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Abstract

With ever increasing parameters and computation, vision-language pre-trained
(VLP) models exhibit prohibitive expenditure in downstream task adaption. Recent
endeavors mainly focus on parameter efficient transfer learning (PETL) for VLP
models by only updating a small number of parameters. However, excessive
computational overhead still plagues the application of VLPs. In this paper, we
aim at parameter and computation efficient transfer learning (PCETL) for VLP
models. In particular, PCETL not only needs to limit the number of trainable
parameters in VLP models, but also to reduce the computational redundancy during
inference, thus enabling a more efficient transfer. To approach this target, we
propose a novel dynamic architecture skipping (DAS) approach towards PCETL.
Instead of directly optimizing the intrinsic architectures of VLP models, DAS first
observes the significances of their modules to downstream tasks via a reinforcement
learning (RL) based process, and then skips the redundant ones with lightweight
networks, i.e., adapters, according to the obtained rewards. In this case, the VLP
model can well maintain the scale of trainable parameters while speeding up
its inference on downstream tasks. To validate DAS, we apply it to a bunch of
representative VLP models, and conduct extensive experiments on a set of VL
tasks. The experimental results not only show the great advantages of DAS in
reducing computational complexity, e.g. —11.97% FLOPs of METER on VQA?2.0,
but also confirm its competitiveness against existing PETL methods in terms of
parameter scale and performance. Our source code is given in https://github.
com/DoubtedSteam/DAS|

1 Introduction

Inspired by the great success in natural language processing (NLP) [8} (19, 132} [36], large-scale
pre-training on massive image-text pairs also becomes the de-facto standard in vision-language
research [4] 24} 35| 165]. To accommodate the large-scale pre-training corpora, vision-language
pre-trained (VLP) models [4} (70, 10} 24} [28] 1351156} 74] often adopt Transformer-based networks with
sheer sizes of parameters and computations. In this case, directly transferring these VLP models to
downstream tasks is excessively expensive in terms of memory footprint and computation overhead.

To reduce the costs of pre-training models, recent advances resort to parameter efficient transfer
learning (PETL) for affordable downstream task adaptions [[16} |13} 26} 137, 59, (72, (74, [75]. In
particular, the PETL methods aim to save the memory usage for downstream tasks by only updating
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Figure 1: (a) The performance of METER [10] is barely affected when skipping a certain number of
its Transformer layers. (b) The comparison on VQA?2.0 between the conventional PETL methods [17}
211126, 1361 159] and the proposed Dynamic Architecture Skipping (DAS) for METER. The circle size
represents the memory footprint. DAS is the only method faster than the original VLP model.

or inserting a small number of trainable parameters rather than fully tuning the entire model. For
instance, prompt-tuning methods [[1}15,126,136, 137,150,152} [74}[75]] expand the input sequence with hand-
craft or learnable tokens to bridge the gap between pre-training and downstream tasks. Practitioners
also insert lightweight neural networks called Adapter [13, 20, 146} 47, 159, [72, 41] into the pre-
trained models, thereby projecting the hidden features onto the semantic space of downstream tasks.
More recently, these PETL methods have been successfully introduced to VLP models [13} [33]]
for either prompt-based image classification [26} 152, 74} [75] or conventional VL tasks like visual
question answering [58, 159, 143]]. Despite the great successes, PETL methods still cannot reduce the
computation complexity of VLP models, which is of more significance for applications.

In this paper, we study a novel problem called parameter and computation efficient transfer learning
(PCETL). To achieve more efficient downstream task adaptions, PCETL is not only expected to
maintain the scale of trainable parameters similar to PETL, but more importantly, also needs to
reduce the computation complexity of pre-training models, thereby speeding up their inference
on downstream tasks. In existing works, the efficiency of the network itself is largely attributed
to its manually [6l 22} 44, |54] or automatically structural designs [62} 166, 78, 45]]. Although the
computation complexity can be further reduced by the compression methods, such as pruning [67, 149,
31131417, 121130, 19, 164 169, 1551], quantification [11} 129, [73]] or distiiliation [2| 25]], these approaches
usually require retraining after optimizing the network architecture, which is not applicable to the
VLP models that are well pre-trained on massive data. On one hand, the large-scale pre-training
data still needs a certain model capacity to learn these prior knowledge, thus it is hard to obtain a
good trade-off between performance and computation overhead for the pre-training objectives. On
the other hand, devising a small and effective model for each downstream task is still laborious and
expensive, which also contradicts the target of PETL [20,|36], since fully fine-tune is often required.

In this case, we argue that the key to PCETL is to explore the parameter and computation redundancy
in existing VLP models. It is generally assumed that the model scale is proportional to the complexity
of the task [[77}[1} [18} 37, 76]. To robustly serve a variety of downstream tasks, VLP models are pre-
trained by multiple pre-training objectives based on tens of millions of image-text pairs [[14,[514152,57].
In this case, the excessive parameters are suitable for pre-training, but prone to redundant for a
downstream task. As shown in Fig.[I}(a), the performance of METER [10] on VQA is barely affected
when skipping a certain number of its Transformer layers. This empirical result also suggests that
exploring a short-cut pathway in existing VLP models is a feasible way for PCETL.

To this end, we propose a novel Dynamic Architecture Skipping (DAS) approach towards efficient
transfer learning for VLP models. By observing the module redundancy of VLP models, DAS can
realize the optimal subnetwork routing of VLP models for a downstream task, thereby reducing the
computation during inference. In practice, DAS regards this process as a k-armed bandit problem, and
evaluates the importance of each VL layer/block to the downstream task via numerous subnetwork
samplings and quick validations. Thus, the obtained rewards can be used to reflect the redundancy of
VL modules and determine which layers to be skipped. Meanwhile, to achieve parameter efficiency,



we also adopt lightweight networks, i.e. Adapter [20] 59]], to serve the hidden feature adaptions and
the short-cut connections of DAS for VLP models.

To validate DAS, we apply it to a set of VLP models, namely including [[10], ViLT [28] and
LaVIN [42] [} on three VL benchmarks, namely VQA2.0 [[14], NLVR? [57] and Flickr30K [51]]. The
experimental results not only show the competitive performance of DAS against the fully finetune
and PETL methods [[17, 21} 26, 59]], but also witness its great advantage in reducing the computation
complexity of VLP models. For instance, DAS can help METER achieve 96.60% performance of full
tuning on the VQA2.0 benchmark with only 1.65% trainable parameters, while decreasing 11.97%
FLOPs. For the practical deployment of a specific VL task, DAS can reduce up to 93.75% parameters
of the VLP models [ﬂ These results well confirm our assumption about the redundancy of VLP
models on downstream tasks, and also validated the design of the proposed DAS.

Opverall, our contributions can be summarized as three-fold:

* We raise a new problem called parameter and computation efficient transfer learning
(PCETL) for VLP models, which not only requires to keep the scale of training parameters
but also needs to reduce the computation complexity of VLP models on downstream tasks.

* We propose a novel Dynamic Architecture Skipping (DAS) for PCETL, which can explore
the optimal short-cut pathway in VLP models with the combination of parallel adapters.

* On two VLP models and three benchmark datasets, the proposed DAS not only reduces the
computation overhead by a large extent, e.g., —11.97% FLOPs of METER on VQAZ2.0, but
also is on par with existing PETL methods in terms of parameter and performance.

2 Related Work

2.1 Vision-Language Pre-training

In recent years, the advancement in natural language processing (NLP) [32, [36] also sparks the
prevalence of large-scale pre-training in vision-language (VL) research [4} [10, 24} 28 [35/156! [74]. In
particular, VL pre-training also accomplishes self-supervised learning on massive image-text pairs
based on the generative prediction tasks, e.g. masked language modeling (MLM) and masked image
modeling (MIM). Furthermore, Image Text Matching (ITM) [10} 28] is also applied to align two
modalities. In terms of network architecture, most VLP models are equipped with two modality
encoders to extract the visual and text features, e.g. BERT [8] and Faster-RCNN [53]], respectively,
based on which a stack of Transformer-based layers are deployed for cross-modal fusions [4, 10,
23, 124, 128, 134, 138,139, 156/, 161}, 163]]. For instance, VIL-BERT [39] and LXMERT [61]] contain two
independent Transformer-based branches [[63] for region and text feature extractions, and another
Transformer block is used for cross-modal interaction. To simplify the framework, Visual-BERT [34],
VL-BERT [56] and UNITER [4] abandon additional branches and directly feed features into a single
Transformer network. Then Pixel-BERT [24]], CLIP-ViL [38]], and METER [10] break the limitation
of object detection backbones by directly applying grid features for multi-modal pre-training. To
further simplify the model complexity, ViLT [28] directly feeds the word embeddings and image
patches into the Transformer blocks. Additionally, CLIP [52] applies cross-modal contrastive learning
for vision-language alignment with a shallow fusion layer for prediction. Overall, these VLP models
often require more network branches due to the increase of modalities, resulting in more parameter
and computation overheads. In this paper, we present the first attempt to evaluate their network
redundancy on downstream tasks.

2.2 Parameter Efficient Transfer Learning

Parameter Efficient Transfer Learning (PETL) [[13} 15, [17, 20} 21} 14648, 58H60), [71} [72] aims to
approach the fully-tuned performance on downstream by updating a small number of parameters.
One of the main methodology in PETL is prompt-tuning [[1} 15, 26} 136 137, 150} 152} |74} [75]], which
is originally designed for large pre-trained language models such as GPT-3 [[1]. Concretely, the
hand-craft prompts [S0, 52]] expand the original input sequence with natural language and regard all

Due to the page limit, the results of LaVIN are given in our Github project.
3When the model is only deployed for a task, the skipped layers can be also removed during deployment.
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Figure 2: Mllustration of Dynamic Architecture Skipping (DAS). DAS regards the network skipping
as a k-armed bandit problem, and evaluates the redundancy of each VL layer/block via numerous
subnetwork samplings. The accumulated rewards are used to determine which layers can be skipped,
and adapters are also used for feature adaptions and short-cut connections.

problems as a generation task. To better fit downstream tasks, soft prompt tuning methods [26} 36, [75]]
replace the handcraft prompts with a sequence of trainable embeddings. In addition to prompt-tuning,
adapter-based [[13} 20} 46,47, |59} [72] methods insert lightweight feed-forward networks into VLP
models, and these methods transfer VLP models by projecting hidden features onto the downstream
distributions [20,59]]. Furthermore, LoRA [21]] is proposed to transfer VLP models without additional
calculation overhead in the inference stage by updating the low-rank parts of the original parameters.
Besides, Side-tuning [71] runs in parallel with the pre-trained models to adapt downstream tasks
while overcoming the constraint from the concrete structure. In addition, LST [S8] stacks the outputs
of the pre-trained modules in a parallel path. Without feedback to the VLP model, LST alleviates
the memory requirement in the transfer while increasing the computation overhead. Compared to
fine-tuning the entire model, PETL methods significantly improve the efficiency in transferring VLP
models to downstream tasks. However, all of the above methods take the original VLP model as the
upper bound of inference efficiency. In this paper, the proposed DAS method is the first to reduce the
computation of VLP models while maintaining competitive performance. In terms of computation
efficiency, network compression methods can also reduce the computation overhead ,but they often
require to fully tune the model on the downstream tasks, such as LayerDrop [12], EfficientVLM [64]
and J2C [9]. This setting make them against the target of PCETL about parameter efficiency.

3 Preliminary

We first revisit the principle of PETL methods for VLP models. Given a vision-language pre-trained
(VLP) model, denoted as G(-), the target of PETL is to achieve the parameter-efficient adaption on
the downstream task, which can be summarized as

argmin L(G(1,T](0,a])), (D

where 6 = {01, 0, .., 0,,} represent the parameters of n layers in the VLP model, and 8 is usually
frozen in PETL. (I, T) denotes the image-text pair, and o is a small number of updated parameters.
Since all VLP layers are reserved on downstream tasks, PETL methods can only reduce the parameter
expenditure but not the computation of VLP models. Moreover, most PETL methods often incur
non-negligible latency during inference [21) 40].

According to the observation in Fig[T}(a), there exists obvious redundancy in the VLP models. To
this end, the objective of the proposed task of parameter and computation efficient transfer learning
(PCETL) can be defined by

inL(G(I,T|6
arg’%m ( (I, T KvU]))a 2)



Algorithm 1 Dynamic Architecture Skipping

Require: The training and validation sets, Dy, D,. VLP modules {6;}. Adapters {o;}.
Ensure: The optimal network structure G.
Initialize the degree of redundancy of all modules, r® = [rgo), r(20), e r%o)]
for tin T do
Calculate the score according to Eq. [3]and sample a subnetwork.
Update the parameter of adapters for adaptation and substitute o by L¢qin-
if ¢ mod interval == 0 then
Obtain a validation batch d,, < D,,.
Evaluate the performance of ¢ subnetworks and get their reward r; = e~
Update the degree of redundancy r(*) according to Eq.
end if
end for
Obtain the optimal structure Ok based on r.

Lyal

where Ok = {6k, ,0k,, ..., Ok, } € O is the parameters of VLP modules except the skipped ones. Via

skipping the redundant layers in VLP models and the combination of PETL methods, VLP models
can accelerate the inference speed and maintain the scale of updated parameters.

4 Dynamic Architecture Skipping

4.1 Redundancy Estimation

In this paper, we propose a novel transfer learning approach called Dynamic Architecture Skipping
(DAS) towards the parameter and computation efficient adaption of VLP models.

DAS first observes the model redundancy to downstream tasks before skipping the layers of VLP
models. In practice, we regard this process as a k-armed bandit problem, as illustrated in Fig.
Firstly, we define the degree of redundancy as r € R", where n is the number of VLP modules. To
correctly estimate the redundancy, we equally initialize r; = 0 and update it momentously.

In each training step, we skip m modules according to uniform distribution based on r, and train the

sampled architectures on the downstream data. For ¢-th step, the action policy Wft) for the i-th VLP
module follows the distribution:

D~ U0, p(x")), 3)

where U (a, b) is the uniform distribution between @ and b. And p represent the Sigmoid function. We
randomly pick a probability from the 7r§t) of each module as the score 52@)

o

. According to the score
, the sampled subnetwork can be defined by

Gs =g0°9g10...0Gn,
0: i (0 ® 4
where g; = { “Z. © {j.|SJ(t) N S(t)}’ @
0iyi € {jls;” > sm' }.
Here, g; o g;+1 represents the compositional function g;(g;+1(+)). 8; denotes the original VL module,
and o; is the lightweight module like adapter for short-cut connection. And 51(72) are the m largest
values in the picked scores. Here, the module with a larger rl(-t) is more likely to be skipped during
training. Meanwhile, Eq. 4| also help o; learn pre-trained knowledge from 6; in a distillation way [68]].

Then, DAS observes the redundancy of VLP modules in a reinforcement learning manner, as shown
in[2] DAS samples ¢ candidate network structures and calculates their rewards according to their loss
values during validation, i.e. reward v = ¢~'°**. Based on the rewards, the degree of redundancy r
can be updated by

1 C
t+1 ¢ Z
rz(‘ = rg '+ (vn = c j=1 u ©



Here, v;, denotes the reward of the sampled subnetwork, where the i-th module is skipped. When its
validation loss is larger than the mean value, it suggests that this skipped module is more redundant.
Eq.[is conducted at short training intervals to makes sure that most subnetworks can be sufficiently
validated via numerous samplings, and the theorem of large numbers can guarantee the optimality
of search results. The detailed search procedure of DAS is illustrated in Algorithm. [T} Finally,
according to the degree of redundancy r, we can select top-m layers to be skipped, thereby reducing
the computation complexity of VLP models.

4.2 Model Adapting

To reduce the updated parameter scale during adaptation, DAS also introduces lightweight
adapters [20}159] to serve the hidden feature transformations as well as the short-cut connections in
VLP models. Typically, an adapter is constructed by two linear projection layers and an activation
function in between:

adapter(x) = ReLU (XW ;)W puz.- 6)

Here, W,,, € R*" and W,,,; € R"*¢ are two trainable matrices, where h < d. For the i-th VLP
module, the adaptation can be defined by

x; = X;—1 + VLP(x;-1) + adapter(x;—1), @)

where x; is the output of the i-th component. In this manner, DAS can freeze most parameters in the
VLP models during adaption, similar to existing PETL methods [59]].

Notably, directly removing the redundant modules will make the subsequent layers to receive the
hidden features with drastic changes. Meanwhile, we do not expect the fully tuning of the whole
model. In this case, we apply the adapter to serve the short-cut connection of the skipped layers:

X; = X;—1 + adapter, (x;_1). 8)

In this way, DAS can not only bridge the gap between feature transformations, but also retain
parameter efficiency. Based on the estimated redundancy, DAS skips the redundant modules and
finds out the optimal pathway for the downstream task with the helps of adapters, as shown in Fig. 2]

5 Experiment

5.1 Datasets and Experimental Setup

Visual Question Answering. We conduct experiments on VQAZ2.0 [14]. Instead of answering the
question in open-ended natural language, it is converted into a classification task with 3, 129 classes.
Following the previous setting [[L0, 28], the PETL methods and DAS are trained on the train and
validation sets of VQAZ2.0, and we report the fest-dev results from the online evaluation ﬂ

Natural Language for Visual Reasoning. The NLVR? [57] is a dataset for classifying triplets of two
images and a question into two classes. Because its form is different from the setup of VLP models,
which has two images in one VL example, we feed these triplet examples to the model following
the default setting of ViLT [28] and METER [10]. Under this setting, the paired images and the
question are input to the network, respectively. And the classifier predicts the results according to the
concatenation of two representations.

Retrieval Task. For cross-modal retrieval, we measure the performance on Flickr30K [51]] re-splited
by Karpathy et al. [27]]. We initialize the predictor for similarity measurement from the pre-trained
ITM head. During the training, we randomly sample 15 instances as negative samples.

5.2 Implementation details

We validate DAS on two deep-fusion based VLP models, which are ViLT [28]] and METER [10]. In
terms of ViLT, we update the parameters of the additional components, classifier, class token and
modal-type embeddings, while the rest are frozen. Following the most conventional setting [17, 59],
the width of hidden states in adapters is set to 96. And the hidden dimension of the adapter used for

*https://eval.ai/web/challenges/challenge-page/830/overview
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Table 1: Comparison between DAS and the PETL methods for METER and ViLT on VQA, NLVR2
and Flickr30K. The best performance is bold and the second best is underlined.

METER
Updated VQA NLVR? Flickr30K Avg,
Method Parameter |test-dev Additional test-P Additional IR/TR R@1 Additional Per. Additional
FLOPs FLOPs FLOPs *  FLOPs
Full Tuning 323.31M | 77.43 0.00 83.05 0.00 82.22/94.30 0.00 84.25 0.00
Classifier Only - 69.93 0.00 73.23 0.00 78.80/89.00 0.00 7774 0.00
Shallow Prompt [36] | 0.30M 68.51 +28.71G 65.69 26.84G 74.20/88.60 +28.71G |74.25 +28.71G
Deep Prompt [26] 1.84M 70.78  +6.53G 72.64 +5.59G 78.84/89.40 +6.53G |77.92 +6.53G
LoRA [21] 0.29M 74.00 0.00 78.82 0.00 79.86/92.60 0.00 81.32  0.00
Adapter [59] 5.34M 7470  +1.64G  79.93 +1.38G 80.38/91.90 +1.64G |81.73 +1.64G
Scaled PA [17] 3.59M 7511 +1.12G  80.38 +0.66G  80.40/93.20 +1.12G |82.27 +1.12G
DAS 4 -Fusion 5.34M 74.80 -11.16G 80.11 -5.13G  80.12/91.80 -11.16G |[81.71 -9.15G
DAS4-Global 6.23M 75.09 451G  80.69 -3.67G 80.42/91.40 -6.06G [81.90 -4.74G
ViLT
Updated VQA _ NLVR.Q' Flickr30K. i Avg.' i
Method Parameter |test-dev Ag‘ilg(l):;al test-P A(Fi,(:‘lg(;:;al IRTRR@1 A%Tg;r;al Per. A%Tg‘:;al
Full Tuning 115.43M | 71.26 0.00 76.13 0.00 64.40/83.50 0.00 73.82  0.00
Classifier Only - 65.75 0.00 66.08 0.00 57.42/78.00 0.00 66.81 0.00
Shallow Prompt [36]| 0.15M 66.47 +19.53G 66.47 +19.53G 55.92/74.80 +19.53G |65.92 +19.53G
Deep Prompt [26] 1.84M 69.30  +5.14G 7334 +5.14G  58.64/79.50 +5.14G |70.20 +5.14G
LoRA [21] 0.15M 68.44 0.00 72.77 0.00 57.44/77.70 0.00 69.09  0.00
Scaled PA [17] 1.80M 7040 +0.44G 75.13 +0.44G 61.88/79.00 +0.44G |71.60 +0.44G
Adapter [59] 3.56M 70.85 +0.86G 75.51 +0.86G 62.68/81.40 +0.86G |72.61 +0.86G
DAS; 3.56M 69.28 -1.03G 7489 -1.03G 60.66/80.80 -1.03G |[71.41 -1.03G

the skip connection is set to 192 to retain a certain capacity. The VLP model is first warmed up for
one epoch. In this epoch, the subnetwork is randomly sampled according to the skipped number m.
Then the search runs 2 epochs and the redundancy observation is executed at 10-th step per interval.
Finally, the optimal architecture will be trained for another 10 epochs. Notably, the validation set is
used during training for all methods. In terms of METER, we split its fusion layer into two modules,
i.e. the vision and language ones, which are skipped separately. The hidden dimension of the adapter
used as the skip connection is set to 192 for encoders and 288 for fusion layers. The rest settings
are the same as ViLT. We conduct all experiments with a single NVIDIA Tesla A100 GPU and the
settings not mentioned are the same as ViLT [28]] and METER [10].

5.3 Experimental results

5.3.1 Quantitative analysis

Comparion with PETL methods. We first compare DAS with a bunch of PETL methods [17,
211126, 1361 159]] on the VLP models, of which results are given in Tab. E} Here, the suffix of DAS
denotes the number of skipped layers, and “fusion” and “global” refer to the range of network
skipping, i.e., only the fusion branch or the complete model. From Tab. [T} the first observation is
that existing PETL methods can largely reduce the amount of updated parameters for VLP models.
For instance, the prompt-based methods only require about 1M parameters for two VLP models,
nearly 300 times less than full tuning. Meanwhile, their performance gap to fully tuning is also
marginal, e.g., Scaled PA [17]. However, we can also see that all these PETL methods cannot reduce
the computation of VLP models, and some of them incurs obvious increases in FLOPs, e.g. +28.71G
by Shallow Prompt [36] on METER. The most computation efficient one is LoRA [21]], which applies
the re-parameterization technique to merge the additional modules into the VLP model, taking no
extra computations. However, its performance obviously lags behind other PETL methods and our
DAS. In stark contrast, DAS is the only method that can reduce the computation overhead on the
downstream VL tasks, e.g., -11.16G FLOPs by DAS 4-Fusion on VQA. More importantly, its updated
parameter scale is only slightly larger than Adapter and Scaled PA, while the overall performance is
still competitive. These results well confirm the effectiveness of DAS towards PCETL.

Ablation of the number of skipped layers. In Tab. [2) we report the results of skipping different
numbers of layers by DAS. In terms of METER, we can first observe that skipping a few layers



Table 2: Ablation study of different numbers of skipped layers by

DAS. “Fusion” denotes the skipping is only for the fusion branch, 7

. . I DAS
while “Global” refers to the entire METER. 76.12 76.10 Random
METER 76
Skipped VOA NLVR Avg. - 433 425
Method Number | test-d Additional test-P Additional P Additional =74 345
umber | testdev  props ™Y FLOPs ¢ FLOPs % B
Baseline 0 75.28 168G 8128 099G | 7828 134G £
2 7492 906G 8007  -2.66G | 7750  -5.86G 272
DAS.Fusion 4 7480  -11.16G  80.11  -4.14G | 7746  -7.65G
6 7467  -17.58G 7816  -9.97G | 7642  -13.78G 2 43
8 7370 -2400G 7930  -1145G | 7650  -17.72G
2 75.24 396G 8137  -2.19G | 7831  -3.08G
4 75.13 451G 8134 367G | 7824  -4.09G 68 3 3 3
DAS-Global 6 7502 506G 80.04  -422G | 7753 -464G Skipped Modules
8 74.95 S6IG 7961 834G | 7728 697G Figure 3: The comparison between
ViLT ..
Baseline 0 7003 073G 7626 0736 [ 71320 07356 DAS and random skipping for ME-
1 69.28 103G 7489 103G | 7209 -103G _ TER on th A2
DAS 2 67.64 279 7300 279G | 7032 -2.79G on the VQA2.0.

Table 3: Computation overhead of different methods for METER on the VQAZ2.0.

METER
Method VQA Additional Traini Testing
test-dev FLOPs Memory(G) Time(h) Memory(G) Speed(Sample/s)
Full Tuning 77.43 0 >40 N/A 6.8 4.16
LoRA 74.00 0 21.5 27 6.8 4.16 (+0.00%)
Adapter 74.70 +1.64G 229 28 7.2 4.09 (-1.68%)
Scaled PA 75.11 +1.12G 23.1 30 7.1 3.95 (-5.04%)
DAS,-Global 75.09 -4.51G 21.7 (search) & 20.6 (train) 10 (search) + 20 (train) 6.5 4.57 (+9.85%)
DAS,-Fusion 74.80 -11.16G 21.7 (search) & 18.1 (train) 10 (search) + 18 (train) 6.5 4.96 (+19.23%)

has limited impact on its performance, e.g., skipping up to 8 fusion layers only has about 2.2%
performance drops, strongly suggesting the redundancy of this VLP model. However, DAS can only
reduce about one layer for ViLT without notable performance degradations. To explain, METER is a
deep VLP model with two independent encoders to extract the features of image and text, while ViLT
processes the multi-modal information from image pixels and word embeddings. In this case, ViLT is
more compact than METER for downstream tasks, and this is also reflected in their parameter scales
and performance. In terms of METER, we can also see the difference in optimizing the fusion branch
and the entire model, i.e. DAS-Fusion and DAS-Global. With the same number of skipped layers,
DAS-Fusion can reduce more FLOPs since the length of multi-modal inputs is often larger than the
single-modal one. Meanwhile, when evaluating the entire model, DAS often tends to reduce the
layers in the language encodersﬂ which also suggests that natural language understanding is often
less difficult in the VL tasks. Overall, these results well confirm our motivation about the redundancy
of VLP models in downstream VL tasks, especially the ones with independent encoders like METER.

Reliability of DAS. Considering that DAS is an RL-based search approach, we also examine its
stability and reliability via comparing to random skipping, of which results are given in Fig. [3] It
can be seen that DAS is consistently better than random skipping without regard to the number of
skipping layers, well confirming its effectiveness. In particular, when the number of skipped layers
increases, the performance deviation of random skipping will become much more obvious, e.g. +1.33
for skipping 8 layers. Instead, DAS is still more stable and superior than the random solution, which
also suggests the importance of correct redundancy estimations. Overall, these results further confirm
the effectiveness and reliability of the proposed DAS.

Inference Efficiency. We further compare the actual inference efficiencies of DAS and other methods.
The computation overhead during both the training and testing stages are reported in Tab. [3] We
can first observe that the PETL methods, i.e. LoRA, Adapter and Scaled PA, significantly reduce
the computational burden during the training stage. However, during test, these methods lose their
efficiency advantage. For instance, Scaled PA is —5.04% slower compared to the full tuning method.
In contrast, the proposed DAS enhances the efficiency in both phases. Specifically, DAS only takes
similar computation overhead to the PETL methods in the training stage and improves inference
efficiency by +19.23%. Overall, these results well confirm the effectiveness of the proposed DAS in
the PCETL task.

The detailed results are given in our Appendix.
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Figure 5: The optimal subnetworks of METER searched by DAS. Here, the green modules are
trainable adapters while the blue ones are frozen during adaption.

5.3.2 Qualitative analysis

To obtain deep insight into DAS, we also visualize its changes of redundancy estimations during
search, as depicted in Fig. 4] From these plots, we can observe several patterns of DAS across
tasks. The first is that the most redundant layers can quickly emerge during DAS, especially when
the number of skipped layers is smaller, e.g. Fig. [fla. Meanwhile, for some uncertain layers, their
redundancies can be gradually determined after a short period of oscillation. We can also see that the
numbers of the skipped language and visual layers are similar on VQA and NLVR. However, the
preference about the skipping layers is still different on the two tasks, see Fig.d]b and Fig. #]c.

In Fig.[5] we visualize the subnetworks of METER searched by DAS, which are also the final results
of Fig. 4l As discussed above, the preferences of the hidden layers of METER are still different
for two tasks. In terms of VQA, DAS tends to discard the language modules at the middle level
while skipping the visual ones on the top and bottom of the network. In contrast, the language layers
skipped on NLVR are all the top ones. These search results can somewhat reflect the properties
of these two tasks. For instance, VQA is a reasoning task, thus it focuses more on the high-level
semantics of the input text, while NLVR needs a detailed comparison between two images and one
sentence, so the last few language layers may be more redundant to this task.

Overall, Fig. @] and Fig. [5|not only confirm the feasibility of DAS towards PCETL, but also yields
some interesting findings about the downstream adaption of VLP models.

6 Limitation

Currently, DAS has two main limitations. First, it still needs to set the number of layers to skip. In
our future work, we will introduce the computation or hardware constraints to DAS for the more



automatic network skipping. Second, DAS only regards the complete Transformer layers in VLP
models as the skipping candidates, limiting its potential in pathway routing. In the future, we will
extend the search space with more detailed components, such as MHA and FFN.

7 Conclusion

In this paper, we propose a new problem for vision-language pre-trained (VLP) models termed
parameter and computation efficient transfer learning (PCETL). Existing transfer learning solutions
for VLP models can only save the parameter expenditure during downstream task adaption, e.g.,
the PETL ones, while the excessive computation is still a unconquered problem. To this end, we
propose a novel approach called Dynamic Architecture Skipping (DAS) towards effective PCETL.
DAS can observe the redundancies of VLP modules to downstream tasks via a reinforcement learning
based process, and then skip the redundant ones to speed up inference. Meanwhile, DAS also adopts
lightweight adapters to serve the hidden feature adaptions and the short-cut connections, thereby
reducing the scale of trainable parameters. On two VLP models and three VL tasks, DAS not only
shows a great superiority in reducing computation, but is also on par with the PETL methods in terms
of parameter overhead and performance.
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A The detailed skipping results
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Figure 1: Architectures of the baseline models (a) ViLT and (b) METER. The blue modules are
the default Transformer layers that are frozen during the adaptation, while the green ones are the
trainable adapters. “En” denotes the encoding layers. “LEn” and “FEn” represent the encoding layers
of METER for texts and images, and “FL” and “FV” are the fusion layers for language and vision,
respectively.

En3

.

The architectures of two based models are given in Fig.[l] We also report their detailed skipping
results by DAS in Tab. [A] Here, “LEn” represents Language Encoder, and “VEn” represents Vision
Encoder. We can first see that ViLT is a relatively compact model to METER, which only has 12
Transformer layers without any modality-specific encoder. In this case, it can only be skipped one
or two layers without obviously degrading the performance. In stark contrast, METER is a deep
and huge VLP model, of which redundancy is much more obvious. By skipping up to 8 layers, its
performance drops are still marginal on all tasks. Meanwhile, we also observe that discarding its
visual encoder layers will greatly disturb its training and performance during experiments, thus these
layers are not considered as the skipping candidates. From Tab.[A] we also have some interesting
observations. For instance, the language encoding layers are less important to VQA. This may suggest
that most questions in VQA?2.0 are shorter and less complex, and the model needs to focus more on
the visual understanding and cross-modal interactions. This case is less significant on NLVR?, which
requires a detailed comparison between images and texts. Overall, these results confirm that the large
VLP models exhibit obvious redundancy to downstream VL tasks. More importantly, the importance
of their modules is different to different tasks, requiring proper estimations.

*Corresponding Author.
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Table A: The kipped layers and performance for different base models and tasks. For VQA, we
report the test-Dev as the performance. For NLVR?, we report the test-P as the performance. For
Flickr30k, we report IR/TR R@1 as the performance. “Fusion” refers to only skipping the layers in
the multimodal fusion modules of METER, while “Global” denotes the skipping scope of the fusion
modules and the language encoder.

METER
Datasets Candidates N;]l:illl;;: &] f Per. Agflijg(l):;al Skipped Layers
- 0 75.28 1.68G -
2 74.92 -9.06G FV0, FV4
Fusion 4 74.80 -11.16G FL2, FL3, FVO0, FV5
6 74.67 -17.58G FL1, FL2, FL3, FV0, FV4, FV5
VQA 8 73.70 -24.00G FL1, FL2, FL3, FL4, FVO0, FV1, FV4, FV5
2 75.24 -3.96G FV0, LEn6
Global 4 75.13 -4.51G FV0, LEn10, LEnl1
6 75.02 -5.06G FVO0, LEn4, LEn6, LEn8, LEn10, LEn11
8 74.05 -5.61G FV4, LEn4, LEn5, LEn6, LEn8, LEn9, LEn10, LEn11
- 0 81.28 0.99G -
2 80.07 -2.66G FL4, FV5
Fusion 4 80.11 -4.14G FL2, FL3, FL5, FV5
6 78.16 -9.97G FL3, FL4, FLS, FV1, FV3, Fv4
NLVR? 8 79.30 -11.45G FL1, FL2, FL3, FL4, FLS, FV0, FV3, FV4
2 81.37 -2.19G FV5, LEnl
Global 4 81.34 -3.67G FL2, FL3, FV5, LEn4
6 80.04 -4.22G FL2, FL5, FL6, LEn5, LEn6, LEn11
8 79.61 -8.34G FL2, FL3, FL4, FL5, FV1, FVS5, LEn4, LEn11
- 0 81.20/92.40 1.68G -
Flickr30k Fusion 4 80.12/91.80 -11.16G FL4, FLS, FV0, FV3
Global 4 80.42/91.40 -6.06G FL2, FL5, FVO0, LEn8
ViLT
Datasets Candidates N;;?}:’;: (;) f Per. Ag(kg(lw)lgal Skipped Layers
- 0 70.13 0.73G -
VQA 1 69.28 -1.03G En3
Global 2 67.64 279G Enl.En3
- 0 76.26 0.73G -
NLVR? Global T 74.89 T.03G En5
2 73.00 -2.79G En5, Enll
. - 0 62.44/82.10 0.73G -
Flickr30k Global 1 60.66/80.80 -1.03G En7

B The results of random sampling

Table B: The detailed experiment results of random sampled subnetworks for Fig.3 in the main paper.

METER
Datasets Candidates N;:il:)’:: (;) f te‘s/t?]?e v Agfg;r;al Skipped Layers
7424 11.16G FL2, FL4, FV2, V3
4 74.67 -11.16G FL1, FL5, FV0, FV3
74.08 -11.16G FL1, FL4,FV1, FV4
74.05 -17.58G FL1, FL2, FL3, FV2,FV3,FV5
VQA Fusion 6 73.26 -17.58G FLO, FL1, FL4, FVO, FV2, FV5
73.03 -17.58G FL2, FL4, FL5, FVI1, FV2, FV5
71.81 -24.00G FLO, FL1, FL3, FLS5, FV2, FV3, FV4, FV5
8 68.56 -24.00G FL1, FL3, FL4, FL5, FV1, FV2, FV3, FV4
69.88 -24.00G FLO, FL2, FL5, FV1, FV2, FV3, FV4, FV5

Tab. [B| gives the detailed results of random sampling mentioned in Fig.3 of the main paper. We can
see that random sampling is not only consistently worse than our DAS, but also varies greatly in
terms of skipped layers and performance, especially when the number of skipped layers is large. On
the contrary, these results just confirm the effectiveness of the proposed DAS.

C Generalization on Pre-trained Language Model

To validate the generalization ability of DAS, we also apply it to a pre-trained language model called
RoBERTza [3]], as shown in Tab. |g Due to the time limit, we do not conduct careful tunings for



Table C: Comparison between DAS and PETL methods for RoOBERTa on MNLI and SST2. “En”
denotes the encoding layers. “Acc.” denotes the accuracy.

RoBERTa
Methods Updated Additional MNLI SST2
Parameter FLOPs Acc. Skipped Layers Acc. Skipped Layers
Full Tuning 124.65M 0.0 87.6 - 94.6
Bit-Fit [6] 0.10M 0.0 84.7 - 93.7
Pre-fix [4] 0.14M 1.20G 86.3 - 94.0
LoRA [3] 0.59M 0.0 87.2 - 94.2
Adapter [2] 0.63M 0.33G 87.2 - 94.2
MAM [1] 0.61M 0.79G 87.4 - 94.2
DAS1 0.63M -3.71G 86.8 Enl0 94.1 Enl0
DASo 0.63M -1.74G 86.7 Enl0, Enll 93.9 En8, Enl0
DAS3 0.63M -11.77G 86.2 En9, Enl0, Enll 93.8 En7, En8, Enl10

RoBERTa. The settings of DAS follow the main paper, while the rest are the same with MAM [l]].
From this table, we can first see that DAS is also applicable to pre-trained language models. It
can also achieve the target of PCETL in terms of computation and update parameter scales, while
obtaining limited performance drops. However, we can also see that the competitiveness of DAS to
other PETL methods is slightly worse on MNLI, of which objective is close to the pre-training ones.
We think that the task gap may be a potential factor affecting PCETL. Overall, these results well
validate the generalization ability of DAS on LLMs towards PCETL.
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