
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND BROWSING: API-BASED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Web browsers are a portal to the internet, where much of human activity is un-
dertaken. Thus, there has been significant research work in AI agents that interact
with the internet through web browsing. However, there is also another interface
designed specifically for machine interaction with online content: application pro-
gramming interfaces (APIs). In this paper we ask – what if we were to take tasks
traditionally tackled by browsing agents, and give AI agents access to APIs? To
do so, we propose two varieties of agents: (1) an API-calling agent that attempts to
perform online tasks through APIs only, similar to traditional coding agents, and
(2) a Hybrid Agent that can interact with online data through both web browsing
and APIs. In experiments on WebArena, a widely-used and realistic benchmark
for web navigation tasks, we find that API-based agents outperform web brows-
ing agents. Hybrid Agents out-perform both others nearly uniformly across tasks,
resulting in a more than 20.0% absolute improvement over web browsing alone,
achieving a success rate of 35.8%, achiving the SOTA performance among task-
agnostic agents. These results strongly suggest that when APIs are available, they
present an attractive alternative to relying on web browsing alone.

1 INTRODUCTION

Web agents use browsers as an interface to facilitate humans in performing daily tasks such as
online shopping, online planning, trip planning, and other work-related tasks (Liu et al., 2018; Li
et al., 2020; Rawles et al., 2023; Patil et al., 2023; Pan et al., 2024; Chen et al., 2024a; Huang et al.,
2024; Durante et al., 2024). Existing web agents typically operate within the space of graphical
user interfaces (GUI) (Zhang et al., 2023; Zhou et al., 2023; Zheng et al., 2024), using action spaces
that simulate human-like keyboard and mouse operations, such as clicking and typing. To observe
web pages, common approaches include using accessibility trees, a simplified version of the HTML
DOM tree, as the input to text-based models (Zhou et al., 2023; Drouin et al., 2024a), or multi-
modal, screenshot-based models (Koh et al., 2024a; Xie et al., 2024; You et al., 2024; Hong et al.,
2023). However, regardless of the method of interaction with web sites, there is no getting around
the fact that these sites were originally designed for human consumption, and may not be the ideal
interface for machines.

Notably, there is another interface designed specifically for machine interaction with online content:
application programming interfaces (APIs) (Chan et al., 2024). APIs allow machines to communi-
cate directly with the backend of a web service (Branavan et al., 2009), sending and receiving data
in machine-friendly formats such as JSON or XML (Meng et al., 2018; Xu et al., 2021). Nonethe-
less, whether AI agents can effectively use APIs to tackle real-world online tasks, and the conditions
under which this is possible, remain unstudied in the scientific literature. In this work, we explore
methods for tackling tasks normally framed as web-navigation tasks with an expanded action space
to interact with APIs. To do so, we develop new API-based agents that directly interact with web
services via API calls, as depicted in Figure 1. This method bypasses the need to interact with web
page GUIs through simulated clicks.

At the same time, not all websites have extensive API support, in which case web browsing actions
may still be required. To address these cases, we explore a hybrid approach that combines API-based
agents with web-browsing agents, as described in Figure 1. By implementing an agent capable of
interleaving API calls and web browsing, we found that agents benefit from the flexibility of this
hybrid model. When APIs are available and well-documented, the agent can directly interact with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

API Calling
Web Browsing

Web BrowsingUser Input

API Calling

Accessibility Tree

API Calls + Code

API Calls + Code
 AND / OR
Accessibility Tree

Agent Output

User Input

Agent Output

User Input

Agent Output
Gitlab Map Shop Admin Reddit Multi Avg

A
cc

ur
ac

y
(%

)

0

20

10

30

40

50

Hybrid
Agent

API-Based
Agent

Browsing
Agent

Figure 1: A comparison of three types of agents. The Browsing Agent performs tasks through
web browsing only, utilizing the accessibility tree to interact with web pages, achieving an average
performance of 14.8% on WebArena. The API-Based Agent performs tasks by making API calls
and generating code without relying on web browsing, achieving an average accuracy of 29.2%.
The Hybrid Agent combines both methods, dynamically switching between web browsing and
API calling, depending on the task. This allows the execution of either API calls or web browsing
actions, or both in combination, improving performance by more than 5 percentage points compared
to the API-Based Agent .

the web services. For websites with limited API support, the agent seamlessly switches to web
browsing mode, simulating human interaction to ensure task completion.

We evaluated our API-based and Hybrid Agents on WebArena, a benchmark for real-world web
tasks (Zhou et al., 2023), and the results are shown in Figure 1. Our experiments revealed three key
findings: (1) The API-based agent consistently outperforms browsing-based agents on WebArena
tasks by around 15% on average, regardless of the comprehensiveness of APIs. (2) The API-based
agent yields a higher success rate on websites with extensive API support (e.g., Gitlab) compared to
those with limited API support (e.g., Reddit). This result underscores the importance of developing
comprehensive API support for more accurate and efficient web task automation in the future. (3)
The Hybrid Agent outperforms solely browsing-based agents and solely API-based agents, further
improving accuracy by more than 5% compared to the API-based agent. By dynamically switching
between approaches, the Hybrid Agent is able to provide more consistent and reliable outcomes.

In sum, our results suggest that allowing agents to interact with APIs, interfaces designed specifi-
cally for machines, is often preferable or at least complementary to direct interaction with graphical
interfaces designed for humans.

2 BACKGROUND: WEB BROWSING

2.1 THE WEB BROWSING TASK

Various benchmarks have been developed to evaluate the performance of web browsing agents.
MiniWoB (Miniature World of Bits) is an early benchmark that provides simple web-based tasks
such as clicking links or typing into forms, but it remains limited in complexity and realism (Shi
et al., 2017). Mind2Web scales up these tasks, introducing more sophisticated interactions across
websites, but it often lacks the dynamic, real-world scenarios found on the broader web (Deng et al.,
2023). WebArena (Zhou et al., 2023) advances web browsing benchmarks by creating reproducible
sandboxes of a variety of websites, such as managing repositories, posting online, performing online
shopping, and planning trips using map services, while VisualWebArena extends WebArena to the
vision modality (Koh et al., 2024a).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

How many commits
did the user SaptakS
make to "a11yproject"?

Web Browsing Traces. Failed after 15 steps.

API Calling via Python requests library

<execute_ipython>
(1)r=requests.get('gitlab.com/api/a11yproject/commits')
(2)commits=r.json()
(3)len([c for c in commits if c['author'] == 'SaptakS'])
</execute_ipython>

(1) goto `gitlab.com` (2) login with credentials
(3) click `a11yproject` (4) click `Repository`
(5) click `Commits` (6) No commits found -> scroll down
(7) No commits found -> scroll down (15) No
commits found but no steps left, conclude 0 commits are
made by SaptakS.

Br
ow

sin
g A

ge
nt

API-Based Agent

Figure 2: The API-based agent can often solve problems in many fewer function calls than tradi-

tional browsing agents . In this task, web browsing failed to solve the intent "find the number of

commits the user SaptakS made to the repo a11yproject" after 15 steps, while our API-based agent
successfully completed the task with only three lines of code.

In this paper, we focus on WebArena tasks, which simulate real-world scenarios to evaluate an
agent’s ability to complete diverse web-based activities.1 Tasks in WebArena include interacting
with platforms like Gitlab (to manage projects and repositories), Reddit (to browse and post content),
e-commerce websites (for shopping), and mapping services (for trip planning) (Zhou et al., 2023).
Task success is evaluated in three ways: (1) if the task requires producing a specific output, the
agent’s response is checked for correctness; (2) for tasks involving changes to a website’s state (e.g.,
adding an item to a shopping cart), success is measured by verifying whether the state has changed
as expected, such as ensuring the correct item and quantity have been added to the cart; and (3) if
the task involves navigation, success is determined by whether the agent reaches the correct URL
displaying the desired content.

2.2 A BASELINE WEB BROWSING AGENT

While there are a wide variety of agents proposed for such web navigation tasks, in this work we
build upon the WebArena baseline agent (Zhou et al., 2023), which operates purely through web
interaction by leveraging the accessibility tree2, a structure that exposes interactive elements like
buttons, input fields, and hyperlinks (Yao et al., 2023; Gu et al., 2024). Each element of the acces-
sibility tree is characterized by its functionality such as a hyperlink, its content, and specific web
attributes (Liu et al., 2024b; He et al., 2024a; Lù et al., 2024). This exposes web page elements in a
hierarchical structure that is easy for agents to navigate (Samuel et al., 2024; Burns et al., 2022).

Agents based on this framework utilize an action space that simulates human browsing behavior,
incorporating actions such as simulated clicks, form input, and navigation between pages (Liu et al.,
2023; Song et al., 2024; Gur et al., 2024). Importantly, these agents maintain a comprehensive his-
tory of their previous actions, allowing them to contextualize their decision-making in past actions.

While agents utilizing this method can navigate arbitrary web pages and often perform well on
simpler layouts, challenges arise with the complexity of the accessibility tree. Many large language
models (LLMs) are not familiar with this structure, leading to difficulties in completing tasks that
require numerous or complex interactions. As a result, the average accuracy hovers in the low double
digits (Liu et al., 2024a; Deng et al., 2023; Fu et al., 2024). These methods also struggle with content
that need to be dynamically loaded or contents not immediately visible within the tree (Abramovich
et al., 2024; Chen et al., 2024b; Lutz et al., 2024).

To give one motivating example, in Figure 2, we demonstrate a task where the agent needs to per-
form a task determining the number of commits made by the user SaptakS in a repository named

1Notably, upon investigation of VisualWebArena we found that APIs for handling images were relatively
limited, and hence we chose to experiment on text-only tasks in this paper.

2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree

3

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Commits
GET /api/{id}/commits: Get a list of commits in a project.
Attribute	Type	Description
`id`	integer/string	The ID or path of the project.
`since`	string	Only commits after or on this date.
`until`	string	Only commits before or on this date.
Output: JSON containing all commits that meet the given criteria.

<execute_ipython>
requests.get('gitlab.com/api/a11yproject/commits')
</execute_ipython>

[......{
 "id": "ed37a2f2",
 "created_at": "2023-03-13T21:04:49.000-04:00",
 "title": "Update README.md",
 "message": "Update README.md",
 "author": "SaptakS",
}]

API
Documentation

API Calling

JSON Output

Figure 3: An example of API documentation showing how to get commits of a project, the API call
using a Python script to retrieve commits from a project repository, and the resulting JSON response.

a11yproject. Specifically, for each task, the agent is given a fixed number of steps within which
it has to finish the task. Using a traditional web-browsing approach, the agent follows a complex
trajectory, starting with logging into the website, navigating to the correct project, accessing the
repository, and finally attempting to view the list of commits. However, due to the large number of
commits made by other users, the commits by SaptakS are located much further down on the web
page, requiring the agent to scroll down many times. As a result, despite completing 15 actions, the
browsing agent is unable to retrieve the required information.

3 FROM WEB BROWSING TO API CALLING

In contrast to browsing, API calling offers a direct interface for machines to communicate with web
services, reducing operational complexity. In this section, we explore an API-based approach when
performing web tasks.

3.1 APIS AND API DOCUMENTATION

For websites that offer API support, pre-defined endpoints can be utilized to perform tasks
efficiently. These APIs, following standardized protocols like REST3, allow interaction with
web services through sending HTTP requests (e.g., GET, POST, PUT) and receiving structured
data such as JSON objects4 as responses. Websites often provide official documentation for
the APIs, which can give guidance on how to utilize the APIs. Some documentation is pro-
vided in README 5 format, some are in OpenAPI YAML6 format, and some are in plain
text format. For instance, Figure 3 shows the official README documentation of a Gitlab
API GET /api/{id}/commits. It documents the functionality, input arguments, and out-
put types of the API. For example, one could use the Python requests library, by calling
requests.get("gitlab.com/api/a11yproject/commits"), to retrieve all commits
of the repository a11yproject. This would return a JSON list containing all the commits to this
repo, as shown in Figure 3.

3.2 OBTAINING APIS FOR AGENTS

One important design decision is how to obtain APIs for agents to use. The way agents interact with
APIs depends heavily on the availability of APIs and quality of API documentation. In this work,
we acquired APIs by manually looking up official API documentation on a website, although this

3https://en.wikipedia.org/wiki/REST
4https://www.json.org/json-en.html
5https://en.wikipedia.org/wiki/README
6https://yaml.org/

4

https://en.wikipedia.org/wiki/REST
https://www.json.org/json-en.html
https://en.wikipedia.org/wiki/README
https://yaml.org/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

process could potentially be automated in the future. We classify the availability of APIs according
to the following three scenarios:

Sufficient APIs and Documentation Many websites provide comprehensive API support and
well-documented API documentation in YAML or README format. In this case, simply use the
APIs/documentation as-is. Figure 3 depicts an example of API documentation.

Sufficient APIs, Insufficient Documentation There are some challenging situations where APIs
exist but good documentation is not officially available. In such cases, additional steps may be re-
quired to obtain a list of accessible APIs. In this case, we inspected the frontend or backend code
of the website to extract undocumented API calls that can still be utilized by the agent. Then, based
on the implementation of APIs of the website, leverage an LLM (GPT-4o7) to generate these YAML
or README files. By prompting GPT-4o with the relevant implementation details of the APIs (for
example, the implementation files of the APIs or example traces of API calls), we generate compre-
hensive documentation, including input parameters, expected outputs, and example API calls.

Insufficient APIs In the more challenging cases, where only minimal APIs are available, it may
be necessary to create new APIs. These custom APIs allow agents to perform tasks that otherwise
would require manual web browsing steps. In our case, this was necessary for 1 of 5 web sites in
the WebArena benchmark that we utilized, such as creating Reddit APIs discussed in Section 6.2.

3.3 USING APIS IN AGENTS

Once we have the APIs and documentation, we then need to provide methods to utilize them in
agents. We utilize two different methods based on the size of the API documentation.

One-Stage Documentation for Small API Sets For websites with a smaller number of API end-
points8, we directly incorporate the full documentation into the prompt provided to the agent. This
approach of directly feeding the full documentation worked well for websites with a limited number
of API endpoints, as it allowed the agent to have immediate access to all the necessary information
without the need for a more complex retrieval mechanism.

Two-Stage Documentation Retrieval for Large API Sets For websites with a larger number of
endpoints, providing the full documentation directly within the prompt was impractical due to the
size limitations of agent inputs. To address this, we employ a two-stage documentation retrieval pro-
cess, allowing access to only the relevant information as needed, keeping the initial prompt concise.

In the first stage, the user prompt provide a description of the task, with a list of all avail-
able API endpoints along with a very brief description of each API. For example, {"GET
/api/{id}/commits": "Get a list of commits in a project"}. This initial
summary helps facilitating understanding the scope of all the available APIs while staying within
the prompt size constraints.

In the second stage, if the model determines that it needs detailed information about one or more
API endpoints, it can use a tool called get api documentation. This tool has a dictionary
that maps each API to its API documentation respectively. The dictionary is obtained using pattern
match in Python to retrieve substrings related to each endpoints. get api documentation
is able to search the dictionary and retrieve the full README or YAML documentation for
any given endpoint by calling get api documentation with the endpoint’s identifier. This
may include the input parameters, output formats, and examples of interacting with the end-
point. For example, to retrieve the documentation for GET /api/id/commits, the agent would
call get api documentation("GET /api/id/commits"), and an example returned API
documentation is the documentation in Figure 3.

This retrieval method allows the agent to make flexible and informed choices during the execution
of tasks. If the agent finds that an API does not meet its needs or if it encounters an error, it can

7https://openai.com/index/hello-gpt-4o/
8Specifically, we use a threshold of 100 APIs, but this could be adjusted depending on the supported lan-

guage model context size.

5

https://openai.com/index/hello-gpt-4o/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

easily retrieve the documentation for a different API endpoint by calling the function again. This
dynamic approach promotes adaptability and minimizes the risk of incorrect API usage when the
number of APIs available is large. The prompt can be found in Appendix A.3.

4 HYBRID BROWSING+API CALLING AGENTS

We have proposed API-based methods for handling web tasks, but the question arises: given the
benefits of API calling, should we discard web browsing altogether? The most obvious bottleneck is
that not all websites offer comprehensive API support. Some platforms offer limited or poorly doc-
umented APIs (e.g. there is no API for shopping on Amazon9), forcing agents to rely on traditional
web browsing methods to complete tasks.

To deal with these situations, we propose a hybrid methods that integrates both browsing-based and
API-based approaches, and developed a Hybrid Agent capable of interleaving API calls and web
browsing, switching dynamically based on task requirements and the available resources. Specifi-
cally, for each task, the agent is given the fixed step budget within which it has to finish the task. In
each step, the agent could either (1) communicate with humans in natural language to ask for clar-
ification or confirmation, or 2) generate and executes Python code which could include performing
API calling, or 3) performs web browsing actions. The agent could choose freely among these three
options, depending on the agent’s confidence which method could best tackle the task.

The ideal case is that for websites that offer comprehensive API support, the Hybrid Agent can utilize
well-documented endpoints to perform tasks more efficiently than it could through web browsing;
for websites with limited API support or poorly documented APIs, the Hybrid Agent could rely
more on web browsing to fulfill certain tasks. We later find that enabling an agent to interleave API
calling and web browsing boost the agent’s performance (see Section 6).

Prompt Construction The Hybrid Agent’s prompt construction extends upon the API-based
agent by incorporating both API and web-browsing documentation. Similar to the API-based agent,
the Hybrid Agent is provided with a description of available API calls as discussed in Section 3.3.
In addition, the Hybrid Agent receives a detailed specification of the web-browsing actions, which
mirrors the information given to the browsing agent described in Section 2.2, including a breakdown
of all potential browser interactions. It also maintains a history of all its prior steps such that the
agent could make more informed actions. The prompt can be found in Appendix A.4.

5 EXPERIMENTAL SETUP

5.1 DATASET DESCRIPTION

For our experiments, we utilized the WebArena dataset (Zhou et al., 2023) as the primary evaluation
benchmark. WebArena is a comprehensive benchmark designed for real-world web tasks, providing
a diverse set of websites simulating various online interactions. WebArena tasks reflect common
user activities such as navigating websites, performing administrative tasks, and posting online.

The dataset mainly includes five distinct websites, each containing various intents representing dif-
ferent tasks: Gitlab, Map, Shopping, Shopping Admin, Reddit, and Multi-Website Tasks. We
include a more detailed descriptions of the tasks in Appendix A.2. This diverse set of websites and
tasks within WebArena allows for a comprehensive evaluation of the agents, testing their ability to
handle both API-based interactions and web browsing across varied web settings.

5.2 API STATISTICS FOR WEBARENA SITES

In this section, we provide a detailed analysis of the API support of the WebArena websites, catego-
rized into three levels: good, medium, and poor. The availability, functionality, and documentation
of APIs, as described in Table 1, play a crucial role in the efficiency and flexibility of our agents.

9https://www.amazon.com

6

https://www.amazon.com

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Websites Gitlab Map Shopping Admin Reddit
Number of Endpoints 988 53 556 556 31
API/Doc Quality Good Good Fair Fair Poor

Table 1: Number of endpoints, quality of API, and documentation quality for WebArena websites.

5.2.1 GOOD API SUPPORT

Gitlab For Gitlab, we leveraged the open Gitlab REST APIs10, consisting of 988 endpoints. These
APIs offer extensive coverage across a wide range of functionalities, including repositories, com-
mits, users, merge requests, and issues. This comprehensive API support allows for effective in-
teraction with most tasks required in WebArena, making it one of the best-supported platforms in
terms of API availability.

The majority of Gitlab-related tasks can be handled with the provided APIs, with only a small frac-
tion of tasks, such as retrieving the user’s Gitlab feed token, not covered by any existing endpoints.
Overall, Gitlab’s API structure provides robust support.

Map The Map website offers three sets of APIs, each offering distinct functionalities, with a total
of 53 endpoints. Although fewer in number compared to Gitlab and Shopping, these APIs still
provide significant coverage for the tasks in WebArena.

The first set of APIs, openly available at Nominatim11, offers essential endpoints for geographic
searches. The second set of APIs, from Project OSRM12, focuses on routing and navigation func-
tionalities. The third set of APIs, available at OpenStreetMap13, deals primarily with map database
operations. This API is rarely used in WebArena tasks but offers capabilities for interacting with
OSM data. Despite the smaller number of endpoints compared to other websites, the APIs available
for the Map tasks are mostly well-documented and cover most of the essential WebArena use cases.

5.2.2 MEDIUM API SUPPORT

Shopping and Shopping Admin The Shopping and Shopping Admin websites share a common
set of APIs from the Adobe Commerce API14, consisting of 556 endpoints. These APIs provide a
reasonable level of support for common shopping tasks such as managing products, categories, and
customer accounts. However, some features are absent, such as the ability to add items to a wish list,
and thus these tasks must be handled via web browsing. Despite this, the API documentation is fairly
detailed and covers most core functionalities, making it a solid, though not exhaustive, solution for
handling shopping-related tasks.

5.2.3 POOR API SUPPORT

Reddit The Reddit tasks in WebArena are based on a self-hosted limited clone of the Reddit web-
site 15, with limited functionalities as compared to the official site. As a result, all of the available
APIs are self-implemented, with a best effort to mimic to official Reddit APIs. With only 31 end-
points, this website offers minimal API support and no API documentation, making it the least
API-friendly website in the benchmark.

Many critical functionalities, such as searching for specific posts, are missing, leaving agents to
rely heavily on web browsing to complete tasks. The limited API support significantly hampers the
efficiency of task execution on Reddit, highlighting the need for a hybrid browsing+API approach.

10Documentation of all Gitlab APIs could be found at https://docs.gitlab.com/ee/api/rest/.
11https://nominatim.org/release-docs/develop/api/Overview/
12Openly available at https://project-osrm.org/docs/v5.5.1/api
13Publicly available at https://wiki.openstreetmap.org/wiki/API v0.6
14https://developer.adobe.com/commerce/webapi/rest/quick-reference/
15https://codeberg.org/Postmill/Postmill

7

https://docs.gitlab.com/ee/api/rest/
https://nominatim.org/release-docs/develop/api/Overview/
https://project-osrm.org/docs/v5.5.1/api
https://wiki.openstreetmap.org/wiki/API_v0.6
https://developer.adobe.com/commerce/webapi/rest/quick-reference/
https://codeberg.org/Postmill/Postmill

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.3 API IMPLEMENTATION DETAILS

In this section, we will discuss how we provided the APIs to the agents when evaluating different
web applications inside WebArena, where we follow the methodologies as discussed in Section 3.3.

5.3.1 ONE-STAGE DOCUMENTATION FOR SMALL API SETS

For websites with fewer than 100 API endpoints, namely the Map and Reddit websites, we directly
incorporated the full documentation into the prompt provided to the agent.

In the case of the Map API, the documentation was sourced directly from the public API documen-
tation provided for the website. The only modification made was the addition of an explanation
detailing how to make HTTP requests using the requests library in Python for interacting with the
Map API’s endpoints. This ensured that the agent could comprehend both the structure of the API
and how to implement calls programmatically.

For Reddit, since there was no pre-existing documentation for the APIs, we leveraged GPT-4o16

itself to generate these README files. By prompting GPT-4o with a file containing all implemen-
tations of the API endpoints, we generated a README documentation, including input parameters,
expected outputs, and example API calls.

5.3.2 TWO-STAGE DOCUMENTATION RETRIEVAL FOR LARGE API SETS

For websites with more than 100 endpoints, such as GitLab, Shopping, and Shopping Admin, we
employ a two-stage documentation retrieval process. For GitLab, we obtained the README docu-
mentation from the official GitLab REST API documentation site. For the Shopping and Shopping
Admin websites, the documentation was provided in the form of an OpenAPI specification, struc-
tured in YAML format.

5.4 EVALUATION FRAMEWORK

We employed OpenHands as our primary evaluation framework to facilitate the development and
testing of our agents (Wang et al., 2024c). OpenHands is an open-source platform designed for
creating and evaluating AI agents that interact with both software and web environments, making
it an appropriate infrastructure for our proposed methods. The OpenHands architecture supports a
variety of interfaces for agents to interact with. Moreover, this framework allows agents to keep
a detailed record of past actions in the prompt, enabling agents to execute actions in a way that is
consistent with earlier steps. For coding tasks, it implements an agent based on CodeAct (Wang
et al., 2024a) that incorporates a sandboxed bash operating system and Jupyter IPython17 environ-
ments, enabling the execution of Python code. Additionally, it includes a BrowsingAgent browsing
agent that focuses solely on web navigation. This agent operates within a Chromium web browser
powered by Playwright18, utilizing a comprehensive set of browser actions defined by BrowserGym
(Drouin et al., 2024b). However, while the browsing agent can browse websites, and the CodeAc-
tAgent make API calls and execute code, there is not an agent that can natively do both. Given this
base, we developed two varieties of agents for API-based solving of web tasks.

API-Based Agent First, our API-based agent essentially uses the CodeAct architecture (Wang
et al., 2024a). In addition to the basic CodeAct framework, we tailor the agent for API calling by
adding specialized instructions and examples that guide its understanding of various API endpoints
and their usage. At each step, the agent could utilize all previous actions to make informed selection
of actions. The prompt of the API-Based Agent is included in the Appendix A.3.

Hybrid Browsing/API Calling Agent In addition to the API-based agent, we developed a Hy-
brid Agent that integrates Chromium web browsing functionalities powered by Playwright into the
existing framework of the API-based agent. This Hybrid Agent is provided the prompt describing
both the APIs and the browsing actions, allowing for free transitions between API calling and web

16https://openai.com/index/hello-gpt-4o/
17https://ipython.org
18https://playwright.dev/

8

https://openai.com/index/hello-gpt-4o/
https://ipython.org
https://playwright.dev/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agents Gitlab Map Shopping Admin Reddit Multi AVG.
WebArena Base (Zhou et al., 2023) 15.0 15.6 13.9 10.4 6.6 8.3 12.3
AutoEval (Pan et al., 2024) 25.0 27.5 39.6 20.9 20.8 16.7 26.9
AWM (Wang et al., 2024e) 35.0 42.2 32.1 29.1 54.7 18.8 35.5
SteP (Sodhi et al., 2024)† 32.2 31.2 50.8 23.6 57.5 10.4 36.5
Browsing Agent 12.8 20.2 10.2 22.0 10.4 10.4 14.8
API-Based Agent 43.9 45.4 25.1 20.3 18.9 8.3 29.2
Hybrid Agent 44.4 45.9 25.7 41.2 28.3 16.7 35.8

Table 2: Performance of Agents across WebArena Websites. †Note that SteP uses prompts inspired
specifically by WebArena test set tasks, while other methods are task-agnostic. We achieve the
highest performance among the task-agnostic agents.

browsing. At each step, the agent can utilize the current state of the browser, all previous actions
taken by the agent, and the results of those actions to determine the next course of action. The
prompt of the Hybrid Agent is included in the Appendix A.4.

For the browsing, API-based, and Hybrid Agents, we utilized GPT-4o as the base LLM. However,
this could be easily changed to other LLMs.

6 RESULTS

6.1 MAIN RESULTS

The main results of our evaluation, as summarized in Table 2, demonstrate the performance of three
different agents across the websites in the WebArena benchmark.

The API-Based Agent consistently performed well, achieving higher scores in most websites com-
pared to the Browsing agent. This agent’s strong performance is attributed to its specialized design
for API calling, enabling it to efficiently interact with APIs and complete tasks without reliance on
browsing. In contrast, the Browsing Agent, which is designed solely for navigating web interfaces,
demonstrated significantly lower performance across most domains. It achieved its best scores on
Shopping Admin and Map, but struggled more on the other websites.

Actions Gitlab Map Shopping Admin Reddit Multi AVG.

Browsing only 7.8 3.7 38.5 2.2 17.0 8.3 14.3
API only 21.1 4.6 7.5 1.1 0.9 10.4 8.0
Browsing+API 71.1 91.7 54.0 96.7 82.1 81.3 77.7

Table 3: Percentage of Actions (%) that our Hybrid Agent takes for each type of tasks. Each column
sums up to 1.

The Hybrid Agent, integrating both API calling and web browsing, outperformed the other agents
on many websites. It’s ability to dynamically interleave API calling and browsing proved beneficial.
API calling delivers high performance for web tasks with well-supported APIs, while web browsing
serves as a backup when API endpoints are unavailable or incomplete. Even if the website provides
comprehensive APIs, there might be corner cases where APIs are not supportive. In these cases,
relying on web browsing is still needed for tasks that would otherwise fail through API-only inter-
actions. Table 3 documents the percentage of actions of our Hybrid Agent. Across all websites, our
Hybrid Agent chooses to do both Browsing and API in the same task at least half of the time.

Table 4 documents the accuracy of the Hybrid Agent across websites when performing different
choices of actions. It shows consistently high accuracy when choosing API only and API+browsing.

Overall, the results indicate that the Hybrid Agent is the most effective for handling diverse tasks
in WebArena, particularly in environments that require a blend of API and browsing actions. The
API-Based Agent excels in tasks that are primarily API-driven, while the Browsing Agent is more
suitable for simple navigation tasks but lacks the versatility needed for more complex scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Choices of Action Gitlab Map Shopping Admin Reddit Multi AVG.
Browsing only 7.1(1/14) 50.0(2/4) 23.6(17/72) 50.0(2/4) 11.1(2/18) 25.0(1/4) 21.6(25/116)
API only 47.4(18/38) 40.0(2/5) 21.4(3/14) 50.0(1/2) 0.0(0/1) 20.0(1/5) 38.5(25/65)
Browsing+API 47.7(61/128) 46.0(46/100) 27.7(28/101) 40.9(72/176) 32.2(28/87) 15.4(6/39) 38.2(241/631)

Table 4: The accuracy (%) of the Hybrid Agent across choices of actions for each website, with the
number of correct instances / number of total instances in parentheses.

6.2 DOES API QUALITY MATTER?

Yes, API quality does significantly impact the performance of the API-based agent. High quality
APIs provide comprehensive and well-documented endpoints that enable agents to interact accu-
rately and efficiently with websites. With comprehensive API support, the API-based agent could
tackle more tasks through API calling, while the Hybrid Agent could rely less on browsing; on the
other hand, clear and detailed documentation allows agents to utilize the APIs effectively, ensur-
ing that requests are accurate, and minimizing potential errors in task execution. For example, the
websites Gitlab and Map with the best API support as mentioned in Section 5.2, demonstrates the
highest task completion accuracy by the API-based agent and the Hybrid Agent across all websites.

Conversely, low-quality APIs, characterized by incomplete functionality or ambiguous documen-
tation, can significantly degrade performance. In such cases, the absence of necessary endpoints
may prevent the API-based agent from completing tasks, forcing the Hybrid Agent to resort to web
browsing. Moreover, poorly documented APIs can result in incorrect parameters and headers being
used, further reducing the effectiveness of the agent. This highlights the importance for websites to
maintain comprehensive and well-documented API support.

Number of Endpoints 18 31

Accuracy on Reddit 9.4% 18.9%

Table 5: Change in performance of the API-Based
Agent on Reddit upon incorporating new APIs.

An illustrative example of this is the case of
Reddit, where the initial performance of the
API-based agent was suboptimal due to limited
API availability. As depicted in Table 5, ini-
tially, Reddit offered only 18 APIs, lacking the
major functionality that common online forums
have, such as post voting. Recognizing this lim-
itation, we manually introduced 13 additional APIs including one API on post voting, with our
best effort trying to mimic the official Reddit website. This results in a marked improvement in
the API-based agent’s performance, underscoring the direct correlation between the availability of
high-quality APIs and the average performance of the API-based agent.

Moreover, API quality can also correlate with the performance of browsing agents. This may be
because websites with good APIs often have clean, user-friendly interfaces, which benefit machine
agents when interacting with the web interface. Good API practices suggest a thoughtful design
process that tends to carry over into the overall user interface, allowing the browsing agent to more
easily parse and interact with the website. As a result, both API-based and browsing agents are able
to function more effectively in environments where high API standards are maintained.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose new web agents that use APIs instead of traditionally browsers. We
found that API-based agents outperform browsing-based counterparts, especially on websites with
sufficient API support. Hence we further propose an agent that is capable of switching between
using APIs or browsers and empirically outperforms agents that only uses one of the two interfaces.

For future work, we aim to explore methods for automatically inducing APIs (Wang et al., 2024e).
These methods could identify and generate API calls for websites lacking formal API support, fur-
ther expanding the applicability and efficiency of API-based approaches. By automating the discov-
ery and utilization of APIs, we envision even more robust agents capable of handling diverse web
tasks with minimal reliance on manual interaction through browsing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 LIMITATIONS

Evaluation Benchmark In this paper, we evaluate web agents exclusively on WebArena tasks.
While WebArena offers realistic and diverse challenges, the number and variety of tasks may be lim-
ited. Other benchmarks, such as Webshop (Yao et al., 2022), MiniWoB (Shi et al., 2017), Mind2Web
(Deng et al., 2023), WebVoyager (He et al., 2024b), and VisualWebArena (Koh et al., 2024a), pro-
vide alternative evaluation platforms. However, as discussed in Section 2.1, WebArena aligns more
closely with real-world scenarios and our use case, while other benchmarks lack support for API
calling. For example, VisualWebArena is less applicable to our study because WebArena APIs lack
support for interacting with images, a core component of VisualWebArena tasks.

API Availability A key limitation of API-based agents is the inconsistent availability and coverage
of APIs across websites. Even platforms with extensive API ecosystems, such as GitLab, may lack
support for specific functionalities (e.g., retrieving a user’s official username from a displayed name),
leading to edge cases where API-based agents are unable to complete tasks due to incomplete API
support. However, advancements in techniques like Automatic Web API Mining (AWM) Wang et al.
(2024e) could potentially address this limitation by automatically generating APIs for unsupported
tasks, reducing reliance on manual API creation.

Incorporating APIs Unlike browsing agents, which can adapt to new websites without manual in-
tervention, the API-based agent requires additional effort to integrate the necessary APIs documen-
tation to the action space of the agent for each website. This manual integration process increases
complexity, particularly when the agent must support a wide range of websites, limiting scalability
compared to agents that rely solely on web browsing for interactions. However, future advancements
in automated API scraping and documentation generation could eliminate this bottleneck, allowing
for more scalable and flexible API-based agents.

REFERENCES

Talor Abramovich, Meet Udeshi, Minghao Shao, Kilian Lieret, Haoran Xi, Kimberly Milner, Sofija
Jancheska, John Yang, Carlos E. Jimenez, Farshad Khorrami, Prashanth Krishnamurthy, Brendan
Dolan-Gavitt, Muhammad Shafique, Karthik Narasimhan, Ramesh Karri, and Ofir Press. Enigma:
Enhanced interactive generative model agent for ctf challenges, 2024. URL https://arxiv.org/abs/
2409.16165.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement learning
for mapping instructions to actions. In Keh-Yih Su, Jian Su, Janyce Wiebe, and Haizhou Li
(eds.), Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 82–
90, Suntec, Singapore, August 2009. Association for Computational Linguistics. URL https:
//aclanthology.org/P09-1010.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A. Plum-
mer. A dataset for interactive vision-language navigation with unknown command feasibil-
ity. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part VIII, pp. 312–328, Berlin, Heidelberg, 2022. Springer-Verlag.
ISBN 978-3-031-20073-1. doi: 10.1007/978-3-031-20074-8 18. URL https://doi.org/10.1007/
978-3-031-20074-8 18.

Alan Chan, Carson Ezell, Max Kaufmann, Kevin Wei, Lewis Hammond, Herbie Bradley, Emma
Bluemke, Nitarshan Rajkumar, David Krueger, Noam Kolt, et al. Visibility into ai agents. In The
2024 ACM Conference on Fairness, Accountability, and Transparency, pp. 958–973, 2024.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024a.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the

11

https://arxiv.org/abs/2409.16165
https://arxiv.org/abs/2409.16165
https://aclanthology.org/P09-1010
https://aclanthology.org/P09-1010
https://doi.org/10.1007/978-3-031-20074-8_18
https://doi.org/10.1007/978-3-031-20074-8_18

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Association for Computational Linguistics ACL 2024, pp. 9354–9366, Bangkok, Thailand and
virtual meeting, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-acl.557. URL https://aclanthology.org/2024.findings-acl.557.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024a.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024b.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253, 2024.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, Demetri Terzopoulos, Ade
Famoti, Noboru Kuno, Ashley Llorens, Hoi Vo, Katsu Ikeuchi, Li Fei-Fei, Jianfeng Gao, Naoki
Wake, and Qiuyuan Huang. An interactive agent foundation model, 2024. URL https://arxiv.org/
abs/2402.05929.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines
for large language model agents. In ICML 2024 Workshop on LLMs and Cognition, 2024. URL
https://openreview.net/forum?id=Zu1MihB661.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie Tang, Jayanth Srinivasa, Hugo Latapie, and
Yu Su. Middleware for llms: Tools are instrumental for language agents in complex environments,
2024. URL https://arxiv.org/abs/2402.14672.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=9JQtrumvg8.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6864–
6890, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.
18653/v1/2024.acl-long.371. URL https://aclanthology.org/2024.acl-long.371.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024b.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2023. URL https://arxiv.org/abs/2312.08914.

Qiuyuan Huang, Naoki Wake, Bidipta Sarkar, Zane Durante, Ran Gong, Rohan Taori, Yusuke Noda,
Demetri Terzopoulos, Noboru Kuno, Ade Famoti, Ashley Llorens, John Langford, Hoi Vo, Li Fei-
Fei, Katsu Ikeuchi, and Jianfeng Gao. Position paper: Agent ai towards a holistic intelligence,
2024. URL https://arxiv.org/abs/2403.00833.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluat-
ing multimodal agents on realistic visual web tasks. In Lun-Wei Ku, Andre Martins, and

12

https://aclanthology.org/2024.findings-acl.557
https://arxiv.org/abs/2402.05929
https://arxiv.org/abs/2402.05929
https://openreview.net/forum?id=Zu1MihB661
https://arxiv.org/abs/2402.14672
https://openreview.net/forum?id=9JQtrumvg8
https://aclanthology.org/2024.acl-long.371
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2403.00833

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 881–905, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.50. URL
https://aclanthology.org/2024.acl-long.50.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024b.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-
based web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5295—-5306, 2024.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8198–8210, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.729. URL https://aclanthology.org/2020.acl-main.729.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning on
web interfaces using workflow-guided exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=ryTp3f-0-.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding?, 2024a. URL https://arxiv.org/abs/2404.05955.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. arXiv preprint arXiv: 2308.03688, 2023.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
foundation agents. arXiv preprint arXiv:2408.06327, 2024b.

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, and Giovanni Campagna. Wilbur:
Adaptive in-context learning for robust and accurate web agents, 2024.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue, 2024. URL https://arxiv.org/abs/2402.05930.

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application programming interface
documentation: What do software developers want? Journal of Technical Writing and Commu-
nication, 48(3):295–330, 2018.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. Conference On Language Modeling (COLM), 2024.
URL https://openreview.net/forum?id=NPAQ6FKSmK.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy P Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In Thirty-seventh Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL
https://openreview.net/forum?id=j4b3l5kOil.

13

https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2020.acl-main.729
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/2402.05930
https://openreview.net/forum?id=NPAQ6FKSmK
https://openreview.net/forum?id=j4b3l5kOil

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vinay Samuel, Henry Peng Zou, Yue Zhou, Shreyas Chaudhari, Ashwin Kalyan, Tanmay Rajpuro-
hit, Ameet Deshpande, Karthik Narasimhan, and Vishvak Murahari. Personagym: Evaluating
persona agents and llms, 2024. URL https://arxiv.org/abs/2407.18416.

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai, Sheng Qi, Li Zhang, Mengwei Xu, and Yun
Ma. Shortcutsbench: A large-scale real-world benchmark for api-based agents, 2024. URL
https://arxiv.org/abs/2407.00132.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 3135–3144. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/shi17a.html.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
actions. In First Conference on Language Modeling, 2024.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization of LLM agents. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7584–7600, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.409. URL
https://aclanthology.org/2024.acl-long.409.

Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian, Jacques
Klein, and Tegawende F. Bissyande. Codeagent: Autonomous communicative agents for code
review, 2024. URL https://arxiv.org/abs/2402.02172.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024c.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, and Graham Neubig. What are tools anyway?
a survey from the language model perspective. arXiv preprint arXiv:2403.15452, 2024d.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024e.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Monica
Lam. Grounding open-domain instructions to automate web support tasks. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1022–1032, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.80. URL https://aclanthology.org/2021.naacl-main.80.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

14

https://arxiv.org/abs/2407.18416
https://arxiv.org/abs/2407.00132
https://proceedings.mlr.press/v70/shi17a.html
https://aclanthology.org/2024.acl-long.409
https://arxiv.org/abs/2402.02172
https://arxiv.org/abs/2407.16741
https://aclanthology.org/2021.naacl-main.80

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents, 2023. URL https://arxiv.org/abs/2207.
01206.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms, 2024.
URL https://arxiv.org/abs/2404.05719.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction, 2024. URL
https://arxiv.org/abs/2401.06201.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges, 2024. URL https:
//arxiv.org/abs/2401.07339.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2DlB.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023. URL https://webarena.dev.

A APPENDIX

A.1 RELATED WORK

The development of AI agents that interact with the web and APIs has garnered significant research
attention. Web browsers, serving as the primary interface for interacting with online content, have
long been a focus for AI research. Web-based agents that can navigate websites, extract information,
and perform tasks autonomously have been studied extensively, especially in the context of large
language models (LLMs) and agents designed to mimic human behavior online.

Web Navigation Agents Much prior work has centered around agents that perform web-based
tasks using browsing actions (Yao et al., 2022; Lai et al., 2024; Koh et al., 2024b; Pan et al., 2024).
These agents are particularly effective in environments where human-like interaction with a user
interface is necessary (Drouin et al., 2024b). Frameworks such as WebArena have further refined
the evaluation of such agents by providing complex and realistic web navigation tasks (Zhou et al.,
2023). Our work explores the Hybrid Agent that combines web browsing with API interactions.
While prior work primarily focuses on browsing-only agents, we examine how Hybrid Agents can
enhance performance by integrating structured API calls with web navigation.

Code Generation Agents and Tool Usage Another stream of research focuses on agents that
interact with online content via application programming interfaces (APIs) (Wang et al., 2024d; Patil
et al., 2023; Qin et al., 2023; Yuan et al., 2024; Wang et al., 2024b; Du et al., 2024). In this context,
works such as CodeAct have pioneered the development of agents that generate and execute code,
including API calls, to perform tasks typically reserved for software engineers (Wang et al., 2024a;
Zhang et al., 2024; Tang et al., 2024). These API-based agents are optimized for tasks that involve
structured data exchanges, allowing them to perform operations more efficiently than traditional
web navigation agents (Shen et al., 2024). On the other hand, our work integrates both browsing
and API interactions, demonstrating that Hybrid Agents can outperform API-only agents in tasks
requiring web navigation. While existing research shows the efficiency of API-based agents, our
Hybrid Agent dynamically switches between APIs and web browsing to optimize task performance.

Additionally, we are the first to explore comparative studies of API v.s. Browsing agents on the
same websites. We demonstrate that API-based web agents are often more efficient than browsing

15

https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2404.05719
https://arxiv.org/abs/2401.06201
https://arxiv.org/abs/2401.07339
https://arxiv.org/abs/2401.07339
https://openreview.net/forum?id=piecKJ2DlB
https://webarena.dev

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

agents when APIs are available, leading to significant improvements in performance. This finding is
aligned with previous studies that highlight the advantages of structured interactions through APIs
compared to unstructured web browsing interactions.

A.2 WEBARENA TASKS

WebArena includes the following tasks:

• Gitlab – 180 instances: This website simulates tasks related to project manage-
ment and version control, where agents perform tasks like opening issues, handling
merge requests, or creating repositories. Example query: Submit a merge request for
a11yproject.com/redesign branch to be merged into markdown-figure-block branch, assign
myself as the reviewer.

• Map – 109 instances: For this website, tasks are centered around navigation, trip planning
and queries about distances, requiring the agent to retrieve and interpret map-based data,
similar to using real-world map services like Google map. Example query: Tell me the full
address of all international airports that are within a driving distance of 50 km to Carnegie
Mellon University.

• Shopping – 187 instances: This dataset represents typical e-commerce tasks, such as
searching for products, adding items to carts, and processing transactions. Example query:
Change the delivery address for my most recent order to 77 Massachusetts Ave, Cambridge,
MA.

• Shopping Admin – 182 instances: This setting involves managing backend administrative
tasks for an online store, like managing product inventories, processing orders, or viewing
sales reports. Example query: Tell me the the number of reviews that our store received by
far that mention term "satisfied".

• Reddit – 106 instances: Tasks here are similar to interactions with the official Reddit,
where agents need to post comments, upvote or down-vote posts, or retrieve information
from threads. Example query: Tell me the count of comments that have received more
downvotes than upvotes for the user who made the latest post on the Showerthoughts forum.

• Multi-Website Tasks – 48 instances: These examples involve tasks that span across two
websites, requiring the agent to interact with both websites simultaneously, adding com-
plexity to the task. Example query: Create a folder named news in gimmiethat.space repo.
Within it, create a file named urls.txt that contains the URLs of the 5 most recent posts from
the news related subreddits?

A.3 API-BASED AGENT PROMPT

System Prefix

You are an AI assistant that performs tasks on the web sites. You should give helpful, detailed, and
polite responses to the user’s queries.
You have the ability to call site-specific APIs using Python, or browse the website directly.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

API Prompt

To call APIs, you can use an interactive Python (Jupyter Notebook) environment, executing code with
<execute ipython>.
<execute ipython>
print("Hello World!")
</execute ipython>
This can be used to call the Python requests library, which is already installed for you. Here are some
hints about effective API usage:

• It is better to actually view the API response and ensure the relevant information is correctly
extracted and utilized before attempting any programmatic parsing.

• Make use of HTTP headers when making API calls, and be careful of the input parameters
to each API call.

• Be careful about pagination of the API response, the response might only contain the first
few instances, so make sure you look at all instances.

The user will provide you with a list of API calls that you can use.

System Suffix

The information provided by the user might be incomplete or ambiguous. For example, if I want to
search for "xyz", then "xyz" could be the name of a product, a user, or a category on the site. In
these cases, you should attempt to evaluate all potential cases that the user might be indicating and be
careful about nuances in the user’s query. Also, do NOT ask the user for any clarification, they cannot
clarify anything and you need to do it yourself.
When you think you successfully finished the task, first respond with Finish[answer] where you
include only your answer to the question [] if the user asks for an answer, make sure you should only
include the answer to the question but not any additional explanation, details, or commentary unless
specifically requested.
After that, when you responded with your answer, you should respond with <finish></finish>.
Then finally, to exit, you can run
<execute bash>
exit()
</execute bash>
Your responses should be concise. The assistant should attempt fewer things at a time instead of putting
too many commands OR too much code in one execute block.
Include AT MOST ONE <execute ipython>, <execute browse>, or <execute bash> per
response.
IMPORTANT: Execute code using <execute ipython>, <execute bash>, or
<execute browse> whenever possible.
Below are some examples:
— START OF EXAMPLE —
Examples
— END OF EXAMPLE —
Now, let’s start!

System Prompt

System Prefix + API Prompt + System Suffix

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Initial User Prompt

Think step by step to perform the following task related to gitlab. Answer the question: ***Example
WebArena Intent***
The site URL is Example Site URL, use this instead of the normal site URL.
For API calling, use this access token: Example Access Token.
My username on this website is Example Username.
Below is the list of all APIs you can use and their descriptions:
Example API Documentation.
Note: Before actually using a API call, *you should call the get api documentation function in
the utils module to get detailed API documentation of the API.* For example, if you want to use the
API GET /api/v4/projects/id/repository/commits, you should first do:
<execute ipython>
from utils import get api documentation
get api documentation("GET /api/v4/projects/{id}/repository/commits")
</execute ipython>
This will provide you with detailed descriptions of the input parameters and example output jsons.

A.4 HYBRID AGENT PROMPT

System Prefix

You are an AI assistant that performs tasks on the web sites. You should give helpful, detailed, and
polite responses to the user’s queries.
You have the ability to call site-specific APIs using Python, or browse the website directly.
IMPORTANT: In general, you must always first try to use APIs to perform the task; however, you
should use web browsing when there is no useful API available for the task.
IMPORTANT: After you tried out using APIs, you must use web browsing to navigate to some URL
containing contents that could verify whether the results you obtained by API calling is correct.

API Prompt

To call APIs, you can use an interactive Python (Jupyter Notebook) environment, executing code with
<execute ipython>.
<execute ipython>
print("Hello World!")
</execute ipython>
This can be used to call the Python requests library, which is already installed for you. Here are some
hints about effective API usage:

• It is better to actually view the API response and ensure the relevant information is correctly
extracted and utilized before attempting any programmatic parsing.

• Make use of HTTP headers when making API calls, and be careful of the input parameters
to each API call.

• Be careful about pagination of the API response, the response might only contain the first
few instances, so make sure you look at all instances.

The user will provide you with a list of API calls that you can use.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Browsing Prompt

You can browse the Internet by putting special browsing commands within <execute browse> and
</execute browse> (in Python syntax).
For example to select the option blue from the dropdown menu with bid 12, and click on the submit
button with bid 51:
<execute browse>
select option("12", "blue")
click("51")
</execute browse>

The following actions are available:

def goto(url: str):
"""Navigate to the specified URL.
Examples:
goto(’http://www.example.com’)

"""

def go back():
"""Navigate back to the previous page.
Examples:
go back()

"""

def go forward():
"""Navigate forward to the next page.
Examples:
go forward()

"""

def scroll(delta x: float, delta y: float):
"""Scroll the page by the specified amount.
Examples:
scroll(0, 200)
scroll(-50.2, -100.5)

"""

def fill(bid: str, value: str):
"""Fill the input field with the specified value.
Examples:
fill(’237’, ’example value’)
fill(’45’, ’multi-line example’)
fill(’a12’, ’example with "quotes"’)

"""

def select option(bid: str, options: str | list[str]):
"""Select an option from a dropdown menu.
Examples:
select option("48", "blue")
select option("48", ["red", "green", "blue"])

"""

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Browsing Prompt - Continued

def click(bid: str, button: Literal["left", "middle", "right"] =
"left", modifiers: list[typing.Literal["Alt", "Control", "Meta",
"Shift"]] = []):
"""Click on an element with the specified button and modifiers.
Examples:
click("51")
click("b22", button="right")
click("48", button="middle", modifiers=["Shift"])

"""

def dblclick(bid: str, button: Literal["left", "middle", "right"]
= "left", modifiers: list[typing.Literal["Alt", "Control", "Meta",
"Shift"]] = []):
"""Double-click on an element with the specified button and

modifiers.
Examples:
dblclick("12")
dblclick("ca42", button="right")
dblclick("178", button="middle", modifiers=["Shift"])

"""

def hover(bid: str):
"""Hover over an element.
Examples:
hover("b8")

"""

def press(bid: str, key comb: str):
"""Press a key combination on an element.
Examples:
press("88", "Backspace")
press("a26", "Control+a")
press("a61", "Meta+Shift+t")

"""

def focus(bid: str):
"""Focus on an element.
Examples:
focus("b455")

"""

def clear(bid: str):
"""Clear the input field.
Examples:
clear("996")

"""

def drag and drop(from bid: str, to bid: str):
"""Drag and drop an element to another element.
Examples:
drag and drop("56", "498")

"""

def upload file(bid: str, file: str | list[str]):
"""Upload a file to the specified element.
Examples:
upload file("572", "my receipt.pdf")
upload file("63", ["/home/bob/Documents/image.jpg",

"/home/bob/Documents/file.zip"])
"""

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

System Suffix

The information provided by the user might be incomplete or ambiguous. For example, if I want to
search for "xyz", then "xyz" could be the name of a product, a user, or a category on the site. In
these cases, you should attempt to evaluate all potential cases that the user might be indicating and be
careful about nuances in the user’s query. Also, do NOT ask the user for any clarification, they cannot
clarify anything and you need to do it yourself.
When you think you successfully finished the task, first respond with Finish[answer] where you
include only your answer to the question [] if the user asks for an answer, make sure you should only
include the answer to the question but not any additional explanation, details, or commentary unless
specifically requested.
After that, when you responded with your answer, you should respond with <finish></finish>.
Then finally, to exit, you can run
<execute bash>
exit()
</execute bash>
Your responses should be concise. The assistant should attempt fewer things at a time instead of putting
too many commands OR too much code in one execute block.
Include AT MOST ONE <execute ipython>, <execute browse>, or <execute bash> per
response.
IMPORTANT: Execute code using <execute ipython>, <execute bash>, or
<execute browse> whenever possible.
Below are some examples:
— START OF EXAMPLE —
Examples
— END OF EXAMPLE —
Now, let’s start!

System Prompt

System Prefix + API Prompt + Browsing Prompt + System Suffix

Initial User Prompt

Think step by step to perform the following task related to gitlab. Answer the question: ***Example
WebArena Intent***
The site URL is Example Site URL, use this instead of the normal site URL.
For API calling, use this access token: Example Access Token.
For web browsing, You should start from the URL Example Start URL, and this webpage is
already logged in and opened for you.
My username on this website is Example Username.
Below is the list of all APIs you can use and their descriptions:
Example API Documentation.
Note: Before actually using a API call, *you should call the get api documentation function in
the utils module to get detailed API documentation of the API.* For example, if you want to use the
API GET /api/v4/projects/id/repository/commits, you should first do:
<execute ipython>
from utils import get api documentation
get api documentation("GET /api/v4/projects/{id}/repository/commits")
</execute ipython>
This will provide you with detailed descriptions of the input parameters and example output jsons.
IMPORTANT: In general, you must always first try to use APIs to perform the task; however, you
should use web browsing when there is no useful API available for the task. IMPORTANT: After you
tried out using APIs, you must use web browsing to navigate to some URL containing contents that
could verify whether the results you obtained by API calling is correct.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.5 CASE STUDIES

Web browsing has complex traces and lower success rate

API Calling failing due to no useful API available to solve the task
No API for checking and deleting reviews.

(1) goto `admin.com` (2) login with credentials (3) click
`store` (4) click `products` (5) search `Sybil running short`
(6) iteratively click products on search result and see if it’s
the product wanted (7) click review 1 (8) if negative, then
delete (9) click review 2

Hybrid Agent simplifies task traces

(1) GET `/api/products` to retrieve all products (2) get the
product URL from `Sybil running short` product in Python (3)
go to product URL (4)click review 1 (5) if negative, then
delete (6) click review 2

Task: delete all negative reviews for Sybil running short.

Figure 4: The Hybrid Agent succeeds while the

browsing agent and API-based agent both fail

In this section, we analyze two contrasting in-
stances as shown in Figure 4 and Figure 5,
where the Hybrid Agent and API-based agent
exhibited different levels of performance on
WebArena tasks. These case studies highlight
the strengths and weaknesses of each agent,
demonstrating scenarios where hybrid brows-
ing outperforms API-only or browsing-only ap-
proaches, as well as cases where the API-based
agent excels over the hybrid method.

Case 1 One example where the Hybrid Agent succeeded, while both the API-based and browsing
agents failed, involved a task from the Shopping Admin domain. The query was to ”delete all
negative reviews for Sybil running short,” a product listed in the shopping admin interface. In this
instance, the API-based agent failed because no relevant API endpoints were available for retrieving
or deleting reviews. Similarly, the browsing agent failed, as completing this task purely through
web navigation required too many steps, as depicted in Figure 4. This complexity made the task
challenging for an agent relying solely on web interactions. However, the Hybrid Agent successfully
completed the task by leveraging both API and browsing functionalities. An example trace of the
Hybrid Agent shown in Figure 4. This case highlights the Hybrid Agent’s ability to efficiently
combine API calls with web interactions, allowing it to tackle complex multi-step tasks that would
be difficult or impossible for solely browsing or solely API-based agents.

Web browsing has complex traces and lower success rate

API Calling successfully completed the task after one API call

requests.get('/api/ai/contributors').json()['email']

(1) goto `gitlab.com` (2) login with credentials (3) click
`projects` (4) click `ai` (5) click `Repository` (6) click
`Commits` (7) For each contributor, count commit number
(15) did not find all commits in 15 steps

Hybrid Agent fails the task as it falsely seeks help from browsing

(1) goto `gitlab.com` (2) login with credentials (3) click
`projects` (4) click `ai` ((4) click `Repository` (5) click
`Commits` (6) For each contributor, count commit number
(15) did not find all commits in 15 steps

Task: tell me the email address of the contributor who has
the most commits to `ai`.

Figure 5: Case 2: the API-based agent succeeds while the

browsing agent and the Hybrid Agent fails.

Case 2 Conversely, there are
instances where the API-based
agent outperforms the Hybrid
Agent. One such case occurred
in the GitLab website, where the
task was to "tell me the email
address of the contributor who has
the most commits to ai." The
API-based agent successfully com-
pleted this task by utilizing the GET
/api/id/contributors API
endpoint to retrieve the contributor
with the highest number of commits
and their associated email address.
On the other hand, the Hybrid Agent

attempted to solve the task through browsing but encountered significant challenges. Accessing
this information through web browsing required navigating GitLab’s interface, locating the correct
repository and branch, and identifying the top contributor manually, a task that might be too difficult
to perform through web navigation alone. As a result, both the browsing agent and the Hybrid
Agent failed to complete the task. This case demonstrates an example where API access provides a
more straightforward solution than browsing in contexts requiring structured data retrieval.

A.6 STEPS AND COSTS

Browsing Agent API-Based Agent Hybrid Agent

steps cost steps cost steps cost

8.4 $0.1 7.8 $1.2 8.9 $1.5

Table 6: Average number of steps and cost of agents on
WebArena tasks

Additionally, we use Table 6 to demon-
strate the average steps taken and the aver-
age cost for each agent to complete Web-
Arena tasks. The breakdown of steps and
cost by website is in the Appendix A.6.
Figure 7 demonstrates a scatterplot of the
average accuracy of each agent on Web-
Arena over their average steps and average
cost.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 6: Number of steps (left) and cost (right) of agents averaged across WebArena Websites

Steps The browsing agent takes more steps to complete tasks compared to the API-based agent on
average, while the Hybrid Agent takes the most steps amongst the three agents. This is likely due
to the browsing agent’s reliance on navigating web interfaces and interacting with visual elements,
which involves a sequential and more time consuming processes. The API-based agent is the most
efficient in terms of steps, as it can directly interact with structured data via APIs, bypassing many
of the steps involved in traditional web navigation. The Hybrid Agent, combining both action spaces
from the browsing agent and the API-based agent, takes more steps than both agents.

Costs The cost of completing tasks shows a different trend. While the browsing agent requires
more steps, it is much cheaper compared to the API-based agent and the Hybrid Agent. This is
primarily because the prompts needed for browsing agents are much shorter. When browsing, the
agent only needs instructions on how to use the web interface and the limited action space around
14 browsing actions. In contrast, API-based and Hybrid Agents require access to a much larger set
of API calls. For example, when interacting with GitLab, the agent is provided with 988 available
APIs, leading to much longer prompts and significantly increasing the cost of execution. The cost
goes down when the prompt for API calling is shorter. For example, the Reddit website has the least
length of API documentation, where its cost is also less than other websites. However, as visualized
in Figure 7, the accuracy of the API-based agent and the Hybrid Agent is much higher than the
browsing agent, which makes the increase in cost justifiable due to the significantly improved task
performance. The higher cost is offset by the agents’ ability to complete tasks more accurately and
efficiently. In the future, this increased cost could potentially be mitigated by methods that retrieve
only relevant APIs on the fly.

Table 7 shows the breakdown of number of steps and cost by website.

Agents Gitlab Map Shopping Shop-Admin Reddit Multi Sites AVG.
steps cost steps cost steps cost steps cost steps cost steps cost steps cost

Browsing 9.4 0.2 8.0 0.1 7.3 0.1 7.0 0.2 11.1 0.1 7.5 0.1 8.4 0.1
API-Based 7.0 1.7 6.6 1.1 8.2 1.0 8.4 1.1 8.8 0.6 7.7 1.6 7.8 1.2
Hybrid 8.1 2.0 9.4 1.7 8.2 1.3 9.0 1.4 10.5 1.0 8.0 1.9 8.9 1.5

Table 7: Number of Steps and Cost (in U.S. dollars) of Agents across WebArena Websites

A.7 ERROR ANALYSIS

We randomly sampled 100 tasks from the WebArena tasks and performed error analysis on the
API-based agent. We found that 33% of the tasks are correctly performed with only API calling,
50% are unsolvable with solely APIs, 6% are incorrect due to incorrect task understanding, and
11% are incorrect due to error in calling APIs such as mal-formatting and wrong input. In other
words, among the 50 API solvable tasks, 66% are performed correctly by the API-based agent. This
showcases the strong capability of the API-based agent when given sufficient API to solve the task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Additionally, the average API calls required to solve the API solvable tasks are 2.1 API calls, demon-
strating how API calling could reduce operational complexity for web tasks.

Figure 7: Error analysis on 100 randomly sampled WebArena tasks.

24

	Introduction
	Background: Web Browsing
	The Web Browsing Task
	A Baseline Web Browsing Agent

	From Web Browsing to API Calling
	APIs and API Documentation
	Obtaining APIs for Agents
	Using APIs in Agents

	Hybrid Browsing+API Calling Agents
	Experimental Setup
	Dataset Description
	API Statistics for WebArena Sites
	Good API Support
	Medium API Support
	Poor API Support

	API Implementation Details
	One-Stage Documentation for Small API Sets
	Two-Stage Documentation Retrieval for Large API Sets

	Evaluation Framework

	Results
	Main Results
	Does API Quality Matter?

	Conclusion and Future Work
	Limitations
	Appendix
	Related Work
	WebArena Tasks
	API-Based Agent Prompt
	Hybrid Agent Prompt
	Case Studies
	Steps and Costs
	Error Analysis

