
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND BROWSING: API-BASED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Web browsers are a portal to the internet, where much of human activity is un-
dertaken. Thus, there has been significant research work in AI agents that interact
with the internet through web browsing. However, there is also another interface
designed specifically for machine interaction with online content: application pro-
gramming interfaces (APIs). In this paper we ask – what if we were to take tasks
traditionally tackled by browsing agents, and give AI agents access to APIs? To
do so, we propose two varieties of agents: (1) an API-calling agent that attempts to
perform online tasks through APIs only, similar to traditional coding agents, and
(2) a Hybrid Agent that can interact with online data through both web browsing
and APIs. In experiments on WebArena, a widely-used and realistic benchmark
for web navigation tasks, we find that API-based agents outperform web brows-
ing agents. Hybrid Agents out-perform both others nearly uniformly across tasks,
resulting in a more than 20.0% absolute improvement over web browsing alone,
achieving a success rate of 35.8%, achiving the SOTA performance among task-
agnostic agents. These results strongly suggest that when APIs are available, they
present an attractive alternative to relying on web browsing alone.

1 INTRODUCTION

Web agents use browsers as an interface to facilitate humans in performing daily tasks such as
online shopping, online planning, trip planning, and other work-related tasks (Liu et al., 2018; Li
et al., 2020; Rawles et al., 2023; Patil et al., 2023; Pan et al., 2024; Chen et al., 2024a; Huang et al.,
2024; Durante et al., 2024). Existing web agents typically operate within the space of graphical
user interfaces (GUI) (Zhang et al., 2023; Zhou et al., 2023; Zheng et al., 2024), using action spaces
that simulate human-like keyboard and mouse operations, such as clicking and typing. To observe
web pages, common approaches include using accessibility trees, a simplified version of the HTML
DOM tree, as the input to text-based models (Zhou et al., 2023; Drouin et al., 2024a), or multi-
modal, screenshot-based models (Koh et al., 2024a; Xie et al., 2024; You et al., 2024; Hong et al.,
2023). However, regardless of the method of interaction with web sites, there is no getting around
the fact that these sites were originally designed for human consumption, and may not be the ideal
interface for machines.

Notably, there is another interface designed specifically for machine interaction with online content:
application programming interfaces (APIs) (Chan et al., 2024). APIs allow machines to communi-
cate directly with the backend of a web service (Branavan et al., 2009), sending and receiving data
in machine-friendly formats such as JSON or XML (Meng et al., 2018; Xu et al., 2021). Nonethe-
less, whether AI agents can effectively use APIs to tackle real-world online tasks, and the conditions
under which this is possible, remain unstudied in the scientific literature. In this work, we explore
methods for tackling tasks normally framed as web-navigation tasks with an expanded action space
to interact with APIs. To do so, we develop new API-based agents that directly interact with web
services via API calls, as depicted in Figure 1. This method bypasses the need to interact with web
page GUIs through simulated clicks.

At the same time, not all websites have extensive API support, in which case web browsing actions
may still be required. To address these cases, we explore a hybrid approach that combines API-based
agents with web-browsing agents, as described in Figure 1. By implementing an agent capable of
interleaving API calls and web browsing, we found that agents benefit from the flexibility of this
hybrid model. When APIs are available and well-documented, the agent can directly interact with
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Figure 1: A comparison of three types of agents. The Browsing Agent performs tasks through
web browsing only, utilizing the accessibility tree to interact with web pages, achieving an average
performance of 14.8% on WebArena. The API-Based Agent performs tasks by making API calls
and generating code without relying on web browsing, achieving an average accuracy of 29.2%.
The Hybrid Agent combines both methods, dynamically switching between web browsing and
API calling, depending on the task. This allows the execution of either API calls or web browsing
actions, or both in combination, improving performance by more than 5 percentage points compared
to the API-Based Agent .

the web services. For websites with limited API support, the agent seamlessly switches to web
browsing mode, simulating human interaction to ensure task completion.

We evaluated our API-based and Hybrid Agents on WebArena, a benchmark for real-world web
tasks (Zhou et al., 2023), and the results are shown in Figure 1. Our experiments revealed three key
findings: (1) The API-based agent consistently outperforms browsing-based agents on WebArena
tasks by around 15% on average, regardless of the comprehensiveness of APIs. (2) The API-based
agent yields a higher success rate on websites with extensive API support (e.g., Gitlab) compared to
those with limited API support (e.g., Reddit). This result underscores the importance of developing
comprehensive API support for more accurate and efficient web task automation in the future. (3)
The Hybrid Agent outperforms solely browsing-based agents and solely API-based agents, further
improving accuracy by more than 5% compared to the API-based agent. By dynamically switching
between approaches, the Hybrid Agent is able to provide more consistent and reliable outcomes.

In sum, our results suggest that allowing agents to interact with APIs, interfaces designed specifi-
cally for machines, is often preferable or at least complementary to direct interaction with graphical
interfaces designed for humans.

2 BACKGROUND: WEB BROWSING

2.1 THE WEB BROWSING TASK

Various benchmarks have been developed to evaluate the performance of web browsing agents.
MiniWoB (Miniature World of Bits) is an early benchmark that provides simple web-based tasks
such as clicking links or typing into forms, but it remains limited in complexity and realism (Shi
et al., 2017). Mind2Web scales up these tasks, introducing more sophisticated interactions across
websites, but it often lacks the dynamic, real-world scenarios found on the broader web (Deng et al.,
2023). WebArena (Zhou et al., 2023) advances web browsing benchmarks by creating reproducible
sandboxes of a variety of websites, such as managing repositories, posting online, performing online
shopping, and planning trips using map services, while VisualWebArena extends WebArena to the
vision modality (Koh et al., 2024a).
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How many commits 
did the user SaptakS 
make to "a11yproject"?

Web Browsing Traces. Failed after 15 steps.

API Calling via Python requests library

<execute_ipython>
(1)r=requests.get('gitlab.com/api/a11yproject/commits')
(2)commits=r.json()
(3)len([c for c in commits if c['author'] == 'SaptakS'])
</execute_ipython>

(1) goto `gitlab.com` (2) login with credentials 
(3) click `a11yproject` (4) click `Repository` 
(5) click `Commits` (6) No commits found -> scroll down 
(7) No commits found -> scroll down ...... (15) No 
commits found but no steps left, conclude 0 commits are 
made by SaptakS.

Br
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sin
g A
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Figure 2: The API-based agent can often solve problems in many fewer function calls than tradi-

tional browsing agents . In this task, web browsing failed to solve the intent "find the number of

commits the user SaptakS made to the repo a11yproject" after 15 steps, while our API-based agent
successfully completed the task with only three lines of code.

In this paper, we focus on WebArena tasks, which simulate real-world scenarios to evaluate an
agent’s ability to complete diverse web-based activities.1 Tasks in WebArena include interacting
with platforms like Gitlab (to manage projects and repositories), Reddit (to browse and post content),
e-commerce websites (for shopping), and mapping services (for trip planning) (Zhou et al., 2023).
Task success is evaluated in three ways: (1) if the task requires producing a specific output, the
agent’s response is checked for correctness; (2) for tasks involving changes to a website’s state (e.g.,
adding an item to a shopping cart), success is measured by verifying whether the state has changed
as expected, such as ensuring the correct item and quantity have been added to the cart; and (3) if
the task involves navigation, success is determined by whether the agent reaches the correct URL
displaying the desired content.

2.2 A BASELINE WEB BROWSING AGENT

While there are a wide variety of agents proposed for such web navigation tasks, in this work we
build upon the WebArena baseline agent (Zhou et al., 2023), which operates purely through web
interaction by leveraging the accessibility tree2, a structure that exposes interactive elements like
buttons, input fields, and hyperlinks (Yao et al., 2023; Gu et al., 2024). Each element of the acces-
sibility tree is characterized by its functionality such as a hyperlink, its content, and specific web
attributes (Liu et al., 2024b; He et al., 2024a; Lù et al., 2024). This exposes web page elements in a
hierarchical structure that is easy for agents to navigate (Samuel et al., 2024; Burns et al., 2022).

Agents based on this framework utilize an action space that simulates human browsing behavior,
incorporating actions such as simulated clicks, form input, and navigation between pages (Liu et al.,
2023; Song et al., 2024; Gur et al., 2024). Importantly, these agents maintain a comprehensive his-
tory of their previous actions, allowing them to contextualize their decision-making in past actions.

While agents utilizing this method can navigate arbitrary web pages and often perform well on
simpler layouts, challenges arise with the complexity of the accessibility tree. Many large language
models (LLMs) are not familiar with this structure, leading to difficulties in completing tasks that
require numerous or complex interactions. As a result, the average accuracy hovers in the low double
digits (Liu et al., 2024a; Deng et al., 2023; Fu et al., 2024). These methods also struggle with content
that need to be dynamically loaded or contents not immediately visible within the tree (Abramovich
et al., 2024; Chen et al., 2024b; Lutz et al., 2024).

To give one motivating example, in Figure 2, we demonstrate a task where the agent needs to per-
form a task determining the number of commits made by the user SaptakS in a repository named

1Notably, upon investigation of VisualWebArena we found that APIs for handling images were relatively
limited, and hence we chose to experiment on text-only tasks in this paper.

2https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree
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# Commits
## GET /api/{id}/commits: Get a list of commits in a project.
| Attribute | Type           | Description                         |
| `id`      | integer/string | The ID or path of the project.      |
| `since`   | string         | Only commits after or on this date. |
| `until`   | string         | Only commits before or on this date.|
Output: JSON containing all commits that meet the given criteria.

<execute_ipython>
requests.get('gitlab.com/api/a11yproject/commits')
</execute_ipython>

[ ......{
    "id": "ed37a2f2",
    "created_at": "2023-03-13T21:04:49.000-04:00",
    "title": "Update README.md",
    "message": "Update README.md",
    "author": "SaptakS",
}]

API 
Documentation

API Calling

JSON Output

Figure 3: An example of API documentation showing how to get commits of a project, the API call
using a Python script to retrieve commits from a project repository, and the resulting JSON response.

a11yproject. Specifically, for each task, the agent is given a fixed number of steps within which
it has to finish the task. Using a traditional web-browsing approach, the agent follows a complex
trajectory, starting with logging into the website, navigating to the correct project, accessing the
repository, and finally attempting to view the list of commits. However, due to the large number of
commits made by other users, the commits by SaptakS are located much further down on the web
page, requiring the agent to scroll down many times. As a result, despite completing 15 actions, the
browsing agent is unable to retrieve the required information.

3 FROM WEB BROWSING TO API CALLING

In contrast to browsing, API calling offers a direct interface for machines to communicate with web
services, reducing operational complexity. In this section, we explore an API-based approach when
performing web tasks.

3.1 APIS AND API DOCUMENTATION

For websites that offer API support, pre-defined endpoints can be utilized to perform tasks
efficiently. These APIs, following standardized protocols like REST3, allow interaction with
web services through sending HTTP requests (e.g., GET, POST, PUT) and receiving structured
data such as JSON objects4 as responses. Websites often provide official documentation for
the APIs, which can give guidance on how to utilize the APIs. Some documentation is pro-
vided in README 5 format, some are in OpenAPI YAML6 format, and some are in plain
text format. For instance, Figure 3 shows the official README documentation of a Gitlab
API GET /api/{id}/commits. It documents the functionality, input arguments, and out-
put types of the API. For example, one could use the Python requests library, by calling
requests.get("gitlab.com/api/a11yproject/commits"), to retrieve all commits
of the repository a11yproject. This would return a JSON list containing all the commits to this
repo, as shown in Figure 3.

3.2 OBTAINING APIS FOR AGENTS

One important design decision is how to obtain APIs for agents to use. The way agents interact with
APIs depends heavily on the availability of APIs and quality of API documentation. In this work,
we acquired APIs by manually looking up official API documentation on a website, although this

3https://en.wikipedia.org/wiki/REST
4https://www.json.org/json-en.html
5https://en.wikipedia.org/wiki/README
6https://yaml.org/
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process could potentially be automated in the future. We classify the availability of APIs according
to the following three scenarios:

Sufficient APIs and Documentation Many websites provide comprehensive API support and
well-documented API documentation in YAML or README format. In this case, simply use the
APIs/documentation as-is. Figure 3 depicts an example of API documentation.

Sufficient APIs, Insufficient Documentation There are some challenging situations where APIs
exist but good documentation is not officially available. In such cases, additional steps may be re-
quired to obtain a list of accessible APIs. In this case, we inspected the frontend or backend code
of the website to extract undocumented API calls that can still be utilized by the agent. Then, based
on the implementation of APIs of the website, leverage an LLM (GPT-4o7) to generate these YAML
or README files. By prompting GPT-4o with the relevant implementation details of the APIs (for
example, the implementation files of the APIs or example traces of API calls), we generate compre-
hensive documentation, including input parameters, expected outputs, and example API calls.

Insufficient APIs In the more challenging cases, where only minimal APIs are available, it may
be necessary to create new APIs. These custom APIs allow agents to perform tasks that otherwise
would require manual web browsing steps. In our case, this was necessary for 1 of 5 web sites in
the WebArena benchmark that we utilized, such as creating Reddit APIs discussed in Section 6.2.

3.3 USING APIS IN AGENTS

Once we have the APIs and documentation, we then need to provide methods to utilize them in
agents. We utilize two different methods based on the size of the API documentation.

One-Stage Documentation for Small API Sets For websites with a smaller number of API end-
points8, we directly incorporate the full documentation into the prompt provided to the agent. This
approach of directly feeding the full documentation worked well for websites with a limited number
of API endpoints, as it allowed the agent to have immediate access to all the necessary information
without the need for a more complex retrieval mechanism.

Two-Stage Documentation Retrieval for Large API Sets For websites with a larger number of
endpoints, providing the full documentation directly within the prompt was impractical due to the
size limitations of agent inputs. To address this, we employ a two-stage documentation retrieval pro-
cess, allowing access to only the relevant information as needed, keeping the initial prompt concise.

In the first stage, the user prompt provide a description of the task, with a list of all avail-
able API endpoints along with a very brief description of each API. For example, {"GET
/api/{id}/commits": "Get a list of commits in a project"}. This initial
summary helps facilitating understanding the scope of all the available APIs while staying within
the prompt size constraints.

In the second stage, if the model determines that it needs detailed information about one or more
API endpoints, it can use a tool called get api documentation. This tool has a dictionary
that maps each API to its API documentation respectively. The dictionary is obtained using pattern
match in Python to retrieve substrings related to each endpoints. get api documentation
is able to search the dictionary and retrieve the full README or YAML documentation for
any given endpoint by calling get api documentation with the endpoint’s identifier. This
may include the input parameters, output formats, and examples of interacting with the end-
point. For example, to retrieve the documentation for GET /api/id/commits, the agent would
call get api documentation("GET /api/id/commits"), and an example returned API
documentation is the documentation in Figure 3.

This retrieval method allows the agent to make flexible and informed choices during the execution
of tasks. If the agent finds that an API does not meet its needs or if it encounters an error, it can

7https://openai.com/index/hello-gpt-4o/
8Specifically, we use a threshold of 100 APIs, but this could be adjusted depending on the supported lan-

guage model context size.
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easily retrieve the documentation for a different API endpoint by calling the function again. This
dynamic approach promotes adaptability and minimizes the risk of incorrect API usage when the
number of APIs available is large. The prompt can be found in Appendix A.3.

4 HYBRID BROWSING+API CALLING AGENTS

We have proposed API-based methods for handling web tasks, but the question arises: given the
benefits of API calling, should we discard web browsing altogether? The most obvious bottleneck is
that not all websites offer comprehensive API support. Some platforms offer limited or poorly doc-
umented APIs (e.g. there is no API for shopping on Amazon9), forcing agents to rely on traditional
web browsing methods to complete tasks.

To deal with these situations, we propose a hybrid methods that integrates both browsing-based and
API-based approaches, and developed a Hybrid Agent capable of interleaving API calls and web
browsing, switching dynamically based on task requirements and the available resources. Specifi-
cally, for each task, the agent is given the fixed step budget within which it has to finish the task. In
each step, the agent could either (1) communicate with humans in natural language to ask for clar-
ification or confirmation, or 2) generate and executes Python code which could include performing
API calling, or 3) performs web browsing actions. The agent could choose freely among these three
options, depending on the agent’s confidence which method could best tackle the task.

The ideal case is that for websites that offer comprehensive API support, the Hybrid Agent can utilize
well-documented endpoints to perform tasks more efficiently than it could through web browsing;
for websites with limited API support or poorly documented APIs, the Hybrid Agent could rely
more on web browsing to fulfill certain tasks. We later find that enabling an agent to interleave API
calling and web browsing boost the agent’s performance (see Section 6).

Prompt Construction The Hybrid Agent’s prompt construction extends upon the API-based
agent by incorporating both API and web-browsing documentation. Similar to the API-based agent,
the Hybrid Agent is provided with a description of available API calls as discussed in Section 3.3.
In addition, the Hybrid Agent receives a detailed specification of the web-browsing actions, which
mirrors the information given to the browsing agent described in Section 2.2, including a breakdown
of all potential browser interactions. It also maintains a history of all its prior steps such that the
agent could make more informed actions. The prompt can be found in Appendix A.4.

5 EXPERIMENTAL SETUP

5.1 DATASET DESCRIPTION

For our experiments, we utilized the WebArena dataset (Zhou et al., 2023) as the primary evaluation
benchmark. WebArena is a comprehensive benchmark designed for real-world web tasks, providing
a diverse set of websites simulating various online interactions. WebArena tasks reflect common
user activities such as navigating websites, performing administrative tasks, and posting online.

The dataset mainly includes five distinct websites, each containing various intents representing dif-
ferent tasks: Gitlab, Map, Shopping, Shopping Admin, Reddit, and Multi-Website Tasks. We
include a more detailed descriptions of the tasks in Appendix A.2. This diverse set of websites and
tasks within WebArena allows for a comprehensive evaluation of the agents, testing their ability to
handle both API-based interactions and web browsing across varied web settings.

5.2 API STATISTICS FOR WEBARENA SITES

In this section, we provide a detailed analysis of the API support of the WebArena websites, catego-
rized into three levels: good, medium, and poor. The availability, functionality, and documentation
of APIs, as described in Table 1, play a crucial role in the efficiency and flexibility of our agents.

9https://www.amazon.com
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Websites Gitlab Map Shopping Admin Reddit
Number of Endpoints 988 53 556 556 31
API/Doc Quality Good Good Fair Fair Poor

Table 1: Number of endpoints, quality of API, and documentation quality for WebArena websites.

5.2.1 GOOD API SUPPORT

Gitlab For Gitlab, we leveraged the open Gitlab REST APIs10, consisting of 988 endpoints. These
APIs offer extensive coverage across a wide range of functionalities, including repositories, com-
mits, users, merge requests, and issues. This comprehensive API support allows for effective in-
teraction with most tasks required in WebArena, making it one of the best-supported platforms in
terms of API availability.

The majority of Gitlab-related tasks can be handled with the provided APIs, with only a small frac-
tion of tasks, such as retrieving the user’s Gitlab feed token, not covered by any existing endpoints.
Overall, Gitlab’s API structure provides robust support.

Map The Map website offers three sets of APIs, each offering distinct functionalities, with a total
of 53 endpoints. Although fewer in number compared to Gitlab and Shopping, these APIs still
provide significant coverage for the tasks in WebArena.

The first set of APIs, openly available at Nominatim11, offers essential endpoints for geographic
searches. The second set of APIs, from Project OSRM12, focuses on routing and navigation func-
tionalities. The third set of APIs, available at OpenStreetMap13, deals primarily with map database
operations. This API is rarely used in WebArena tasks but offers capabilities for interacting with
OSM data. Despite the smaller number of endpoints compared to other websites, the APIs available
for the Map tasks are mostly well-documented and cover most of the essential WebArena use cases.

5.2.2 MEDIUM API SUPPORT

Shopping and Shopping Admin The Shopping and Shopping Admin websites share a common
set of APIs from the Adobe Commerce API14, consisting of 556 endpoints. These APIs provide a
reasonable level of support for common shopping tasks such as managing products, categories, and
customer accounts. However, some features are absent, such as the ability to add items to a wish list,
and thus these tasks must be handled via web browsing. Despite this, the API documentation is fairly
detailed and covers most core functionalities, making it a solid, though not exhaustive, solution for
handling shopping-related tasks.

5.2.3 POOR API SUPPORT

Reddit The Reddit tasks in WebArena are based on a self-hosted limited clone of the Reddit web-
site 15, with limited functionalities as compared to the official site. As a result, all of the available
APIs are self-implemented, with a best effort to mimic to official Reddit APIs. With only 31 end-
points, this website offers minimal API support and no API documentation, making it the least
API-friendly website in the benchmark.

Many critical functionalities, such as searching for specific posts, are missing, leaving agents to
rely heavily on web browsing to complete tasks. The limited API support significantly hampers the
efficiency of task execution on Reddit, highlighting the need for a hybrid browsing+API approach.

10Documentation of all Gitlab APIs could be found at https://docs.gitlab.com/ee/api/rest/.
11https://nominatim.org/release-docs/develop/api/Overview/
12Openly available at https://project-osrm.org/docs/v5.5.1/api
13Publicly available at https://wiki.openstreetmap.org/wiki/API v0.6
14https://developer.adobe.com/commerce/webapi/rest/quick-reference/
15https://codeberg.org/Postmill/Postmill
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5.3 API IMPLEMENTATION DETAILS

In this section, we will discuss how we provided the APIs to the agents when evaluating different
web applications inside WebArena, where we follow the methodologies as discussed in Section 3.3.

5.3.1 ONE-STAGE DOCUMENTATION FOR SMALL API SETS

For websites with fewer than 100 API endpoints, namely the Map and Reddit websites, we directly
incorporated the full documentation into the prompt provided to the agent.

In the case of the Map API, the documentation was sourced directly from the public API documen-
tation provided for the website. The only modification made was the addition of an explanation
detailing how to make HTTP requests using the requests library in Python for interacting with the
Map API’s endpoints. This ensured that the agent could comprehend both the structure of the API
and how to implement calls programmatically.

For Reddit, since there was no pre-existing documentation for the APIs, we leveraged GPT-4o16

itself to generate these README files. By prompting GPT-4o with a file containing all implemen-
tations of the API endpoints, we generated a README documentation, including input parameters,
expected outputs, and example API calls.

5.3.2 TWO-STAGE DOCUMENTATION RETRIEVAL FOR LARGE API SETS

For websites with more than 100 endpoints, such as GitLab, Shopping, and Shopping Admin, we
employ a two-stage documentation retrieval process. For GitLab, we obtained the README docu-
mentation from the official GitLab REST API documentation site. For the Shopping and Shopping
Admin websites, the documentation was provided in the form of an OpenAPI specification, struc-
tured in YAML format.

5.4 EVALUATION FRAMEWORK

We employed OpenHands as our primary evaluation framework to facilitate the development and
testing of our agents (Wang et al., 2024c). OpenHands is an open-source platform designed for
creating and evaluating AI agents that interact with both software and web environments, making
it an appropriate infrastructure for our proposed methods. The OpenHands architecture supports a
variety of interfaces for agents to interact with. Moreover, this framework allows agents to keep
a detailed record of past actions in the prompt, enabling agents to execute actions in a way that is
consistent with earlier steps. For coding tasks, it implements an agent based on CodeAct (Wang
et al., 2024a) that incorporates a sandboxed bash operating system and Jupyter IPython17 environ-
ments, enabling the execution of Python code. Additionally, it includes a BrowsingAgent browsing
agent that focuses solely on web navigation. This agent operates within a Chromium web browser
powered by Playwright18, utilizing a comprehensive set of browser actions defined by BrowserGym
(Drouin et al., 2024b). However, while the browsing agent can browse websites, and the CodeAc-
tAgent make API calls and execute code, there is not an agent that can natively do both. Given this
base, we developed two varieties of agents for API-based solving of web tasks.

API-Based Agent First, our API-based agent essentially uses the CodeAct architecture (Wang
et al., 2024a). In addition to the basic CodeAct framework, we tailor the agent for API calling by
adding specialized instructions and examples that guide its understanding of various API endpoints
and their usage. At each step, the agent could utilize all previous actions to make informed selection
of actions. The prompt of the API-Based Agent is included in the Appendix A.3.

Hybrid Browsing/API Calling Agent In addition to the API-based agent, we developed a Hy-
brid Agent that integrates Chromium web browsing functionalities powered by Playwright into the
existing framework of the API-based agent. This Hybrid Agent is provided the prompt describing
both the APIs and the browsing actions, allowing for free transitions between API calling and web

16https://openai.com/index/hello-gpt-4o/
17https://ipython.org
18https://playwright.dev/

8

https://openai.com/index/hello-gpt-4o/
https://ipython.org
https://playwright.dev/


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agents Gitlab Map Shopping Admin Reddit Multi AVG.
WebArena Base (Zhou et al., 2023) 15.0 15.6 13.9 10.4 6.6 8.3 12.3
AutoEval (Pan et al., 2024) 25.0 27.5 39.6 20.9 20.8 16.7 26.9
AWM (Wang et al., 2024e) 35.0 42.2 32.1 29.1 54.7 18.8 35.5
SteP (Sodhi et al., 2024)† 32.2 31.2 50.8 23.6 57.5 10.4 36.5
Browsing Agent 12.8 20.2 10.2 22.0 10.4 10.4 14.8
API-Based Agent 43.9 45.4 25.1 20.3 18.9 8.3 29.2
Hybrid Agent 44.4 45.9 25.7 41.2 28.3 16.7 35.8

Table 2: Performance of Agents across WebArena Websites. †Note that SteP uses prompts inspired
specifically by WebArena test set tasks, while other methods are task-agnostic. We achieve the
highest performance among the task-agnostic agents.

browsing. At each step, the agent can utilize the current state of the browser, all previous actions
taken by the agent, and the results of those actions to determine the next course of action. The
prompt of the Hybrid Agent is included in the Appendix A.4.

For the browsing, API-based, and Hybrid Agents, we utilized GPT-4o as the base LLM. However,
this could be easily changed to other LLMs.

6 RESULTS

6.1 MAIN RESULTS

The main results of our evaluation, as summarized in Table 2, demonstrate the performance of three
different agents across the websites in the WebArena benchmark.

The API-Based Agent consistently performed well, achieving higher scores in most websites com-
pared to the Browsing agent. This agent’s strong performance is attributed to its specialized design
for API calling, enabling it to efficiently interact with APIs and complete tasks without reliance on
browsing. In contrast, the Browsing Agent, which is designed solely for navigating web interfaces,
demonstrated significantly lower performance across most domains. It achieved its best scores on
Shopping Admin and Map, but struggled more on the other websites.

Actions Gitlab Map Shopping Admin Reddit Multi AVG.

Browsing only 7.8 3.7 38.5 2.2 17.0 8.3 14.3
API only 21.1 4.6 7.5 1.1 0.9 10.4 8.0
Browsing+API 71.1 91.7 54.0 96.7 82.1 81.3 77.7

Table 3: Percentage of Actions (%) that our Hybrid Agent takes for each type of tasks. Each column
sums up to 1.

The Hybrid Agent, integrating both API calling and web browsing, outperformed the other agents
on many websites. It’s ability to dynamically interleave API calling and browsing proved beneficial.
API calling delivers high performance for web tasks with well-supported APIs, while web browsing
serves as a backup when API endpoints are unavailable or incomplete. Even if the website provides
comprehensive APIs, there might be corner cases where APIs are not supportive. In these cases,
relying on web browsing is still needed for tasks that would otherwise fail through API-only inter-
actions. Table 3 documents the percentage of actions of our Hybrid Agent. Across all websites, our
Hybrid Agent chooses to do both Browsing and API in the same task at least half of the time.

Table 4 documents the accuracy of the Hybrid Agent across websites when performing different
choices of actions. It shows consistently high accuracy when choosing API only and API+browsing.

Overall, the results indicate that the Hybrid Agent is the most effective for handling diverse tasks
in WebArena, particularly in environments that require a blend of API and browsing actions. The
API-Based Agent excels in tasks that are primarily API-driven, while the Browsing Agent is more
suitable for simple navigation tasks but lacks the versatility needed for more complex scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Choices of Action Gitlab Map Shopping Admin Reddit Multi AVG.
Browsing only 7.1(1/14) 50.0(2/4) 23.6(17/72) 50.0(2/4) 11.1(2/18) 25.0(1/4) 21.6(25/116)
API only 47.4(18/38) 40.0(2/5) 21.4(3/14) 50.0(1/2) 0.0(0/1) 20.0(1/5) 38.5(25/65)
Browsing+API 47.7(61/128) 46.0(46/100) 27.7(28/101) 40.9(72/176) 32.2(28/87) 15.4(6/39) 38.2(241/631)

Table 4: The accuracy (%) of the Hybrid Agent across choices of actions for each website, with the
number of correct instances / number of total instances in parentheses.

6.2 DOES API QUALITY MATTER?

Yes, API quality does significantly impact the performance of the API-based agent. High quality
APIs provide comprehensive and well-documented endpoints that enable agents to interact accu-
rately and efficiently with websites. With comprehensive API support, the API-based agent could
tackle more tasks through API calling, while the Hybrid Agent could rely less on browsing; on the
other hand, clear and detailed documentation allows agents to utilize the APIs effectively, ensur-
ing that requests are accurate, and minimizing potential errors in task execution. For example, the
websites Gitlab and Map with the best API support as mentioned in Section 5.2, demonstrates the
highest task completion accuracy by the API-based agent and the Hybrid Agent across all websites.

Conversely, low-quality APIs, characterized by incomplete functionality or ambiguous documen-
tation, can significantly degrade performance. In such cases, the absence of necessary endpoints
may prevent the API-based agent from completing tasks, forcing the Hybrid Agent to resort to web
browsing. Moreover, poorly documented APIs can result in incorrect parameters and headers being
used, further reducing the effectiveness of the agent. This highlights the importance for websites to
maintain comprehensive and well-documented API support.

Number of Endpoints 18 31

Accuracy on Reddit 9.4% 18.9%

Table 5: Change in performance of the API-Based
Agent on Reddit upon incorporating new APIs.

An illustrative example of this is the case of
Reddit, where the initial performance of the
API-based agent was suboptimal due to limited
API availability. As depicted in Table 5, ini-
tially, Reddit offered only 18 APIs, lacking the
major functionality that common online forums
have, such as post voting. Recognizing this lim-
itation, we manually introduced 13 additional APIs including one API on post voting, with our
best effort trying to mimic the official Reddit website. This results in a marked improvement in
the API-based agent’s performance, underscoring the direct correlation between the availability of
high-quality APIs and the average performance of the API-based agent.

Moreover, API quality can also correlate with the performance of browsing agents. This may be
because websites with good APIs often have clean, user-friendly interfaces, which benefit machine
agents when interacting with the web interface. Good API practices suggest a thoughtful design
process that tends to carry over into the overall user interface, allowing the browsing agent to more
easily parse and interact with the website. As a result, both API-based and browsing agents are able
to function more effectively in environments where high API standards are maintained.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose new web agents that use APIs instead of traditionally browsers. We
found that API-based agents outperform browsing-based counterparts, especially on websites with
sufficient API support. Hence we further propose an agent that is capable of switching between
using APIs or browsers and empirically outperforms agents that only uses one of the two interfaces.

For future work, we aim to explore methods for automatically inducing APIs (Wang et al., 2024e).
These methods could identify and generate API calls for websites lacking formal API support, fur-
ther expanding the applicability and efficiency of API-based approaches. By automating the discov-
ery and utilization of APIs, we envision even more robust agents capable of handling diverse web
tasks with minimal reliance on manual interaction through browsing.
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8 LIMITATIONS

Evaluation Benchmark In this paper, we evaluate web agents exclusively on WebArena tasks.
While WebArena offers realistic and diverse challenges, the number and variety of tasks may be lim-
ited. Other benchmarks, such as Webshop (Yao et al., 2022), MiniWoB (Shi et al., 2017), Mind2Web
(Deng et al., 2023), WebVoyager (He et al., 2024b), and VisualWebArena (Koh et al., 2024a), pro-
vide alternative evaluation platforms. However, as discussed in Section 2.1, WebArena aligns more
closely with real-world scenarios and our use case, while other benchmarks lack support for API
calling. For example, VisualWebArena is less applicable to our study because WebArena APIs lack
support for interacting with images, a core component of VisualWebArena tasks.

API Availability A key limitation of API-based agents is the inconsistent availability and coverage
of APIs across websites. Even platforms with extensive API ecosystems, such as GitLab, may lack
support for specific functionalities (e.g., retrieving a user’s official username from a displayed name),
leading to edge cases where API-based agents are unable to complete tasks due to incomplete API
support. However, advancements in techniques like Automatic Web API Mining (AWM) Wang et al.
(2024e) could potentially address this limitation by automatically generating APIs for unsupported
tasks, reducing reliance on manual API creation.

Incorporating APIs Unlike browsing agents, which can adapt to new websites without manual in-
tervention, the API-based agent requires additional effort to integrate the necessary APIs documen-
tation to the action space of the agent for each website. This manual integration process increases
complexity, particularly when the agent must support a wide range of websites, limiting scalability
compared to agents that rely solely on web browsing for interactions. However, future advancements
in automated API scraping and documentation generation could eliminate this bottleneck, allowing
for more scalable and flexible API-based agents.
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A APPENDIX

A.1 RELATED WORK

The development of AI agents that interact with the web and APIs has garnered significant research
attention. Web browsers, serving as the primary interface for interacting with online content, have
long been a focus for AI research. Web-based agents that can navigate websites, extract information,
and perform tasks autonomously have been studied extensively, especially in the context of large
language models (LLMs) and agents designed to mimic human behavior online.

Web Navigation Agents Much prior work has centered around agents that perform web-based
tasks using browsing actions (Yao et al., 2022; Lai et al., 2024; Koh et al., 2024b; Pan et al., 2024).
These agents are particularly effective in environments where human-like interaction with a user
interface is necessary (Drouin et al., 2024b). Frameworks such as WebArena have further refined
the evaluation of such agents by providing complex and realistic web navigation tasks (Zhou et al.,
2023). Our work explores the Hybrid Agent that combines web browsing with API interactions.
While prior work primarily focuses on browsing-only agents, we examine how Hybrid Agents can
enhance performance by integrating structured API calls with web navigation.

Code Generation Agents and Tool Usage Another stream of research focuses on agents that
interact with online content via application programming interfaces (APIs) (Wang et al., 2024d; Patil
et al., 2023; Qin et al., 2023; Yuan et al., 2024; Wang et al., 2024b; Du et al., 2024). In this context,
works such as CodeAct have pioneered the development of agents that generate and execute code,
including API calls, to perform tasks typically reserved for software engineers (Wang et al., 2024a;
Zhang et al., 2024; Tang et al., 2024). These API-based agents are optimized for tasks that involve
structured data exchanges, allowing them to perform operations more efficiently than traditional
web navigation agents (Shen et al., 2024). On the other hand, our work integrates both browsing
and API interactions, demonstrating that Hybrid Agents can outperform API-only agents in tasks
requiring web navigation. While existing research shows the efficiency of API-based agents, our
Hybrid Agent dynamically switches between APIs and web browsing to optimize task performance.

Additionally, we are the first to explore comparative studies of API v.s. Browsing agents on the
same websites. We demonstrate that API-based web agents are often more efficient than browsing
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agents when APIs are available, leading to significant improvements in performance. This finding is
aligned with previous studies that highlight the advantages of structured interactions through APIs
compared to unstructured web browsing interactions.

A.2 WEBARENA TASKS

WebArena includes the following tasks:

• Gitlab – 180 instances: This website simulates tasks related to project manage-
ment and version control, where agents perform tasks like opening issues, handling
merge requests, or creating repositories. Example query: Submit a merge request for
a11yproject.com/redesign branch to be merged into markdown-figure-block branch, assign
myself as the reviewer.

• Map – 109 instances: For this website, tasks are centered around navigation, trip planning
and queries about distances, requiring the agent to retrieve and interpret map-based data,
similar to using real-world map services like Google map. Example query: Tell me the full
address of all international airports that are within a driving distance of 50 km to Carnegie
Mellon University.

• Shopping – 187 instances: This dataset represents typical e-commerce tasks, such as
searching for products, adding items to carts, and processing transactions. Example query:
Change the delivery address for my most recent order to 77 Massachusetts Ave, Cambridge,
MA.

• Shopping Admin – 182 instances: This setting involves managing backend administrative
tasks for an online store, like managing product inventories, processing orders, or viewing
sales reports. Example query: Tell me the the number of reviews that our store received by
far that mention term "satisfied".

• Reddit – 106 instances: Tasks here are similar to interactions with the official Reddit,
where agents need to post comments, upvote or down-vote posts, or retrieve information
from threads. Example query: Tell me the count of comments that have received more
downvotes than upvotes for the user who made the latest post on the Showerthoughts forum.

• Multi-Website Tasks – 48 instances: These examples involve tasks that span across two
websites, requiring the agent to interact with both websites simultaneously, adding com-
plexity to the task. Example query: Create a folder named news in gimmiethat.space repo.
Within it, create a file named urls.txt that contains the URLs of the 5 most recent posts from
the news related subreddits?

A.3 API-BASED AGENT PROMPT

System Prefix

You are an AI assistant that performs tasks on the web sites. You should give helpful, detailed, and
polite responses to the user’s queries.
You have the ability to call site-specific APIs using Python, or browse the website directly.
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API Prompt

To call APIs, you can use an interactive Python (Jupyter Notebook) environment, executing code with
<execute ipython>.
<execute ipython>
print("Hello World!")
</execute ipython>
This can be used to call the Python requests library, which is already installed for you. Here are some
hints about effective API usage:

• It is better to actually view the API response and ensure the relevant information is correctly
extracted and utilized before attempting any programmatic parsing.

• Make use of HTTP headers when making API calls, and be careful of the input parameters
to each API call.

• Be careful about pagination of the API response, the response might only contain the first
few instances, so make sure you look at all instances.

The user will provide you with a list of API calls that you can use.

System Suffix

The information provided by the user might be incomplete or ambiguous. For example, if I want to
search for "xyz", then "xyz" could be the name of a product, a user, or a category on the site. In
these cases, you should attempt to evaluate all potential cases that the user might be indicating and be
careful about nuances in the user’s query. Also, do NOT ask the user for any clarification, they cannot
clarify anything and you need to do it yourself.
When you think you successfully finished the task, first respond with Finish[answer] where you
include only your answer to the question [] if the user asks for an answer, make sure you should only
include the answer to the question but not any additional explanation, details, or commentary unless
specifically requested.
After that, when you responded with your answer, you should respond with <finish></finish>.
Then finally, to exit, you can run
<execute bash>
exit()
</execute bash>
Your responses should be concise. The assistant should attempt fewer things at a time instead of putting
too many commands OR too much code in one execute block.
Include AT MOST ONE <execute ipython>, <execute browse>, or <execute bash> per
response.
IMPORTANT: Execute code using <execute ipython>, <execute bash>, or
<execute browse> whenever possible.
Below are some examples:
— START OF EXAMPLE —
Examples
— END OF EXAMPLE —
Now, let’s start!

System Prompt

System Prefix + API Prompt + System Suffix

17
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Initial User Prompt

Think step by step to perform the following task related to gitlab. Answer the question: ***Example
WebArena Intent***
The site URL is Example Site URL, use this instead of the normal site URL.
For API calling, use this access token: Example Access Token.
My username on this website is Example Username.
Below is the list of all APIs you can use and their descriptions:
Example API Documentation.
Note: Before actually using a API call, *you should call the get api documentation function in
the utils module to get detailed API documentation of the API.* For example, if you want to use the
API GET /api/v4/projects/id/repository/commits, you should first do:
<execute ipython>
from utils import get api documentation
get api documentation("GET /api/v4/projects/{id}/repository/commits")
</execute ipython>
This will provide you with detailed descriptions of the input parameters and example output jsons.

A.4 HYBRID AGENT PROMPT

System Prefix

You are an AI assistant that performs tasks on the web sites. You should give helpful, detailed, and
polite responses to the user’s queries.
You have the ability to call site-specific APIs using Python, or browse the website directly.
IMPORTANT: In general, you must always first try to use APIs to perform the task; however, you
should use web browsing when there is no useful API available for the task.
IMPORTANT: After you tried out using APIs, you must use web browsing to navigate to some URL
containing contents that could verify whether the results you obtained by API calling is correct.

API Prompt

To call APIs, you can use an interactive Python (Jupyter Notebook) environment, executing code with
<execute ipython>.
<execute ipython>
print("Hello World!")
</execute ipython>
This can be used to call the Python requests library, which is already installed for you. Here are some
hints about effective API usage:

• It is better to actually view the API response and ensure the relevant information is correctly
extracted and utilized before attempting any programmatic parsing.

• Make use of HTTP headers when making API calls, and be careful of the input parameters
to each API call.

• Be careful about pagination of the API response, the response might only contain the first
few instances, so make sure you look at all instances.

The user will provide you with a list of API calls that you can use.
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Browsing Prompt

You can browse the Internet by putting special browsing commands within <execute browse> and
</execute browse> (in Python syntax).
For example to select the option blue from the dropdown menu with bid 12, and click on the submit
button with bid 51:
<execute browse>
select option("12", "blue")
click("51")
</execute browse>

The following actions are available:

def goto(url: str):
"""Navigate to the specified URL.
Examples:
goto(’http://www.example.com’)

"""

def go back():
"""Navigate back to the previous page.
Examples:
go back()

"""

def go forward():
"""Navigate forward to the next page.
Examples:
go forward()

"""

def scroll(delta x: float, delta y: float):
"""Scroll the page by the specified amount.
Examples:
scroll(0, 200)
scroll(-50.2, -100.5)

"""

def fill(bid: str, value: str):
"""Fill the input field with the specified value.
Examples:
fill(’237’, ’example value’)
fill(’45’, ’multi-line example’)
fill(’a12’, ’example with "quotes"’)

"""

def select option(bid: str, options: str | list[str]):
"""Select an option from a dropdown menu.
Examples:
select option("48", "blue")
select option("48", ["red", "green", "blue"])

"""
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Browsing Prompt - Continued

def click(bid: str, button: Literal["left", "middle", "right"] =
"left", modifiers: list[typing.Literal["Alt", "Control", "Meta",
"Shift"]] = []):
"""Click on an element with the specified button and modifiers.
Examples:
click("51")
click("b22", button="right")
click("48", button="middle", modifiers=["Shift"])

"""

def dblclick(bid: str, button: Literal["left", "middle", "right"]
= "left", modifiers: list[typing.Literal["Alt", "Control", "Meta",
"Shift"]] = []):
"""Double-click on an element with the specified button and

modifiers.
Examples:
dblclick("12")
dblclick("ca42", button="right")
dblclick("178", button="middle", modifiers=["Shift"])

"""

def hover(bid: str):
"""Hover over an element.
Examples:
hover("b8")

"""

def press(bid: str, key comb: str):
"""Press a key combination on an element.
Examples:
press("88", "Backspace")
press("a26", "Control+a")
press("a61", "Meta+Shift+t")

"""

def focus(bid: str):
"""Focus on an element.
Examples:
focus("b455")

"""

def clear(bid: str):
"""Clear the input field.
Examples:
clear("996")

"""

def drag and drop(from bid: str, to bid: str):
"""Drag and drop an element to another element.
Examples:
drag and drop("56", "498")

"""

def upload file(bid: str, file: str | list[str]):
"""Upload a file to the specified element.
Examples:
upload file("572", "my receipt.pdf")
upload file("63", ["/home/bob/Documents/image.jpg",

"/home/bob/Documents/file.zip"])
"""
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System Suffix

The information provided by the user might be incomplete or ambiguous. For example, if I want to
search for "xyz", then "xyz" could be the name of a product, a user, or a category on the site. In
these cases, you should attempt to evaluate all potential cases that the user might be indicating and be
careful about nuances in the user’s query. Also, do NOT ask the user for any clarification, they cannot
clarify anything and you need to do it yourself.
When you think you successfully finished the task, first respond with Finish[answer] where you
include only your answer to the question [] if the user asks for an answer, make sure you should only
include the answer to the question but not any additional explanation, details, or commentary unless
specifically requested.
After that, when you responded with your answer, you should respond with <finish></finish>.
Then finally, to exit, you can run
<execute bash>
exit()
</execute bash>
Your responses should be concise. The assistant should attempt fewer things at a time instead of putting
too many commands OR too much code in one execute block.
Include AT MOST ONE <execute ipython>, <execute browse>, or <execute bash> per
response.
IMPORTANT: Execute code using <execute ipython>, <execute bash>, or
<execute browse> whenever possible.
Below are some examples:
— START OF EXAMPLE —
Examples
— END OF EXAMPLE —
Now, let’s start!

System Prompt

System Prefix + API Prompt + Browsing Prompt + System Suffix

Initial User Prompt

Think step by step to perform the following task related to gitlab. Answer the question: ***Example
WebArena Intent***
The site URL is Example Site URL, use this instead of the normal site URL.
For API calling, use this access token: Example Access Token.
For web browsing, You should start from the URL Example Start URL, and this webpage is
already logged in and opened for you.
My username on this website is Example Username.
Below is the list of all APIs you can use and their descriptions:
Example API Documentation.
Note: Before actually using a API call, *you should call the get api documentation function in
the utils module to get detailed API documentation of the API.* For example, if you want to use the
API GET /api/v4/projects/id/repository/commits, you should first do:
<execute ipython>
from utils import get api documentation
get api documentation("GET /api/v4/projects/{id}/repository/commits")
</execute ipython>
This will provide you with detailed descriptions of the input parameters and example output jsons.
IMPORTANT: In general, you must always first try to use APIs to perform the task; however, you
should use web browsing when there is no useful API available for the task. IMPORTANT: After you
tried out using APIs, you must use web browsing to navigate to some URL containing contents that
could verify whether the results you obtained by API calling is correct.
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A.5 CASE STUDIES

Web browsing has complex traces and lower success rate

API Calling failing due to no useful API available to solve the task
No API for checking and deleting reviews.

(1) goto `admin.com` (2) login with credentials (3) click 
`store` (4) click `products` (5) search `Sybil running short` 
(6) iteratively click products on search result and see if it’s 
the product wanted (7) click review 1 (8) if negative, then 
delete (9) click review 2 ......

Hybrid Agent simplifies task traces

(1) GET `/api/products` to retrieve all products (2) get the 
product URL from `Sybil running short` product in Python (3) 
go to product URL (4)click review 1 (5) if negative, then 
delete (6) click review 2 ...... 

Task: delete all negative reviews for Sybil running short.

Figure 4: The Hybrid Agent succeeds while the

browsing agent and API-based agent both fail

In this section, we analyze two contrasting in-
stances as shown in Figure 4 and Figure 5,
where the Hybrid Agent and API-based agent
exhibited different levels of performance on
WebArena tasks. These case studies highlight
the strengths and weaknesses of each agent,
demonstrating scenarios where hybrid brows-
ing outperforms API-only or browsing-only ap-
proaches, as well as cases where the API-based
agent excels over the hybrid method.

Case 1 One example where the Hybrid Agent succeeded, while both the API-based and browsing
agents failed, involved a task from the Shopping Admin domain. The query was to ”delete all
negative reviews for Sybil running short,” a product listed in the shopping admin interface. In this
instance, the API-based agent failed because no relevant API endpoints were available for retrieving
or deleting reviews. Similarly, the browsing agent failed, as completing this task purely through
web navigation required too many steps, as depicted in Figure 4. This complexity made the task
challenging for an agent relying solely on web interactions. However, the Hybrid Agent successfully
completed the task by leveraging both API and browsing functionalities. An example trace of the
Hybrid Agent shown in Figure 4. This case highlights the Hybrid Agent’s ability to efficiently
combine API calls with web interactions, allowing it to tackle complex multi-step tasks that would
be difficult or impossible for solely browsing or solely API-based agents.

Web browsing has complex traces and lower success rate

API Calling successfully completed the task after one API call

requests.get('/api/ai/contributors').json()['email']

(1) goto `gitlab.com` (2) login with credentials (3) click 
`projects` (4) click `ai` (5) click `Repository` (6) click 
`Commits` (7) For each contributor, count commit number ...... 
(15) did not find all commits in 15 steps

Hybrid Agent fails the task as it falsely seeks help from browsing

(1) goto `gitlab.com` (2) login with credentials (3) click 
`projects` (4) click `ai` ((4) click `Repository` (5) click 
`Commits` (6) For each contributor, count commit number ...... 
(15) did not find all commits in 15 steps

Task: tell me the email address of the contributor who has 
the most commits to `ai`.

Figure 5: Case 2: the API-based agent succeeds while the

browsing agent and the Hybrid Agent fails.

Case 2 Conversely, there are
instances where the API-based
agent outperforms the Hybrid
Agent. One such case occurred
in the GitLab website, where the
task was to "tell me the email
address of the contributor who has
the most commits to ai." The
API-based agent successfully com-
pleted this task by utilizing the GET
/api/id/contributors API
endpoint to retrieve the contributor
with the highest number of commits
and their associated email address.
On the other hand, the Hybrid Agent

attempted to solve the task through browsing but encountered significant challenges. Accessing
this information through web browsing required navigating GitLab’s interface, locating the correct
repository and branch, and identifying the top contributor manually, a task that might be too difficult
to perform through web navigation alone. As a result, both the browsing agent and the Hybrid
Agent failed to complete the task. This case demonstrates an example where API access provides a
more straightforward solution than browsing in contexts requiring structured data retrieval.

A.6 STEPS AND COSTS

Browsing Agent API-Based Agent Hybrid Agent

steps cost steps cost steps cost

8.4 $0.1 7.8 $1.2 8.9 $1.5

Table 6: Average number of steps and cost of agents on
WebArena tasks

Additionally, we use Table 6 to demon-
strate the average steps taken and the aver-
age cost for each agent to complete Web-
Arena tasks. The breakdown of steps and
cost by website is in the Appendix A.6.
Figure 7 demonstrates a scatterplot of the
average accuracy of each agent on Web-
Arena over their average steps and average
cost.
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Figure 6: Number of steps (left) and cost (right) of agents averaged across WebArena Websites

Steps The browsing agent takes more steps to complete tasks compared to the API-based agent on
average, while the Hybrid Agent takes the most steps amongst the three agents. This is likely due
to the browsing agent’s reliance on navigating web interfaces and interacting with visual elements,
which involves a sequential and more time consuming processes. The API-based agent is the most
efficient in terms of steps, as it can directly interact with structured data via APIs, bypassing many
of the steps involved in traditional web navigation. The Hybrid Agent, combining both action spaces
from the browsing agent and the API-based agent, takes more steps than both agents.

Costs The cost of completing tasks shows a different trend. While the browsing agent requires
more steps, it is much cheaper compared to the API-based agent and the Hybrid Agent. This is
primarily because the prompts needed for browsing agents are much shorter. When browsing, the
agent only needs instructions on how to use the web interface and the limited action space around
14 browsing actions. In contrast, API-based and Hybrid Agents require access to a much larger set
of API calls. For example, when interacting with GitLab, the agent is provided with 988 available
APIs, leading to much longer prompts and significantly increasing the cost of execution. The cost
goes down when the prompt for API calling is shorter. For example, the Reddit website has the least
length of API documentation, where its cost is also less than other websites. However, as visualized
in Figure 7, the accuracy of the API-based agent and the Hybrid Agent is much higher than the
browsing agent, which makes the increase in cost justifiable due to the significantly improved task
performance. The higher cost is offset by the agents’ ability to complete tasks more accurately and
efficiently. In the future, this increased cost could potentially be mitigated by methods that retrieve
only relevant APIs on the fly.

Table 7 shows the breakdown of number of steps and cost by website.

Agents Gitlab Map Shopping Shop-Admin Reddit Multi Sites AVG.
steps cost steps cost steps cost steps cost steps cost steps cost steps cost

Browsing 9.4 0.2 8.0 0.1 7.3 0.1 7.0 0.2 11.1 0.1 7.5 0.1 8.4 0.1
API-Based 7.0 1.7 6.6 1.1 8.2 1.0 8.4 1.1 8.8 0.6 7.7 1.6 7.8 1.2
Hybrid 8.1 2.0 9.4 1.7 8.2 1.3 9.0 1.4 10.5 1.0 8.0 1.9 8.9 1.5

Table 7: Number of Steps and Cost (in U.S. dollars) of Agents across WebArena Websites

A.7 ERROR ANALYSIS

We randomly sampled 100 tasks from the WebArena tasks and performed error analysis on the
API-based agent. We found that 33% of the tasks are correctly performed with only API calling,
50% are unsolvable with solely APIs, 6% are incorrect due to incorrect task understanding, and
11% are incorrect due to error in calling APIs such as mal-formatting and wrong input. In other
words, among the 50 API solvable tasks, 66% are performed correctly by the API-based agent. This
showcases the strong capability of the API-based agent when given sufficient API to solve the task.
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Additionally, the average API calls required to solve the API solvable tasks are 2.1 API calls, demon-
strating how API calling could reduce operational complexity for web tasks.

Figure 7: Error analysis on 100 randomly sampled WebArena tasks.
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