W(x̃∗𝑀 ) ≥ S̃W

(
𝑘 − 𝜀 · 𝑘

𝑘
· x∗𝑀

)
≥ (1 − 𝜀) · S̃W(x∗𝑀 ) ≥ (1 − 𝜀) · (1 − 21 𝜀) · SW(x∗),

where the second inequality holds, as x̃∗𝑀 is the optimal solution to (9) and
𝑘−𝜀 ·𝑘

𝑘
· x∗𝑀 is a feasible solution; the third inequality holds, as

S̃W(x) is a concave function in x; the last inequality holds by the last lower bound on S̃W(x∗𝑀 ). Finally, as
(1−𝜀 ) (1−21 𝜀 )

1+21 𝜀 ≥ 1 − (1 + 2 · 21) · 𝜀,

SW(x̃∗) ≥ (1 − 43 𝜀) · SW(x∗),

which concludes the proof of the theorem. □

B.2 Proof of Theorem 4.5
Theorem 4.5. Algorithm 2 works in polynomial time and in expectation is a

(
1 − 43𝑘−1/4 −𝑂 (𝑘−1/2)

)
-approximation to the integral BSP for

any position auction.

Proof of Theorem 4.5. Recall that the social welfare SW(𝑆) of a ℓ-unit or position auction is submodular as a function of the invited set

of bidders 𝑆 .

Claim B.2. The expected social welfare SW(𝑆) for a set of bidders 𝑆 ⊆ [𝑛] in any ℓ-unit or position auction is a submodular function of 𝑆 .
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Analysis of Algorithm 2. Clearly, z is a feasible solution to the integral BSP. We will prove below that Algorithm 2 has almost the same

approximation guarantee as Algorithm 1. Let us denote the optimal social welfare for integral BSP as OPT. Then the best solution x∗ to the

fractional BSP (4) may have only higher welfare SW(x∗,w) ≥ OPT. Furthermore, since (4) is a multi-linear extension of the integral BSP, we

have

E
y∼Ber(x)

[SW(y,w)] = SW(x,w) ≥
(
1 − 43𝑘−1/4

)
SW(x∗,w) ≥

(
1 − 43𝑘−1/4

)
OPT.

Our solution z suffers an additional loss when the sample vector y has more than 𝑘 elements |y|1 > 𝑘 . On the other hand, for each given y
with |y|1 > 𝑘 we have Ez∼(y𝑘) [SW(z,w)] ≥ 𝑘

|y |1 SW(y,w), due to submodularity of SW(y,w) (here we use a standard fact about monotone

non-negative submodular function 𝑓 : a uniformly sampled subset 𝑇 ⊂ 𝑆 of given size |𝑇 | = 𝑘 has E𝑇 [𝑓 (𝑇 )] ≥ 𝑘
|𝑆 | 𝑓 (𝑆)). Thus

E
y∼Ber(x)

[SW(y,w) − SW(z,w)] ≤ E
y∼Ber(x)

[
I
[
|y|1 > 𝑘

]
· |y|1 − 𝑘

|y|1
· SW(y,w)

]
.

Furthermore, as OPT = max𝑆⊆[𝑛]: |𝑆 |=𝑘 SW(𝑆,w) we have OPT ≥ Ez∼(y𝑘) [SW(z,w)] ≥ 𝑘
|y |1 SW(y,w) for each y with |y|1 > 𝑘 . Therefore,

E
y∼Ber(x)
z∼(y𝑘)

[SW(y,w) − SW(z,w)] ≤ E
y∼Ber(x)

[
I
[
|y|1 > 𝑘

]
· |y|1 − 𝑘

𝑘
· OPT

]

=
OPT
𝑘

·
𝑛−𝑘∑︁
𝑖=1

𝑖 · Pr
y∼Ber(x)

[|y|1 = 𝑘 + 𝑖] = OPT
𝑘

·
𝑛−𝑘∑︁
𝑖=1

Pr
y∼Ber(x)

[|y|1 ≥ 𝑘 + 𝑖] .

Claim B.3. Let x ∈ [0, 1]𝑛 with |x|1 = 𝑘 . Then
∑
𝑖≥1 Pry∼Ber(x) [|y| ≥ 𝑘 + 𝑖] = 𝑂

(√
𝑘
)
.

Proof of Claim B.3. By Chernoff bound, we have

𝑛−𝑘∑︁
𝑖=1

Pr
y∼Ber(x)

[|y| ≥ 𝑘 + 𝑖] ≤
𝑛−𝑘∑︁
𝑖=1

𝑒−
𝑖2

𝑖+2𝑘 ≤
∞∑︁
𝑖=1

𝑒−
𝑖2

𝑖+2𝑘 ≤
∫ ∞

0

𝑒−
𝑥2

𝑥+2𝑘 d𝑥 .

We further estimate this integral as∫ ∞

0

𝑒−
𝑥2

𝑥+2𝑘 d𝑥 ≤
∫ √

𝑘

0

𝑒−
𝑥2

𝑥+2𝑘 d𝑥 +
∫ ∞
√
𝑘

𝑒
− 𝑥

1+2
√
𝑘 d𝑥 ≤ 1 ·

√
𝑘 − (1 + 2

√
𝑘) 𝑒−

𝑥

1+2
√
𝑘

���+∞√
𝑘
= 𝑂 (

√
𝑘) .

This concludes the proof of Claim B.3. □

Claim B.3 allows us to conclude that Ey∼Ber(x) [SW(y,w) − SW(z,w)] = 𝑂
(
1√
𝑘

)
· OPT, i.e.,

E
y∼Ber(x)

[SW(z,w)] = SW(x,w) −𝑂

(
1

√
𝑘

)
· OPT =

(
1 − 43𝑘−1/4 −𝑂 (𝑘−1/2)

)
OPT. □

C BETTER ALGORITHM FOR SINGLE-ITEM AUCTION
In Section 4, we studied the Bidder Selection Problem (BSP) for position auctions and obtained a

(
1 −𝑂 (𝑘−1/4)

)
-approximate algorithm. In

this section, we study the special case of single-item auction (i.e., ℓ-unit auction with ℓ = 1) as it was extensively studied in previous work,

and give a better approximation ratio

(
1 −𝑂 (

√︁
ln𝑘/𝑘)

)
.

Similar to Section 4.1, we fix a small set 𝑆
fix

of 𝜀 · 𝑘 bidders, which affects the final approximation by at most (1 − 𝜀) factor due to the

submodularity of BSP as a set function of the invited bidders. Formally, recall that for the single-item auction

SW(x) =
∫ +∞

0

H
ber

(q(x, 𝜏), 1) d𝜏 =

∫ +∞

0

Pr
v∼x·D

[∃𝑣𝑖 ≥ 𝜏] d𝜏 .

We find the set of 𝜀 · 𝑘 bidders 𝑆
fix

such that Prv∼D [∃𝑖 ∈ 𝑆
fix

: 𝑣𝑖 ≥ 𝜂] ≥ 1 − 𝜀 for the largest possible threshold 𝜂. This allows us to take

care of thresholds 𝜏 in a low range 𝜏 ∈ [0, 𝜂] by including 𝑆
fix

in the solution (i.e., make 𝑥𝑖 = 1 for all 𝑖 ∈ 𝑆
fix
). Naturally, we want to pick

bidders with higher probabilities Pr [𝑣𝑖 > 𝜂] into 𝑆
fix
, which means that for the high range thresholds 𝜏 > 𝜂 we get the small probability

property for each bidder 𝑖 ∉ 𝑆
fix
. This allows us to reduce BSP to the case of small probabilities tail events (Appendix A) for 𝜏 > 𝜂 and bidders

𝑖 ∈ [𝑛] \ 𝑆
fix
, which can be effectively solved by the Poisson approximation. Formally, we can get the following guarantees for 𝑆

fix
.

Claim C.1 (Small Bidder Set). Let 𝜀 ≥
√︃

ln𝑘
𝑘

be a multiple of 1/𝑘 . We can find in polynomial time a threshold 𝜂 ≥ 0 and a set 𝑆
fix

⊂ [𝑛] of
size |𝑆

fix
| = 𝜀 · 𝑘 , such that

(a) Pr
v∼D

[∃𝑖 ∈ 𝑆
fix

: 𝑣𝑖 ≥ 𝜂] ≥ 1 − 1

𝑘
; (b) ∀𝑖 ∉ 𝑆

fix
, Pr
𝑣𝑖∼𝐷𝑖

[𝑣𝑖 > 𝜂] < 𝜀.
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Proof. Recall that all distributions {𝐷𝑖 }𝑖∈[𝑛] have finite support. Thus we can search through all thresholds 𝜏 in polynomial time. There

must be two consecutive threshold values 𝜂 and 𝜂+ > 𝜂 such that the number of bidders |{𝑖 : Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝜀}| ≥ 𝜀 · 𝑘 with large tail

probabilities Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝜀 is at least 𝜀 ·𝑘 , but a similar number of bidders |{𝑖 : Pr [𝑣𝑖 > 𝜂] = Pr [𝑣𝑖 ≥ 𝜂+] ≥ 𝜀}| < 𝜀 ·𝑘 for the next threshold

value 𝜂+ is strictly less than 𝜀 · 𝑘 .
Let us place each bidder 𝑖 with Pr [𝑣𝑖 > 𝜂] ≥ 𝜀 into 𝑆

fix
and fill the remaining positions in 𝑆

fix
up to size 𝜀 · 𝑘 (so that |𝑆

fix
| = 𝜀 · 𝑘) with

bidders from {𝑖 : Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝜀 > Pr [𝑣𝑖 ≥ 𝜂+]}. Then, every bidder 𝑖 ∉ 𝑆
fix

has Pr [𝑣𝑖 > 𝜂] = Pr [𝑣𝑖 ≥ 𝜂+] < 𝜀 as required by condition (b).

On the other hand, |𝑆
fix
| = 𝜀 · 𝑘 and Pr [𝑣𝑖 ≥ 𝜂] ≥ 𝜀 for every 𝑖 ∈ 𝑆

fix
, i.e., condition (a) is satisfied since

Pr
v∼D

[∃𝑖 ∈ 𝑆
fix

: 𝑣𝑖 ≥ 𝜂] ≥ 1 − (1 − 𝜀)𝜀 ·𝑘 ≥ 1 − 𝑒−𝜀
2 ·𝑘 ≥ 1 − 1

𝑘
,

where to get the second inequality, we used the fact that (1 − 1

𝑥 )
𝑥 < 𝑒−1 for any 𝑥 ≥ 1. □

After selecting such set 𝑆
fix

and threshold 𝜂, we are ready to give the complete description of Algorithm 4.

Algorithm 4: Fractional BSP for Single-Item Auction.

Fix 𝜀 =

√︃
ln𝑘
𝑘

rounded up to a multiple of 1/𝑘 , then do the following steps:

(1) Find (𝜂, 𝑆
fix
) as in Claim C.1. Set 𝑥𝑖 = 1 for ∀𝑖 ∈ 𝑆

fix
.

(2) For the remaining bidders𝑀
def

== [𝑛] \ 𝑆
fix

let the Poisson approximation S̃W(x𝑀 ) be

S̃W(x𝑀 )
def

==

(
1 − 1

𝑘

)
𝜂 +

∫ +∞

𝜂

H̃pois

(
q(x𝑀 , 𝜏)

)
d𝜏, where (12)

H̃pois

(
q𝑀

) def

== 𝑟𝜏 + (1 − 𝑟𝜏 ) · Hpois

(
q𝑀 , ℓ = 1

)
, and 𝑟𝜏

def

== Pr
v∼D

[∃𝑖 ∈ 𝑆
fix

: 𝑣𝑖 ≥ 𝜏] . (13)

(3) Return x̃∗ = (1𝑆fix , x̃∗𝑀 ), where x̃∗𝑀 is the solution to the concave program in x𝑀 :

Maximize S̃W(x𝑀 )
Subject To

∑
𝑖∈𝑀 𝑥𝑖 ≤ 𝑘 − 𝜀 · 𝑘, 𝑥𝑖 ∈ [0, 1] ∀𝑖 ∈ 𝑀.

(14)

In the algorithm, we ignore thresholds 𝜏 ∈ [0, 𝜂], as by taking 𝑆
fix

we have already achieved high success probability of at least 1 − 1

𝑘
by

Claim C.1. For the high range thresholds 𝜏 > 𝜂, we first observe that as the result of fixing set 𝑆
fix
, the probability that there is a bidder with

value greater than the threshold 𝜏 becomes

H
ber

(q, 1) = Pr [∃𝑖 ∈ [𝑛] : 𝑣𝑖 ≥ 𝜏] = 𝑟𝜏 + (1 − 𝑟𝜏 ) · Pr [∃𝑖 ∈ 𝑀 : 𝑣𝑖 ≥ 𝜏],
where 𝑟𝜏 is a constant that we can easily compute. Hence, we respectively adjust the Poisson approximation term H̃pois (q𝑀 ) in the algorithm

according to (13) (we slightly abuse notations by writing Hpois (q𝑀 ) instead of Hpois (q): for the coordinates 𝑖 ∉ 𝑀 we let 𝑞𝑖 = 0).

Theorem C.2. Algorithm 4 for single-item auction works in polynomial time and is a (1 − 2𝜀)-approximation, i.e., a
(
1 − 𝑂

(√︁
ln𝑘/𝑘

) )
-

approximation to the fractional BSP.

Proof. We first verify that Algorithm 4 is polynomial. Note that the step (1) works in polynomial time by Claim C.1. For each 𝜏 in the

support of 𝐷𝑖 we calculate in polynomial time the constants 𝑟𝜏 ∈ [0, 1]. Both H̃pois (q𝑀 ) for each x𝑀 and 𝜏 in the support and S̃W(x𝑀 ) for
each x𝑀 can be computed in polynomial time. Moreover, all first and second order partial derivatives of S̃W(x𝑀 ) can be computed in the

same way as the integral of respective derivatives of H̃pois (x𝑀 ). Furthermore, it is easy to see that S̃W(x𝑀 ) is a concave function in x𝑀 , since
it is a positive linear combination of constant terms (such as (1 − 1/𝑘)𝜂 and 𝑟𝜏 ) and concave functions Hpois (x𝑀 ) according to Claim 4.2.

Hence, we can find the optimal solution x̃∗𝑀 in polynomial time using standard concave (first or second order) maximization methods.

To prove an approximation guarantee of 1 − 2𝜀 for Algorithm 4, we first derive the following approximations of SW(x𝑀 , 1𝑆fix ) by S̃W(x𝑀 )
similar to (11) (but in a special case of ℓ = 1).

Lemma C.3. ∀x𝑀 ∈ [0, 1] |𝑀 | , 0 ≤ SW(x𝑀 , 1𝑆fix ) − S̃W(x𝑀 ) ≤ 𝜀 · SW(x𝑀 , 1𝑆fix ) .

Proof. Recall that by (3) the Social Welfare SW(x) for x = (x𝑀 , 1𝑆fix ) and ℓ = 1 is

SW(x) =
∫ 𝜂

0

H
ber

(q(x, 𝜏)) d𝜏 +
∫ +∞

𝜂

H
ber

(q(x, 𝜏)) d𝜏 .

For the low range 𝜏 ∈ [0, 𝜂] we have H
ber

(q(x, 𝜏)) ∈ [1− 1

𝑘
, 1] due to the choice of 𝑆

fix
in Claim C.1. It is well approximated by the respective

term

(
1 − 1

𝑘

)
𝜂 in (12).
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For the high range 𝜏 > 𝜂, we apply Lemma A.2 (b) with 𝛿 = 𝜀 and get the following bound:

H
ber

(q) − H̃pois (q) = (1 − 𝑟𝜏 )
(
H
ber

(q𝑀 ) − Hpois (q𝑀 )
)
≤ (1 − 𝑟𝜏 )𝜀 · Hber

(q𝑀 ) ≤ 𝜀 · H
ber

(q).

On the other hand, H
ber

(q) − H̃pois (q) ≥ 0, as H
ber

(q𝑀 ) ≥ Hpois (q𝑀 ) by Lemma A.2 (b). Thus

0 ≤ SW(x) − S̃W(x𝑀 ) ≤
𝜂

𝑘
+ 𝜀 ·

∫ +∞

𝜂

H
ber

(q(x, 𝜏)) d𝜏 ≤ max

(
1

𝑘 − 1

, 𝜀

)
· SW(x) = 𝜀 · SW(x),

where the last equality holds since 𝜀 ≥
√︃

ln𝑘
𝑘

. □

Now we are ready to complete the proof of Theorem C.2. Let x∗ be the optimal solution to fractional BSP. We consider x∗+ ∈ R𝑛≥0 defined

as x∗+
def

== (x∗𝑀 , 1𝑆fix ), so that x∗+ ⪰ x∗. Then, by Lemma C.3 for x = x∗+ we have

S̃W(x∗𝑀 ) ≥ (1 − 𝜀) · SW(x∗+) ≥ (1 − 𝜀) · SW(x∗).
On the other hand, by Lemma C.3 for x = x̃∗ we have

SW(x̃∗) ≥ S̃W(x̃∗𝑀 ) ≥ S̃W

(
𝑘 − 𝜀 · 𝑘

𝑘
· x∗𝑀

)
≥ (1 − 𝜀) · S̃W(x∗𝑀 ) ≥ (1 − 2𝜀) · SW(x∗),

where the second inequality holds, as x̃∗𝑀 is the optimal solution to (14) and
𝑘−𝜀 ·𝑘

𝑘
· x∗𝑀 is a feasible solution; the third inequality holds, as

S̃W(x) is a concave function in x by Claim 4.2; the last inequality holds, as S̃W(x∗𝑀 ) ≥ (1 − 𝜀) · SW(x∗) and (1 − 𝜀)2 ≥ 1 − 2𝜀. This concludes

the proof. □

D COMPARING OUR THEORETICAL AND MODIFIED ALGORITHMS
In this section, we compare the performance of the theoretical version and the modified version of our algorithm. Due to certain limitations

on the convex objectives in Gurobi, we implemented the theoretical version of our algorithm in MATLAB with the help of another convex

optimization library, Mosek [1], and ran it on the same set of test inputs as in Section 5. As the implementations are in different programming

languages, we do not compare their running time and only compare their approximation efficiency.

Table 2: Experimental results of Local Search, Greedy, and both themodified version and the theoretical version of our algorithm.
For each algorithm, we show the average relative quality of the produced solution to that of the best-performing algorithm
that terminated in 1 week. Error bars denote the standard deviation.

Setting Benchmarks Our Algorithm

𝑛 𝑘 Local Search Greedy Modified Theoretical

50

5 100.00% ± 0.00% 98.93% ± 0.50% 99.99% ± 0.03% 95.28% ± 1.10%

10 100.00% ± 0.00% 98.71% ± 0.38% 99.99% ± 0.04% 97.43% ± 0.84%

20 100.00% ± 0.00% 99.17% ± 0.28% 99.99% ± 0.01% 99.53% ± 0.23%

200

10 100.00% ± 0.00% 98.06% ± 0.35% 99.99% ± 0.01% 95.36% ± 0.79%

20 100.00% ± 0.00% 97.92% ± 0.24% 100.00% ± 0.00% 98.50% ± 0.45%

40 100.00% ± 0.00% 97.97% ± 0.26% 99.99% ± 0.00% 99.85% ± 0.10%

1000

50 100.00% ± 0.00% 97.18% ± 0.14% 99.99% ± 0.00% 99.80% ± 0.09%

100 N/A 97.15% ± 0.15% 100.00% ± 0.00% 99.96% ± 0.02%

200 N/A 97.38% ± 0.11% 100.00% ± 0.00% 99.96% ± 0.02%

As shown in Table 2, we can see that the theoretical version of our algorithm performs slightly worse than the modified version. This is

due to the potentially suboptimal decision of fixing a small bidder set 𝑆
fix
. This step is helpful when we analyze our algorithm theoretically,

but it may not be optimal in practice. Therefore, we choose to use the modified version of our algorithm in Section 5.
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