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Abstract

Our case study focuses on indoor robotic farming. Inspired by
recent promising results in sim-to-real transfer we built a re-
alistic simulation environment combining a ROS-compatible
physics simulator (Gazebo) with a realistic rendering cycles
engine from Blender. Without loss of generality, we focus on
a sweet pepper harvesting task and showcase and analyze the
technological pipeline necessary to conduct such a mission.
The pipeline starts from aerial robotics control and trajectory
planning, combined with deep learning-based pepper detec-
tion, a clustering approach for yield estimation, and mission
planning for harvesting using a heterogeneous team of robots.

Introduction
Today, as we witness obvious consequences of global warm-
ing, indoor farming is becoming an important tool to miti-
gate the problems farmers face with unpredictable and often
extreme weather patterns. Traditional indoor agriculture en-
ables farmers to provide their crops with optimal weather
conditions, but outdoor impact, predominantly sunlight, still
plays an important role in the plants’ growth. Modern indoor
farming completely eliminates the outside weather condi-
tions, emulating optimal weather conditions controlling both
the climate and the sunlight. While climate control can be
considered as a solved problem, replacing manual labor is
an active research topic.

From the robotics point of view, indoor farming provides
a level of structure in the environment which is an important
step towards fully autonomous operation.Farming industry
is extremely labor intensive, and the job requirements of-
ten fit the category of dangerous, dull, and dirty, making
them ideal for automation. Labor is even more important
when considering organic farming. To reduce the use of pes-
ticides, organic agriculture requires a lot more manual care,
with a comparably smaller agricultural output. The obvious
economical consequence of such a production system is a
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higher cost of organic food. Again, turning to robotics and
automation can help alleviate the costs.

Deployment of robots on big farms is not a new concept,
but rather a fast-growing industry that focuses on big ma-
chines tailored for specific crops and use cases. This ap-
proach is profitable only on a large-scale production sys-
tem. For example, harvesting robots, even in indoor farms,
are designed as mobile manipulators. Such an approach re-
quires an extremely sophisticated framework capable of pre-
cise navigation towards the plant and manipulation in vary-
ing conditions. On the other hand, in automotive industry,
which is a golden standard for robotized production, a prod-
uct is guided towards the robot workspace, and not the other
way around. In this paper we present a case study deploying
a heterogeneous team of robots working together harvesting
peppers.

The heterogeneous team of robots consists of an aerial in-
spection robot, mobile robots that carry plants around the
farm, and a robotic manipulator which treats the plants. We
focus on the harvesting problem and present a pipeline of
technologies used to execute such a task, however the same
pipeline can be applied to other problem as well. We pro-
vide the details of the simulation environment used to simu-
late the complete missions. Finally we provide the results of
simulation analysis using a realistic scenario of sweet pep-
per harvesting.

Problem description
The setup considered in this use case analysis consists of
a heterogeneous team of robots: a static robot manipula-
tor positioned at its workstation, and mobile ground robots.
They rely on a UAV for surveillance and data collection. The
surveillance aerial manipulator is a UAV with eye-in-hand
RGB-D camera on the manipulator’s end effector. The UAV
scans the greenhouse regularly, providing the control system
with the recordings of the current state of the crop. Here,
the UAV recordings are used for yield estimation, i.e. fruit
counting for harvesting mission planning. Pepper detection
and counting is realized using deep and unsupervised learn-
ing methods on RGB images and organized pointclouds pro-
vided by the UAV mounted RGB-D camera.

For the multi-robot system, two workstations are envi-
sioned on the sides of the manipulator, enough for two mo-
bile robots to operate. The UGVs carry plants to the work-
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Figure 1: The functional diagram representing the system
pipeline. At the mission start, a request for scanning the
plants is generated, upon which the aerial manipulator exe-
cutes a scan trajectory in the greenhouse. The gathered cam-
era position and orientation is used through Blender to gen-
erate a realistic dataset for fruit counting. The mission then
starts executing tasks and reports when all tasks are com-
pleted.

stations of the static robot manipulator arm. Since roughly
one half of the plant is reachable by the manipulator, some
activities (including harvesting) require cooperation during
plant treatment procedure, in that the UGV rotates the plant
so that the other half of the plant can be treated as well.

Simulation setup
Gazebo was used as a state of the art robotic simulation envi-
ronment, thanks to the simple and straight-forward interface
for control through the ROS. However, due to limitations of
visual and depth sensor modeling in Gazebo environment,
and the complexity of modeling a world containing a large
number of detailed plant models, the simulation pipeline was
extended with Blender modeling and simulation. The com-
plete pipeline is described with a schematic in Fig. 1, where
ROS and Gazebo related modules are colored green, and the
Blender part is in red.

ROS/Gazebo As can be seen in the schematic in Fig. 1,
most of the software solutions are implemented within ROS
environment, controlling the Gazebo robotic setup. This or-
ganisation enables simple transfer of the software modules
to the real hardware when deployment is ready in the real
world. The aerial manipulator model in Gazebo performs a
scanning trajectory, with the end-effector tip position sim-
ulating camera motion. Based on the camera information,
fruit yield is estimated per plant, and provided to the mission
planner. The mission planner generates a schedule for the
robot(s) involved in the greenhouse cultivation. The speed
of mission execution is a function of available resources and
the setup.

Blender The model of the greenhouse in Blender consists
of rows of tables carrying pepper growth containers. Each
row consists of 4 tables carrying a single pepper plant. The
plants are modeled using the basic building blocks devel-
oped for synthetic dataset generation, namely realistic pep-
per models, planar leaf models with realistic textures, flower
models, plant stem, and a plastic pot. The plants are gen-
erated procedurally with a random particle generator, vary-
ing pepper, flower and leaf number, position, and orientation
with respect to the plant stem. More info on the setup we
use to train the AI to detect peppers can be found in (Polić,
Tabak, and Orsag 2021), where we successfully demon-
strated pepper detection method trained using synthetic and
actual pepper images.

Perhaps the most important part of the Blender model uti-
lized in this paper is the animated camera system, simulat-
ing an RGB-D sensor for the Gazebo robot simulation. The
simulation pipeline links the motion of the end effector of
the aerial manipulator, with an eye-in-hand RGB-D camera,
to camera animation in the Blender environment model. The
RGB image of the scene is rendered using built-in Blender
rendering machines. The depth image is generated from the
depth map calculated within Blender cycles rendering en-
gine. During trajectory execution, the camera viewpoints are
rendered and output into a folder, along with the generated
depth images and corresponding camera positions. This data
is processed offline in ROS, transforming the recorded depth
image into an organized pointcloud. The pointcloud is pub-
lished along with the corresponding RGB image and global
camera transformation. This format corresponds to the out-
put of a real RGB-D camera, and can be used used by the
detection and counting software package in ROS. The de-
tection and counting is implemented in Python, relying on
the TensorFlow and Pythons Sklearn module.

Enabling technologies
In this paragraph we outline the key technologies developed
to succesfully deploy the robots on a sweet pepper harvest-
ing task.

Aerial manipulator motion planning
To estimate the fruit number in the greenhouse, it is nec-
essary to scan and inspect plants. In this paper, an aerial
manipulator with an RGB-D camera mounted on the end-
effector is considered for the task. Since the layout of the



Figure 2: An example of the planned elliptical trajectory
used to scan a single row of the structured greenhouse. Red
lines and spheres denote the trajectory and waypoints of the
UAV body, while the yellow color denotes the end-effector
trajectory.

greenhouse is a-priori known, it is possible to scan a single
plant container unit or a whole structured row. The gathered
data is then used in the fruit counting algorithm.

Scan waypoints Each plant in a greenhouse row has to
be scanned from multiple angles to obtain informative data
for fruit counting. An example of planned waypoints and
trajectory for a single row is depicted in Fig. 2. In short,
the aerial manipulator moves around the row and scans each
plant with an elliptical trajectory.

Precisely scanning each plant requires carefully planned
end-effector motion, which mostly relies on the dimensions
of growth containers. The elliptical shape of the waypoints
is based on the plant position and dimensions. At each
waypoint of the ellipse, the yaw of the UAV directs the
end-effector towards the plant’s centroid, pointing the end-
effector upwards or downwards to get a better overview of
the plant.

One row of the greenhouse consists of multiple plants.
To perform a scan of a single row, it is necessary to scan
each plant from both sides of the row. Therefore, an elliptical
set of waypoints is planned for each plant, based on dimen-
sions and number of plants in the row. Additional waypoints
for navigating around the row are also included to yield a
smooth trajectory.

Planned waypoints are considered to form a path of n
waypoints:

P =
{
pi | pi ∈ R4+M , i ∈ (0, 1, . . . , n)

}
, (1)

where pi =
[
x y z ψ qT

M

]T
is a single waypoint con-

taining position and orientation of the UAV, as well as joint
positions of the M dimensional manipulator.

Scan trajectory Based on the generated path from equa-
tion (1), a trajectory that respects dynamic constraints of
the system is planned. Namely, the Time Optimal Path
Parametrization by Reachability Analysis (TOPP-RA) algo-
rithm (Pham and Pham 2018) that operates on the numerical
integration approach is employed. As input the algorithm re-

quires a set of positions with velocity and acceleration con-
straints for each degree of freedom. The output is a smooth
trajectory T :

T =
{
t(t) | t(t) ∈ R3(4+M), t ∈ (0, tend)

}
, (2)

where t(t) =
[
pT ṗT p̈T

]T
denotes a trajectory point

containing position, velocity and acceleration of each degree
of freedom, and tend denotes the duration of the trajectory.

Fruit counting
An important enabler of robotic agriculture is just in time
detection, used during all plant hygiene operations. As most
state of the art solutions, in this work, we rely on a commer-
cial RGB-D camera (Fu et al. 2020). The red peppers are
detected in 2D RGB images using a deep learning model. A
MobileNet based Single Shot Detector(SSD), pretrained on
the COCO dataset, is trained for object detection task in 2D
RGB images. For the purposes of network training, a syn-
thetic dataset is generated procedurally in Blender, in order
to mitigate the cost of labeling a large training dataset (Hin-
terstoisser et al. 2019; Khan et al. 2019). Synthetic dataset
generation has recently found applications in agriculture for
various crops and cultures (Di Cicco et al. 2017; Olatunji
et al. 2020; Zhang, Wu, and Chen 2021), including a syn-
thetic dataset for the C. annuum semantic segmentation tasks
(Barth et al. 2018). The transfer learning for the network first
conducted on the synthetic dataset is followed by additional
fine tuning on a small dataset of real, manually labeled im-
ages. The 2D detection pipeline produces bounding boxes
that denote positions of detected peppers in the image, com-
bining both detection and depth information of the RGB-D
cameras. Various methods have been developed over the re-
cent years for 3D pose estimation, such as surface normal
estimation for grasp position optimisation (Lehnert et al.
2017), and peduncle model fitting in harvesting (Sa et al.
2017). In geometric model fitting methods, the detected fruit
is modelled with geometric primitives such as cylinders and
ellipsoids (Lehnert et al. 2016).

In this work, such high precision is not necessary, hence
approximate 3D positions of the detected peppers are ob-
tained applying the 2D detection bounding boxes on the or-
ganised pointcloud output from the camera depth channel.
From among the filtered points representing a single de-
tected pepper, a centroid point can be chosen as a reasonable
approximation of the pepper position. It should be noted that
this way, a point on the peppers’ surface is chosen, resulting
in varying position estimates, for the same pepper, depend-
ing on the camera perspective with respect to the pepper.

The harvesting mission is planned based on the ripe fruit
count. The aerial manipulator executes a trajectory that en-
ables recording the plants from multiple perspectives. Most
of the fruit, unless heavily occluded, is recorded, and de-
tected, from several perspectives during UAV motion. As
stated, these detections do not match perfectly, since the po-
sitions of the pepper surface are not at the same global posi-
tion. A counting method based on unsupervised learning is
devised, that provides an estimate of the yield.



Upon trajectory execution, a set of detections is collected.
In these detections, subsets of data are separated for each
greenhouse row, using known layout of the greenhouse. Fur-
thermore, with a predefined UAV trajectory, a known cam-
era frame rate, and an estimate of the possible pepper yield,
random subsampling is conducted on the detection dataset,
filtering out most of false positive detections. For an ex-
pected yield of up to 10 peppers uniformly distributed across
the plant body, this filtering step retains approximately 5-
10 detections of each fruit. The remaining detections are
augmented using random noise, to a fixed size set that en-
ables unsupervised learning methods to properly separate
the search space. We have found that 500 points are suffi-
cient to properly separate the data, ranging in fruit count to
up to 40 peppers per row (10 fruit per plant), with detec-
tion variation at centimeter level, and spread over approx.
2 × 0.5 × 0.5m. From among the 500 points, the remain-
ing false positive detections (e.g. pot, table, and other de-
tected outside the plant bounding volumes) are filtered using
known greenhouse layout. In case the greenhouse layout is
not a-priori known, outlier removal methods can be used for
the false positive filtering (Breunig et al. 2000).

On the augmented dataset of detections, the OPTICS al-
gorithm is deployed as a clustering method (Ankerst et al.
1999) that separates the dataset by defining core points.
These core points, i.e. cluster centres, are considered as pep-
pers. The inputs to the algorithm are maximum distance ϵ,
and minimum cluster size MinPts. The parameter ϵ repre-
sents the maximum distance of the cluster points to the core
point, in order to be considered cluster members. In our case,
this is set to 4 cm. The second parameter, MinPts, is a re-
quirement on the cluster size, i.e. on the minimum number
of detections to be considered a pepper. Empirical results in
manipulator harvesting experiments showed that at least 2
detections from various viewpoints were needed to estimate
the pepper position reliably. Due to the dataset augmenta-
tion to the fixed size of 500 points, the minimum number of
detections is a function of the initial detections dataset size
ninit, i.e. the original requirement of 2 detections increases
by the factor of ⌈500/ninit⌉. The method clusters the points
satisfying the provided conditions, and leaves the remaining
points undefined.

Thanks to the organised structure of the greenhouse, the
positions of pepper growth containers (pots) are known (or
can be known if a similar detection was deployed for pot
detection). Then, the detected peppers are counted in the two
sub-spaces reachable by the robot manipulator from either
side of the growth table/manipulation desk. This information
is stored in an organised form of a yaml file, that is then
interpreted by the mission planner.

Simulation results and conclusion
The greenhouse layout we used for simulation is shown in
Fig. 4. The structure consists of eight tables, each with four
pepper plant containers. The stationary manipulator work-
station is located in the center of the structure. For this lay-
out, we ran several simulations with a random number of
peppers per plant. We tested the entire proposed pipeline
generating the UAV trajectory for greenhouse inspection,

Figure 3: Detected peppers shown in different colors, along
with the detections that determined the cluster core points.
The detections are generated with a Gaussian random noise
around the smaller set of actual detections, until a dataset
of fixed size 500 is generated. The undefined points in the
dataset are not shown for clarity.

counting the fruits from the video rendered in Blender, and
planning the mission based on the inputs from the pepper
counting.

Figure 4: The layout of the proposed greenhouse structure
consisting of eight tables, each with four pepper plant con-
tainers. The stationary manipulator workstation is located in
the center of the structure.

To test the planner with a random number of fruits per
pepper plant, we selected 20 of the 40 available plants that
bore fruit. For these plants, a random number of peppers be-
tween 1 and 5 was generated from a uniform distribution for
the left and right sides of the plant. The simulation setups for
this use case in terms of number of peppers ranged from 3 to
6 peepers per plant. For every scenario the yield estimation
was correct with up to 10% margin of error.

References
Ankerst, M.; Breunig, M. M.; Kriegel, H.-P.; and Sander, J.
1999. OPTICS: Ordering points to identify the clustering



structure. ACM Sigmod record, 28(2): 49–60.
Barth, R.; IJsselmuiden, J.; Hemming, J.; and Van Henten,
E. J. 2018. Data synthesis methods for semantic segmenta-
tion in agriculture: A Capsicum annuum dataset. Computers
and electronics in agriculture, 144: 284–296.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. LOF: identifying density-based local outliers. In Pro-
ceedings of the 2000 ACM SIGMOD international confer-
ence on Management of data, 93–104.
Di Cicco, M.; Potena, C.; Grisetti, G.; and Pretto, A. 2017.
Automatic model based dataset generation for fast and accu-
rate crop and weeds detection. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
5188–5195. IEEE.
Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; and Zhang, Q.
2020. Application of consumer RGB-D cameras for fruit
detection and localization in field: A critical review. Com-
puters and Electronics in Agriculture, 177: 105687.
Hinterstoisser, S.; Pauly, O.; Heibel, H.; Martina, M.; and
Bokeloh, M. 2019. An annotation saved is an annotation
earned: Using fully synthetic training for object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, 0–0.
Khan, S.; Phan, B.; Salay, R.; and Czarnecki, K. 2019.
ProcSy: Procedural Synthetic Dataset Generation Towards
Influence Factor Studies Of Semantic Segmentation Net-
works. In CVPR Workshops, 88–96.
Lehnert, C.; English, A.; McCool, C.; Tow, A. W.; and Perez,
T. 2017. Autonomous sweet pepper harvesting for protected
cropping systems. IEEE Robotics and Automation Letters,
2(2): 872–879.
Lehnert, C.; Sa, I.; McCool, C.; Upcroft, B.; and Perez, T.
2016. Sweet pepper pose detection and grasping for auto-
mated crop harvesting. In 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), 2428–2434.
IEEE.
Olatunji, J.; Redding, G.; Rowe, C.; and East, A. 2020.
Reconstruction of kiwifruit fruit geometry using a CGAN
trained on a synthetic dataset. Computers and Electronics in
Agriculture, 177: 105699.
Pham, H.; and Pham, Q. 2018. A New Approach to Time-
Optimal Path Parameterization Based on Reachability Anal-
ysis. IEEE Transactions on Robotics, 34(3): 645–659.
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