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Abstract

Neural networks generally prefer simple and easy-to-learn features. When these
features are spuriously correlated with the labels, the network’s performance
can suffer, particularly for underrepresented classes or concepts. Self-supervised
representation learning methods, such as contrastive learning, are especially prone
to this issue, often resulting in worse performance on downstream tasks. We identify
a key spectral signature of this failure: early reliance on dominant singular modes
of the learned feature matrix. To mitigate this, we propose a novel framework that
promotes a uniform eigenspectrum of the feature covariance matrix, encouraging
diverse and semantically rich representations. Our method operates in a fully
self-supervised setting, without relying on ground-truth labels or any additional
information. Empirical results on SimCLR and SimSiam demonstrate consistent
gains in robustness and transfer performance, suggesting broad applicability across
self-supervised learning paradigms. Code: GitHub repository.

1 Introduction

Neural networks tend to prioritize learning simple and easily detectable features in the early stages
of training before capturing more complex patterns, revealing an inherent simplicity bias in neural
network optimization [Geirhos et al.l 2020, [Shah et al., 2020, Rahaman et al., [2019, | Kalimeris
et al.|, [2019] Xue et al, [2023]]. While this inductive bias can accelerate learning, it also makes
models vulnerable to relying on features that are only superficially correlated with the labels due to
dataset-specific artifacts.

These features, known as spurious features, can dominate model behavior, since they are easier to
learn than the true task-relevant signals [Sagawa et al., 2019} |Q1u et al., 2024} [Sagawa et al., 2020,
Kirichenko et al., 2022}, [Murali et al.,[2023]]. For instance, |Zech et al.|[2018]] showed that a model

*Equal contribution; authors listed alphabetically.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/NaghmehGh/SpuriousCorrelation_SSRL

trained to detect pneumonia in chest X-rays relied on visual artifacts—such as hospital-specific metal
tokens—rather than medical markers of the disease. Although these shortcuts may lead to strong
performance on training and validation distribution, they often fail to generalize to rarer or more
challenging inputs. Thus, models that appear accurate may perform poorly across the full spectrum
of real-world variation.

Recent work shows that self-supervised representation learning (SSRL) is not immune to spurious
correlations either, even though trained on unlabeled data [Hamidieh et al., 2024, |Zhu et al., 2023]]. In
particular, contrastive learning (CL; a popular technique in SSRL) learns features—also referred to
as representations—that are intended to be broadly useful across a wide range of downstream tasks,
by encouraging similarity between augmented views of the same instance [Chen et al.| 2020} He
et al., 2020\, /Grill et al., 2020, (Chen and He, 2021 |Caron et al., 2020, |[Zbontar et al., 2021[]. However,
CL’s objective of maximizing agreement between views can lead the model to rely on patterns that
are predictive within the training distribution but unreliable in unfamiliar or varied conditions. In
doing so, CL may overfit to spurious signals present in the training data, ultimately limiting the
generalization of the learned representations to novel or diverse settings.

Whether a feature is considered spurious depends on the downstream task. A features that is
irrelevant—or even misleading—for one task may be essential for another. This task-dependence
highlights a key challenge in self-supervised learning: the absence of knowledge about the downstream
task during pretraining. Without this information, task-relevant features (often referred to as core
features) and spurious features are indistinguishable from the perspective of the unlabeled training
data. As a result, self-supervised methods can entangle both in their learned representations, limiting
their robustness and transferability. Despite progress in SSLR, we lack a theoretical understanding
and practical solution for how to mitigate the influence of spurious signals during self-supervised
pretraining.

To evaluate the quality of the learned features, it is common practice to assess how well simple linear
classifiers perform on downstream tasks. Which raises the question, whether we can train a single,
general-purpose representation that enables a wide range of downstream tasks to be solved with
nothing more than a shallow model? We explore this question by theoretically investigating why
standard networks tend to prefer spurious features. We show that the generalization performance of
a downstream task closely tied to the spectrum of the matrix X X T, where X is the input feature
matrix. Dimensions associated with larger eigenvalues are learned first. Since spurious features are
typically simple and easy to learn, they dominate the top eigenspectrum, leading the model to focus
on them and reinforce them disproportionately.

To counteract this tendency, we introduce a rank-promoting regularizer that flattens the spectrum
of XX . By lifting the smaller eigenvalues and reducing their disparity with the largest ones, the
method encourages the model to allocate capacity more uniformly across all informative directions,
promoting the learning of both core and spurious factors. Importantly, the regularizer is architecture-
agnostic and can be seamlessly integrated into any SSRL pipeline without modification.

The main contributions of this paper are summarized as follows:

* We introduce a synthetic dataset that elucidates why neural networks tend to prioritize spuri-
ous features over core features, and demonstrate—via rank analysis—how such preferences
reduce representational diversity during training.

* We provide a theoretical analysis showing that generalization in downstream tasks depends
on the eigenvalue spectrum of X X ', with uniform spectra yielding optimal transferability.

* Based on this insight, we propose a simple, architecture-agnostic regularizer that flattens
the spectrum of X X T, encouraging diverse representations. The regularizer integrates
seamlessly into any SSLR with negligible overhead.

» Experiments across five challenging spurious-correlation benchmarks show that the method
substantially improves performance on the most difficult portion of the dataset—worst-group
accuracy— while also increasing average accuracy, and achieves new state-of-the-art results
on multiple downstream tasks.
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(a) The effective rank is lower when training on CIFAR- (b) Classification performance on CIFAR-10 is worse
10 with artificial spurious features. in the presence of artificial spurious features.

Figure 1: Training a classifier on CIFAR-10 with artificially added, strongly correlated spurious
features results in noticeably worse performance and a lower effective rank of the learned representa-
tions, suggesting a potential connection between representation diversity and generalization.

2 Spectral Imbalance Limits Downstream Flexibility

Neural networks are known to prioritize simple, easily learnable features during training [Geirhos
et al.,[2020, Rahaman et al., 2019} Xue et al., 2023]]. In self-supervised pretraining, this often leads
to the dominance of spurious features—those that are easy to align between augmented views but
are semantically irrelevant and fail to generalize beyond the training distribution. These dominant
components shape the spectral structure of the learned representation space. In this section, we show
how such spectral imbalance constrains downstream learning, and how a more uniform spectrum
enables better task adaptation.

2.1 Gradient Flow and Spectral Bias

To understand how spectral structure biases downstream learning, we analyze the optimization
dynamics of a linear predictor trained on frozen representations from a pretrained encoder. Let f(-)
denote a feature representatlon Given a training set {x;}?_;, define the corresponding feature matrix
as F' = [f(z1),..., f(x,)]" € R™¥9, We train a linear predictor gy, (f(x)) = (f(x),w) using
gradient flow on a loss ®:

dw  d® dg Td® d(ID T d<I>
T aw ) i FF Z Aiviv; —,

where FFT =" | A0/ is the eigendecomposition of the feature covariance matrix.

This shows that the evolution of predictions is dominated by top eigendirections of F'/F', as those
with larger eigenvalues accelerate learning. Consequently, downstream predictors are biased toward
dominant spectral directions—regardless of whether they encode meaningful or spurious information.
Since spurious features are often the easiest to learn during pretraining, they are likely to occupy top
eigenspaces, constraining downstream learning to brittle, semantically weak directions.

To quantify spectral imbalance, we use the effective rank, a principled measure based on the entropy
of the singular value spectrum:

Definition 1 (Effective Rank [Roy and Vetterli, 2007]). Let A € R"*? have singular values
01y .-, 0p withr = min(n, d). Define:

Ok

Pk = ST o rank?(A) = exp Zpk log ps
j=103j

A high effective rank indicates a flatter spectrum and greater diversity of informative directions. A
low effective rank implies that variance is concentrated in a narrow subspace—often aligned with
spurious features—Ilimiting downstream flexibility.
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Figure 2: Impact of spectral interventions on SimCLR-trained features for SpurCIFAR-10. Removing
low-energy directions and flattening the remaining spectrum can double worst-group accuracy without
any architectural changes. Shaded bands around each curve represent worst- and best-group accuracy.
Left: single 400-mode cut; right: incremental cuts.

2.2 Spurious Features Collapse the Spectrum

We illustrate the effect of spectral imbalance by comparing SimCLR-trained representations on
CIFAR-10 and SpurCIFAR-10, the latter introducing a spurious correlation of 0.95 via class-
dependent overlays. Using a ResNet-18 encoder (512 dimensions, 1000 epochs), we compute the
effective rank of the training feature matrix and evaluate test accuracy on 5,000 held-out examples.

As shown in Figure [T} the effective rank of the representation matrix is significantly lower on
SpurCIFAR-10, accompanied by reduced test accuracy. This confirms that spurious features lead to a
collapsed spectrum, reducing representational diversity and flexibility.

These observations support our central hypothesis:

Hypothesis 2 (Spectral Diversity and Learnability). The number of significant singular values in the
feature matrix governs the learnability of downstream tasks. Representations with higher effective
rank are more likely to support robust generalization across diverse tasks.

2.3 Spectral Interventions and Robustness

To test this hypothesis, we manipulate the spectrum of the feature matrix learned by SimCLR on
SpurCIFAR-10. Specifically, we truncate the smallest 400 singular values and flatten the remaining
spectrum. A linear classifier trained on this modified representation (Figure 2a) shows a substantial
gain in worst-group accuracy—ifrom approximately 20% to 40%—while maintaining or slightly im-
proving average accuracy and the best-group accuracy. Figure 2b]shows that progressively removing
small singular values yields only modest, incremental gains in worst-group performance. Taken
together, the findings indicate that low-rank directions offer only marginal benefit to generalization
and can even slightly undermine robustness. To isolate the effect of flattening, we conduct an ablation
study where only the smallest singular values are removed without flattening the remaining spectrum.
As shown in Appendix[A] Figure 3] this approach also yields significant improvement in worst-group
accuracy, showing the importance of a balanced spectrum for robustness.

Our findings complement prior work on the role of rank in deep learning [Sainath et al., 2013} [Feng
et al.}[2022||Andriushchenko et al., 2023, while highlighting a different trade-off: contrastive learning
benefits not from aggressive compression but from maintaining a balanced spectrum. Even in a
512-dimensional space, the effective rank remains relatively low; increasing it improves robustness.
Importantly, our goal is not to eliminate spurious features—some may benefit certain tasks—but to
ensure that task-relevant signals are preserved. Flattening the spectrum promotes richer, more flexible
representations that enable robust generalization—even in the presence of spurious correlations.



3 Related Work

Spurious Correlations and Robustness Several studies have examined how neural networks rely
on spurious features [Geirhos et al., 2020, |Sagawa et al., 2020} [Shah et al.| 2020]. For instance, |[Zech
et al.|[2018]] showed that models trained on chest X-rays often rely on hospital-specific artifacts rather
than medical content. |[Sagawa et al.|[2019] and [Sagawa et al.|[2020]] introduced worst-group accuracy
as a robustness metric to evaluate models under spurious feature reliance. More recently, [Kirichenko
et al.| [2022] and |Qiu et al.| [2024] analyzed how training dynamics and data complexity affect
the emergence of spurious features. Beyond metrics, algorithmic approaches include GroupDRO,
which directly minimizes worst-group risk by adaptively reweighting groups during training and
thus requires group annotations [Sagawa et al., 2019]. Complementarily, Just Train Twice (JTT)
improves group robustness without group labels via a two-stage procedure—train a standard ERM
model, mark misclassified examples as proxies for minority groups, and retrain with upweighting
[Liu et al.,2021a]]. Both methods are supervised and label-driven, whereas our approach regularizes
representations during self-supervised pretraining. For certified robustness, Mustafa et al.| [2024]]
prove non-vacuous adversarial population-risk bounds via randomized smoothing and PAC-Bayes for
stochastic networks—complementary to our SSRL regularization.

Self-Supervised Learning and Shortcut Representations Recent work has shown that self-
supervised representation learning (SSRL), particularly contrastive methods, is also susceptible to
spurious features [Hamidieh et al., 2024, [Zhu et al.| 2023, |Ye et al.,|2023|]. While contrastive learning
is a principled route to task-agnostic representations—supported by strong empirical results and
theory giving generalization guarantees under both i.i.d. and non-i.i.d. sampling regimes, as well
as in adversarial settings with logarithmic negative-sample dependence [Chen et al.| {2020, |He et al.,
2020, |Grill et al., 2020, |Chen and Hel 2021} |(Caron et al.| 2020, Zbontar et al., 2021} [Hieu et al.| 2025/
Hieu and Ledent, 2025} |(Ghanooni et al., 2024]—it can nevertheless emphasize dominant directions
in feature space, encoding shortcuts rather than robust, transferable signals. Empirically, the effects
of dominant, easy-to-learn features have been widely documented [Liu et al.l [2021b, Jiang et al.|
2021alb, [Chen et al.| 2021]], and studies addressing group robustness or fairness in SSRL often rely
on group information or labeled data [[Song et al., 2019} Tsai et al.| 2020l Wang et al., 2021} Bordes
et al., 2022} |Scalbert et al., [2023]]. In contrast, Robinson et al.|[2021] tackled shortcut learning in
contrastive setups by employing adversarial feature modification without requiring group labels.

Spectral Structure and Representation Quality The spectral properties of learned representa-
tions have been studied in various contexts [He et al.,|2024} [Bansal et al., 2018|, Jing et al.| 2021]].
Rahaman et al.|[2019] and |[Kalimeris et al.| [2019] analyzed how gradient-based optimization favors
low-frequency, high-energy components early in training. [Xue et al.|[2023]] examined the role of
eigenspectrum bias in the evolution of feature learning. Our work builds on these insights by showing
that spectral imbalance—an overconcentration of variance in a few directions—can amplify spurious
features and degrade generalization.

Spectral Regularizers and Low-Rank Perspectives In representation learning, several recent
methods explicitly incorporate regularizers to encourage more diverse, high-rank representations in
self-supervised learning. For example, Barlow Twins [Zbontar et al.,|2021] introduces a redundancy-
reduction loss that drives the cross-correlation matrix of twin network embeddings toward the identity,
thereby decorrelating feature dimensions and minimizing redundancy. Similarly, VICReg adds a
variance preservation term and a covariance penalty to maintain per-dimension variance while pushing
off-diagonal covariances toward zero, thus preventing informational collapse by decorrelating features
[Bardes et al., |2021]]. Whitening-based approaches go even further by forcing the entire feature
covariance to match an identity matrix (full whitening), which is equivalent to enforcing a full-rank
embedding space and comes with theoretical guarantees against dimensional collapse [Ermolov
et al.| 2021]]. Beyond these objectives on the representation statistics, other techniques like Implicit
Feature Modification (IFM) actively perturb training examples in feature space to ensure the encoder
utilizes a broader set of features, reducing reliance on any single dominant “shortcut” and promoting
greater feature diversity [Robinson et al.,2021]]. Complementing these regularizers, prior work has
explored how low-rank structures relate to generalization. [Sainath et al.|[2013] found that low-rank
projections can improve speech recognition models, and [Feng et al.| [[2022] showed that adversarially
trained networks tend to learn flatter spectra. However, /Andriushchenko et al.| [2023] demonstrated
that flatness alone does not guarantee robustness. All of these strategies underline the importance



of promoting feature diversity and high effective dimensionality in learned representations. Our
approach differs by emphasizing a balanced eigenspectrum (neither overly flat nor too concentrated)
to mitigate spurious feature dominance without the extremes of full whitening or low-rank collapse.

4 Theory

This section analyzes how the spectral structure of learned representations affects generalization
in downstream tasks. We show that the downstream generalization error depends critically on the
spectrum of the feature covariance matrix. Finally, we prove that representations with a uniform
eigenspectrum minimize expected generalization error over random downstream tasks, providing a
theoretical justification for promoting spectral diversity.

4.1 Problem Setup

We consider a learning setup where the inputs x € X C R are composed of core and spurious
features. Only the core features are causally relevant to the ground-truth labels, but spurious features
may correlate with labels due to dataset biases.

We assume access to unlabeled data in the form of similar pairs (x, x") and independent negatives
x~. Learning proceeds over a function class F = {f : X — R? | ||f(x)|l2 < R}, where f maps
inputs to d-dimensional representations. During training, we optimize an encoder f € F jointly
with a projection head h(x) = Wao (W f(x)), where Wy € R4>d W, € R4 *dn and o(-) is a
nonlinearity (e.g., ReLU). The encoder and projection head are trained using contrastive losses such
as InfoNCE [Oord et al.,|2018]]. After training, the projection head h is discarded, and the learned
features are represented by the matrix

F= [f(xl)a RS f(Xn)]—r € RnXda
where n is the number of samples.

To evaluate the quality of the learned representations, we freeze the encoder f and train a linear
classifier gw (f(x)) = (f(x), w) with w € R, Given a labeled dataset S = {(x;,;)}", drawn
1.i.d. from a distribution D over X x ), where x; € R? and y; € {—1,41}. The classification
downstream task involves minimizing the supervised loss

Uy, gw(f (%)) = (1 = ygwf(x))*.

This setup captures the realistic setting where similarity is defined semantically but is not perfectly
aligned with task-relevant (core) features, allowing spurious correlations to arise during representation
learning.

4.2 The Role of Feature Spectra in Downstream Task Generalization

We now investigate how the spectral structure of the feature matrix influences the generalization
performance of downstream tasks. First, we analyze the impact of the feature matrix F' on the
generalization of linear classifiers trained via stochastic gradient descent (SGD). The following
corollary, based on|Arora et al.|[2019], summarizes this effect for a fixed downstream task.

Corollary 3 (Linear classifier generalization bound under rank-deficient feature matrix). Let S =
{(xi,yi)}1—q be drawn i.i.d. from a distribution over inputs and binary labels y; € {1}, and fix
a failure probability 6 € (0,1). Let f(x) € RY be a fixed representation and define the feature
matrix F € R™*< with rows f(x;)". Consider a linear predictor gy (x) = (f(x),w) trained
with gradient descent. Then, with probability at least 1 — 4, the population loss Lp(gy,x)) =
Ex,y)~D[l(gw(X),y)] satisfies

Lp(guw) < 5( yT(FFT)+y>’

n
wherey = (y1,...,yn) ' and (-)* denotes the Moore—Penrose pseudoinverse. Equivalently, if
FET =37 X\iv;v, with \; > 0 and orthonormal {v;}/_,, then
T
1
y (FFT)Ty = > vy
7

=1



Here O hides logarithmic factors and dependence on .

The formal statement and proof are provided in Appendix [B| The dominant term, y " (FF )Ty,
shows that generalization improves when the label vector y aligns well with the top eigenspaces of
FFT. In contrastive learning, however, the downstream task is not known during pretraining, so it is
unclear which directions in the feature space will ultimately be important.

To address this, we consider downstream tasks that arise by randomly sampling two latent classes
¢, ¢ € C according to a distribution p. For each such pair, we assume the existence of class-specific
vectors v+, v.— such that the optimal linear classifier in the feature space is givenby v = v+ —v,.-.
Specifically, the class posterior is given by

where I € R"*4 is the feature matrix.
Since downstream tasks are unknown at pretraining time, designing robust representations for
contrastive learning requires optimizing for generalization over a distribution of tasks. Assuming p

is uniform over class pairs, we study which spectral properties of FF' lead to improved average
generalization. Specifically, we aim to minimize the expected surrogate loss:

L(F):=Eyy [YT(FF")'Y],
where the expectation is over random task vectors v and induced labels Y € {£1}".

The following theorem shows the optimal structure of F' to enhance the generalization on a general
downstream task.

Theorem 4 (Optimal structure under trace constraint (informal)). Let F € R"*? be a feature
matrix with rank(F) = r < min(n,d), and let G :== FFT € R™ ". Suppose G has eigenvalues

AL 2> X > -2 A >0, with \py1 = --- = A\, =0, and a fixed trace constraint E:Zl A = c
Then the expected loss L(F) under the random task model is minimized when FF' " has a uniform
spectrum; that is, all non-zero eigenvalues are equal: \y = --- = .

Remark 5. The trace constraint used in Theorem | is both theoretically meaningful and prac-
tically justified. In modern contrastive learning pipelines—such as SimCLR and SimSiam—it is
standard to apply {s-normalization to the feature vectors. This ensures that the overall energy of the
representation, captured by tr(FF), remains approximately constant across batches. Thus, the
fixed-trace constraint reflects common empirical practice. Furthermore, since downstream classifiers
are scale-invariant, normalizing the trace removes trivial rescalings of the feature matrix and makes
the spectral analysis of feature representations well-posed.

The formal statement and proof are provided in Appendix [C] Theorem 4] shows that, when the down-
stream task is unknown, the optimal feature geometry (under a fixed-trace constraint) is attained when
G := FFT has a uniform eigenspectrum. In the rank-deficient setting this means the eigenvalues are
constant on the rank-r support and zero elsewhere. Geometrically, the representation spreads variance
evenly across the task-relevant subspace while suppressing degenerate directions, preventing any
single mode from dominating. See Appendix [[|for an illustrative example with spurious correlations
that further motivates the uniform spectrum condition.

S Algorithms

We now present a simple and effective regularization method to promote spectral diversity during
contrastive learning. To justify this approach, we establish a spectral relationship between the singular
values of the feature matrix F and the eigenvalues of its covariance feature matrix FF' .

5.1 Increasing the Rank of Feature Matrix with Spectral Regularization

In a given neural network model, let F' denote the feature matrix at the last layer L, which corresponds
to the output of the encoder. Our objective is to flatten the spectrum of the matrix F'F'" during the
pretraining stage, thus encouraging the model to equalize the eigenvalues and, as a result, increase
the effective rank of the feature matrix. To achieve this, we propose a regularizer that efficiently
facilitates this objective:



Table 1: Worst-group accuracy (%) for SSRL methods (SimCLR, SimSiam), SimCLR-LateTVG,
SimSiam-LateTVG, and our method, which in this experiment is applied only to SimCLR. Values
are reported as mean =+ standard deviation across 5 random seeds for our method. Results for other
methods are taken from |Hamidieh et al.| [2024].

DATASET SIMCLR SiMSiAM  SIMCLR-LATETVG  SIMSIAM-LATETVG OURS

CMNIST 81.7 80.7 83.8 83.1 95.10 + 2.90
SPURCIFAR-10  36.5 434 40.4 61.4 64.65 + 2.86
CELEBA 76.7 77.5 82.2 83.1 83.96 + 1.65
METASHIFT 45.5 42.3 59.3 79.6 61.14 +8.02
WATERBIRDS 43.8 48.3 55.4 56.3 50.25 +£0.79

Table 2: Average accuracy (%) for SSRL methods (SimCLR, SimSiam), SimCLR-LateTVG,
SimSiam-LateTVG, and our method, which in this experiment is applied only to SimCLR. Val-
ues are reported as mean = standard deviation across 5 random seeds for our method. Results for
other methods are taken from |[Hamidieh et al.[[2024]].

DATASET SIMCLR SimMS1AM  SIMCLR-LATETVG  SIMSIAM-LATETVG OURS

CMNIST 82.5 82.1 - 80.6 98.08 + 0.26
SPURCIFAR-10 69.3 75.1 - 76.1 82.85 + 0.82
CELEBA 82.1 81.9 - 88.9 88.40 + 0.35
METASHIFT 55.1 55.8 - 70.1 76.57 + 1.01
WATERBIRDS 47.5 50.7 - 54.8 58.32 + 0.59

Definition 6 (Spectrum Flattening Regularizer). Let G := F'F' T have eigenvalues \1, ..., \. >0
(with r = rank(G)) and set p; := \;/ >, \j. Define

Ap(.’L Z p;-

This penalizes spectral concentration and is minimized at the uniform spectrum (p; = 1/r).

To encourage more uniformly distributed representations, we incorporate the spectrum flattening
regularizer into the contrastive learning objective. The resulting loss function is defined as

L = Lssr + aRpec(FF ), (D

where Lgsgr denotes the standard contrastive loss (e.g., SImCLR), and o € R is a weighting
coefficient that controls the influence of the regularization term. The addition of Rgpe. encourages the
learned feature representations to maintain a flatter spectral profile, thereby promoting greater feature
diversity and mitigating representational collapse. Pseudocode for computing the regularization term
is provided in Appendix [E]

6 Experiments

We evaluate our method by analyzing how flattening the spectrum of the feature matrix improves
worst-group accuracy under spurious correlations. Motivated by Lemma[]in Appendix [D] we apply
the regularizer directly to the (centered) mini-batch feature Gram matrix and add it to the SimCLR
objective to promote robust feature learning without labels or group annotations. Concretely, for
each mini-batch B with centered features F' 5 € RIBIXd 1ot G = =F 'B Fl 's have nonzero eigenvalues
{\i}E, and define p; := X\;/ > 2 ;21 Aj. The spectrum—ﬂattemng regularizer is

spec E pz )



which penalizes concentration of energy and is minimized at a uniform spectrum. (Equivalently,
the “zero-at-optimum” form rp >_. 7, (p; — é)Q can be used.) Additional details are provided in

Appendix [E]
6.1 Baseline Methods

We compare our approach with SSRL models pretrained using standard SSRL losses, specifically
SimCLR [Chen et al., 2020] and SimSiam [[Chen and He} |2021]]. SimCLR employs a contrastive
learning framework, where paired augmented views of the same image are pulled together in the
feature space while different images are pushed apart using a contrastive loss. It consists of an
encoder (e.g., ResNet), a projection head, and a contrastive loss function that requires negative
samples. In contrast, SimSiam is a non-contrastive method that avoids negative samples by leveraging
a stop-gradient mechanism and a predictor network to prevent collapsed representations. Additionally,
we evaluate our method against LateTVG [Hamidieh et al., 2024, a state-of-the-art SSRL approach
designed to mitigate spurious correlations during pretraining, which has been applied to both SimCLR
and SimSiam. We include baseline results for Barlow Twins [Zbontar et al.|[2021]], DirectDLR [Jing
et al.,[2021]], IFM [Robinson et al., 2021]], BYOL [Grill et al., 2020], and DINO [Caron et al.} 2021
in Appendix [H| for completeness and comparison.

6.2 Datasets

We evaluate all methods on five widely used vision benchmarks designed to study spurious cor-
relations. Among them, SpurCIFAR-10 [Nagarajan et al., [2020] and C-MNIST [Arjovsky et al.,
2019 are synthetic datasets constructed by introducing strong artificial correlations: SpurCIFAR-10
modifies CIFAR-10 images by associating the color of horizontal lines with the object class, with a
spurious correlation strength of 0.95, while CMNIST colors the MNIST digits to create a spurious
correlation between digit color and binary label, with a spurious correlation strength of 0.99. The
remaining datasets are based on real-world imagery. In CelebA [Liu et al.| 2015]], gender (female
or male) is spuriously correlated with hair color (blond or non-blond). MetaShift [Liang and Zoul
2022 explores spurious correlations in the Cats and Dogs classes, where the background (indoor
or outdoor) is associated with the type of pet (cat or dog). Finally, Waterbirds [Sagawa et al.,[2019]]
contains a spurious correlation between the background (land or water) and the bird species (landbird
or waterbird). Together, these benchmarks cover both synthetic and natural settings, allowing us to
evaluate robustness across different types and strengths of spurious correlations.

6.3 Implementation Details

SSRL Pretraining For each dataset, we train an encoder (ResNet-18 or ResNet-50) with a pro-
jection head composed of two linear layers separated by a ReL U activation. The training follows
the contrastive learning framework of SImCLR, using the contrastive loss as the primary objective.
Additionally, we incorporate our regularizer from Equation [I]to enhance feature representations. To
determine the optimal regularization weight («), we perform a grid search over the values 0.001,
0.005, 0.01, 0.05, 0.1. The regularizer flattens the spectrum of the feature matrix, effectively in-
creasing its rank by applying the regularization within each batch. This design ensures seamless
integration with the SSRL loss function while preventing the rank from increasing excessively, which
could lead to the learning of irrelevant features.

Downstream Task After pretraining, we freeze the encoder and use its output representations for
linear probing. For linear probing, a linear classifier is trained on top of these fixed representations
using cross-entropy loss, with only the classifier weights being updated. To ensure a balanced training
dataset, we subsample the majority groups [Sagawa et al., 2020} [Idrissi et al., |2022]], helping to
mitigate geometric biases in the linear classifier [Nagarajan et al.,|2020]]. Finally, we evaluate the
learned representations on the standard test split of each dataset, leveraging group information to
report both average accuracy and worst-group accuracy.

6.4 Results

Our method achieves consistently higher worst-group and average accuracies compared to strong
SSRL baselines, demonstrating its robustness across diverse datasets without relying on architectural



modifications. Table [T] reports worst-group accuracies across all five datasets, averaged over five
random seeds, while Table 2] shows the corresponding average accuracies. Results for baselines
SimCLR and SimSiam are taken from [Hamidieh et al.|[2024].

Our approach consistently outperforms LateTVG when combined with SimCLR across four datasets
(except for waterbirds dataset) and both evaluation metrics. When paired with SimSiam, it remains
highly competitive—matching or exceeding LateTVG on several benchmarks—while retaining a
simpler architecture. Notably, our SImCLR experiments use 512-dimensional embeddings, whereas
LateTVG’s SimSiam results are based on 2048-dimensional representations. We have also applied
our regularizer to SimSiam; the complete results appear in Appendix [H We further observe that
Hamidieh et al.|[2024] does not provide the pruning parameter that determines their reported results,
nor does it report the standard deviations of the accuracies. Worst-group accuracy can fluctuate
substantially, so the absence of variance estimates prevents a rigorous assessment of the consistency
of their reported gains.

Moreover, while LateTVG [Hamidieh et al., [2024] is tailored for architectures with stop-gradient
operations, our approach is architecture-agnostic and achieves comparable or superior performance
with a simpler 512-dimensional feature space. This highlights the potential of spectral regularization
for broad SSRL applications. Hyperparameter settings for our method are provided in Appendix [F}
and additional ablation studies are included in Appendices|G|and [H

6.5 Sensitivity to Regularization Strength

We evaluate the sensitivity of the spectral regularization strength aipec on MetaShift with SimCLR,
keeping all other settings and the random seed fixed. The spectral regularizer is added to the SimCLR
objective (as defined earlier). TableE] shows that performance peaks at cgpec=0.001 (75.84%), dips
as Qpec increases to 0.010 (66.29%), partially recovers at 0.025 (73.60%), and degrades again for
> 0.050 (66—68%). These results indicate sensitivity: small regularization works best, while stronger
penalties lead to underperformance; a practical starting point is agpec € [0.001, 0.005].

Table 3: Sensitivity of average accuracy (%) on MetaShift to spectral regularization strength orgpec
with SimCLR (fixed seeds). Best result are in bold.

Oispec 0.001 0.0025 0.005 0.010 0.025 0.050 0.100
Avg. Accuracy (%) 75.84 7191 68.54 6629 73.60 6742 66.29

7 Conclusion

In this paper, we addressed the challenge of spurious feature reliance in self-supervised represen-
tation learning by providing both theoretical insights and a practical solution. We showed that the
expressiveness of learned representations is closely tied to the number of significant singular values
of the feature matrix, which in turn impacts downstream task performance. To promote richer and
more diverse representations, we introduced a spectrum-flattening regularizer that increases the
effective rank of the feature space. Rather than explicitly removing spurious features, our method
encourages the learning of a broader set of features beyond spurious correlations, thereby improving
generalization to downstream tasks without requiring labels or group annotations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction (Section [I) claim a spectral regularization
method to mitigate spurious features in SSRL, supported by theoretical analysis (Section
and experiments (Section[6). Limitations are noted in Section[[]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our limitation section in Appendix [[] discusses computational costs of our
regularizer with details.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Corollary [3]and Theorem [ (Section include full assumptions with proofs
in Appendices [B]and[C]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [6.3]and Appendix [F| provide hyperparameters, encoder details, and
training procedures. Pseudocode is in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this work are publicly available, and the code will be
submitted prior to the supplementary material deadline.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [6.3] details encoder architectures, hyperparameters (Table [)), data
splits, and optimization. Grid search for « is described.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables [T]and [2]report mean + standard deviation over 5 seeds for our method
and Barlow Twins, capturing variability (Section [6.4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [J]details the computational resources and runtime associated with
our regularizer.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: The research uses standard datasets (Section[6.2)) and methods, adhering to
ethical guidelines. No human subjects or sensitive data are involved.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is foundational, improving SSRL robustness without direct societal
applications or risks.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No models or datasets are released, and the method poses no misuse risks
(Section[6).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets (e.g., SpurCIFAR-10, CelebA) are cited with references (Section[6.2).
Licenses are standard.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or models are released; the contribution is theoretical and
algorithmic.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects are involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects are involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs are used in the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 3: Effect of spectral manipulations on SimCLR-trained feature representations for SpurCIFAR-
10. We evaluate trained features with a linear classifier where singular values are incrementally
truncated (from O to 512) either with (3a) or without (3b) flattening the remaining spectrum. Flat-
tening alone (even with no truncation) significantly improves worst-group accuracy—from 30% to
40%—highlighting the importance of spectral balance for robust representation learning. Shaded
bands indicate worst- and best-group accuracies.

A Ablation Study on Removing Small Singular Values Without Flattening the
Spectrum

To test our hypothesis, we manipulate the spectrum of the feature matrix learned by SimCLR on
SpurCIFAR-10. Specifically, we compare two interventions: (1) progressively truncating the smallest
singular values while flattening the remaining spectrum (Figure [3a} the same as Figure 2bin the main
paper), and (2) progressively truncating the smallest singular values without flattening the remaining
spectrum (Figure [3b). We then evaluate the quality of the resulting representations using a linear
classifier.

While both approaches yield some gains in worst-group accuracy as more low-variance directions
are removed, the second approach (truncation without flattening) exhibits instability (see Figure
[3b); it is unclear which singular values should be removed to consistently improve performance. In
contrast, Figure [3a]shows that truncation combined with flattening leads to more robust and consistent
improvements in worst-group accuracy. Notably, even without any truncation, simply flattening the
full spectrum significantly boosts worst-group performance, from approximately 30% to 40%.

Taken together, these findings suggest that low-rank directions provide limited benefit for gener-
alization. As illustrated in Figures 3] a balanced spectrum plays a crucial role in enabling robust
representations, reinforcing the importance of spectral regularization in the presence of spurious
correlations.

B Proof of Corollary 3|

Corollary 3 (Linear classifier generalization bound under rank-deficient feature matrix). Let S =
{(xi,yi)}1—q be drawn i.i.d. from a distribution over inputs and binary labels y; € {1}, and fix
a failure probability § € (0,1). Let f(x) € R? be a fixed representation and define the feature
matrix F € R™® with rows f(x;)". Consider a linear predictor gw(x) = (f(x),w) trained
with gradient descent. Then, with probability at least 1 — 0, the population loss Lp(gy ) :=
E(x,y)~p[l(gw(x), y)] satisfies

~ T(FFT)+
Lp(gyw) < O % ’
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where'y = (y1,...,yn) ' and (-)* denotes the Moore—Penrose pseudoinverse.

FFET =37 X\iviv,] with \; > 0 and orthonormal {v;}/_,, then
~ 1
y (FFT) Yy = > vy
i=1""

Here O hides logarithmic factors and dependence on 0.

We now prove the result for a full-rank feature matrix.

Equivalently, if

Proof. Without loss of generality, assume F is appropriately normalized, such that Apax (FFT) < 1.

Consider gradient updates of the form
d<I>
w(k +1) = w(k) = = = —nF" (g(k) —y)

. _ 1
withn = O (2/\,,,ax(FFT)

g(k+1) —g(k) = F(w(k +1) — w(k)) = —nFF"(g(k) —y)

Thus, the distance of the outputs to the labels evolves as

g(k) —y=g(k—1) —nFF (g(k —1) ~y) ~y =T nFF")(glk —1) —y) =

) and w(0) = 0. The outputs of the linear network evolve as

Using the previous result, we can express the change in the weights during training as

K-1

w(K) —w(0) = Z w(k+1) —w(k)

=~ > " pFT(1 - nFFT)*(g(0) —y)

B

=0
To bound the change in the weights, we bound each term individually.
K—1

K-1 K-1

K—-1
= > nFT"@—nFF")y =Y " nF" (1 —nFF")*g(0)
k=0

T
InF" > (X —nFF")ry|)3 =y" <Z<I - v;FFT>k> FF” <Z<I - r;FFT>k> y

k=0 k=0 k=0

=1

_ (D (Lt ) y
()

=" (FFT) "y

k=0 k=0
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i=1

T
%
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Taking these bounds together yields

[lw(K) = w(0)[l2 <

yI (FFT) ly
Let € € {£1}". Then it holds

(€, Xw) = (e, X(w — w(0))) + (e, Xw(0)) < v/n[[w — w(0)]]2 + (¢, Xw(0)) = v/n[|[w — w(0)||2
Let Fr = {(w,x): ||w — w(0)|| < R}.

[lw—w(0)[|<R

1 1 1
Rs(Fr) = EEEN{ﬂ}n [ sup <€7XW>] <=

lo
swp Lp(f) = Ls(f) < 2Rs(Fr) + O [ |/ -2
feFr n

(ST

1 log 2
<2—R+0O 8
~Jn + 2n

TFFT—1 log 2
—oy/¥ ( ) y+(9 g5
n

2n

Using

llg = ¥llz < [[X=nEF)*||2/1g(0) = ¥ll2 < (1 = DA (FFT)) vV < 1
for sufficiently large k& > log +/n, we can bound L as follows.

I 1 1
L == D)) =yl = =g —y|]F < —
() =5 2 lats ) ol = Zlle =yl <
O
We now prove the case in which the feature matrix is rank-deficient.

Proof. Without loss of generality, assume F is appropriately normalized so that Ayay (FFT) < 1
Consider gradient updates of the form
dd
w(k+1) = w(k) = =1 o— = —n F ' (g(k) ~y)
m) and w(0) = 0. The outputs evolve as

g(k+1) — g(k) = F(w(k+1) —w(k)) = —n FF ' (g(k) —y),
hence
g(k) —y =X —nFF")*(g(0) —y).
Using this, the weight displacement after K steps is

with n = O(

K-1 K—-1
w(K)=w(0)==> nF(gk)—y)==> nF I-nFF")*(g(0)-y)
k=0 k=0
K-—1

=

nFTI—nFFT)Fy —

e
I

nF (I FF") g(0).
0

S
I

0
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We bound the two terms separately. For the first,

K—1 9 K-1 K-l
HnFT Z(I—nFFT)’fyH2 :yT< S (1-nFFT) ) FFT ( S (@-nFFT) )
k=0

Let FFT = 22:1 A\;iv;v;" with \; > 0 (the remaining eigenvalues are 0; their contributions vanish
in the display above). Then

(Z)\ (1_1_77/\)> vV )y <y (;A;lvivj> y:yT(FFT)+y,

where (-)* denotes the Moore—Penrose pseudoinverse and we used (1 — (1 —nA;)%)? < 1.

For the second term, since w(0) = 0 we have g(0) = Fw(0) = 0, hence

H T]FT 77FFT)}“g(O)H2 =0.

Combining the two bounds yields
[w(K) —w(0)ll2 < \/y (FFT)ty

Let € € {1}". Then
(e, Xw) = (e, X(w = w(0))) + (6, Xw(0)) < vVn[[w = w(0)]]2,
and for Fp = {(w,x) : |[w — w(0)|| < R},

1
Rs(Fr) = — ]Ee{ sup (e,Xw)} <
n [w—w(0)|<R

R
NS
Hence, with probability at least 1 — 9,

0 2R o
sup (Lo(f) = Ls(f) < 2Rs(fR)+o( S < 22 of i),

and taking R = ||[w(K) — w(0)|l2 < +/y T (FF )ty gives the stated bound.

Finally, for the empirical term, decompose Y = Yrange + ¥null along the eigenspaces of FFT, so
that (I -n FFT)kynuH = Ynull and

||g - y||2 = ||(I - UFFT)k(g(O) - yrange) - erullHQ S (1 - n>\mm k ||Yrange||2 + ||Ynull||2a

where AT is the smallest positive eigenvalue of FF' . Choosing k so that (1 —n AT )* <1/\/n
yields

1 1 1
Ls(H) = Jlg=yl3 < (1 +lyaml) < - (1+n).

and in particular Lg(f) < 1 always; when y lies largely in range(F’) (the learnable subspace), this
term is o(1) for large n.
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C Proof of Theorem 4

In this section, we formalize the problem setting, restate Theorem [4] and provide its proof. The
dominant term, y ' (FF' 7)1y, shows that generalization improves when the label vector y aligns
well with the top eigenspaces of FF'T. In contrastive learning, however, the downstream task is not
known during pretraining, so it is unclear which directions in the feature space will ultimately be
important.

To address this, we consider downstream tasks that arise by randomly sampling two latent classes
¢, ¢™ € C according to a distribution p. For each such pair, we assume the existence of class-specific
vectors v+, v.— such that the optimal linear classifier in the feature space is given by v = v .+ —v.-.
Specifically, the class posterior is given by

_ 1+ (Fv)i

1—(Fv);
2 b
where F' € R"*4 is the feature matrix.

Since downstream tasks are unknown at pretraining time, designing robust representations for
contrastive learning requires optimizing for generalization over a distribution of tasks. Assuming p
is uniform over class pairs, we study which spectral properties of FF' ' lead to improved average
generalization. Specifically, we aim to minimize the expected surrogate loss:

L(F):=Eyy [YT(FF)TY],
where the expectation is over random task vectors v and induced labels Y € {£1}™.

The following theorem shows the optimal structure of F' to enhance the generalization on a general
downstream task.

Theorem 4 (Optimality of Uniform Spectrum under Trace Constraint). Let F' € R"*? be a feature
matrix with rank(F) = r < min(n, d), and define G := FFT € R"*", where G has eigenvalues
Al 2 Ao A > 0and A\py1 = -+ = X\, = 0. Suppose the trace is fixed, i.e., Tr(FFT) =
Z:=1 Ai = c for some constant ¢ > 0. Then the expected quadratic form

L(F):=Ey.p [Y(FFT) Y]
under random task model is minimized when FFT = M, i.e., when all non-zero eigenvalues are
equal.
Proof. We first simplify the objective. Conditioning on v, the second moment of Y satisfies
EYY T |v] = (Fv)(Fv)' + diag(l — (Fv)?).

Thus,
i L(F)=E,[tr(FFT)"(Fv)(Fv)") + tr((FF )" diag(1 — (Fv)?))],

where (- )T denotes the Moore—Penrose pseudoinverse (equal to the inverse in the full-rank case).

With the rank-r SVD F = U, %,.V,T, we have FFT = U, AU, with A, = diag()\1,...,\,) and
Xi=02>0(and \.y1 =--- =\, = 0). Using the identity

FT(FFT)+F = VI"I’I’VTT - Prow(F)v

we obtain

w((FFTYH(EV)(FV)T) =vT FT(FFT ) Fv = | P V3.
Under the isotropic random-task model for v, the expectation of this term depends only on the rank r
(not on the eigenvalues {)\;}) and is therefore an additive constant for the minimization.

Expanding the second term gives
tr((FF ") " diag(l — (Fv)?)) = tr((FF)%) — tr(FFT)" diag ((Fv)?)) .

Taking expectation over v and using the same SVD calculus, the v—dependent parts of the two
displays above cancel up to a constant independent of {); }. Hence, up to an additive constant that
does not affect the minimizer,

L(F) = tr((FFT)").
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Next, we optimize £(F) under the constraint tr(FF ") = c. Let G := FFT and let its non-zero
eigenvalues be A1, ..., A, > 0O (the rest are zero). Then

£(F) = tr(GJ’_) - ZAfl, and tr(G) = Z)\Z = c.
i=1 i=1

Define the Lagrangian:

LOw - Amm) =Y AN +p <Z/\Z- —c> .
i=1 =1

Taking partial derivatives with respect to each \; and setting them to zero:

oL 1
8)\i:—)\;2+u:0 = /\izﬁ, foralli =1,...,7.

Thus, all non-zero \; are equal. Substituting into the constraint ) ;_, A; = ¢ gives:
c
r- )\i =c = )\z = —.
r
O

Theorem suggests that when the downstream task is unknown, learning a feature matrix F'F' " with
a uniform spectrum is optimal. See also Appendix [I]for an illustrative example involving spurious
correlations, which further motivates the benefits of a uniform spectrum.

D Lemma/{d
Lemmad4. Let F € R"*? be a feature matrix with singular values o1, . . . , o, where r = min(n, d),
and let \1, . .., \, denote the eigenvalues of FF . Assume the singular values are normalized so
that
i

Z(O’i —1)2<¢e forsomee € (0,1].

i=1
Then,

Z()‘i —1)2 < Ce fora constant C.

=1

Proof. Let F € R™ % have rank r = min(n,d), and let its singular value decomposition be
F =UXVT, where ¥ = diag(o1,...,0,) with singular values o; > 0. Then the eigenvalues of
FFT € R™*"™ are exactly \; = 01-2 for: =1,...,r, and O otherwise.

By assumption, the singular values are normalized and satisfy

r

> (oi-1)?<e.

i=1

Our goal is to bound

> (-1

i=1
To relate these two expressions, we use the identity:

(07 = 1)* = (03 — 1)*(0i + 1)*.
Since o; are normalized and (o; — 1)? < ¢, we have o; € [1 — /2,1 + /2. Therefore,

(i +1)2<(A+ve+1)2=2+e)2?<9 fore<1.
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Then:
(02 = 1)? = (0; — 1)?(0s +1)2 < 9(0; — 1)%.

Summing over ¢ = 1,..., 7, we obtain:

T

> hi—1)? = 2071 <9Z 2 < 9e.

i=1

O

Remark 5. Lemmalshows that flattening the singular values of F implies a corresponding flattening
of the eigenvalues of FF'T, leading to a more uniform spectrum.

Remark 6. Thus, to encourage spectrum uniformity of FF'T, it suffices to regularize the singular
values of F', which is often simpler and more efficient in contrastive learning frameworks.

E Algorithmic Details of Contrastive Pretraining with Spectral
Regularization

This section presents the pseudocode for our contrastive pretraining framework. Algorithm [I]out-
lines the self-supervised training procedure based on SimCLR with optional spectral regularization.
Algorithm [2]describes the computation of the spectrum flattening loss.

Algorithm 1 Self-supervised Contrastive Pretraining with Spectrum Regularization

Input: Encoder fy, projection head g, temperature 7, augmentation pipeline 7, spectral weight
Qtspec, €pochs IV, batch size B
Initialize parameters of fy and g
for epoch = 1to N do
for each mini-batch {z;}Z | do
// Stage 1: Data Augmentation
Sample two augmentations t,t' ~T
rl = t(x;), 22 —t/(l‘z)fOI‘Z—l ,B

/ Stage 2: Feature Extractlon

z} = g(fo(2})), = g(fo(23))
Post-L2 normallzatlon zZl = zl/||zl|\2, 72 = 22/1122|l2
Stack all views: Z = {z}, 27, ..., 2L 3%} ¢ R?Bxd

// Stage 3: Loss Computation

exp Slm(zl,zp(z )/7) . .
—log _
Fo 232 Z i €Xp(sim(Z;, 2;) /) sim(a,b) =a' b

if spectral regularization is enabled then
Lypec < Spectrumloss(Z) /Alg. @
else
ACspec +0
end if
Total loss: £ = Lcr + aispec Lspec

// Stage 4: Optimization
Update fy, g via gradient step on VL
end for
end for
Output: Pretrained encoder fy
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Table 4: Hyperparameter settings and encoder architectures for SimCLR pretraining.

Dataset Encoder Learning Rate Batch Size Weight Decay Epochs Regularizer o
celebA ResNet-50 0.01 128 le-4 400 0.01
cmnist ResNet-18 le-3 128 le-5 700 0.01
MetaShift ResNet-18 0.05 256 le-4 700 0.01
spurcifar-10  ResNet-18 0.02 128 Se-4 800 0.01
waterbirds ResNet-18 0.01 64 le-3 600 0.01

Algorithm 2 Spectrum Flattening Loss Computation (Lgpec)

Input: Post-L2 batch features Z € RM*? (here M=2B)
Output: Spectrum loss Lgpec

// Center features (remove batch mean)

Fe M Zi s ZoeZ 17T

// Covariance in feature space (angular statistics on the sphere)
C «+ M171 Z1 7, € RIxd

// Eigenvalues and trace normalization

Compute eigenvalues {\;} of C; let r = #{i : A; > 0}

Di )\i/zgzl)\j fori=1,...,r

// Spectrum-flattening objective (minimized at uniform)
-

2
Espec — Z pi
i=1

Return: L.

F Hyperparameters

We employed the SImCLR framework to train ResNet encoders for our approach. To ensure a fair
comparison on SimCLR, we adopted the same encoder architectures as those used in |[Hamidieh
et al.[[2024]], using ResNet-18 for all datasets except CelebA, where ResNet-50 was used. Detailed
hyperparameter configurations for SImCLR across all datasets are provided in Table[d To select the
regularization strength « for the spectral flattening loss, we performed a grid search over the values
{0.001, 0.005, 0.01, 0.05} using validation performance on the worst-group accuracy as the selection
criterion. The best-performing value was then fixed for each dataset across all evaluation protocols.

G Closing the Gap to Supervised Pretraining

SSRL has demonstrated significant potential in narrowing the performance gap with supervised
learning approaches, particularly for general representation learning. Similar to Hamidieh et al.
[2024]], we utilized a consistent encoder model and varied only the pretraining strategies, ensuring
that other variables, such as hyperparameter settings and model selection criteria, remained fixed.
Notably, supervised pretraining requires labeled data, whereas SSRL methods do not, reducing the
overall annotation cost significantly. While this inherently makes the comparison less direct, the goal
of this evaluation is to measure how closely SSRL methods, and specifically our proposed approach,
can match or surpass supervised pretraining strategies.

Table [5] compares the SSLR-base (SimCLR or SimSiam) method, our proposed method, and the
supervised approach. The results highlight how our method narrows the gap with supervised learning
in terms of average accuracy. Additionally, in worst-group accuracy, our approach outperforms both
SimCLR/SimSiam and the supervised method on datasets such as CelebA, CMNIST, and Waterbirds.
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Table 5: Comparison of our pretraining strategy (SimCLR + spectral regularizer) with supervised
models in terms of average and worst-group accuracies (%). Our pretraining strategy achieves
comparable performance to supervised models, both in terms of average and worst-group accuracies
(%), despite not utilizing any ground-truth labels or group information.

DATASET AVERAGE ACCURACY WORST-GROUP ACCURACY

SSRL-BASE OURS SUPERVISED SSRL-BASE OURS SUPERVISED

CELEBA 82.1 88.40 91.9 77.5 83.96 81.7
CMNIST 82.5 98.08 98.4 81.7 95.10 94.9
METASHIFT 55.8 76.57 89.8 45.5 61.14 83.5
SPURCIFAR-10 75.1 82.85 89.9 43.4 64.65 79.6
WATERBIRDS 50.7 58.32 67.9 48.3 50.25 41.1

Table 6: Worst-group accuracy (%) comparison between state of the art methods and our spectral
regularization applied to SimCLR and SimSiam.

METHOD CMNIST SPURCIFAR-10 CELEBA METASHIFT WATERBIRDS
BARLOW TWINS 57.05 6.00 39.99 58.33 43.13
DIRECTDLR 90.32 20.58 68.68 53.84 47.32
IFM 96.77 53.23 - 53.85 50.96
BYOL 95.82 50.67 - 41.67 46.89
DINO 56.67 11.37 - 58.33 49.03
SIMSIAM + SPEC (OURS) 94.40 50.10 74.17 69.23 49.08
SIMCLR + SPEC (OURS) 95.10 64.65 83.96 61.14 50.25

H Comparing with More Baselines

We evaluate the effectiveness of our spectral regularization method by comparing it against two
representative baselines: Barlow Twins [Zbontar et al., | 2021]] and DirectDLR [Jing et al.} 2021]]. In
addition, we examine how our regularizer performs when applied on top of SimSiam. We report both
average accuracy and worst-group accuracy across five standard spurious correlation benchmarks as
shown in Tables [6 and [71

I Example Motivating Importance of Uniforming the Spectrum

We present a simple example to highlight the role of the eigenspectrum of the feature matrix. Let /'
be a fixed feature matrix with orthonormal eigenvectors v™, v~, and v*, corresponding to eigenvalues
AT, A7, and A8, respectively. Here, v and v~ represent class-discriminative directions for labels
+1 and —1, while v® is a spurious direction with spurious correlation strength a.

Specifically, the label generation process is as follows: define v := %(U+ — v7). For each sample z;,
let f; = f(x;), and define the perturbed direction:
— with probability 1 — «,
" li(v+v®), with probability ov.
The label y; € {£1} is sampled according to:
1 + fi—r’l}i
Plyi=+11fi) = —5—

Let g; = g (fi), and consider the squared loss:

Z(l —vigi)®.
i=1
Lemma 7. The expected gradient flow under the randomness of the labels satisfies:

e v (PrTe- [(1-5) e (1) e )

o(g,y) =

N =
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Table 7: Average accuracy (%) of the state of the art methods and our spectral regularization applied
to SimCLR and SimSiam.

METHOD CMNIST SPURCIFAR-10 CELEBA METASHIFT WATERBIRDS
BARLOW TWINS 93.10 22.00 84.61 64.60 54.67
DIRECTDLR 96.35 50.20 78.23 75.28 53.46
IFM 98.16 76.70 - 78.65 55.78
BYOL 96.20 73.30 - 74.71 53.70
DINO 66.05 26.28 - 73.60 50.60
SIMSIAM + SPEC (OURS) 97.20 71.78 89.12 77.52 60.55
SIMCLR + SPEC (OURS) 98.08 82.85 88.40 76.57 58.32

This result shows that even a weak spurious correlation (v < 1) can dominate the training dynamics
if A* > AT, A\~ In contrast, under a flat spectrum (i.e., uniform eigenvalues), the influence of the
spurious direction scales linearly with «, making the model more robust to such noise.

Proof. The first step is to compute the loss with respect to each model output g; which is given by
do
dg;

The sources of randomness are from sampling both y and the random mixing of the spurious feature.

By the law of total expectation, the expectation with respect to y and v is given by

do
Evi|fz‘ |:Eyz|l’zﬂz l:d%:| :|
The inner expectation is given by

dd
By 1£:0: {dg} = —2E[y; — y7g9:] = 29; — 2] vs,

since E[y; | fi,v;] = f,T vi and y? = 1. Further observe

= —2y;(1 — yig:)-

Eylo]v] = (1= a)flv+af] G( + >) = (1-3) ot 500

Combining the above three equations and letting v := (1 — %) v+ Sv°, we get
dd -
]E“hyi |:dgl:| = 291 — 2fl—r'U
Stacking across all samples, let g = [g1,...,g,] . Then:
Ve® = (g — F7).
Applying the data covariance operator FF' gives:
E[FFT . Vg®] = (FF'g— FFTF%).

By the assumption that v+, v, and v*® are orthonormal eigenvectors of FF'" with eigenvalues AT,
A7, and A*,and v = (v — v™). Then:

« 1 «
po-(1-5) 4r - (1-3)
D) > 2 v

1 ,
5 -=Fv™ + %FU‘S,

2
and applying FF'T:

1 1
FFTFG = (1 - 9) STt - (1 - 9) CSATUT 4 DA
2 2 2 2 2
Substituting this expression concludes the proof:
2 ay 1 ay 1 «
T . _Z To R T e oot S I T e T W PO
E[FFT - Vg9 n(FF g [(1 2) AT (1 2) A +2AUD.

O
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J Computational Efficiency of Regularization Terms

Several self-supervised learning methods aim to mitigate representation collapse and redundancy by
decorrelating feature dimensions. Barlow Twins minimizes the cross-correlation matrix between two
views and enforces it to be close to the identity, effectively promoting invariance while discouraging
redundancy [Zbontar et al.|[2021]. VICReg combines an invariance term with variance and covariance
regularizers, penalizing off-diagonal entries in the covariance matrix Bardes et al.| [2021]. Both
methods require computing and differentiating through batch-wise matrices of size d x d, incurring a
cost of O(nd?) to form the matrix, and an additional O(d?) for computing the regularization loss.

Whitening-based methods, such as ZCA whitening [Ermolov et al.[[2021]], go further by requiring
not only the covariance matrix F'T F' € R4X9 but also its inverse square root, computed via eigende-
composition. This results in a total cost of O(nd? + d?), making them significantly more expensive
in high-dimensional settings.

In contrast, our spectral flattening regularizer only requires access to the singular values of the
feature matrix. These can be obtained by computing the eigenvalues of either F'T F € R¥*< or
FFT € R™", or by directly applying SVD to F' € R™"*?. Since all three methods yield the
same singular values, one can select the most efficient strategy depending on the dimensions of F'.
Specifically, computing eigenvalues of F'' F is preferred when d < n, while FF'T may be used
when n < d. Direct SVD provides a balanced alternative with cost O(nd?) when n > d. This makes
our method scalable to large batch sizes and embedding dimensions, while remaining competitive
with or cheaper than other decorrelation strategies |Shigeto et al.| [2023]].

All experiments using the spectral flattening regularizer were run on a single NVIDIA A100 GPU
with 40 GB memory.

Table 8: Computational complexity of regularization terms for different SSRL methods. Here, n is
the batch size and d is the feature dimension.

METHOD FORWARD + BACKWARD COST
BARLOW TWINS|ZBONTAR ET AL/[[2021]  O(nd? + d?)

VICREG|BARDES ET AL, [2021]] O(nd? + d?)

WHITENING [ERMOLOV ET AL.[[2021] O(nd® + d°)

SPECTRAL FLATTENING (OURS) O(nd?)

K Random-Task Contrastive Setup (Schematic)

This subsection clarifies the random-task model underlying Section4.2]and its connection to our main
results. Section @] generalizes Corollary E] (fixed downstream task) to a more realistic contrastive
pretraining scenario where the downstream task is unknown at pretraining time. In our random-task
framework: (i) two latent classes ¢, ¢~ € C are sampled, (ii) the classifier vector is v = v+ — v,.-,

(iii) labels are generated by the soft classifier P(Y; = £1 | v) = w, and (iv) the generalization
objective becomes E, y [Y T (FFT)71Y]. Theorem@then shows this objective is minimized when
FF has a uniform spectrum, directly motivating our spectrum-flattening regularizer.
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Random-task sampling and evaluation

I )
| | trace constraint on FFT )
Class pool C Y Sample (¢t ¢ Vv v Soft labels Task loss '
& sampler p ‘ ample (ct,c7) ~p =Vt o P = 1+<5v),y}/1€ {1} WFY) =Y (FFT) 'Y [
I I
I I

Expectation over tasks
L(F) =Ev,y[((F;Y)]

Fixed features I € R"*¢

Uniform spectrum Spiky spectrum
DEREER -Sae=—
lower £(F) higher £(F)
. . _ . . 1+(Fv);
Figure 4: Random-task setup (Section : sample (ct, ¢™), form v, induce labels via p; = %")

and evaluate ¢(F;Y) = YT(FF")~1Y. Averaging over tasks yields £(F), which (under fixed
trace) is minimized when F'F'T has a uniform spectrum (Theorem .

L Limitations

While our spectral flattening regularizer is more efficient than full covariance-based methods in many
practical settings, it does incur some additional computational cost due to the need for singular value
computation. In our implementation, we compute the singular values of the batch feature matrix
F € R™"*4 via eigendecomposition of F'T F, which scales as O(nd?) when n > d. This cost is
typically lower than that of Barlow Twins or VICReg, both of which require full covariance matrices
and gradients through d x d terms. However, the quadratic dependence on d may still pose challenges
for extremely high-dimensional embeddings. See Appendix [J|for a detailed comparison of methods
and costs.
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