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ABSTRACT

This work analyzes the solution trajectory of gradient-based algorithms via a
novel basis function decomposition. We show that, although solution trajecto-
ries of gradient-based algorithms may vary depending on the learning task, they
behave almost monotonically when projected onto an appropriate orthonormal
function basis. Such projection gives rise to a basis function decomposition
of the solution trajectory. Theoretically, we use our proposed basis function
decomposition to establish the convergence of gradient descent (GD) on sev-
eral representative learning tasks. In particular, we improve the convergence
of GD on symmetric matrix factorization and provide a completely new con-
vergence result for the orthogonal symmetric tensor decomposition. Empiri-
cally, we illustrate the promise of our proposed framework on realistic deep
neural networks (DNNs) across different architectures, gradient-based solvers,
and datasets. Our key finding is that gradient-based algorithms monotonically
learn the coefficients of a particular orthonormal function basis of DNNs defined
as the eigenvectors of the conjugate kernel after training. Our code is available at
github.com/jianhaoma/function-basis-decomposition.

1 INTRODUCTION

Learning highly nonlinear models amounts to solving a nonconvex optimization problem, which
is typically done via different variants of gradient descent (GD). But how does GD learn nonlinear
models? Classical optimization theory asserts that, in the face of nonconvexity, GD and its variants
may lack any meaningful optimality guarantee; they produce solutions that—while being first- or
second-order optimal (Nesterov, 1998; Jin et al., 2017)—may not be globally optimal. In the rare
event where the GD can recover a globally optimal solution, the recovered solution may correspond
to an overfitted model rather than one with desirable generalization.

Inspired by the large empirical success of gradient-based algorithms in learning complex models,
recent work has postulated that typical training losses have benign landscapes: they are devoid
of spurious local minima and their global solutions coincide with true solutions—i.e., solutions
corresponding to the true model. For instance, different variants of low-rank matrix factorization (Ge
et al., 2016; 2017) and deep linear NNs (Kawaguchi, 2016) have benign landscapes. However, when
spurious solutions do exist (Safran & Shamir, 2018) or global and true solutions do not coincide (Ma
& Fattahi, 2022b), such a holistic view of the optimization landscape cannot explain the success of
gradient-based algorithms. To address this issue, another line of research has focused on analyzing
the solution trajectory of different algorithms. Analyzing the solution trajectory has been shown
extremely powerful in sparse recovery (Vaskevicius et al., 2019), low-rank matrix factorization (Li
et al., 2018; Stöger & Soltanolkotabi, 2021), and linear DNNs (Arora et al., 2018; Ma & Fattahi,
2022a). However, these analyses are tailored to specific models and thereby cannot be directly
generalized.

In this work, we propose a unifying framework for analyzing the optimization trajectory of GD based
on a novel basis function decomposition. We show that, although the dynamics of GD may vary
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(a) AlexNet
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(b) ResNet-18
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(c) ViT
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(d) AlexNet
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(e) ResNet-18
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(f) ViT

Figure 1: The solution trajectories of LARS on AlexNet and ResNet-18 and AdamW on ViT with ℓ2-loss after
projecting onto two different orthonormal bases. The first row shows the trajectories of the top-5 coefficients
after projecting onto a randomly generated orthonormal basis. The second row shows the trajectories of the
top-5 coefficients after projecting onto the eigenvectors of the conjugate kernel evaluated at the last epoch. More
detail on our implementation can be found in Appendix B.

drastically on different models, they behave almost monotonically when projected onto an appropriate
choice of orthonormal function basis.

Motivating example: Our first example illustrates this phenomenon on DNNs. We study the
optimization trajectories of two adaptive gradient-based algorithms, namely AdamW and LARS,
on three different DNN architectures, namely AlexNet (Krizhevsky et al., 2017), ResNet-18 (He
et al., 2016), and Vision Transformer (ViT) (Dosovitskiy et al., 2020) with the CIFAR-10 dataset.
The first row of the Figure 1 shows the top-5 coefficients of the solution trajectory when projected
onto a randomly generated orthonormal basis. We see that the trajectories of the coefficients are
highly non-monotonic and almost indistinguishable (they range between -0.04 to 0.06), implying
that the energy of the obtained model is spread out on different orthogonal components. The second
row of Figure 1 shows the same trajectory after projecting onto an orthogonal basis defined as the
eigenvectors of the conjugate kernel after training (Long, 2021) (see Section 3.4 and Appendix B
for more details). Unlike the previous case, the top-5 coefficients carry more energy and behave
monotonically (modulo the small fluctuations induced by the stochasticity in the algorithm) in all
three architectures, until they plateau around their steady state. In other words, the algorithm behaves
more monotonically after projecting onto a correct choice of orthonormal basis.

1.1 MAIN CONTRIBUTIONS

The monotonicity of the projected solution trajectory motivates the use of an appropriate basis
function decomposition to analyze the behavior of gradient-based algorithms. In this paper, we show
how an appropriate basis function decomposition can be used to provide a much simpler convergence
analysis for gradient-based algorithms on several representative learning problems, from simple
kernel regression to complex DNNs. Our main contributions are summarized below:

- Global convergence of GD via basis function decomposition: We prove that GD learns
the coefficients of an appropriate function basis that forms the true model. In particular,
we show that GD learns the true model when applied to the expected ℓ2-loss under certain
gradient independence and gradient dominance conditions. Moreover, we characterize the
convergence rate of GD, identifying conditions under which it enjoys linear or sublinear
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convergence rates. Our result does not require a benign landscape for the loss function and
can be applied to both convex and nonconvex settings.

- Application in learning problems: We show that our general framework is well-suited for
analyzing the solution trajectory of GD on different representative learning problems. Unlike
the existing results, our proposed method leads to a much simpler trajectory analysis of GD
for much broader classes of models. Using our technique, we improve the convergence of
GD on the symmetric matrix factorization and provide an entirely new convergence result
for GD on the orthogonal symmetric tensor decomposition. We also prove that GD enjoys
an incremental learning phenomenon in both problems.

- Empirical validation on DNNs: We empirically show that our proposed framework applies
to DNNs beyond GD. More specifically, we show that different gradient-based algorithms
monotonically learn the coefficients of a particular function basis defined as the eigenvectors
of the conjugate kernel after training (also known as “after kernel regime”). We show that
this phenomenon happens across different architectures, datasets, solvers, and loss functions,
strongly motivating the use of function basis decomposition to study deep learning.

2 GENERAL FRAMEWORK: FUNCTION BASIS DECOMPOSITION

We study the optimization trajectory of GD on the expected (population) ℓ2-loss

min
θ∈Θ

L (θ) :=
1

2
Ex,y

[
(fθ(x)− y)

2
]
. (expected ℓ2-loss)

Here the input x ∈ Rd is drawn from an unknown distribution D, and the output label y is generated
as y = f⋆(x) + ε, where ε is an additive noise, independent of x, with mean E[ε] = 0 and variance
E[ε2] = σ2

ε <∞. The model fθ(x) is characterized by a parameter vector θ ∈ Rm, which naturally
induces a set of admissible models (model space for short) FΘ := {fθ : θ ∈ Rm}. We do not
require the true model f⋆ to lie within the model space; instead, we seek to obtain a model fθ⋆ ∈ FΘ

that is closest to f⋆ in L2(D)-distance. In other words, we consider f⋆ = fθ⋆(x) + f⋆⊥(x), where
θ⋆ = argminθ ∥fθ − f⋆∥L2(D).

1 To minimize the expected ℓ2-loss, we use vanilla GD with
constant step-size η > 0:

θt+1 = θt − η∇L(θt). (GD)
Definition 1 (Orthonormal function basis). A set of functions {ϕi(x)}i∈I forms an orthonormal
function basis for the model space FΘ with respect to the L2(D)-metric if

• for any i ∈ I, we have Ex∼D[ϕ
2
i (x)] = 1;

• for any i, j ∈ I such that i ̸= j, we have Ex∼D[ϕi(x)ϕj(x)] = 0;

• for any fθ ∈ FΘ, there exists a unique sequence of basis coefficients {βi(θ)}i∈I such that
fθ(x) =

∑
i∈I βi(θ)ϕi(x).

Example 1 (Orthonormal basis for polynomials). Suppose that FΘ is the class of all univariate
real polynomials of degree at most n, that is, FΘ = {∑n+1

i=1 θix
i−1 : θ ∈ Rn+1}. If D is a uniform

distribution on [−1, 1], then the so-called Legendre polynomials form an orthonormal basis for
FΘ with respect to the L2(D)-metric (Olver et al., 2010, Chapter 14). Moreover, if D is a normal
distribution, then Hermite polynomials define an orthonormal basis for FΘ with respect to the
L2(D)-metric (Olver et al., 2010, Chapter 18).2

Example 2 (Orthonormal basis for symmetric matrix factorization). Suppose that the true model
is defined as fU⋆(X) = ⟨U⋆U⋆⊤,X⟩ with some rank-r matrix U⋆ ∈ Rd×r, and consider an

“overparameterized” function class FΘ = {fU (X) : U ∈ Rd×r′} where r′ ≥ r is an overestimation
of the rank. Moreover, suppose that the elements of X ∼ D are iid with zero mean and unit variance.
Consider the eigenvalues of U⋆U⋆⊤ as σ1 ≥ · · · ≥ σd with σr+1 = · · · = σd = 0, and their

1Given a probability distribution D, we define the L2(D)-norm as ∥f∥2L2(D) = Ex∼D
[
f2(x)

]
.

2Both Legendre and Hermite polynomials can be derived sequentially using Gram-Schmidt procedure.
For instance, the first three Legendre polynomials are defined as P1(x) = 1/

√
2, P2(x) =

√
3/2x, and

P3(x) =
√

5/8(3x2 − 1).
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corresponding eigenvectors z1, . . . ,zd. It is easy to verify that the functions ϕij(X) = ⟨ziz⊤
j ,X⟩

for 1 ≤ i, j ≤ d define a valid orthogonal basis for FΘ with respect to the L2(D)-metric. Moreover,
for any fU (X), the basis coefficients can be obtained as βij(U) = E

[〈
UU⊤,X

〉 〈
ziz

⊤
j ,X

〉]
=〈

ziz
⊤
j ,UU⊤〉. As will be shown in Section 3.2, this choice of orthonormal basis significantly

simplifies the dynamics of GD for symmetric matrix factorization.

Given the input distribution D, we write fθ⋆(x) =
∑
i∈I βi(θ

⋆)ϕi(x), where {ϕ(x)}i∈I is an or-
thonormal basis for FΘ with respect to L2(D)-metric, and {βi(θ⋆)}i∈I are the true basis coefficients.
For short, we denote β⋆i = βi(θ

⋆). In light of this, the expected loss can be written as:

L(θ) = 1

2

∑
i∈I

(βi(θ)− β⋆i )
2

︸ ︷︷ ︸
optimization error

+
1

2
∥f⋆⊥∥2L2(D)︸ ︷︷ ︸

approximation error

+σ2
ε/2︸︷︷︸

noise

. (1)

Accordingly, GD takes the form

θt+1 = θt − η
∑
i∈I

(βi(θt)− β⋆i )∇βi(θt). (GD dynamic)

Two important observations are in order based on GD dynamic: first, due to the decomposed nature
of the expected loss, the solution trajectory becomes independent of the approximation error and
noise. Second, in order to prove the global convergence of GD, it suffices to show the convergence of
βi(θt) to β⋆i . In fact, we will show that the coefficients βi(θt) enjoy simpler dynamics for particular
choices of orthonormal basis that satisfy appropriate conditions.
Assumption 1 (Boundedness and smoothness). There exist constants Lf , Lg, LH > 0 such that

∥fθ∥L2(D) ≤ Lf , ∥∇fθ∥L2(D) ≤ Lg,
∥∥∇2fθ

∥∥
L2(D)

≤ LH . (2)

The above assumptions are common in the optimization literature (Bubeck et al., 2015) and sometimes
necessary to ensure the convergence of local-search algorithms (Patel & Berahas, 2022). Moreover,
although these assumptions may not hold globally, all of our subsequent results hold when Assump-
tion 1 is satisfied within any bounded region for θ that includes the solution trajectory. We will also
relax these assumptions for several learning problems.
Proposition 1 (Dynamic of βi(θt)). Under Assumption 1 and based on GD dynamic, we have

βi(θt+1) = βi(θt)− η
∑
j∈I

(
βj(θt)− β⋆j

)
⟨∇βi(θt),∇βj(θt)⟩ ± O

(
η2LHL

2
fL

2
g

)
. (3)

The above proposition holds for any valid choice of orthonormal basis {ϕi(x)}i∈I . Indeed, there
may exist multiple choices for the orthonormal basis, and not all of them would lead to equally
simple dynamics for the coefficients. Examples of “good” and “bad” choices of orthonormal basis
were presented for DNNs in our earlier motivating example. Indeed, an ideal choice of orthogonal
basis should satisfy ⟨∇βi(θt),∇βj(θt)⟩ ≈ 0 for i ̸= j, i.e., the gradients of the coefficients remain
orthogonal along the solution trajectory. Under such assumption, the dynamics of βi(θt) almost
decompose over different indices:

βi(θt+1) ≈ βi(θt)− η (βi(θt)− β⋆i ) ∥∇βi(θt)∥2 ±O(η2), (4)

where the last term accounts for the second-order interactions among the basis coefficients. If such an
ideal orthonormal basis exists, then our next theorem shows that GD efficiently learns the true basis
coefficients. To streamline the presentation, we assume that β⋆1 ≥ · · · ≥ β⋆k > 0 and β⋆i = 0, i > k
for some k <∞. We refer to the index set S = {1, . . . , k} as signal and the index set E = I\S as
residual. When there is no ambiguity, we also refer to βi(θt) as a signal if i ∈ S.
Theorem 1 (Convergence of GD with finite ideal basis). Suppose that the initial point θ0 satisfies

βi(θ0) ≥ C1α, for all i ∈ S, (lower bound on signals at θ0)

∥fθ0
∥L2(D) =

(∑
i∈I

β2
i (θ0)

)1/2

≤ C2α, (upper bound on energy at θ0)
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Figure 2: The conditions of Theorem 1 are approximately satisfied for LARS on a 2-layer CNN with MNIST
dataset. Here, the coefficients are obtained by projecting the solution trajectory onto the eigenvectors of the
conjugate kernel after training. (a) The top-20 basis coefficients at a small random initial point along with residual
energy on the remaining coefficients. (b) The maximum value of | cos(∇βi(θ),∇βj(θ))| for 1 ≤ i < j ≤ 10
along the solution trajectory. (c) The scaling of ∥∇βi(θt)∥ with respect to |βi(θt)| for the top-4 coefficients.

for C1, C2 > 0 and α ≲ β⋆k . Moreover, suppose that the orthogonal function basis is finite, i.e.,
|I| = d for some finite d, and the gradients of the coefficients satisfy the following conditions for
every 0 ≤ t ≤ T :

⟨∇βi(θt),∇βj(θt)⟩ = 0 for all i ̸= j, (gradient independence)

∥∇βi(θt)∥ ≥ C |βi(θt)|γ for all i ∈ S, (gradient dominance)

for C > 0 and 1/2 ≤ γ ≤ 1. Then, GD with step-size η ≲ α2γ
√
dC2LHL2

gL
2
f

β⋆2γk log−1
(
dβ⋆

k

C1α

)
satisfies:

• If γ= 1
2 , then within T =O

(
1

C2ηβ⋆
k
log
(
β⋆
k

C1α

))
iterations, we have ∥fθT

−fθ⋆∥L2(D)≲α.

• If 1
2<γ≤1, then within T =O

(
1

C2ηβ⋆
kα

2γ−1

)
iterations, we have ∥fθT

−fθ⋆∥L2(D)≲α.

Theorem 1 shows that, under certain conditions on the basis coefficients and their gradients, GD with
constant step-size converges to a model that is at most α-away from the true model. In particular, to
achieve an ϵ-accurate solution for any ϵ > 0, GD requires O((1/ϵ) log(1/ϵ)) iterations for γ = 1/2,
and O(1/ϵ2γ) iterations for 1/2 < γ ≤ 1 (ignoring the dependency on other problem-specific
parameters). Due to its generality, our theorem inevitably relies on a small step-size and leads to
a conservative convergence rate for GD. Later, we will show how our proposed approach can be
tailored to specific learning problems to achieve better convergence rates in each setting.

How realistic are the assumptions of Theorem 1? A natural question arises as to whether the
conditions for Theorem 1 are realistic. We start with the conditions on the initial point. Intuitively,
these assumptions entail that a non-negligible fraction of the energy is carried by the signal at the
initial point. We note that these assumptions are mild and expected to hold in practice. For instance,
We will show in Section 3 that, depending on the learning task, they are guaranteed to hold with
fixed, random, or spectral initialization.3 We have also empirically verified that these conditions are
satisfied for DNNs with random or default initialization. For instance, Figure 2a illustrates the top-20
basis coefficients at θ0 for LARS with random initialization on a realistic CNN. It can be seen that a
non-negligible fraction of the energy at the initial point is carried by the first few coefficients.

The conditions on the coefficient gradients are indeed harder to satisfy; as will be shown later, the
existence of an ideal orthonormal basis may not be guaranteed even for linear NNs. Nonetheless,
we have empirically verified that, with an appropriate choice of the orthonormal basis, the gradients
of the coefficients remain approximately independent throughout the solution trajectory. Figure 2b
shows that, when the orthonormal basis is chosen as the eigenvectors of the conjugate kernel after
training, the maximum value of | cos(∇βi(θt),∇βj(θt))| remains small throughout the solution
trajectory. Finally, we turn to the gradient dominance condition. Intuitively, this condition entails

3If θ0 is selected from an isotropic Gaussian distribution, then C1 and C2 may scale with k and d. However,
to streamline the presentation, we keep this dependency implicit.
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that the gradient of each signal scales with its norm. We prove that this condition is guaranteed to
hold for kernel regression, symmetric matrix factorization, and symmetric tensor decomposition.
Moreover, we have empirically verified that the gradient dominance holds across different DNN
architectures. Figure 2c shows that this condition is indeed satisfied for the top-4 basis coefficients of
the solution trajectory (other signal coefficients behave similarly). We also note that our theoretical
result on GD may not naturally extend to LARS. Nonetheless, our extensive simulations suggest
that our proposed analysis can be extended to other stochastic and adaptive variants of GD (see
Section 3.4 and Appendix B); a rigorous verification of this conjecture is left as future work.

3 APPLICATIONS

In this section, we show how our proposed basis function decomposition can be used to study the
performance of GD in different learning tasks, from simple kernel regression to complex DNNs.
We start with the classical kernel regression, for which GD is known to converge linearly Karimi
et al. (2016). Our purpose is to revisit GD through the lens of basis function decomposition, where
there is a natural and simple choice for the basis functions. Next, we apply our approach to two
important learning problems, namely symmetric matrix factorization and orthogonal symmetric
tensor decomposition. In particular, we show how our proposed approach can be used to improve the
convergence of GD for the symmetric matrix factorization and leads to a completely new convergence
result for the orthogonal symmetric tensor decomposition. Finally, through extensive experiments,
we showcase the promise of our proposed basis function decomposition on realistic DNNs.

3.1 KERNEL REGRESSION

In kernel regression (KR), the goal is to fit a regression model fθ(x) =
∑d
i=1 θiϕi(x) from the

function class FΘ = {fθ(x) : θ ∈ Rd} to observation y, where {ϕi(x)}di=1 are some known kernel
functions. Examples of KR are linear regression, polynomial regression (including those described
in Example 1), and neural tangent kernel (NTK) (Jacot et al., 2018). Without loss of generality, we
may assume that the kernel functions {ϕi(x)}di=1 are orthonormal.4 Under this assumption, the basis
coefficients can be defined as βi(θ) = θi and the expected loss can be written as

L(θt) =
1

2
E
[
(fθt

(x)− fθ⋆(x))
2
]
=

1

2
∥θ − θ⋆∥2 =

1

2

d∑
i=1

(βi(θt)− θ⋆i )
2. (5)

Moreover, the coefficients satisfy the gradient independence condition. Therefore, an adaptation of
Proposition 1 reveals that the dynamics of the basis coefficients are independent of each other.

Proposition 2 (dynamics of βi(θt)). Consider GD with a step-size that satisfies 0 < η < 1. Then,

• for i ∈ S, we have βi(θt) = β⋆i − (1− η)t(β⋆i − βi(θ0)),

• for i ̸∈ S, we have βi(θt) = (1− η)tβi(θ0).

Without loss of generality, we assume that 0 < θ⋆k ≤ · · · ≤ θ⋆1 ≤ 1 and ∥θ0∥∞ ≤ α. Then, given
Proposition 2, we have |βi(θt)| ≤ 2 + α for every 1 ≤ i ≤ k. Therefore, the gradient dominance is
satisfied with parameters (C, γ) = (1/

√
2 + α, 1/2). Since both gradient independence and gradient

dominance are satisfied, the convergence of GD can be established with an appropriate initial point.

Theorem 2. Suppose that θ0 = α1, where α ≲ k|θ⋆k|/d. Then, within T ≲ (1/η) log (k|θ⋆1 |/α)
iterations, GD with step-size 0 < η < 1 satisfies ∥θT − θ⋆∥ ≲ α.

Theorem 2 reveals that GD with large step-size and small initial point converges linearly to an
ϵ-accurate solution, provided that the initialization scale is chosen as α = ϵ. This is indeed better
than our result on the convergence of GD for general models in Theorem 1.

4Suppose that {ϕi(x)}di=1 are not orthonormal. Let {ϕ̃i(x)}i∈I be any orthonormal basis for FΘ. Then,
there exists a matrix A such that ϕi(x) =

∑
j Aij ϕ̃j(x) for every 1 ≤ i ≤ d. Therefore, upon defining

θ̃ = θ⊤A, one can write fθ̃⋆(x) =
∑

i∈I θ̃⋆i ϕ̃i(x) which has the same form as the regression model.
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3.2 SYMMETRIC MATRIX FACTORIZATION

In symmetric matrix factorization (SMF), the goal is to learn a model fU⋆(X) = ⟨U⋆U⋆⊤,X⟩ with
a low-rank matrix U⋆ ∈ Rd×r, where we assume that each element of X ∼ D is iid with E[Xij ] = 0
andE[X2

ij ] = 1. Examples of SMF are matrix sensing Li et al. (2018) and completion Ge et al. (2016).
Given the eigenvectors {z1, . . . ,zd} of U⋆U⋆⊤ and a function class FΘ = {fU (X) : U ∈ Rd×r′}
with r′ ≥ r, it was shown in Example 2 that the functions ϕij(X) = ⟨ziz⊤

j ,X⟩ define a valid
orthogonal basis for FΘ with coefficients βij(U) =

〈
ziz

⊤
j ,UU⊤〉. Therefore, we have

L(Ut)=
1

4
E
[
(fUt

(X)−fU⋆(X))
2
]
=

1

4
E

[(〈
UtU

⊤
t −U⋆U⋆⊤,X

〉)2]
=

1

4

r′∑
i,j=1

(βij(Ut)−β⋆ij)2.

Here, the true basis coefficients are defined as β⋆ii = σi for i ≤ r, and β⋆ij = 0 otherwise. Moreover,
one can write ∥∇βii(U)∥F = 2

∥∥ziz⊤
i U

∥∥
F
= 2

√
βii(U). Therefore, gradient dominance holds

with parameters (C, γ) = (2, 1/2). However, gradient independence does not hold for this choice
of function basis: given any pair (i, j) and (i, k) with j ̸= k, we have ⟨∇βij(U),∇βik(U)⟩ =
⟨zjz⊤

k ,UU⊤⟩ which may not be zero. Despite the absence of gradient independence, our next
proposition characterizes the dynamic of βij(Ut) via a finer control over the coefficient gradients.
Proposition 3. Suppose that γ := min1≤i≤r{σi − σi+1} > 0. Let U0 = αB, where α ≲
min

{
(ησ2

r)
Ω(σ1/γ), (σr/d)

Ω(σ1/γ), (κ log2(d))−Ω(1/(ησr))
}

and the entries of B are independently
drawn from a standard normal distribution. Suppose that the step-size for GD satisfies η ≲ 1/σ1.
Then, with probability of at least 1− exp(−Ω(r′)):

• For 1 ≤ i ≤ r, we have 0.99σi ≤ βii(Ut) ≤ σi within O ((1/(ησi)) log (σi/α)) iterations.

• For t ≥ 0 and i ̸= j or i, j > r, we have |βij(Ut)| ≲ poly(α).

Proposition 3 shows that GD with small random initialization learns larger eigenvalues before the
smaller ones, which is commonly referred to as incremental learning. Incremental learning for
SMF has been recently studied for gradient flow (Arora et al., 2019a; Li et al., 2020), as well as
GD with identical initialization for the special case r′ = d Chou et al. (2020). To the best of our
knowledge, Proposition 3 is the first result that provides a full characterization of the incremental
learning phenomenon for GD with random initialization on SMF.
Theorem 3. Suppose that the conditions of Proposition 3 are satisfied. Then, with probability of at
least 1− exp(−Ω(r′)) and within T ≲ (1/(ησr)) log (σr/α) iterations, GD satisfies∥∥UTU

⊤
T −M⋆

∥∥
F
≲ r′ log(d)dα2. (6)

It has been shown in (Stöger & Soltanolkotabi, 2021, Thereom 3.3) that GD with small random ini-
tialization satisfies

∥∥UTU
⊤
T −M⋆

∥∥
F
≲
(
d2/r′

15/16
)
α21/16 within the same number of iterations.

Theorem 3 improves the dependency of the final error on the initialization scale α.

3.3 ORTHOGONAL SYMMETRIC TENSOR DECOMPOSITION

We use our approach to provide a new convergence guarantee for GD on the orthogonal symmetric
tensor decomposition (OSTD). In OSTD, the goal is to learn fU⋆(X) = ⟨TU⋆ ,X⟩, where U⋆ =

[u⋆1, . . . ,u
⋆
r ] ∈ Rd×r and TU⋆ =

∑r
i=1 u

⋆
i
⊗l =

∑d
i=1 σizi

⊗l is a symmetric tensor with order l
and rank r. Here, σ1 ≥ · · · ≥ σd are tensor eigenvalues with σr+1 = · · · = σd = 0, and z1, . . . ,zd
are the corresponding tensor eigenvectors. The notation u⊗l refers to the l-time outer product of u.
We assume that X ∼ D is an l-order tensor whose elements are iid with zero mean and unit variance.
Examples of OSTD are tensor regression (Tong et al., 2022) and completion (Liu et al., 2012).

When the rank of TU⋆ is unknown, it must be overestimated. Even when the rank is known, its overes-
timation can improve the convergence of gradient-based algorithms (Wang et al., 2020). This leads to
an overparameterized model fU (X) = ⟨TU ,X⟩, where TU =

∑r′

i=1 ui
⊗l with an overestimated rank

r′ ≥ r. Accordingly, the function class is defined as FΘ =
{
fU (X) : U = [u1, · · · ,ur′ ] ∈ Rd×r′

}
.
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Upon defining a multi-index Λ = (j1, · · · , jl), the functions ϕΛ(X) =
〈
⊗lk=1zjk ,X

〉
for 1 ≤

j1, . . . , jl ≤ d form an orthonormal basis for FΘ with basis coefficients defined as

βΛ(U) = E
[
⟨TU ,X⟩

〈
⊗lk=1zjk ,X

〉]
=

r′∑
i=1

〈
u⊗l
i ,⊗lk=1zjk

〉
=

r′∑
i=1

l∏
k=1

⟨ui, zjk⟩ ,

and the expected loss can be written as

L(U) =
1

2
E
[
(fU (X)− fU⋆(X))2

]
=

1

2

∥∥∥∥∥∥
r′∑
i=1

u⊗l
i −

r∑
i=1

σiz
⊗l
i

∥∥∥∥∥∥
2

F

=
1

2

∑
Λ

(βΛ(U)− β⋆Λ)
2
,

where the true basis coefficients are β⋆Λi
= σi for Λi = (i, . . . , i), 1 ≤ i ≤ r, and β⋆Λ = 0

otherwise. Unlike KR and SMF, neither gradient independence nor gradient dominance are satisfied
for OSTD with a random or equal initialization. However, we show that these conditions are
approximately satisfied throughout the solution trajectory, provided that the initial point is nearly
aligned with the eigenvectors z1, . . . ,zr′ ; in other words, cos(ui(0), zi) ≈ 1 for every 1 ≤ i ≤ r′.5
Assuming that the initial point satisfies this alignment condition, we show that the entire solution
trajectory remains aligned with these eigenvectors, i.e., cos(ui(t), zi) ≈ 1 for every 1 ≤ i ≤ r′

and 1 ≤ t ≤ T . Using this key result, we show that both gradient independence and gradient
dominance are approximately satisfied throughout the solution trajectory. We briefly explain the
intuition behind our approach for gradient dominance and defer our rigorous analysis for gradient
independence to the appendix. Note that if cos(ui(t), zi) ≈ 1, then βΛi

(Ut) ≈ ⟨ui(t), zi⟩l and
∥∇βΛi

(Ut)∥F ≈ ∥∇ui
βΛi

(Ut)∥ ≈ l ⟨ui(t), z⟩l−1. Therefore, gradient dominance holds with
parameters (C, γ) = (l, (l − 1)/l). We will make this intuition rigorous in Appendix G.

Proposition 4. Suppose that the initial point U0 is chosen such that ∥ui(0)∥ = α1/l and
cos(ui(0), zi) ≥ √

1− γ, for all 1 ≤ i ≤ r′, where α ≲ d−l
3

and γ ≲ (lκ)
−l/(l−2). Then,

GD with step-size η ≲ 1/(lσ1) satisfies:

• For 1≤ i≤r, we have 0.99σi≤βΛi
(Ut)≤1.01σi within O

(
(1/(ηlσr))α

− l−2
l

)
iterations.

• For t ≥ 0 and Λ ̸= Λi, we have |βΛ(Ut)| = poly(α).

Proposition 4 shows that, similar to SMF, GD learns the tensor eigenvalues incrementally. However,
unlike SMF, we require a specific alignment for the initial point. We note that such initial point can
be obtained in a pre-processing step via tensor power method within a number of iterations that is
almost independent of d (Anandkumar et al., 2017, Theorem 1). We believe that Proposition 4 can be
extended to random initialization; we leave the rigorous verification of this conjecture to future work.
Equipped with this proposition, we next establish the convergence of GD on OSTD.
Theorem 4. Suppose that the conditions of Proposition 4 are satisfied. Then, within T ≲
(1/(ηlσr))α

−(l−2)/l iterations, GD satisfies

∥TUT
− TU⋆∥2F ≲ rdlγσ

l−1
l

1 α
1
l . (7)

Theorem 4 shows that, with appropriate choices of η and α, GD converges to a solution that satisfies
∥TUT

− TU⋆∥2F ≤ ϵ within O(dl(l−2)/ϵl−2) iterations. To the best of our knowledge, this is the first
result establishing the convergence of GD with a large step-size on OSTD.

3.4 EMPIRICAL VERIFICATION ON NEURAL NETWORKS

In this section, we numerically show that the conjugate kernel after training (A-CK) can be used as a
valid orthogonal basis for DNNs to capture the monotonicity of the solution trajectory of different
optimizers on image classification tasks. To ensure consistency with our general framework, we use
ℓ2-loss, which is shown to have a comparable performance with the commonly-used cross-entropy
loss Hui & Belkin (2020). In Appendix B, we extend our simulations to cross-entropy loss. The
conjugate kernel (CK) is a method for analyzing the generalization performance of DNNs that uses

5We use the notations ut or u(t) interchangeably to denote the solution at iteration t.
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(a) 2-block CNN
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(b) 3-block CNN
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(c) 4-block CNN
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(d) LARS
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(f) AdamW

Figure 3: (First row) the projected trajectory of LARS on CNNs with MNIST dataset. The test accuracies for
2-Block, 3-Block, and 4-block CNN are 96.10%, 96.48%, 96.58%. (Second row) the projected trajectories of
different optimizers on AlexNet with the CIFAR-10 dataset. The test accuracies for LARS, SGD, and AdamW
are 90.54%, 91.03%, and 90.26%, respectively. We use the following settings for each optimizer: (d) LARS:
learning rate of 2, Nesterov momentum of 0.9, and weight decay of 1× 10−4. (e) SGD: learning rate of 2 with
“linear warm-up”, Nesterov momentum of 0.9, weight decay of 1× 10−4. (f) AdamW: learning rate of 0.01.

the second to last layer (the layer before the last linear layer) at the initial point as the feature
map (Daniely et al., 2016; Fan & Wang, 2020; Hu & Huang, 2021). Recently, Long (2021) shows
that A-CK, a variant of CK that is evaluated at the last epoch, better explains the generalization
properties of realistic DNNs. Surprisingly, we find that A-CK can be used not only to characterize
the generalization performance but also to capture the underlining solution trajectory of different
gradient-based algorithms.

To formalize the idea, note that any neural network whose last layer is linear can be characterized
as fθ(x) = Wψ(x), where x ∈ Rd is the input drawn from the distribution D, ψ(x) ∈ Rm
is the feature map with number of features m, and W ∈ Rk×m is the last linear layer with k
referring to the number of classes. We denote the trained model, i.e., the model in the last epoch,
by fθ∞(x) = W∞ψ∞(x). To form an orthogonal basis, we use SVD to obtain a series of basis
functions ϕi(x) = W∞,iψ∞(x) that satisfy Ex∼D[∥ϕi(x)∥2] = 1 and Ex∼D [⟨ϕi(x), ϕj(x)⟩] =
δij where δij is the delta function. Hence, the coefficient βi(θt) at each epoch t can be derived as
βi(θt) = Ex∼D [⟨fθt

(x), ϕj(x)⟩], where the expectation is estimated by its sample mean on the test
set. More details on our implementation can be found in Appendix B.

Performance on convolutional neural networks: We use LARS to train CNNs with varying
depths on MNIST dataset. These networks are trained such that their test accuracies are above
96%. Figures 3a-3c illustrate the evolution of the top-5 basis coefficients after projecting LARS
onto the orthonormal basis obtained from A-CK. It can be observed that the basis coefficients are
consistently monotonic across different depths, elucidating the generality of our proposed basis
function decomposition. In the appendix, we discuss the connection between the convergence of the
basis functions and the test accuracy for different architectures and loss functions.

Performance with different optimizers: The monotonic behavior of the projected solution trajectory
is also observed across different optimizers. Figures 3d-3f show the solution trajectories of three
optimizers, namely LARS, SGD, and AdamW, on AlexNet with the CIFAR-10 dataset. It can be seen
that all three optimizers have a monotonic trend after projecting onto the orthonormal basis obtained
from A-CK. Although our theoretical results only hold for GD, our simulations highlight the strength
of the proposed basis function decomposition in capturing the behavior of other gradient-based
algorithms on DNN.
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A DISCUSSION AND FUTURE DIRECTION

Extension to empirical loss and implication on generalization. The most significant future
direction is to extend our analysis of expected loss to the finite sample regime. It has been shown that
incremental learning can drive generalization (Gissin et al., 2019). Hence, our proposed framework is
likely to explain the puzzling generalization ability of overparameterized machine learning models.
For such an extension, the main technical difficulty is the relaxation of gradient independence. In the
finite-sample regime, gradient independence does not hold exactly due to the randomness of samples.
Therefore, an alternative approach would be to establish gradient independence approximately and
with high probability. We have successfully applied our framework to matrix factorization and tensor
decomposition, where gradient independence only holds approximately. Therefore, we believe that
more general guarantees on the finite sample regime are not out of reach.

Extension to other optimization algorithms. In this paper, we mainly focused on GD as a
representative of various optimization algorithms. Nonetheless, we believe that our analysis can
be adapted to investigate other local-search optimization algorithms, such as GD with momentum
(Nesterov, 1983), SGD (Robbins & Monro, 1951), and Adam (Kingma & Ba, 2014). Overall, our
approach can offer a unified framework for examining the implicit bias and incremental learning
phenomena for different local-search algorithms.

B ADDITIONAL EXPERIMENTS

In this section, we provide more details on our simulation and further explore the empirical strength
of the proposed basis function decomposition on different datasets, optimizers, loss functions, and
batch sizes; see Table 1 for a summary of our simulations in this section.

Architectures CNN AlexNet VGG11 ResNet-18 ResNet-34 ResNet-50 ViT
Datasets MNIST CIFAR-10 CIFAR-100

Optimizers SGD AdamW LARS
Losses ℓ2-loss CE loss

Table 1: The summary of our experiments.

B.1 NUMERICAL VERIFICATION OF OUR THEORETICAL RESULTS

In this section, we provide experimental evidence to support our theoretical results on kernel regres-
sion (KR), symmetric matrix factorization (SMF), and orthogonal symmetric tensor decomposition
(OSTD). The results are presented in Figure 4.

Kernel regression. We randomly generate 20 orthonormal kernel functions. The true model is
comprised of 4 signal terms with basis coefficients 10, 5, 3, 1. Figure 4a shows the trajectories of the
top-4 basis coefficients of GD with initial point θ0 = 5× 10−7 × 1 and step-size η = 0.4. It can be
seen that GD learns different coefficients at the same rate, which is in line with Proposition 2.

Symmetric matrix factorization. In this simulation, we aim to recover a rank-4 matrix M⋆ =
V ΣV ⊤ ∈ R20×20. In particular, we assume that V ∈ R20×4 is a randomly generated orthonormal
matrix and Σ = Diag{10, 5, 3, 1}. We consider a fully over-parameterized model where U ∈ R20×20

(i.e., r′ = 20). Figure 4b illustrates the incremental learning phenomenon that was proved in
Proposition 3 for GD with small Gaussian initialization Uij

i.i.d.∼ N (0, α2), α = 5 × 10−7 and
step-size η = 0.04.

Orthogonal symmetric tensor decomposition. Finally, we present our simulations for OSTD. We
aim to recover a rank-4 symmetric tensor of the form T⋆ =

∑4
i=1 σiz

⊗4
i where σi are the nonzero

eigenvalues with values {10, 5, 3, 1} and zi ∈ R10 are the corresponding eigenvectors. We again
consider a fully over-parameterized model with r′ = 10. Figure 4c shows the incremental learning
phenomenon for GD with an aligned initial point that satisfies cos(ui(0), zi) ≥ 0.9983, 1 ≤ i ≤ r′

and step-size η = 0.001.
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Figure 4: Experimental verification to support Theorems 2, 3, and 4 in Section 3. The first row shows the
projected trajectories of GD onto the specific basis functions we defined for each problem. The second row
shows the estimation error.

B.2 DERIVATION OF BASIS FUNCTIONS FOR DNNS

In this section, we provide more details on how we evaluate our proposed orthogonal basis induced by
A-CK and calculate the corresponding coefficients βi(θt) for an arbitrary neural network. First, recall
that any neural network whose last layer is linear can be characterized as fθ(x) = Wψ(x), where
x ∈ Rd is the input drawn from the distribution D, ψ(x) ∈ Rm is the feature map with number of
features m, and W ∈ Rk×m is the last linear layer with k referring to the number of classes. We
denote the trained model, i.e., the model in the last epoch, by fθ∞(x) = W∞ψ∞(x). To form an
orthogonal basis, we use SVD to obtain a series of basis functions ϕi(x) = W∞,iψ∞(x) that satisfy
Ex∼D[∥ϕi(x)∥2] = 1 and Ex∼D [⟨ϕi(x), ϕj(x)⟩] = δij where δij is the delta function. Hence, the
coefficient βi(θt) at each epoch t can be derived as βi(θt) = Ex∼D [⟨fθt

(x), ϕj(x)⟩]. In all of our
implementation, we use the test dataset to approximate the population distribution.

Step 1: Obtaining the orthogonal basis ϕi(x). We denote Ψ = [ψ(x1), · · · , ψ(xN )] ∈ Rm×N

as the feature matrix where N is the number of the test data points. We write the SVD of Ψ as
Ψ = UΣV ⊤. The right singular vectors collected in V can be used to define the desired orthogonal
basis of {ψi(x)}mi=1. To this goal, we write the prediction matrix as F = WΨ = W̃ Ψ̃ where
W̃ = WUΣ and Ψ̃ = V ⊤. Our goal is to define a set of matrices Ai such that ϕi(x) = Aiψ̃i(x)

form a valid orthonormal basis for F = WΨ = W̃ Ψ̃. Before designing such Ai, first note that,
due to the orthogonality of {ψ̃i(x)}, we have

E
[
∥ϕi(x)∥2

]
= ∥Ai∥2F , E [⟨ϕi(x), ϕj(x)⟩] = ⟨Ai,Aj⟩ . (8)

Therefore, it suffices to ensure that {Ai} are orthonormal. Consider the SVD of W̃ as W̃ =∑
i σiuiv

⊤
i . We define Ai = uiv

⊤
i . Clearly, defined {Ai} are orthonormal. Moreover, it is easy to

see that the basis coefficients (treated as the true basis coefficients) are exactly the singular values of
W̃ .

Step 2: Obtaining the basis coefficients βi(θt). After obtaining the desired orthonormal basis
ϕi(x), we can calculate the coefficient βi(θt) for each epoch. Given the linear layer Wt and the
feature matrix Φt at epoch t, we can obtain the coefficients for the signal terms by projecting the
prediction matrix Ft = WtΨt onto Ψ̃ = V ⊤. In particular, we write the prediction matrix as
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Pψ̃Ft = Pψ̃WtΨt = WtΨtV V ⊤ = W̃tΨ̃ where W̃t = WtΨtV . Hence, the basis coefficients

can be easily calculated as βi(θt) =
〈
W̃t,uiv

⊤
i

〉
.

B.3 FURTHER DETAILS ON THE EXPERIMENTS

In this section, we provide more details on our experiments presented in the main body of the paper
and compare them with other DNN architectures.

All of our experiments are implemented in Python 3.9, Pytorch 1.12.1 environment and
run through a local server SLURM using NVIDIA Tesla with V100-PCIE-16GB GPUs. We use
an additional NNGeometry package for calculating batch gradient, and our implemention of ViT
is adapted from https://juliusruseckas.github.io/ml/cifar10-vit.html. To
ensure consistency with our theoretical results, we drop the last softmax operator and use the
ℓ2-loss throughout this section. All of our training data are augmented by RandomCrop and
RandomHorizontalFlip, and normalized by mean and standard deviation.

Experimental details for Figure 1. Here, we describe our implementation details for Figure 1, and
present additional experiments on VGG-11, ResNet-34, and ResNet-50 with the CIFAR-10 dataset.
The results can be seen in Figure 5. We use standard data augmentation for all architectures except
for ViT. For ViT, we only use data normalization.

To obtain a stable A-CK, we trained the above models for 300 epochs. For ResNet-18, we used
LARS with a learning rate of 0.5 and applied small initialization with α = 0.3, i.e., we scale the
default initial point by α = 0.3. For ResNet-34 and ResNet-50, we choose the default learning rate
and apply small initialization with α = 0.3. For ViT, we use AdamW with a learning rate of 0.01.
The remaining parameters are set to their default values.

Experiments details for the first row of Figure 3. Here we conduct experiments on MNIST
dataset with different CNN architectures. The CNNs are composed of l blocks of layers, followed by
a single fully connected layer. A block of a CNN consists of a convolutional layer, an activation layer,
and a pooling layer. In our experiments, we use ReLU activation and vary the depth of the network.
For the first block, we used identity pooling. For the remaining blocks, we used max-pooling.

For 2-block CNN, we set the convolutional layer width to 256 and 64, respectively. For 3-block CNN,
we set the convolutional layer width to 256, 128, and 64, respectively. And for 4-block CNN, we set
the convolutional layer width to 256, 128, 128, and 64, respectively. To train these networks, we used
LARS with the learning rate of 0.05. The remaining parameters are set to their default values. We
run 20 epochs to calculate A-CK.

Experiments details for second row of Figure 3. We conduct experiments to compare the perfor-
mance of different optimizers on the CIFAR-10 dataset. In particular, we use AlexNet to compare
the performance of three optimizers, i.e., SGD, AdamW, LARS. For SGD, we set the base learning
rate to be 2 with Nesterov momentum of 0.9 and weight decay of 0.0001, together with the “linear
warm-up” technique.6 For AdamW, we set the learning rate to 0.01 and keep the remaining parame-
ters unchanged. For LARS, we set the learning rate to 2 with Nesterov momentum of 0.9 and weight
decay of 0.0001. The remaining parameters are set to the default setting.

B.4 EXPERIMENTS FOR CIFAR-100

In this section, we conduct experiments using the CIFAR-100 dataset which is larger than both
CIFAR-10 and MNIST. Our simulations are run on AlexNet, VGG-11, ViT, ResNet-18, ResNet-34,
and ResNet-50. In particular, we use the “loss scaling trick” (Hui & Belkin, 2020) defined as follows:
consider the datapoint (x,y) where x ∈ Rd is the input and y ∈ Rk is a one-hot vector with 1 at

6In "linear warm-up", we linearly increase the learning rate in the first 5 epochs. More precisely, we set the
initial learning rate to 1× 10−5 and linearly increase it to the selected learning rate in 5 epochs. After the first 5
epochs, the learning rate follows a regular decay scheme.

17

https://juliusruseckas.github.io/ml/cifar10-vit.html


Published as a conference paper at ICLR 2023

0 20 40 60 80 100 120 140

epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sc
al

e
β1

β2

β3

β4

β5

(a) AlexNet

0 20 40 60 80 100 120 140

iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sc
al

e

β1

β2

β3

β4

β5

(b) VGG-11

0 20 40 60 80 100 120 140

epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sc
al

e

β1

β2

β3

β4

β5

(c) ViT

0 20 40 60 80 100 120 140

iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

sc
al

e

β1

β2

β3

β4

β5

(d) ResNet-18

0 20 40 60 80 100 120 140

iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sc
al

e

β1

β2

β3

β4

β5

(e) ResNet-34
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Figure 5: Solution trajectories for different architectures trained on CIFAR-10. The test accuracies for Alexnet,
VGG-11 and ViT are 90.54%, 91.11%, 77.99%, respectively. The test accuracies for ResNet-18, ResNet-34
and ResNet-50 are 88.31%, 93.93% and 94.06%, respectively.

position i. Then, the scaled ℓ2-loss is defined as

ℓ2,scaling(x) = k · (fθ(x)[i]−M)2 +
∑
i′ ̸=i

(fθ(x)[i
′])2, (9)

for some constants k,M > 0. We set these parameters to k = 1,M = 4. For AlexNet and VGG-11,
we use LARS with a base learning rate of η = 1. For ViT, we use AdamW with a base learning rate
of 0.01 and batch size of 256. For ResNet architectures, we use SGD with a base learning rate of
0.3 and batch size of 64. We also add 5 warm-up epochs for ResNets. All the remaining parameters
for the above architectures are set to their default values. The results can be seen in Figure 6. Our
experiments highlight a trade-off between the monotonicity of the projected solution trajectories
and the test accuracy: in order to obtain a higher test accuracy, one typically needs to pick a larger
learning rate, which in turn results in more sporadic behavior of the solution trajectories. Nonetheless,
even with large learning, the basis coefficients remain relatively monotonic after the first few epochs
and converge to meaningful values.

B.5 EXPERIMENTS FOR DIFFERENT LOSSES

Next, we compare the projected solution trajectories on two loss functions, namely ℓ2-loss and
cross-entropy (CE) loss. We use LARS to train AlexNet on the CIFAR-10 dataset with both ℓ2-loss
and CE loss. In particular, we add the softmax operator before training the CE loss. For CE loss, we
set the base learning rate of LARS to 1. For ℓ2-loss, we use the base learning rate of 2. The remaining
parameters are set to their default values. The results can be seen in Figure 7. We observe that, similar
to the ℓ2-loss, the solution trajectory of the CE loss behaves monotonically after projecting onto the
orthogonal basis induced by A-CK. Inspired by these observations, another venue for future research
would be to extend our framework to general loss functions. Interestingly, the convergence of the
basis coefficients is much slower than those of the ℓ2-loss. This is despite the fact that CE loss can
learn slightly faster than ℓ2-loss in terms of test accuracy as shown by Hui & Belkin (2020).

B.6 EXPERIMENTS FOR DIFFERENT BATCH SIZE

Next, we study the effect of different batch sizes on the solution trajectory. We train AlexNet on the
CIFAR-10 dataset. When testing for different batch sizes, we follow the “linear scaling” rule, i.e.,
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Figure 6: Solution trajectories for different architectures trained on CIFAR-100. The test accuracies for
AlexNet, VGG-11, and ViT are 61.20%, 50.64%, and 50.41%, respectively. The test accuracies for ResNet-18,
ResNet-34 and ResNet-50 are 78.11%, 74.26% and 80.05%, respectively.
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Figure 7: Solution trajectories of LARS on the CIFAR-10 dataset with ℓ2-loss and CE loss. The test accuracies
are 90.54% for ℓ2-loss and 91.09% for CE loss.

the learning rate scales linearly with the batch size. For batch size of 32, we used SGD with a base
learning rate η = 0.1 and 5 warm-up epochs. For batch size of 64, we used SGD with a base learning
rate of η = 0.2 and 5 warm-up epochs. For batch size of 256, we used LARS with a base learning
rate of 1. The remaining hyperparameters are set to their default values. The results are reported
in Figure 8. We see that the projected solution trajectories share a similar monotonic behavior for
different batch sizes.

B.7 EXPERIMENTS FOR RESNET-18 WITH SGD ON CIFAR-10

Lastly, we train ResNet-18 with SGD on CIFAR-10. The results can be seen in Figure 9. To
achieve good generalization, we use a large learning rate η = 0.3 (with 5 warm-up epochs starting
at 1× 10−5), and decrease the learning rate by 0.33 for every 50 epochs. Moreover, We use a large
batch size 512 to better imitate the trajectory of GD. Based on the simulation result, we can find
an approximately monotonic (modulo the fluctuations caused by the randomness of the gradients)
behavior of the dynamics of the top-5 components, which again validifies our theoretical results.
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(b) Batch size 64
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Figure 8: Solution trajectories for AlexNet on the CIFAR-10 dataset with different batch sizes. The test
accuracies for batch size 32, 64 and 256 are 91.50%, 91.79%, and 90.12%, respectively.
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Figure 9: Solution trajectories for ResNet-18 on the CIFAR-10 dataset with SGD solver. The best test accuracy
is 94.45%.
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C RELATED WORK

GD for general nonconvex optimization. Gradient descent and its stochastic or adaptive variants
are considered as the “go-to” algorithms in large-scale (unconstrained) nonconvex optimization. Be-
cause of their first-order nature, they are known to converge to first-order stationary points (Nesterov,
1998). Only recently it has been shown that GD (Lee et al., 2019; Panageas et al., 2019) and its
variants, such as perturbed GD (Jin et al., 2017) and SGD (Fang et al., 2019; Daneshmand et al.,
2018), can avoid saddle points and converge to a second-order stationary point. However, these
guarantees do not quantify the distance between the obtained solution and the globally optimal and/or
true solutions. To the best of our knowledge, the largest subclass of nonconvex optimization problems
for which GD or its variants converge to meaningful solutions are those with benign landscapes.
These problems include different variants of low-rank matrix optimization with exactly parameterized
rank, namely matrix completion (Ge et al., 2016), matrix sensing (Ge et al., 2017; Zhang et al., 2021),
dictionary learning (Sun et al., 2016), and robust PCA (Fattahi & Sojoudi, 2020), as well as deep
linear neural networks (Kawaguchi, 2016). However, benign landscape is too restrictive to hold in
practice; for instance,Zhang (2021) shows that spurious local minima are ubiquitous in the low-rank
matrix optimization, even under fairly mild conditions. Therefore, the notion of benign landscape
cannot be used to explain the success of local search algorithms in more complex learning tasks.

GD for specific learning problems. Although there does not exist a unifying framework to study
the global convergence of GD for general learning tasks, its convergence has been established in
specific learning problems, such as kernel regression (which includes neural tangent kernel (Jacot
et al., 2018)), sparse recovery (Vaskevicius et al., 2019), matrix factorization (Li et al., 2018), tensor
decomposition (Wang et al., 2020; Ge et al., 2021), and linear neural network (Arora et al., 2018). In
what follows, we review specific learning tasks that are most related to our work.

The convergence of GD on kernel regression was studied far before the emergence of deep learning.
Bauer et al. (2007); Raskutti et al. (2014) establish the convergence of gradient descent on a special
class of nonparametric kernel regression called reproducing kernel Hilbert space (RKHS). Recently,
Jacot et al. (2018) discovered that under some conditions, neural networks can be approximated by
a specific type of kernel models called neural tangent kernel (NTK). Later on, a series of papers
studied the optimization (Allen-Zhu et al., 2019b) and generalization (Allen-Zhu et al., 2019a;
Arora et al., 2019b) properties of NTK. As for the matrix factorization, Li et al. (2018); Stöger &
Soltanolkotabi (2021) studied the global convergence of GD on the symmetric matrix sensing with
noiseless measurements and overestimated rank. Later, these results were extended to noisy (Zhuo
et al., 2021), asymmetric (Ye & Du, 2021), and robust (Ma & Fattahi, 2022b) variants. Wang et al.
(2020); Ge et al. (2021) studied the dynamic of a modified GD for overcomplete nonconvex tensor
decomposition. Moreover, Razin et al. (2021; 2022) analyzed the implicit regularization and the
incremental learning of gradient flow in hierarchical tensor decomposition and showed its connection
to neural networks.

Conjugate kernel. Conjugate kernel (CK) at the initial point has been considered as one of the
promising methods for studying the generalization properties of DNNs (Daniely et al., 2016; Hu &
Huang, 2021; Fan & Wang, 2020). However, similar to NTK, a major shortcoming of CK is that it
cannot fully characterize the behavior of the practical neural networks (Vyas et al., 2022). Recent
results have suggested that the conjugate kernel evaluated after training (for both NTK and CK) can
better describe the generalization properties of DNNs (Fort et al., 2020; Long, 2021). In our work,
we show that such “after kernel regime” can also be adapted to study the optimization trajectory of
practical DNNs.

D PROOFS FOR GENERAL FRAMEWORK

D.1 PROOF OF PROPOSITION 1

To prove this proposition, we first combine (1) and (GD):

θt+1 = θt − η∇L(θt) = θt − η
∑
i∈I

(βi(θt)− β⋆i )∇βi(θt). (10)
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For notational simplicity, we denote E(θt) =
1
2

∑
i∈E β

2
i (θt). Then, one can write

θt+1 = θt − η∇L(θt) = θt − η
∑
i∈S

(βi(θt)− β⋆i )∇βi(θt)− η∇E(θt). (11)

Due to the Mean-Value Theorem, there exists a ξ ∈ Rm such that

βi(θt+1) = βi

θt − η
∑
j∈I

(
βj(θt)− β⋆j

)
∇βj(θt)


= βi(θt)− η

∑
j∈I

(
βj(θt)− β⋆j

)
⟨∇βi(θt),∇βj(θt)⟩+

η2

2

〈
∇L(θt),∇2βi(ξ)∇L(θt)

〉
.

(12)
On the other hand, one can write∣∣〈∇L(θt),∇2βi(ξ)∇L(θt)

〉∣∣ ≤ sup
θ

∥∥∇2βi(θ)
∥∥ ∥∇L(θt)∥2 . (13)

For supθ
∥∥∇2βi(θ)

∥∥, we further have

sup
θ

∥∥∇2βi(θ)
∥∥ = sup

θ

∥∥∇2E[fθ(x)ϕ(x)]
∥∥

= sup
θ

∥∥E[∇2fθ(x)ϕ(x)]
∥∥

≤ sup
θ
E
[∥∥∇2fθ(x)

∥∥ |ϕ(x)|]
(a)

≤ sup
θ

(
E
[∥∥∇2fθ(x)

∥∥2])1/2 (E [ϕ2(x)])1/2
(b)

≤ LH .

(14)

Here, we used Cauchy-Schwartz inequality for (a). Moreover, for (b), we used Assumption 1 and the
definition of the orthonormal basis. Hence, we have

βi(θt+1) = βi(θt)− η
∑
j∈I

(
βj(θt)− β⋆j

)
⟨∇βi(θt),∇βj(θt)⟩ ± (1/2)η2LH ∥∇L(θt)∥2 .

(15)
Now, it suffices to bound ∥∇L(θt)∥2. Using Cauchy-Schwarz inequality, we have

∥∇L(θt)∥2 =

∥∥∥∥∇E [12 (fθt − fθ⋆)
2

]∥∥∥∥2
= ∥E [(fθt − fθ⋆)∇fθt ]∥2

≤ ∥fθt − fθ⋆∥2L2(D) ∥∇fθt∥2L2(D)

≤ 4L2
gL

2
f .

(16)

Therefore, we conclude that

βi(θt+1) = βi(θt)− η
∑
j∈I

(
βj(θt)− β⋆j

)
⟨∇βi(θt),∇βj(θt)⟩ ± 2η2LHL

2
gL

2
f . (17)

which completes the proof. □

D.2 PROOF OF THEOREM 1

Proof. Invoking the gradient independence condition, Proposition 1 can be simplified as

βi(θt+1) = βi(θt)− η
∑
j∈I

(
βj(θt)− β⋆j

)
⟨∇βi(θt),∇βj(θt)⟩ ± 2η2LHL

2
gL

2
f

= βi(θt)− η (βi(θt)− β⋆i ) ∥∇βi(θt)∥2 ± 2η2LHL
2
gL

2
f .

(18)
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We next provide upper and lower bounds for the residual and signal terms. Recall that S = {i ∈ I :
β⋆i ̸= 0}, and E = I\S. We first consider the dynamic of the signal term βi(θt), i ∈ S. Without
loss of generality, we assume β⋆i > 0. Then, due to the gradient dominance condition, we have the
following lower bound

βi(θt+1) ≥ βi(θt)− η (βi(θt)− β⋆i ) ∥∇βi(θt)∥2 − 2η2LHL
2
gL

2
f

≥
(
1 + C2η (β⋆i − βi(θt))β

2γ−1
i (θt)

)
βi(θt)− 2η2LHL

2
gL

2
f , i ∈ S

(19)

Next, for the dynamic of the residual term βi(θt), i ∈ E , we have

βi(θt+1) =
(
1− η ∥∇βi(θt)∥2

)
βi(θt)± 2η2LHL

2
gL

2
f . (20)

Next, we show that ∥∇βi(θt)∥ ≤ Lg . One can write,

∥∇βi(θt)∥ = ∥∇E [fθt
(x)ϕi(x)]∥

≤ E [∥∇fθt(x)∥ |ϕi(x)|]

≤
(
E
[
∥∇fθt

(x)∥2
])1/2 (

E
[
ϕ2(x)

])1/2
≤ Lg.

(21)

Due to our choice of the step-size, we have η ≲ 1
L2

g
, which in turn implies

∣∣∣1− η ∥∇βi(θt)∥2
∣∣∣ ≤ 1.

Therefore, we have
|βi(θt+1)| ≤ |βi(θt)|+ 2η2LHL

2
gL

2
f . (22)

Now, we are ready to prove the theorem. We divide it into two cases.

Case 1: γ = 1
2 . In this case, since we set the step-size η ≲ α√

dC2LHL2
gL

2
f

β⋆k log
−1
(
dβ⋆

k

C1α

)
, we can

simplify the dynamics of both signal and residual terms in Equation 19 and Equation 20 as follows

βi(θt+1) ≥
(
1 + 0.5C2η (β⋆i − βi(θt))

)
βi(θt) ∀i ∈ S,

|βi(θt+1)| ≤ |βi(θt)|+ 2η2LHL
2
gL

2
f ∀i ∈ E .

(23)

We first analyze the dynamic of signal βi(θt) for i ∈ S . To this goal, we further divide this case into
two phases. In the first phase, we assume C1α ≤ βi(θt) ≤ 1

2β
⋆
i . Under this assumption, we can

simplify the dynamic of βi(θt) as

βi(θt+1) ≥
(
1 + 0.25C2ηβ⋆i

)
βi(θt). (24)

Therefore, within T1 = O
(

1
C2ηβ⋆

i
log
(
β⋆
i

C1α

))
iterations, βi(θt) becomes larger than 1

2β
⋆
i . In the

second phase, we assume that βi(θt) ≥ β⋆i /2 and define yt = β⋆i − βi(θt). One can write

yt+1 ≤
(
1− 0.5C2ηβi(θt)

)
yt

≤ (1− 0.25C2ηβ⋆i )yt.
(25)

Hence, with additional T2 = O
(

1
C2ηβ⋆

i
log
(
dβ⋆

i

α

))
, we have yt ≤ α√

d
which implies βi(θt) ≥

β⋆i − α√
d

. Next, we show that there exists a time t⋆ such that β⋆i − 1√
d
α ≤ βi(θt⋆) ≤ β⋆i +

1√
d
α.

Without loss of generality, we assume that t⋆ is the first time that βi(θt) ≥ β⋆i − 1√
d
α. Due to the

dynamic of βi(θt), the distance between two adjacent iterations can be upper bounded as

|βi(θt+1)− βi(θt)| ≤ η |β⋆i − βi(θt)| ∥∇βi(θt)∥2 + 2η2LHL
2
gL

2
f

≤ ηL2
g |β⋆i − βi(θt)|+ 2η2LHL

2
gL

2
f .

(26)

In particular, for t = t⋆ − 1, we have βi(θt⋆−1) ≤ β⋆i − 1√
d
α, which in turn implies

βi(θt⋆) ≤ βi(θt⋆−1) + ηL2
g |β⋆i − βi(θt⋆−1)|+ 2η2LHL

2
gL

2
f

≤ β⋆i + 2η2LHL
2
gL

2
f

≤ β⋆i +
1√
d
α.

(27)
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Therefore, for each i ∈ S, we have |βi(θt) − β⋆i | ≤ 1√
d
α within Ti = O

(
1

C2ηβ⋆
i
log
(
dβ⋆

i

C1α

))
iterations. Meanwhile, we can show that the residual term |βiθt)|,∀i ∈ E remains small for
maxi∈S Ti = O

(
1

C2ηβ⋆
k
log
(
dβ⋆

k

C1α

))
iterations:

|βi(θt)| ≤ |βi(θ0)|+max
i∈S

Ti · 2η2LHL2
gL

2
f

= |βi(θ0)|+O
(

1

β⋆k
η log

(
β⋆k
C1α

)
LHL

2
gL

2
f

)
= |βi(θ0)|+O

(
1√
d
α

)
.

(28)

Therefore, we have that within T = O
(

1
ηβ⋆

k
log
(
dβ⋆

k

C1α

))
iterations:

∥fθT
− fθ⋆∥2L2(D) =

∑
i∈S

(β⋆i − βi(θT ))
2
+
∑
i∈E

β2
i (θT ) ≲ α2. (29)

Case 2: 1
2 < γ ≤ 1. In this case, we have the following bounds for the signal and residual terms

βi(θt+1) ≥
(
1 + C2η (β⋆i − βi(θt))β

2γ−1
i (θt)

)
βi(θt)− 2η2LHL

2
gL

2
f ∀i ∈ S,

|βi(θt+1)| ≤ |βi(θt)|+ 2η2LHL
2
gL

2
f ∀i ∈ E .

(30)

We first analyze the dynamic of the signal term βi(θt) for i ∈ S . We will show that |βi(θt)− β⋆i | ≤
α√
k

within T = O
(

1
C2ηβ⋆

i α
2γ−1

)
iterations. Due to η ≲ α2γ

√
dC2LHL2

gL
2
f

β⋆2γk , we can further simplify

the dynamic of βi(θt) as

βi(θt+1) ≥
(
1 + 0.5C2η (β⋆i − βi(θt))β

2γ−1
i (θt)

)
βi(θt). (31)

Next, we divide our analysis into two phases. In the first phase, we have βi(θt) ≤ 1
2β

⋆
i . We denote

the number of iterations for this phase as Ti,1. We further divide this period into ⌈log (β⋆i /2α)⌉
substages. In each Substage k, we have C12

k−1α ≤ βi(θt) ≤ C12
kα. Let tk be the number of

iterations in Substage k. We first provide an upper bound for tk. To this goal, note that at this substage

βi(θt+1) ≥
(
1 + 0.5C2η (β⋆i − βi(θt))β

2γ−1
i (θt)

)
βi(θt)

≥
(
1 + 0.25C2ηβ⋆i β

2γ−1
i (θt)

)
βi(θt).

(32)

Hence, we have

tk ≤ log(2)

log (1 + 0.25C2ηβ⋆i (C12k−1α)2γ−1)
. (33)

Summing over tk, we obtain an upper bound for Ti,1

Ti,1 =

⌈log(β⋆
1/2α)⌉∑
i=1

tk ≲
∞∑
k=1

1

C2ηβ⋆i (C12k−1α)2γ−1
≲

1

C2ηβ⋆i (C1α)2γ−1
. (34)

Via a similar argument, we can show that in the second phase, we have |βi(θt)− β⋆i | ≲ 1√
d
α within

additional Ti,2 = O
(

1
C2ηβ⋆

i (C1α)2γ−1

)
iterations. Therefore, for each i ∈ S, we conclude that

|βi(θt)− β⋆i | ≤ α√
d

within Ti = Ti,1 + Ti,2 = O
(

1
C2ηβ⋆

i (C1α)2γ−1

)
iterations. Meanwhile, for the

residual term βi(θt), i ∈ E , we have
|βi(θt)| ≤ |βi(θ0)|+max

i∈S
Ti · 2η2LHL2

gL
2
f

= |βi(θ0)|+O
(

1√
d
α

)
.

(35)

Therefore,
∥fθT

− fθ⋆∥2L2(D) =
∑
i∈S

(β⋆i − βi(θT ))
2
+
∑
i∈E

β2
i (θT ) ≲ α2, (36)

within T = O
(

1
C2ηβ⋆

k(C1α)2γ−1

)
iterations. This completes the proof.
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E PROOFS FOR KERNEL REGRESSION

E.1 PROOF OF PROPOSITION 2

Note that θt+1 = θt − η(θt − θ⋆), and βi(θ) = θi. Hence, for every 1 ≤ i ≤ k, we have

βi(θt+1) = βi(θt) + η(θ⋆i − βi(θt)). (37)

This in turn implies

β⋆i − βi(θt+1) = (1− η) (β⋆i − βi(θt)) =⇒ β⋆i − βi(θt) = (1− η)t (β⋆i − βi(θ0)) . (38)

For i > k, we have

βi(θt+1) = (1− η)βi(θt) =⇒ βi(θt) = (1− η)tβi(θ0), (39)

which completes the proof. □

E.2 PROOF OF THEOREM 2

Due to our choice of initial point θ0 = α1, α ≲ |β⋆k |, we have |β⋆i − βi(θ0)| ≤ 2|β⋆i |. Hence, by
Proposition 2, we have

|β⋆i − βi(θt)| = (1− η)t |β⋆i − βi(θ0)| ≤ 2(1− η)tβ⋆i , i ∈ S (40)

|βi(θt)| ≤ (1− η)tα, i ∈ E . (41)

Therefore, to prove |β⋆i − βi(θt)| ≤ α√
k
, i ∈ S, it suffices to have

2(1− η)tβ⋆i ≤ α√
k

=⇒ t ≳
1

η
log

(
kθi
α

)
. (42)

On the other hand, to ensure |βi(θt)| ≤ α√
d
, i ∈ E , it suffices to have

(1− η)tα ≤ α√
d

=⇒ t ≳
1

η
log (d) . (43)

Recall that α ≲ k|θk|
d and |θ1| ≥ |θ2| ≥ · · · ≥ |θk| > 0. Therefore, within T = O

(
1
η log

(
k|θ1|
α

))
iterations, we have

∥θT − θ⋆∥ ≤

√√√√ k∑
i=1

α2

k
+

d∑
i=k+1

α2

d
≤
√
2α, (44)

which completes the proof. □

F PROOFS FOR SYMMETRIC MATRIX FACTORIZATION

F.1 INITIALIZATION

We start by proving that both lower bound on signals at θ0 and upper bound on energy at θ0 are
satisfied with high probability. Recall that each element of U0 is drawn from N (0, α2). The following
proposition characterizes the upper and lower bounds for different coefficients βij(U0).

Proposition 5 (Initialization). With probability at least 1− e−Ω(r′), we have

βii(U0) =
〈
ziz

⊤
i ,U0U

⊤
0

〉
≥ 1

4
r′α2, for all 1 ≤ i ≤ r, (45)

and
|βij(U0)| =

∣∣〈ziz⊤
j ,U0U

⊤
0

〉∣∣ ≤ 4 log(d)r′α2, for all i ̸= j or i, j > r. (46)
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Proof. First note that U⊤
0 zi ∼ N (0, α2Ir′×r′). Hence, a standard concentration bound on Gaussian

random vectors implies

P
(∣∣∣∥∥U⊤

0 zi
∥∥− α

√
r′
∣∣∣ ≥ αδ

)
≤ 2 exp{−cδ2}. (47)

Via a union bound, we have that with probability of at least 1− e−Cr
′
:∥∥U⊤

0 zi
∥∥ ≤ 2α

√
r′ log(d), 1 ≤ i ≤ d,

∥∥U⊤
0 zi

∥∥ ≥ 0.5α
√
r′, ∀1 ≤ i ≤ r. (48)

Given these bounds, one can write

βii(U0) =
〈
ziz

⊤
i ,U0U

⊤
0

〉
=
∥∥U⊤

0 zi
∥∥2 ≥ 1

4
r′α2 ∀1 ≤ i ≤ r, (49)

and

|βij(U0)| =
∣∣〈ziz⊤

j ,U0U
⊤
0

〉∣∣ ≤ ∥∥U⊤
0 zi

∥∥∥∥U⊤
0 zj

∥∥ ≤ 4 log(d)r′α2 ∀1 ≤ i, j ≤ d, (50)

which completes the proof.

F.2 ONE-STEP DYNAMICS

In this section, we characterize the one-step dynamics of the basis coefficients. To this goal, we first
provide a more precise statement of Proposition 3 along with its proof.

Proposition 6. For the diagonal element βii(Ut), we have

βii(Ut+1) = (1 + 2η (σi − βii(Ut)))βii(Ut)− 2η
∑
j ̸=i

β2
ij(Ut)

+ η2

∑
j,k

βij(Ut)βik(Ut)βjk(Ut)− 2σi
∑
j

β2
ij(Ut) + σ2

i βii(Ut)

 .

(51)

where σi = 0 for r < i ≤ d. Moreover, for every i ̸= j, we have

βij(Ut+1) = (1 + η (σi + σj − 2βii(Ut)− 2βjj(Ut)))βij(Ut) + 2η
∑
k ̸=i,j

βik(Ut)βjk(Ut)

+ η2

∑
k,l

βik(Ut)βkl(Ut)βlj(Ut)− (σi + σj)
∑
k

βik(Ut)βkj(Ut) + σiσjβij(Ut)

 .

(52)

Proof. The iterations of GD on SMF take the form

Ut+1 = Ut − η(UtU
⊤
t −M⋆)Ut. (53)

This leads to

Ut+1U
⊤
t+1 = UtU

⊤
t − η(UtU

⊤
t −M⋆)UtU

⊤
t − ηUtU

⊤
t (UtU

⊤
t −M⋆)

+ η2(UtU
⊤
t −M⋆)UtU

⊤
t (UtU

⊤
t −M⋆).

(54)

Recall that βij(Ut) = ⟨UtU
⊤
t , ziz

⊤
j ⟩, UtU

⊤
t =

∑
i,j βij(Ut)ziz

⊤
j , and M⋆ =

∑r
i=1 σiziz

⊤
i .

Based on these definitions, one can write

βij(Ut+1) = ⟨Ut+1U
⊤
t+1, ziz

⊤
j ⟩

= ⟨UtU
⊤
t , ziz

⊤
j ⟩ − η⟨(UtU

⊤
t −M⋆)UtU

⊤
t , ziz

⊤
j ⟩ − η⟨UtU

⊤
t (UtU

⊤
t −M⋆), ziz

⊤
j ⟩

+ η2⟨(UtU
⊤
t −M⋆)UtU

⊤
t (UtU

⊤
t −M⋆), ziz

⊤
j ⟩.

(55)
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In light of the above equality and the orthogonality of {zi}i∈[d], the RHS of Equation 55 can be
written in terms of βkl(Ut), 1 ≤ k, l ≤ d. In particular

〈
(UtU

⊤
t −M⋆)UtU

⊤
t , ziz

⊤
j

〉
=

〈∑
i,j

(
βij(Ut)− β⋆ij

)
ziz

⊤
j

∑
i,j

βij(Ut)ziz
⊤
j , ziz

⊤
j

〉

=

〈∑
i,j

∑
k

(βik(Ut)− β⋆ik)βkj(Ut)ziz
⊤
j , ziz

⊤
j

〉
=
∑
k

(βik(Ut)− β⋆ik)βkj(Ut)

= (βii(Ut)− σi)βij(Ut) +
∑
k ̸=i

(βik(Ut)− β⋆ik)βkj(Ut).

(56)
Other terms in Equation 55 can be written in terms of βij(Ut) in an identical fashion. Substituting
these derivations back in Equation 55, we obtain

βij(Ut+1) = (1 + η (σi + σj))βij(Ut)− 2η
∑
k

βik(Ut)βkj(Ut)

+ η2

∑
k,l

βik(Ut)βkl(Ut)βlj(Ut)− (σi + σj)
∑
k

βik(Ut)βkj(Ut) + σiσjβij(Ut)

 .

(57)
Note that the above equality holds for any 1 ≤ i, j ≤ r′. In particular, for i = j, we further have

βii(Ut+1) = (1 + 2η (σi − βii(Ut)))βii(Ut)− 2η
∑
j ̸=i

β2
ij(Ut)

+ η2

∑
j,k

βij(Ut)βik(Ut)βjk(Ut)− 2σi
∑
j

β2
ij(Ut) + σ2

i βii(Ut)

 ,

(58)

which completes the proof.

F.3 PROOFS OF PROPOSITION 3 AND THEOREM 3

To streamline the presentation, we prove Proposition 3 and Theorem 3 simultaneously. The main idea
behind our proof technique is to divide the solution trajectory into r substages: in Substage i, the
basis coefficient βii(Ut) converges linearly to σi while all the remaining coefficients remain almost
unchanged. More precisely, suppose that Substage i lasts from iteration ti,s to ti,e. We will show that
βii(Uti,e) ≈ σi and βij(Uti,e) ≈ βij(Uti,s). Recall that γ = min1≤i≤r σi − σi+1 is the eigengap
of the true model, which we assume is strictly positive.

Substage 1. In the first stage, we show that β11(Ut) approaches σ1 and |βij(Ut)|, i, j ≥ 2 remains

in the order of poly(α) within T1 = O
(

1
ησ1

log
(
σ1

α

))
iterations. To formalize this idea, we further

divide this substage into two phases. In the first phase (which we refer to as the warm-up phase),
we show that β11(Ut) will quickly dominate the remaining terms βij(Ut),∀(i, j) ̸= (1, 1) within

O
(

1
ηγ log log(d)

)
iterations. This is shown in the following lemma.

Lemma 1 (Warm-up phase). Suppose that the initial point satisfies Equation 45 and Equation 46.
Then, within O

(
1
ηγ log log(d)

)
iterations, we have

|βij(Ut)| ≤ β11(Ut) ≲ r′α2 log(d)1+σ1/γ . (59)

Proof. To show this, we use an inductive argument. Due to our choice of the initial point, we have
|βij(U0)| ≲ r′α2 log(d)1+σ1/γ , 1 ≤ i, j ≤ d. Now, suppose that at time t, we have |βij(Ut)| ≲
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r′α2 log(d)1+σ1/γ , 1 ≤ i, j ≤ d. Then, by Proposition 6, we have

β11(Ut+1) = (1 + 2η (σ1 − β11(Ut)))β11(Ut)− 2η
∑
j ̸=1

β2
1j(Ut)

+ η2

∑
j,k

β1j(Ut)β1k(Ut)βjk(Ut)− 2σ1
∑
j

β2
1j(Ut) + σ2

1β11(Ut)


≥
(
1 + 2ησ1 −O

(
ηdr′α2 log(d)1+σ1/γ

))
β11(Ut).

(60)

Similarly, for the remaining coefficients βij(Ut),∀(i, j) ̸= (1, 1), we have

|βij(Ut+1)| ≤
(
1 + η

(
σ1 + σ2 +O

(
dr′α2 log(d)1+σ1/γ

)))
|βij(Ut)| . (61)

Note that the stepsize satisfies η ≲ 1
σ1

, and σ1 − σ2 ≥ γ ≳ dr′α2 log(d)1+σ1/γ . Hence, we have

β11(Ut+1)

|βij(Ut+1)|
≥ 1 + 2ησ1 −O

(
ηdr′α2 log(d)1+σ1/γ

)
1 + η

(
σ1 + σ2 +O

(
dr′α2 log(d)1+σ1/γ

)) β11(Ut)

|βij(Ut)|

=

(
1 +

η(σ1 − σ2 −O(dr′α2 log(d)1+σ1/γ))

1 + η(σ1 + σ2 +O(dr′α2 log(d)1+σ1/γ))

)
β11(Ut)

|βij(Ut)|

≥
(
1 +

ηγ

1 + 0.5η(σ1 + σ2)

)
β11(Ut)

|βij(Ut)|

≥ (1 + 0.5ηγ)
β11(Ut)

|βij(Ut)|
.

(62)

This further implies
β11(Ut)

|βij(Ut)|
≥ (1 + 0.5ηγ)

t β11(U0)

|βij(U0)|
. (63)

On the other hand, Equation 49 and Equation 50 imply that

β11(U0)

|βij(U0)|
≥ 1

16 log(d)
. (64)

Hence, within O
(

1
ηγ log log(d)

)
iterations, we have βij(Ut) ≥ |β11(Ut)| ,∀(i, j) ̸= (1, 1). More-

over, we have that during this phase,

|βij(Ut)| ≤ β11(Ut) ≤ r′α2 log(d) (1 + 2ησ1)
O( 1

ηγ log log(d)) ≲ r′α2 log(d)1+σ1/γ , (65)

which completes the proof.

After the warm-up phase, we show that β11(Ut) quickly approaches σ1 while the remaining coeffi-
cients remain small.

Lemma 2 (Fast growth). After the warm-up phase followed by O
(

1
ησ1

log
(
σ1

α

))
iterations, we have

0.99σ1 ≤ β11(Ut) ≤ σ1. (66)

Moreover, for |βij(Ut)| ,∀(i, j) ̸= (1, 1), we have

|βij(Ut)| ≲ σ1r
′ log(d)α

2σ1−σi−σj
2σ1 . (67)

Before providing the proof of Lemma 2 we analyze an intermediate logistic map which, as will be
shown later, closely resembles the dynamic of βij(Ut):

xt+1 = (1 + ησ − ηxt)xt, x0 = α. (logistic map)

The following two lemmas characterize the dynamic of a single logistic map, as well as the dynamic
of the ratio between two different logistic maps.
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Lemma 3 (Iteration complexity of logistic map). Suppose that α ≤ ε ≤ 0.1σ. Then, for the logistic
map, we have xT ≥ σ − ε within T = 1

log(1+ησ) (log(4σ/α) + log(4σ/ε)) iterations.

Lemma 4 (Separation between two logistic maps). Let σ1, σ2 be such that σ1 − σ2 > 0, and

xt+1 = (1 + ησ1 − ηxt)xt, x0 = α

yt+1 = (1 + ησ2 − ηyt)yt, y0 = α

Then, within T = 1
log(1+ησ1)

log
(

16σ2
1

εα

)
iterations, we have

σ1 − ε ≤ xT ≤ σ1, yT ≤ 16σ2
1

ε
α

σ1−σ2
σ1+σ2 .

The proofs of Lemmas 3 and 4 are deferred to Appendix F.4. We are now ready to provide the proof
of Lemma 2.

Proof of Lemma 2. Similar to the proof of Lemma 1, we use an inductive argument. Suppose that
t0 is when the second phase starts. According to Lemma 1, we have |βij(Ut0)| ≤ β11(Ut0) ≲

r′α2 log(d)1+σ1/γ ≲ σ1r
′ log(d)α

2σ1−σi−σj
2σ1 . Therefore, the base case of our induction holds. Next,

suppose that at some time t within the second phase, we have |βij(Ut)| ≲ σ1α
2σ1−σi−σj

2σ1 ,∀(i, j) ̸=
(1, 1). Our goal is to show that |βij(Ut+1)| ≲ σ1α

2σ1−σi−σj
2σ1 . To this goal, we consider two cases.

Case I: i ≤ r or j ≤ r and (i, j) ̸= (1, 1). We have

|βij(Ut+1)| ≤ (1 + η (σi + σj − 2βii(Ut)− 2βjj(Ut))) |βij(Ut)|+ 2η
∑
k ̸=i,j

|βik(Ut)βjk(Ut)|

+ η2

∣∣∣∣∣∣
∑

k,l

βik(Ut)βkl(Ut)βlj(Ut)− (σi + σj)
∑
k

βik(Ut)βkj(Ut) + σiσjβij(Ut)

∣∣∣∣∣∣
(a)

≤
(
1 + η

(
σi + σj + ησiσj +O

(
dα

γ
σ1

)))
|βij(Ut)|.

Here in (a) we used the assumption |βij(Ut)| ≲ σ1α
2σ1−σi−σj

2σ1 ≲ σ1α
γ

2σ1 ,∀(i, j) ̸= (1, 1). Hence,
by Lemma 4, we have

|βij(Ut+1)| ≲ σ1α
2σ1−σi−σj

2σ1 , where 1 ≤ i ≤ r or 1 ≤ j ≤ r. (68)

Case II: i, j ≥ r + 1. For βij(Ut) such that i, j ≥ r + 1, its dynamic is characterized by

|βij(Ut+1)| ≤ (1− η (2βii(Ut) + 2βjj(Ut))) |βij(Ut)|+ 2η
∑
k ̸=i,j

|βik(Ut)βjk(Ut)|

+ η2
∑
k,l

|βik(Ut)βkl(Ut)βlj(Ut)|

≤
(
1 + ηO

(
dα

γ
σ1

))
|βij(Ut)| .

(69)

Hence, for t ≲ 1
ησ1

log
(
σ1

α

)
, we have |βij(Ut)| ≤

(
1 + ηO

(
dα

γ
σ1

))O(
1

ησ1
log(σ1

α )
)
|βij(U0)| ≲

|βij(U0)| since we assume α ≲
(
σ1

d

)σ1/γ . This completes our inductive proof for |βij(Ut)| ≲
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σ1α
2σ1−σi−σj

2σ1 ,∀(i, j) ̸= (1, 1) in the second phase. Finally, we turn to β11(Ut). One can write

β11(Ut+1) = (1 + 2η (σ1 − β11(Ut)))β11(Ut)− 2η
∑
j ̸=1

β2
1j(Ut)

+ η2

∑
j,k

β1j(Ut)β1k(Ut)βjk(Ut)− 2σ1
∑
j

β2
1j(Ut) + σ2

1β11(Ut)


(a)

≥
(
1 + 2η

(
σ1 + 0.5ησ2

1 − β11(Ut)−O
(
dα

γ
2σ1

)))
β11(Ut)

(b)

≥
(
1 + 2η

(
0.9995σ1 + 0.5ησ2

1 − β11(Ut)
))
β11(Ut).

(70)

Here in (a) we used the fact that |βij(Ut)| ≲ σ1r
′ log(d)α

2σ1−σi−σj
2σ1 ≲ σ1α

γ
2σ1 , ∀(i, j) ̸= (1, 1).

In (b), we used the assumption that α ≲ σr

d
2σ1/γ . The above inequality together with Lemma 3 entails

that within 1
log(1+ησ1)

log
(
1600σ1

α

)
= O

(
1
ησ1

log
(
σ1

α

))
iterations, we have β11(Ut) ≥ 0.99σ1.

This completes the proof of Lemma 2 and marks the end of Substage 1. □

Next, we move on to Substage 2.

Substage 2. In Substage 2, we show that the second component β22(Ut) converges to σ2 within
O
(

1
ησ2

log
(
σ2

α

))
iterations while the other coefficients remain small. To this goal, we first study the

one-step dynamic of β22(Ut):

β22(Ut+1) = (1 + 2η (σ2 − β22(Ut)))β22(Ut)− 2η
∑
j ̸=2

β2
2j(Ut)

+ η2

∑
j,k

β2j(Ut)β2k(Ut)βjk(Ut)− 2σ2
∑
j

β2
2j(Ut) + σ2

2β22(Ut)

 .

(71)

Different from the dynamic of β11(Ut), not all the coefficients βij(Ut) with i = 2 or j = 2 are
smaller than β22(Ut) at the beginning of Substage 2. In particular, the basis coefficient |β12(Ut)|
may be much larger than β22(Ut) at the beginning of Substage 2. To see this, note that, according

to Equation 68, we have β12(Ut) ≲ α
σ1−σ2
2σ1 and β22(Ut) ≲ α

2(σ1−σ2)
2σ1 . Hence, it may be possible

to have |β12(Ut)| ≍
√
β22(Ut) ≫ β22(Ut). Therefore, the term 2ηβ2

12(Ut) in Equation 76 must
be handled with extra care. Note that if we can show σ2β22(Ut) ≫ β2

12(Ut), then 2ηβ2
12(Ut) can

be combined with the first term in the RHS of Equation 76 and the argument made in Substage 1
can be repeated to complete the proof of Substage 2. However, our provided bound in Equation 68
can only imply β12(Ut)

2 ≍ β22(Ut). Therefore, we need to provide a tighter analysis to show
that β2

12(Ut) ≪ σ2β22(Ut) along the trajectory. Upon controlling β2
12(Ut), we can then show the

convergence of β22(Ut) similar to our analysis for β11(Ut) in Substage 1.

To control the behavior of β2
12(Ut), we study the ratio ω(t) := β2

12(Ut)
β22(Ut)

. We will show that ω(t) ≪ σ2

along the trajectory. To this goal, we will show that ω(t) can only increase for O( 1
ησ1

log(σ1

α ))

iterations. Therefore, its maximum along the solution trajectory happens at T = O( 1
ησ1

log(σ1

α )).
Therefore, by bounding the maximum, we can show that ω(t) remains small throughout the solution
trajectory.
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First, at the initial point, we have ω(0) ≤ 64 log2(d)r′α2, which satisfies our claim. We next provide
an upper bound for ω(t+ 1) based on ω(t). Note that

ω(t+ 1) ≤ (1 + η(σ1 + σ2 − 2β11(Ut) + poly(α)))2

(1 + η(σ2 − poly(α)))2
· β

2
12(Ut)

β22(Ut)

=

(
1 +

η(σ1 − 2β11(Ut) + poly(α))

1 + η(σ2 − poly(α))

)2

ω(t)

≤
(
1 + η (σ1 − 2β11(Ut))− 0.5η2σ1σ2

)2
ω(t)

≤
(
(1 + ησ1)

2 − 2ηβ11(Ut)− 0.4η2σ1σ2
)
ω(t).

(72)

Due to the first inequality, ω(t) can be increasing only until β11(Ut) ≥ σ1

2 ± poly(α). On the other
hand, due to the dynamic of β11 in Substage 1, we can show that β11(Ut) ≥ σ1

2 ±poly(α) in at most

T = O
(

1
ησ1

log
(
σ1

α

))
iterations. Therefore, ω(t) takes its maximum at T = O

(
1
ησ1

log
(
σ1

α

))
.

On the other hand, we know that β11(Ut) satisfies

β11(Ut+1) =
(
(1 + ησ1)

2 − 2ηβ11(Ut)± η poly(α)
)
β11(Ut). (73)

Hence, we can bound ω(t) as

ω(T ) ≤
T−1∏
t=0

(
(1 + ησ1)

2 − 2ηβ11(Ut)− 0.4η2σ1σ2
)
ω(0)

≤
T−1∏
t=0

(1 + ησ1)
2 − 2ηβ11(Ut)− 0.4η2σ1σ2

(1 + ησ1)2 − 2ηβ11(Ut)± η poly(α)
· β11(Ut+1)

β11(Ut)
ω(0)

(a)
=

T−1∏
t=0

(1− Ω(η2σ1σ2))
β11(Ut+1)

β11(Ut)
ω(0)

≤ 256(1− Ω(η2σ1σ2))
Tβ11(UT ) log

2(d).

(74)

Here in (a) we used the fact that α ≲
(
ησ2

r

)σ1/γ . Hence, we have

ω(T ) ≲ (1− Ω(η2σ1σ2))
Tσ1 log

2(d) ≲

(
α

σ1

)Ω(ησ2)

σ1 log
2(d). (75)

Due to our assumption α ≲
(
κ log2(d)

)−Ω( 1
ησr

), we conclude that ω(t) ≤ 0.01σ2. Therefore, equa-
tion 76 can be lower bounded as

β22(Ut+1) ≥ (1 + 1.99η (σ2 − β22(Ut)))β22(Ut)− 2η
∑
j>2

β2
2j(Ut)

+ η2

∑
j,k

β2j(Ut)β2k(Ut)βjk(Ut)− 2σ2
∑
j

β2
2j(Ut) + σ2

2β22(Ut)

 .

(76)

The rest of the proof is a line by line reconstruction of Substage 1 and hence omitted for brevity.

Substage 3 ≤ k ≤ r. Via an identical argument to Substage 2, we can show that for each Substage
3 ≤ k ≤ r, we have

0.99σk ≤ βkk(Ut) ≤ σk. (77)

within Tk = O
(

1
ησk

log
(
σ1

α

))
iterations. This completes the proof of the first statement of Proposi-

tion 3.

To prove the second statement of Proposition 3 as well as Theorem 3, we next control the residual
terms. First, we consider the residual term βij(Ut) where either i ≤ r or j ≤ r. Note that
βij(Ut) = βji(Ut) and hence we can assume i ≤ r without loss of generality. We will show
that βij(Ut) decreases linearly once the corresponding signal βii(Ut) converges to the vicinity of
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σi. To this goal, it suffices to control the largest component βmax(Ut) := maxi̸=j,i≤r |βij(Ut)|.
Without loss of generality, we assume that the index (i, j) attains the maximum at time t, i.e.,
βmax(Ut) = |βij(Ut)|. One can write

|βij(Ut+1)|
≤ (1 + η (σi + σj − 2βii(Ut)− 2βjj(Ut))) |βij(Ut)|+ 2η

∑
k ̸=i,j

|βik(Ut)βjk(Ut)|

+ η2

∣∣∣∣∣∣
∑

k,l

βik(Ut)βkl(Ut)βlj(Ut)− (σi + σj)
∑
k

βik(Ut)βkj(Ut) + σiσjβij(Ut)

∣∣∣∣∣∣
(a)

≤ (1− η0.9(σi + σj))|βij(Ut)|
≤ (1− η0.9σr)|βij(Ut)|.

(78)

Here in (a) we used the fact that 0.99σi ≤ βii(Ut) ≤ σi, 1 ≤ i ≤ r and the fact that βmax(Ut) =
|βij(Ut)|. Hence, we conclude that βmax(Ut+1) ≤ (1 − 0.9ησr)βmax(Ut). Therefore, within

additional O
(

1
ησr

log
(
1
α

))
iterations, we have |βij(Ut)| ≤ r′ log(d)α2 for all (i, j) such that

i ≤ r, i ̸= j.

The remaining residual terms, i.e., those coefficients βij(Ut) for which i, j > r, can be bounded via
the same approach in Case II of substage 1. In particular, we can show that |βij(Ut)| ≲ |βij(U0)| ≲
r′ log(d)α2,∀i, j > r. For brevity, we omit this step. This completes the proof of the second
statement of Proposition 3.

Finally, to prove Theorem 3, we show that once |βij(Ut)| ≤ r′ log(d)α2,∀(i, j) ̸= (k, k), 1 ≤ k ≤ r,

the signals βkk(Ut) will further converge to σk ±O
(
α2
)

within O
(

1
ησk

log
(
σk

α

))
iterations. To

see this, we simplify the dynamic of βkk(Ut) as

βkk(Ut+1) = (1 + 2η (σk − βkk(Ut)))βkk(Ut)− 2η
∑
j ̸=k

β2
kj(Ut)

+ η2

∑
j,l

βkj(Ut)βkl(Ut)βjl(Ut)− 2σk
∑
j

β2
kj(Ut) + σ2

kβkk(Ut)


= (1 + η (βkk(Ut)− σk))

2
βkk(Ut)−O

(
ηdr′2 log2(d)α4

)
,

(79)

which leads to

σk − βkk(Ut+1) = (1− ηβkk(Ut) (2 + η(σk − βkk(Ut)))) (σk − βkk(Ut)) +O
(
ηdr′2 log2(d)α4

)
≤ (1− 1.98ησk)(σk − βkk(Ut)) +O

(
ηdr′2 log2(d)α4

)
.

(80)
Hence, within additional O

(
1
ησk

log
(
σk

α

))
iterations, we have |σk − βkk(Ut+1)| =

O
(

1
σk
dr′2 log2(d)α4

)
for every 1 ≤ k ≤ r.

In conclusion, we have

∥∥UTU
⊤
T −M⋆

∥∥2
F
=

d∑
i,j=1

(
βij(UT )− β⋆ij

)2 ≤ r′2 log2(d)d2α4. (81)

within O
(

1
ησr

log
(
σr

α

))
iterations. This completes the proof of Theorem 3. □

F.4 ANALYSIS OF THE LOGISTIC MAP

In this section, we provide the proofs of Lemmas 3 and 4.
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UPPER BOUND OF ITERATION COMPLEXITY

Recall the logistic map
xt+1 = (1 + ησ − ηxt)xt, x0 = α. (82)

Here the initial value satisfies 0 < α≪ σ. Vaskevicius et al. (2019) provide both upper and lower
bounds for xt that follows the above logistic map. However, their bounds are not directly applicable
to our setting. Hence, we need to develop a new proof for Lemma 3.

Proof of Lemma 3. We divide the dynamic into two stages: (a) xt ≤ 1
2σ, and (b) xt ≥ 1

2σ.

Stage 1: xt ≤ 1
2σ. We consider K = ⌈log

(
1
2σ/α

)
⌉ substages, where in each Substage k, we have

αek ≤ xt ≤ αek+1. Suppose that tk is the number of iterations in Substage k. One can write

xt+1 = (1 + ησ − ηxt)xt

≥ (1 + ησ − ηαek+1)xt.
(83)

Hence, it suffices to find the smallest t = tmin such that

αek(1 + ησ − ηαek+1)t ≥ αek+1. (84)

Solving this inequality leads to

tmin =
1

log(1 + ησ − ηαek+1)
. (85)

Based on the above equality, we provide an upper bound for tmin:

tmin =
1

log(1 + ησ) + log(1− ηαek+1/(1 + ησ))

(a)

≤ 1

log(1 + ησ)− ηαek+1

1+ησ−ηαek+1

≤
1 + ηαek+1

1+ησ−ηαek+1

log(1 + ησ)

(b)

≤ 1 + ηαek+1

log(1 + ησ)
.

(86)

Here in (a) we used the fact that log(1 + x) ≤ x
1+x ,∀x > −1 and in (b) we used the fact that

xt ≤ 1
2σ. Hence, we have tk ≤ 1+ηαek+1

log(1+ησ) . Therefore, the total iteration complexity of Stage 1 is
upper bounded by

T1 =

K−1∑
k=0

tk ≤
K−1∑
k=0

1 + ηαek+1

log(1 + ησ)
≤ ⌈log

(
1
2σ/α

)
⌉+ ησ

log(1 + ησ)
≤ log(4σ/α)

log(1 + ησ)
. (87)

Stage 2: xt ≥ 1
2σ. In this stage, we rewrite the equation 82 as

σ − xt+1 = (1− ηxt)(σ − xt). (88)

Via a similar trick, we can show that within additional T2 = log(4σ/ε)
log(1+ησ) iterations, we have

xt ≥ σ − ε, which can be achieved in the total number of iterations T = T1 + T2 =
1

log(1+ησ) (log(4σ/α) + log(4σ/ε)) iterations. This completes the proof of Lemma 3 □

SEPARATION BETWEEN TWO INDEPENDENT SIGNALS

In this section, we show that there is a sharp separation between two logistic maps with signals σ1, σ2
provided that σ1 ̸= σ2. In particular, suppose that σ1 − σ2 ≥ γ > 0 and

xt+1 = (1 + ησ1 − ηxt)xt, x0 = α,

yt+1 = (1 + ησ2 − ηyt)yt, y0 = α.
(89)
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Proof of Lemma 4. By Lemma 3, we have xT ≥ σ1 − ε within T = 1
log(1+ησ1)

log
(

16σ2
1

εα

)
iterations.

Therefore, it suffices to show that yt remains small for t ≤ T . To this goal, note that

yt+1 = (1 + ησ2 − ηyt)yt ≤ (1 + ησ2)yt ≤ (1 + ησ2)
t+1α. (90)

Hence, we need to bound Γ = (1 + ησ2)
T . Taking logarithm of both sides, we have

log(Γ) = T log(1 + ησ2)

= log

(
16σ2

1

εα

)
log(1 + ησ2)

log(1 + ησ1)
.

(91)

Now, we provide a lower bound for the ratio log(1 + ησ1)/ log(1 + ησ2):

log(1 + ησ1)

log(1 + ησ2)
= 1 +

log(1 + η(σ1−σ2)
1+ησ2

)

log(1 + ησ2)

≥ 1 +

η(σ1−σ2)
1+ησ2

/
(
1 + η(σ1−σ2)

1+ησ2

)
ησ2

(a)

≥ 1 +
σ1 − σ2
2σ2

=
σ1 + σ2
2σ2

,

(92)

where (a) follows from the assumption η ≤ 1
4σ1

. Therefore, we have

Γ = exp

{
log

(
16σ2

1

εα

)
2σ2

σ1 + σ2

}
=

(
16σ2

1

εα

)2σ2/(σ1+σ2)

. (93)

which implies that

yT ≤ α

(
16σ2

1

εα

)2σ2/(σ1+σ2)

≤ 16σ2
1

ε
α

σ1−σ2
σ1+σ2 . (94)

This completes the proof of Lemma 4. □

G PROOF FOR TENSOR DECOMPOSITION

In this section, we prove our results for the orthonormal symmetric tensor decomposition (OSTD).
Different from matrix factorization, we use a special initialization that aligns with the ground truth.
In particular, for all 1 ≤ i ≤ r′, we assume that sin(ui(0), zi) ≤ γ for some small γ. We will
show that ui(t) aligns with zi along the whole optimization trajectory. To this goal, we define
vij(t) = ⟨ui(t), zj⟩ for every 1 ≤ i ≤ r′ and 1 ≤ j ≤ d. Recall that Λ is a multi-index with length l.
We define |Λ|k as the number of times index k appears as one of the elements of Λ.7 Evidently, we
have 0 ≤ |Λ|k ≤ l. Based on these definitions, one can write

βΛ(U) =

r′∑
i=1

d∏
k=1

⟨ui, zk⟩|Λ|k =

r′∑
i=1

d∏
k=1

v
|Λ|k
ik . (95)

Now, it suffices to study the dynamic of vij(t). In particular, we will show that vij(t) remains small
except for the top-r diagonal elements vjj(t), 1 ≤ j ≤ r, which will approach σ1/l

j . To make this
intuition more concrete, we divide the terms {vij(t)} into three parts:

• signal terms defined as vjj(t), 1 ≤ j ≤ r,

• diagonal residual terms defined as vjj(t), r + 1 ≤ j ≤ d, and

• off-diagonal residual terms defined as vij(t),∀i ̸= j.

7For instance, assume that Λ = (1, 1, 2). Then, |Λ|1 = 2 and |Λ|3 = 0.
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Moreover, we define V (t) = maxi ̸=j |vij(t)| as the maximum element of the off-diagonal residual
terms at every iteration t. When there is no ambiguity, we will omit the dependence on iteration t.
For example, we write vij = vij(t) and V = V (t). Similarly, when there is no ambiguity, we write
βΛ(t) or βΛ in lieu of βΛ(U(t)).

Our next lemma characterizes the relationship between βΛ and vij .

Lemma 5. Suppose that maxj≥r+1

∣∣vljj∣∣ ≲ σ
l−1
l

1 V , and V ≤ σ
1/l
1 d−

1
l−1 . Then,

• For βΛj with Λj = (j, . . . , j), we have∣∣βΛj
− vljj

∣∣ ≤ r′V l. (96)

• For βΛ with at least two different indices in Λ, we have

|βΛ| ≤ 2rσ
l−1
l

1 V. (97)

The proof of this lemma is deferred to Appendix G.1. Lemma 5 reveals that the magnitude of βΛ can
be upper bounded by maxi ̸=j |vij |. Next, we control vij by providing both lower and upper bounds
on its dynamics.

Proposition 7 (One-step dynamics for vij(t)). Suppose that we have V (t) ≲ σ
1/l
1 d−

1
l−1 and

vii(t) ≤ σ
1/l
1 ,∀1 ≤ i ≤ d. Moreover, suppose that the step-size satisfies η ≲ 1

lσ1
. Then,

• For the signal term vii(t), 1 ≤ i ≤ r, we have

vii(t+ 1) ≥ vii(t) + ηl
(
σi − vlii(t)− 2dl−1vl−2

ii (t)V 2(t)
)
vl−1
ii (t)− ldlησ

l−1
l

1 V l(t).
(98)

• For the diagonal residual term vii(t), r + 1 ≤ i ≤ d, we have

vii(t+ 1) ≤ vii(t)− ηlv2l−1
ii (t) + 2ηldlσ

l−1
l

1 V l(t). (99)

• For the off-diagonal term V (t), we have

V (t+ 1) ≤ V (t) + 3ηlσ1V (t)l−1. (100)

The proof of this proposition is deferred to Appendix G.2. Equipped with the above one-step
dynamics, we next provide a bound on the growth rate of vij .

Proposition 8. Suppose that the initial point satisfies sin(ui(0), zi) ≤ γ and ∥ui(0)∥ = α1/l

with α ≲ 1
dl3

, γ ≲ 1
lκ

l
l−2 . Moreover, suppose that the step-size satisfies η ≲ 1

lσ1
. Then, within

t⋆ = 8
ηlσr

α− l−2
l iterations,

• For the signal term vii(t), 1 ≤ i ≤ r, we have∣∣vlii(t⋆)− σi
∣∣ ≤ 8dl−1σ

l−2
l

i α2/lγ2. (101)

• For the diagonal residual term vii(t), r + 1 ≤ i ≤ d, we have

|vii(t∗)| ≤ 2α1/l. (102)

• For the off-diagonal term V (t), we have

V (t∗) ≤ 21/lV (0) ≤ (2α)1/lγ. (103)

The proof of this proposition is deferred to Appendix G.3. With the above proposition, we are ready
to prove Theorem 4.
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Proof of Thereom 4. We have the following decomposition

∥T − T⋆∥2F =
∑
Λ

(βΛ − β⋆Λ)
2
. (104)

Hence, it suffices to bound each |βΛ − β⋆Λ|. Combining Lemma 5 and Proposition 8, we have for

every
∣∣∣βΛj − β⋆Λj

∣∣∣ , 1 ≤ j ≤ r∣∣∣βΛj (t
⋆)− β⋆Λj

∣∣∣ Lemma 5
≤

∣∣vljj(t⋆)− σj
∣∣+ r′V l(t⋆)

Proposition 8
≤ 8dl−1σ

l−2
l

j α2/lγ2 + 2dαγl

≤ 16dl−1σ
l−2
l

j α2/lγ2,

(105)

where in the last inequality, we used σj ≥ 1, α ≤ 1, and γ ≤ 1. For the remaining diagonal elements
βΛj

, r + 1 ≤ j ≤ d, we have ∣∣βΛj (t
⋆)
∣∣ Lemma 5

≤
∣∣vljj(t⋆)∣∣+ r′V l(t⋆)

Proposition 8
≤ 2lα+ 2dαγl.

(106)

For the general βΛ with at least two different indices in the multi-index Λ, we have

|βΛ(t⋆)|
Lemma 5
≤ 2rσ

l−1
l

1 V (t⋆)

Proposition 8
≤ 4rσ

l−1
l

1 α1/lγ.

(107)

Hence, we conclude

∥T(t⋆)− T⋆∥2F ≤
r∑
i=1

16dl−1σ
l−2
l

i α2/lγ2 +

d∑
i=r+1

(
2lα+ 2dαγl

)
+ dl · 4rσ

l−1
l

1 α1/lγ

≤ 8rdlγσ
l−1
l

1 α1/l,

(108)

which completes the proof of the theorem.

G.1 PROOF OF LEMMA 5

Proof. We first analyze βΛj
. Note that

βΛj
=

r′∑
i=1

⟨ui, zj⟩l =
r′∑
i=1

vlij = vljj +
∑
i ̸=j

vlij . (109)

Hence, ∣∣βΛj − vljj
∣∣ =

∣∣∣∣∣∣
∑
i ̸=j

vlij

∣∣∣∣∣∣ ≤ r′V l, (110)

where we used the definition of V . For general βΛ where there are at least two different elements in
the multi-index Λ, we have

|βΛ| =

∣∣∣∣∣∣
r′∑
j=1

∏
k∈Λ

v
|Λ|k
jk

∣∣∣∣∣∣
≤

r′∑
j=1

∣∣∣v|Λ|j
jj V l−|Λ|j

∣∣∣
=

r∑
j=1

∣∣∣v|Λ|j
jj V l−|Λ|j

∣∣∣+ r′∑
j=r+1

∣∣∣v|Λ|j
jj V l−|Λ|j

∣∣∣
≤ rσ

l−1
l

1 V + (r′ − r)

(
max
j≥r+1

∣∣vljj∣∣+ V l
)

≤ 2rσ
l−1
l

1 V,

(111)
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where in the last inequality, we used the assumption that V ≲ σ
1/l
1 d−

1
l−1 and maxj≥r+1

∣∣vljj∣∣ ≲
σ

l−1
l

1 V . This completes the proof.

G.2 PROOF OF PROPOSITION 7

In this section, we provide the proof for Proposition 7. For simplicity and whenever there is no
ambiguity, we omit the iteration t and show iteration t+ 1 with superscript ‘+’. For instance, we
write vij = vij(t) and v+ij = vij(t+ 1).

Recall that vij = ⟨ui, zj⟩. For simplicity, we denote µ = σ
1/l
1 . Hence, by our assumption, we have

vii ≤ µ,∀1 ≤ i ≤ r. We first provide the exact dynamic of vij in the following lemma.

Lemma 6. The one-step dynamic of vij takes the following form

v+ij = vij + ηl(σj − vljj)v
l−1
ij − ηl

∑
k∈[r′],k ̸=j

vlkjv
l−1
ij

− η
∑

s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij .

(112)

Proof. Recall that L = 1
2

∑
Λ(βΛ − β⋆Λ)

2 and βΛ =
∑r′

i=1

∏
k∈Λ ⟨ui, zk⟩|Λ|k . Moreover, we have

β⋆Λj
= σj for 1 ≤ j ≤ r, and β⋆Λ = 0 otherwise. We first calculate

∇uiβΛ =
∑
s∈Λ

|Λ|s

 ∏
k∈Λ,k ̸=s

⟨ui, zk⟩|Λ|k

 ⟨ui, zs⟩|Λ|s−1
zs

=
∑
s∈Λ

|Λ|s

 ∏
k∈Λ,k ̸=s

v
|Λ|k
ik

 v
|Λ|s−1
is zs.

(113)

Hence, the partial derivative of L(t) with respect to ui is

∇uiL =
∑
∀Λ

(βΛ − β⋆Λ)∇uiβΛ =
∑
Λ

(βΛ − β⋆Λ)
∑
s∈Λ

|Λ|s

 ∏
k∈Λ,k ̸=s

v
|Λ|k
ik

 v
|Λ|s−1
is zs.

Note that {zj}j∈[d] are unit orthogonal vectors. Hence, we have

⟨∇uiβΛ, zj⟩ =
{

|Λ|j
(∏

k∈Λ,k ̸=j v
|Λ|k
ik

)
v
|Λ|j−1
ij if j ∈ Λ

0 if j /∈ Λ.
(114)

By the definition of vij , its update rule can be written in the following way

v+ij =
〈
u+
i , zj

〉
(a)
= vij − η ⟨∇ui

L, zj⟩
= vij + η

∑
Λ

(β⋆Λ − βΛ) ⟨∇uiβΛ, zj⟩

(b)
= vij + η

∑
Λ:|Λ|j≥1

(β⋆Λ − βΛ)|Λ|j

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 v
|Λ|j−1
ij

(c)
= vij + η

∑
s∈[l]

∑
Λ:|Λ|j=s

|Λ|j(β⋆Λ − βΛ)

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij .

(115)
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Here in (a), we used the update rule for ui. In (b), we applied equation 114 to exclude those Λ
without j. In (c), we simply rearranged the above equation according to the cardinality |Λ|j . We
further isolate the term that only has vij :

v+ij
(a)
= vij + ηl(σj − βΛj

)vl−1
ij − η

∑
s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij

(b)
= vij + ηl(σj − vljj)v

l−1
ij − ηl

∑
k∈Λ,k ̸=j

vlkjv
l−1
ij

− η
∑

s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij .

(116)

Here in (a), we rearranged terms and isolated the term with |Λ|j = l. Note that the remaining terms
must satisfy 1 ≤ |Λ|j ≤ l − 1, which indicates that there must be at least 2 different indexes in Λ
which in turn implies β⋆Λ = 0. In (b), we used the definition of βΛj . This completes the proof of
Lemma 6.

Equipped with Lemma 6, we are ready to prove Proposition 7.

Proof of Proposition 7. The proof is divided into three parts:

Signal Term: vii(t), 1 ≤ i ≤ r

We first consider the signal terms vii(t), 1 ≤ j ≤ r. First, upon setting i = j in Lemma 6, we have

v+ii = vii + ηl

σi − vlii −
∑
k ̸=i

vlki

 vl−1
ii − η

l−1∑
s=1

s
∑

Λ:|Λ|i=s

βΛ

 ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii

≥ vii + ηl
(
σi − vlii −mV l

)
vl−1
ii − η

l−1∑
s=1

s
∑

Λ:|Λ|i=s

βΛ

 ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii .

(117)

Now we aim to control (A) = βΛ

(∏
k∈Λ,k ̸=i v

|Λ|k
ik

)
vs−1
ii for |Λ|i = s ∈ {1, . . . , l − 1}. We have

(A) =

r′∑
j=1

(∏
h∈Λ

v
|Λ|h
jh

) ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 v
|Λ|i−1
ii

(a)

≤
r′∑
j=1

v
|Λ|j
jj V l−|Λ|jV l−svs−1

ii

(b)

≤ v2s−1
ii V 2l−2s + r′ max

j ̸=i

∣∣∣v|Λ|j
jj V 2l−s−|Λ|jvs−1

ii

∣∣∣
(c)

≤ v2l−3
ii V 2 + r′ max

j ̸=i
µ|Λ|j+s−1V 2l−s−|Λ|j

≤ v2l−3
ii V 2 + r′µl−1V l.

(118)

In (a), we used the fact that |vij | ≤ V,∀i ̸= j. In (b), we isolated the term with j = i and bounded
the remaining terms with their maximum value. In (c), we used the fact that V ≤ vii ≤ µ.

After substituting equation 118 into equation 117, we have

v+ii ≥ vii + ηl
(
σi − vlii − r′V l

)
vl−1
ii − η

l−1∑
s=1

s
∑

Λ:|Λ|i=s

(
v2l−3
ii V 2 + r′µl−1V l

)
≥ vii + ηl

(
σi − vlii − r′V l

)
vl−1
ii − η

(
v2l−3
ii V 2 + r′µl−1V l

) l−1∑
s=1

sCsl (d− 1)l−s,

(119)
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where Csl =
(
l
s

)
. Note that

∑l−1
s=1 sC

s
l (d− 1)l−s = ldl−1 − l ≤ ldl−1. Therefore, we have

vii(t+ 1) ≥ vii + ηl
(
σi − vlii − r′V l

)
vl−1
ii − ldl−1η

(
v2l−3
ii V 2 + r′µl−1V l

)
≥ vii + ηl

(
σi − vlii − r′V l − dl−1vl−2

ii V 2
)
vl−1
ii − ldl−1ηr′µl−1V l

≥ vii + ηl
(
σi − vlii − 2dl−1vl−2

ii V 2
)
vl−1
ii − ldl−1ηr′µl−1V l

≥ vii + ηl
(
σi − vlii − 2dl−1vl−2

ii V 2
)
vl−1
ii − ldlησ

l−1
l

1 V l,

(120)

where in the last inequality, we used the fact that r′ ≤ d.

Diagonal Residual Term: vii, r + 1 ≤ i ≤ d

In this case we consider the terms vii with r + 1 ≤ i ≤ d, which is similar to the case 1 ≤ i ≤ r.
Without loss of generality, we assume that vii ≥ 0. The case vii ≤ 0 can be argued in an identical
fashion. By equation 117, we have

v+ii = vii − ηl

vlii −∑
k ̸=i

vlki

 vl−1
ii − η

l−1∑
s=1

s
∑

Λ:|Λ|i=s

βΛ

 ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii

≤ vii − ηl
(
vlii − r′V l

)
vl−1
ii − η

l−1∑
s=1

s
∑

Λ:|Λ|i=s

βΛ

 ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii .

(121)

For (A) = βΛ

(∏
k∈Λ,k ̸=i v

|Λ|k
ik

)
vs−1
ii , we further have

(A) =

r′∑
j=1

(∏
h∈Λ

v
|Λ|h
jh

) ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii

≥
(∏
h∈Λ

v
|Λ|h
ih

) ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii −

∑
j ̸=i

(∏
h∈Λ

v
|Λ|h
jh

) ∏
k∈Λ,k ̸=i

v
|Λ|k
ik

 vs−1
ii

≥

 ∏
k∈Λ,k ̸=i

v
2|Λ|k
ik

 v2s−1
ii︸ ︷︷ ︸

≥0

−r′ max
j ̸=i

∣∣∣v|Λ|j
jj V 2l−s−|Λ|jvs−1

ii

∣∣∣
≥ −r′µl−1V l.

(122)

Therefore, we obtain

v+ii ≤ vii − ηl
(
vlii − r′V l

)
vl−1
ii + ηldl−1r′µl−1V l

≤ vii − ηlv2l−1
ii + 2ηldl−1r′µl−1V l.

(123)

Off-diagonal Residual Term: V (t)

Finally, we characterize the dynamic of V (t) = maxi ̸=j |vij(t)|. To this goal, we first consider the
dynamic of each vij such that i ̸= j. Without loss of generality, we assume that vij ≥ 0. One can
write

v+ij = vij + ηl

σj − ∑
i∈[r′]

vlij

 vl−1
ij − η

∑
s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij

≤ V + ηlσ1V
l−1 + ηlr′V 2l−1 − η

∑
s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij

≤ V + 2ηlσ1V
l−1 − η

∑
s∈[l−1]

s
∑

Λ:|Λ|j=s

βΛ

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij ,

(124)

39



Published as a conference paper at ICLR 2023

where in the last inequality we use the assumption V ≲ σ
1/l
1 d−

1
l−1 . Similar to the previous case, we

next bound (A) = βΛ

(∏
k∈Λ,k ̸=j v

|Λ|k
ik

)
vs−1
ij . First note that |Λ|j = s ∈ [l − 1]. Hence, we have

that

(A) =

r′∑
s=1

∏
k∈Λ

v
|Λ|k
sk

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vs−1
ij

=

 ∏
k∈Λ,k ̸=j

v
2|Λ|k
ik

 v2s−1
ij︸ ︷︷ ︸

≥0

−r′ max
h ̸=i

∣∣∣∣∣∣
∏
k∈Λ

v
|Λ|k
hk

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vh−1
ij

∣∣∣∣∣∣
≥ −r′ max

h ̸=i

∣∣∣∣∣∣
∏
k∈Λ

v
|Λ|k
hk

 ∏
k∈Λ,k ̸=j

v
|Λ|k
ik

 vh−1
ij

∣∣∣∣∣∣
≥ −r′µ|Λ|s+|Λ|iV 2l−|Λ|s−|Λ|i−1.

(125)

We further note that |Λ|h + |Λ|i ≤ l − s. Hence, it can be lower bounded by

(A) ≥ −r′µl−sV l+s−1 ≥ −r′µl−1V l. (126)

Pluggin our estimation for (A) into equation 124, we finally have

v+ij ≤ V + 2ηlσ1V
l−1 + ηldl−1r′µl−1V l ≤ V + 3ηlσ1V

l−1. (127)

The last inequality comes from the assumption that V ≤ 1
dl

. This completes the proof of Proposition 7.

G.3 PROOF OF PROPOSITION 8

In this section, we provide the proof of Proposition 8. We will show that the signal terms vii(t), 1 ≤
i ≤ r quickly converge to σ1/l

i , and the residual terms remain small. To this goal, we first study the
dynamic of V (t).

Iteration complexity of the off-diagonal residual term V (t).

To start with the proof, we first study the time required for the off-diagonal term V (t) to go from
V (0) to 21/lV (0), i.e., T1 = mint≥0{V (t) ≥ 21/lV (0)}. By Proposition 7, we know

V (t+ 1) ≤ V (t) + 3ησ1lV
l−1(t) =

(
1 + 3ηlσ1V

l−2(t)
)
V (t). (128)

Hence, for 0 ≤ t ≤ T1, we have

V (t) ≤
t−1∏
s=0

(
1 + 3ηlσ1V

l−2(s)
)
V (0) ≤

(
1 + 6ηlσ1V

l−2(0)
)t
V (0).

Note that V (T1) ≥ 21/lV (0). Therefore,(
1 + 6ηlσ1V

l−2(0)
)T1

V (0) ≥ 21/lV (0). (129)

Solving the above inequality for T1, we obtain

T1 ≥ log(21/l)

log(1 + 6ηlσ1V l−2(0))
≥ log(2)

6ηl2σ1V l−2(0)
. (130)

On the other hand, our initial point satisfies sin(ui(0), zi) ≤ γ and ∥ui(0)∥ = α1/l. Hence, we have
V (0) ≤ α1/lγ. Substituting this into the above equation, we conclude that

T1 ≥ log(2)

6ηl2σ1γl−2
α− l−2

l . (131)

Note that T1 ≥ log(2)
6ηl2σ1γl−2α

− l−2
l ≫ t⋆. Hence, we have V (t⋆) ≤ 21/lV (0) ≤ (2α)1/lγ.
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Iteration complexity of the diagonal residual term vii(t), r + 1 ≤ i ≤ d.

Next, we show that vii(t), r + 1 ≤ i ≤ d will remain small during 0 ≤ t ≤ t⋆ = 8
ηlσr

α− l−2
l . First

by equation 123 in the proof of Lemma 6, we have for every 0 ≤ t ≤ t⋆

vii(t+ 1) ≤ vii(t) + 2ηldlσl−1
1 V l(t). (132)

Note that V (t) ≤ 21/lV (0),∀t ≤ t⋆, which leads to

vii(t) ≤ vii(0) + 4ηldlσl−1
1 γlαt

≤ vii(0) + 4ηldlσl−1
1 γlαt⋆

≤ α1/l +O
(
dlκα2/lγl

)
≤ 2α

(133)

for 0 ≤ t ≤ t⋆. Here we used the assumption that α ≲ 1
dl3

and γ ≲ 1
κl

1
l−2 .

Iteration complexity of the signal term vii(t), 1 ≤ i ≤ r.

As the last piece of the proof, we show that by iteration t⋆ = 8
ηlσr

α− l−2
l , the signal vii, 1 ≤ i ≤ r

will converge to the eigenvalue σ1/l
i . First, recall that

vii(t+ 1) ≥ vii(t) + ηl
(
σi − vlii(t)− 2dl−1vl−2

ii (t)V 2(t)
)
vl−1
ii (t)− 2ldlησl−1

1 V l(t)

≥ vii(t) + ηl
(
σi − vlii(t)− 4dl−1vl−2

ii (t)α2/lγ2
)
vl−1
ii (t)− 4ldlησl−1

1 γlα,
(134)

where in the last inequality we used the fact that V (t) ≤ 21/lV (0) for 0 ≤ t ≤ t⋆. In light of the
above inequality, we characterize the convergence of vii using a similar method as in (Ma & Fattahi,
2022a). In particular, we divide our analysis into two phases.

Phase 1. In the first phase, we have vii ≤ (0.5σi)
1/l. First, since vii(0) ≥ α1/l

√
1− γ2, we can

easily conclude that vii(t+ 1) ≥ vii(t) by induction. Hence, we can simplify the dynamic as

vii(t+ 1) ≥
(
1 + ηl(0.99σi − vlii)v

l−2
ii (t)

)
vii(t) ≥

(
1 + 0.49ηlσiv

l−2
ii (t)

)
vii(t). (135)

Next, we further split the interval I =
[
0, 0.5σ

1/l
i

]
into N = O

(
log
(
0.5σ

1/l
i /α

))
sub-intervals

{I0, · · · , IN−1}, where Ik = [2kvii(0), 2
k+1vii(0)). Let Tk collect the iterations that vii spends in

Ik. Accordingly, let |Tk| = tk be the number of iterations that vii spends within Ik. First note that
vii(t) ≥ 2kvii(0) for every t ∈ Tk. Hence, we have(

1 + 0.49ηlσi2
(l−2)kvl−2

ii (0)
)tk

≥ 2. (136)

which implies

tk ≤ log(2)

0.49ηlσiv
l−2
ii (0)

2−(l−2)k. (137)

By summing over k = 0, · · · , N − 1, we can upper bound the required number of iterations T3

T3 ≤
∞∑
k=0

tk ≤
∞∑
k=0

log(2)

0.49ηlσiv
l−2
ii (0)

2−(l−2)k ≤ 4

ηlσiαl−2
≤ 4

ηlσrαl−2
≪ T1, (138)

where the last inequality is due to our assumption γ ≲ 1
κl

1
l−2 .

Phase 2. In the second phase, we have vii ≥ 0.5σ
1/l
i . We further simplify equation 134 as

vii(t+ 1) ≥ vii(t) + ηl
(
σi − 8dl−1σ

l−2
l

i α2γ2 − vlii(t)
)
vl−1
ii (t)

≥ vii(t) + ηl
(
σ̃i − vlii(t)

)
vl−1
ii (t),

(139)

where we denote σ̃i = σi − 8dl−1σ
l−2
l

i α2/lγ2. Then, via a similar trick, within additional T4 ≤
4

ηlσr
α− l−2

l iterations, we have vlii(t) ≥ σi − 8dl−1σ
l−2
l

i α2/lγ2. A similar argument on the upper

bound shows vlii(t) ≤ σi + 8dl−1σ
l−2
l

i α2/lγ2, which completes the proof. □
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H AUXILIARY LEMMAS

Lemma 7 (Bernoulli inequality). For 0 ≤ x < 1
r−1 , and r > 1, we have

(1 + x)r ≤ 1 +
rx

1− (r − 1)x
. (140)
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