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Abstract

The Kappa statistic is a popular chance cor-
rected measure of agreement used as a relia-
bility measure for annotation in the field of
NLP, however its method for estimating chance
agreement is not suitable for sequence annota-
tion tasks, which are extremely prevalent in the
field. The non-suitability is grounded in several
complicating factors such as variation in span
density across documents and constraints on
span connectivity and overlap. In this paper,
we propose a novel model for random annota-
tion generation as the basis for chance agree-
ment estimation for sequence annotation tasks.
The model is jointly motivated by the specific
characteristics of text sequence labeling tasks
and acknowledgement of differences in anno-
tation tendencies among annotators. Based on
the proposed randomization model and related
comparison approach, we successfully derive
the analytical form of the distribution for com-
puting the probable location of each annotated
text segment, and subsequently chance agree-
ment. We illustrate the approach in a simulation
experiment and then apply it to several system
outputs of CoONLLO3 corpus annotation to eval-
uate its applicability, thus substantiating both
the accuracy and efficacy of our method.

1 Introduction

Reliable annotation is an essential ingredient for
NLP research agendas, both for enabling super-
vised learning methods, and also for evaluation.
Though not frequently employed for evaluation
of model performance in the field of NLP, one of
the most widely accepted metrics for evaluation
of annotation reliability is Cohen’s Kappa, which
offers an assessment of inter-rater reliability that is
adjusted in order to avoid offering credit for the por-
tion of observed agreement that can be attributed
to chance. Some NLP tasks, such as Named En-
tity Recognition, and other span detection/labeling
tasks, lack an appropriate chance corrected met-
ric. This paper addresses that gap by proposing

such a measure for these NLP tasks, illustrating its
application in a simulation experiment, and then
applying it to several system outputs of CoNLLO03
corpus annotation.

Many previous studies have served as caution-
ary tails regarding the used of agreement mea-
sures that do not adjust for chance agreement, mak-
ing the case that they might cause unfair compar-
isons among different tasks or systems since dif-
ferent tasks and systems are associated with dif-
ferent levels of chance agreement (Ide and Puste-
jovsky, 2017; Komagata, 2002; Gates and Ahn,
2017; Rand, 1971; Lavelli et al., 2008; Artstein
and Poesio, 2008). Additionally, in the absence
of a correction for the agreement by chance, the
measurement values have a tendency to fall within
a narrow range, which makes it more difficult to
observe reliable differences between approaches
(Eugenio and Glass, 2004). Therefore, estimating
and correcting for chance agreement has become a
critical step for annotation system evaluation, Apart
from exceptional cases where chance agreement is
small enough to be considered negligible.

From another angle, chance agreement is valu-
able apart from its role in estimating reliability in
that it can also be used to quantify the difficulty of
an annotation task. It is an important open problem
to distinguish the difficulty of different annotation
tasks, although we can qualitatively apply the in-
tuition that large search spaces, large numbers of
segments, and short segments usually correspond
to more difficult sequence annotation tasks. Chance
agreement allows us to quantitatively measure the
difficulty level of different tasks and is consistent
with human intuition.

The main contributions of our work are summa-
rized as follows:

* We propose a novel random annotation model
that incorporates different annotator tendencies,
while taking into account the characteristics of
processing each segment in the context of the



whole in sequence annotation task. The random
annotation model can be further divided into two
sub-models, which allows treating the case where
overlap is allowed or not as separate cases. We
also apply chance agreement to measure the dif-
ficulty of an annotation task. 7o our knowledge,
this is the first random annotation model that can
be applied to complex text annotation tasks.

In view of the fact that many popular similarity
measures are additive, the modeling of all de-
pendent annotation segments in a text has been
simplified to model each segment separately, al-
though the location of each segment is still re-
stricted by other segments in the same text. We
successfully derive the analytical forms for the
corresponding probability distributions of ran-
dom annotations.

* We offer a simple formulation of the approach
based on the discovery that the probabilities of
most possible random locations for the same seg-
ment are the same, and thus we are able to offer a
formalization that avoids redundant calculations.
We discuss the asymptotic properties of the agree-
ment by chance, and point out that chance agree-
ment can be ignored when target annotations are
sparse.

* We design and implement both simulation-based
and naturalistic experiments. The experimental
results demonstrate that our proposed method is
accurate, effective and computationally efficient.

In the remainder of the paper we begin by laying
our a theoretical framing for the work in a review of
the past literature. We then explain our method. We
first evaluate our method with a simulation study
that enables broad exploration of the behavior of
the approach and then follow up with applications
to naturalistic corpora. We conclude with a dis-
cussion of limitations, ethical considerations, and
future work.

2 Theoretical Foundation and Motivation

Estimation of chance agreement is a key element
in the evaluation of classification tasks. However,
though the field of NLP features a wide variety of
span detection and labeling tasks, currently there
is no widely adopted chance corrected metric for
them.

In classification tasks, the Kappa coefficient is
one of the most popular chance-corrected inter-

annotator agreement measures (Komagata, 2002;
Artstein and Poesio, 2008; Eugenio and Glass,
2004; Hripcsak and Rothschild, 2005; Powers,
2015; Cunningham and et al., 2014). The Kappa
coefficient is defined as (A, — A.)/(1— A¢), where
A, is the observed agreement without chance agree-
ment correction, and A, is the expected agree-
ment assuming random annotation. To estimate
the chance agreement A, the key problem is how
to build a random annotation model with reason-
able assumptions. Many of the existing options
assume independent annotations among different
annotators, where each annotator is associated with
some probability distribution that models the se-
lection between categorical options (Artstein and
Poesio, 2008).

Chance-corrected agreement is unarguably de-
sirable for the evaluation of complex text annota-
tion tasks beyond classification. Within this scope
are structured prediction tasks, which include a
plethora of information extraction tasks (Lampert
et al., 2016; Esuli and Sebastiani, 2010; Dai, 2018).
In these tasks, the problem of agreement by chance
is more challenging to estimate than for simple
classification tasks. In classification tasks, both the
set of decisions that need to be made and the set of
options for each of these decisions are consistent
across annotators. For span prediction tasks, in
contrast, annotators first identify spans that need
to be labeled, and then choose a category for each
span. Disagreement can occur at either level. It
might be that they don’t segment the text into the
same spans, or they may assign the same span to a
different label.

Take the Named Entity Recognition (NER) task
(Cunningham and et al., 2014; Esuli and Sebas-
tiani, 2010) as example, the number of entities
and the length of each entity might vary widely
among different annotators for the same text. Table
1 demonstrates a toy NER task annotated by two
annotators. The text includes nine tokens that are
each represented by one letter. The "Observed"
column displays the observed annotations (high-
lighted text) for the same text from two annotators.
Unlike simple annotation tasks, an annotator has
the flexibility of choosing the number of entities
and length of each entity. In this toy example, anno-
tator 1 annotated two entities: one is “CDE” with
3 tokens, the other is “HI” with 2 tokens. Annota-
tor 2 annotated only one entity of “EFGH” with 4
tokens.



| Observed | Random | Invalid Random
Annotator 1 ABCDEFGHI ABCDEFGHI ABCDEFGHI
Annotator 2 ABCDEFGHI ABCDEFGHI ABCDEFGHI

Table 1: Example of a Toy Named Entity Annotation.

Unfortunately, to our knowledge, there is cur-
rently no existing method for estimating agreement
by chance for span prediction tasks like NER (Ide
and Pustejovsky, 2017; Cunningham and et al.,
2014). Although inter-annotator agreement estima-
tion has become an important and necessary step
for annotation evaluation, how to estimate chance
agreement for complex text annotation is still a
long-standing open problem. In line with this, and
as pointed out by many previous studies, the sam-
ple space of a sequence annotation tasks like this
is usually not well-defined (Ide and Pustejovsky,
2017; Cunningham and et al., 2014). For instance,
we do not know how many non-entities exist in
a text and do not even know how many tokens a
non-entity should contain. Due to differences in
annotation tendencies across annotators, the theo-
retical sample spaces are also different for individ-
ual annotators. Considering this variation in terms
of differences in annotator preferences, some anno-
tators like to merge adjacent information together,
while others get used to labeling them as separate
spans. Some annotators prefer to include ancillary
surrounding text within a span, while others try to
keep segments as short as possible. All of these fac-
tors make it challenging to estimate the agreement
by chance for sequence annotation tasks.

While the specific problem of estimating chance
agreement for span prediction tasks is an open prob-
lem, we must acknowledge that some relevant re-
search has been done in connection with classifi-
cation and clustering problems that informs our
work and provides a continuum that our problem
extends (Hennig et al., 2015; Frénti et al., 2014;
Rezaei and Frinti, 2016; van der Hoef and War-
rens, 2019; Warrens and van der Hoef, 2019; Meila,
2007; Vinh et al., 2010). As mentioned, estimating
agreement by chance is relatively simple in classi-
fication, because the sample space is fixed and the
same for each annotator. In clustering problems,
on the other hand, the situation is more challenging
and somewhat more similar to that of span predic-
tion problems. Conceptually, one might consider
the elements that are within the same span might
be analogous to elements within the same cluster.
The most commonly used randomization model
for clustering is the permutation model (Gates and

Ahn, 2017), where all possible clusters with a fixed
number of clusters and a fixed size of each cluster
are randomly generated with equal probability. On
the other hand, what makes span prediction differ-
ent from the clustering case is that the permutation
model in clustering does not put any constraints on
the position of annotations in the same cluster. An-
notations in the same cluster can be distributed any-
where. This assumption is not suitable in sequence
annotations because annotations of the same seg-
ment are connected together and usually do not
break into multiple fragments. In other words, an-
notators handle each segment as a whole, rather
than labeling each token independently.

The variation in sample spaces caused by dif-
ferent labeling tendencies in light of connectivity
constraints between segments make this problem
quite challenging, especially when the annotated
segments are required to be disjoint. Thus, in view
of the characteristics of span prediction tasks and
different annotation tendencies, we propose a new
random annotation model that is compatible with
these needs.

Our random annotation model first separately
models the tendencies of each annotator. In partic-
ular, given observed annotations in a corpus, our
random model learns how to perform the annota-
tion task in a way that models tendencies without
attending to the task-relevant characteristics that
should distinguish between cases, thus uniformly
randomizing the location of entities and preserving
the annotator’s distribution of segment lengths per
category. Moreover, in order to meet the different
requirements of various applications, we design
two sub-models: the overlapping model and non-
overlapping model in order to accommodate both
the case where the task requires non-overlapping
spans and the case where no such requirement is
stipulated. For instance, the "Random" column in
Table 1 shows an example of random annotation
for each annotator. The random annotation for an-
notator 1 still has two entities: a 3-token one and
a 2-token one with randomized locations. Invalid
random examples are given at the "Invalid random"
column in Table 1, since neither the number nor
the length of entities are the same as the observed
annotation. Note that the number of entities and



the length of each entity in the random annotation
model are fixed for each annotator, but not being
the same for all annotators for the same task. This is
a common choice in the random annotation model
because it reflects the different annotation tenden-
cies of each annotator, which results in different
chance agreements.

As a final motivating observation, we note that
many similarity measures are additive. In other
words, the comparison between the annotations of
different annotators is an accumulation of compar-
isons between all pairs consisting of one labeled
segment from one annotator with one from the
other annotator. For example, the most popular
metric F1 score for binary classification can be
written as 2a/(2a + b + ¢), where a is the number
of items labeled as positive by both annotators, b
and c are the numbers of items rated as positive by
one annotator but negative by the other (Hripcsak
and Rothschild, 2005). Note that 2a + b + ¢ is
a constant when the number and length of spans
are both observed. The rating of positive agree-
ment a is the total number of positive agreements
within the set of pairs of labeled segments with
one from each annotator in a pair. We can simplify
the modeling of the random sequence annotation
by considering each segment separately instead of
multiple ones together, even though each labeled
segment is still subject to the constraints of other
labeled segments in the same text if no overlap
among segments is allowed. We successfully de-
rive the analytical form for the distribution of the
location of each single labeled segment. We also
find that the probability is the same at most loca-
tions for each labeled segment, thereby avoiding a
lot of redundant calculations. Details are presented
in the next section.

3 Method

In this section, we first offer the specification of
the random annotation model for sequence anno-
tation, otherwise known as span prediction, then
present the calculation, approximation, and asymp-
totic properties of chance agreement by random
annotation. We focus on the most challenging non-
overlapping models. Finally, we give a definition of
the difficulty of an annotation task based on chance
agreement. Due to space limitations, we only list
the main conclusions and ideas in this section. For
proof details, please refer to the appendix.

We adopt the named entity annotation (NER)

as a representative of complex text sequence an-
notation tasks to demonstrate how to estimate the
chance agreement or performance for sequence
annotation evaluation. Given a text T = {t; <
ty < < t,} with a sequence of n tokens
ti,i € {1,...,n}, and a pre-defined tag set C' =
{c1,...,cm} with m categorical tags; as a typi-
cal task in information extraction, named entity
recognition aims to locate and classify segments
of text 1" into pre-defined categories C, such as
recognizing disease, medication, and symptom in-
formation from clinical notes. Mathematically,
the annotation task for NER can be formulated
as a function ® : T x C +— (), where Q is
the set of all possible annotations. For any ) €
0, = {¢1,17 ce 7¢1,k17 ce 71/}m,lu ce v¢m,km},
where 1 is an annotation of segments for all
pre-defined categories, k; is the number of seg-
ments for ¢-th category. For an annotation seg-
ment ¢; ; = {st; j, a;;}, st; j denotes the index of
the first token and a; ; denotes the length for the
7-th segment with ¢-th category respectively. To
simplify the discussion, in the following we will
focus on single-tag text annotation (i.e., m = 1,
Y = {¢1,..., Y}, ¥; = {stj,a;}) since it is
straightforward to generalize the following tech-
niques to multi-tag annotation as shown in the ex-
periments.

To estimate the chance agreement, we need to
define what we mean by random annotation. We
cannot directly apply the permutation model for
random clustering to sequence annotation tasks,
because there is no constraint on the locations of
annotations within the same cluster. The permuta-
tion model violates the intra-segment connectivity
assumption that should hold in most text annota-
tions. To tackle this problem, we propose a novel
random annotation model that can take into ac-
count different annotators’ choices and maintain
the integrity of each text segment.

Random Sequence Annotation Model The ran-
dom annotation model is a model that fixes the
number and length of annotated segments for each
annotator (but allows for differences across dif-
ferent annotators) and generates all possible an-
notation configurations with equal probability. In
other words, for a k-segment random annotation
U = {W¥y,..., Uy} with each randomly annotated
segment ¥; = {ST;, a;}, it has equal probabilities
for all possible start indices {st1, ..., sty} with
fixed lengths a1, . . ., ax. For annotator 1 in Table



I,wehave k =2,a; =3, 5T, € {1,...,7}, and
ay = 2, STy € {1,...,8}. The definition of a
random annotation segment {S7;, a;} indicates its
connectivity. All tokens in the same segment are
consecutive without break and the index of the last
token in the ¢-th annotated segment is ST; + a; — 1.
In contrast, a random cluster generated by the per-
mutation model for random clustering does not
require this property. Note that the permutation
of different entities is still allowed in our model
as long as the segments within each entity remain
contiguous, in other words, that the entity is per-
muted as a whole. As shown in the "Annotator 1"
row of Table 1, different from the observed two
entities with 3 and 2 tokens (“CDF” and “HI”),
the left and right positions of the annotated en-
tities in our random model with 3 and 2 tokens
(“EFG” and “BC”) can be swapped as illustrated
in the "Random" column. With regards to differ-
ent applications, the random annotation model can
be further divided into two sub-models, namely,
the overlapping model and the non-overlapping
model. The overlapping model allows segments
to overlap with each other, so each S7; can take
any value between 1 and n — a; + 1, whereas the
non-overlapping model does not allow segments to
overlap, i.e., ST; > ST + a; or ST; > ST; + a;
for any ¢ # j. Because the overlapping model is
much easier to handle, and it can be easily derived
from the non-overlapping one, we only focus on
the non-overlapping model here.

The problem of estimating chance agreement
for annotation evaluation can thus be described as
follows:

Problem Definition. Assume there are two inde-
pendent random annotations, W1 for annotator 1
and U2 for annotator 2 on the same text of length
n. The problem is to estimate the expected sim-
ilarity E(Sim(¥1, ¥2)) based on a random non-
overlapping annotation model.

Here we want to emphasize that for annota-
tion of the same text, different annotators can
label different numbers of text segments with
different lengths. In this paper, we use right
index instead of right subscript to represent the
index of annotators, for example, k1 represents
the number of segments annotated by annota-
tor 1, and k2 for annotator 2. We notice that
most agreement measures, regardless of being
token level or entity level, can be formulated as
segment-wise measures, i.e., Sim(yl,92) =

f(@11(¥11,921), .. Pr1 k2 (P lk1, ¥2k2)),
where ¢1; = {stl;,al;} is the i-th annotated
segment for annotator 1 and ¢2; = {st2;,a2;}
is the j-th one for annotator 2. While it is
challenging to estimate the chance agreement for
a large number of dependent segments together
with the random non-overlapping annotation
model, the function f is additive for many popular
measures. This fact allows us to process each
segment individually, which greatly simplifies the
estimation. We call the segment-wise measure
with additive function f additive measure.

Propositionl For the additive sim-
ilarity  measure, the expected chance
agreement is  E(Sim(V1,¥2)) =
f(E(Z)Ll(\Ifll, \1121)), ey E(gﬁkl,kQ(\I’lkl, \I/2k2)))

Note that in the non-overlapping random annota-
tion model, the position of each random annotation
segment is dependent on all the other random an-
notation segments within the same document from
the same annotator. Since we assume all possible
random annotations are equally likely, the prob-
lem of estimating the location distribution for each
segment is equivalent to count the number of all
possible configurations when we fix the location of
the corresponding segment.

Proposition2 For the non-overlapping random
annotation model, the number of all random anno-
tations with the i-th segment fixed as:

(ST =1) =x(l —1,0)w(n— 1 —a+k,k—1)+
Zﬂ'(l*(lil,l)ﬂ'(nflfllﬁ'ail+k71,k‘72)+
i1
SN wll—ai, —ai, + 1,2)m(n—1—a+ai, +ai, +k—2,k—3)
i1#1 iaFi
+...+n7(l—a+a;+k—2k—1)7r(n—1—a; +1,0),

(1
where m(n,r) = n!/(n — r)! is the number of

permutations of n things taken r at a time, k is the
number of segments, a; denotes the length of the
i-th segment and a = ), a; is the total length of
annotations. Then the corresponding probability
is p(ST; = 1) = II(ST; = 1)/m(n — a + k,k),
for1 < < n —aqa; + 1. Here we treat each
text segment as a different annotation, regardless
of whether they have the same length. If we do
not need to distinguish among entities of the same
length, this formula can also be applied after a
simple modification.

Proof sketch. We can divide all possible random
annotations with ST; = [ into k disjoint sets with
m annotation segments located on the left of the
specified i-th segment ¢/; and the remaining k —



m—1 segments on the right side. The cardinality of
each set with selected left m annotation segments
(which then determines the segments on the right )
is the number of all possible annotations on the left
{ — 1 times the number for n — [ — a; of tokens on
the right side.

If we fix the order of m selected random annota-
tion segments 1, ..., ¥;,,, the random annotation
of the left [ — 1 tokens is equivalent to distribute
I —1— 37", a;; objects into m + 1 spaces, be-
fore the first annotation segment, between adjacent
segments, and after the last one. This is a well stud-
ied problem (integer weak composition into a fixed
numbefnof parts) with (1 - 1=370 ) ag, +m) !/.(l -
1 — 37" ai;)!/m! possible configurations. Since
we treat all annotation segments as different ones,
there are m! permutations for the left m segments
and (k —m — 1)! for the right £ —m — 1 ones, and
the cardinality of each set is 7 (I — Z;ﬂzl ai; +m—
Lm)xm(n—l—a+> ", a;; +k—m,k—m—1).
Based on the above derivation, the number of all
possible configurations when we fix the location of
a segment can be expressed by Equation 1.

However, it is computationally expensive to cal-
culate Equation 1 for all possible random locations
of each text segment when the sequence is very
long. To solve this issue, we find that II(ST; = [)
is the same for most locations when the text is of
length n > a.

Proposition3. ST is uniformly distributed for
a—a;—k+2 < st; <n—a+k,ie,(st; =11) =
H(Sti = lz) forVa—a;,—k+2 <li,lo <n—a+k

We further observe that it is not necessary to
estimate chance agreement in all cases. Intuitively,
we expect the chance agreement is small enough
to be ignored when annotating sparse information
in long texts and find that it is indeed the case. In
most named entity recognition tasks, for example,
the average tokens in annotated sentence is usually
large than 20 (Roth and Yih, 2004).

Proposition4. The expected similarity
E(Sim(¥1,¥2)) — 0 whenn > al + a2, where
al and a2 are the total lengths of all annotated
segments for annotator 1 and annotator 2.

Proposition5. For the overlapping random an-
notation model, p(ST; =1) = 1/(n — a; + 1), for
1<li<n—a;+1.

In summary, we have proposed random sequence
annotation models for both non-overlapping and
overlapping cases. Under the condition of an ad-

ditive similarity measure, we greatly simplify the
estimation of the expected chance agreement in
Proposition 1, and give its corresponding analytical
formula in Proposition 2. We point out in Proposi-
tion 3 that each randomly annotated segment has
the same probability for most locations except for
a few ones at the left and right ends, which fur-
ther reduces the computational cost. In addition,
for long texts with sparse annotation information,
the expected chance agreement is so small that it
can be ignored, and this is proven in Proposition
4. The above conclusions are all for the case of the
non-overlapping case, and the other case is very
simple to deal with because it is subject to uniform
distribution.

Another important application of chance agree-
ment is to define the difficulty of an annotation task
from the perspective of agreement by chance. Usu-
ally, evaluating the difficulty of annotation tasks is
highly subjective and there are no good quantita-
tive indicators. We utilize the chance agreement to
define the difficulty of annotation tasks as follows:

Definition The difficulty level of an annota-
tion task can be defined as 1 — E(Sim(¥,V))
if there is a gold standard annotation ¥ or as
average similarity of all annotator pairs 1 —
> i1 E(Sim (1, 92)) /v?, where v is the num-
ber of annotators.

4 Experiments

In order to demonstrate the accuracy and efficacy
of our method, we design simulation experiments
for sequence annotations!. Since chance agree-
ment estimation for the overlapping model is much
simpler than chance agreement estimation for the
non-overlapping model, all experiments in this pa-
per are set up with the non-overlapping constraint.

Specifically, for the estimation of the probability
distribution for random text annotation, we set to
label four segments with lengths of 1, 5, 10, and
15 on a sequence of length 100. Figure 1 shows
the probability distributions of the four segments at
all possible locations calculated with the analytical
formula in Proposition 2. The four distributions are
approximately distributed as the inverted trapezoids
with high ends and flat middle part, which confirms

'All experiments are implemented with MATLAB on a
2017 Mac Pro. The configuration of the Mac Pro is 2.9 GHz
Intel Core i7 processor and 16GB 2133 MHz LPDDR3 mem-
ory. The evaluation tool and datasets will be released as open-
source after the review period.
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Figure 1: The probability distributions for all possible locations of each random segment in a length=100 sequence
annotated with four segments. The lengths of the four segments are 1, 5, 10, 15, from left to right.

the conclusions of Proposition 2 and 3.2

The problem of chance estimation and correction
is unique in that, to our knowledge, there is no real
benchmark data that can be used to evaluate the
performance. Therefore, most classic works in this
field use synthetic data to illustrate and evaluate
the effect of chance correction, such as Komagata
(2002),Eugenio and Glass (2004), and Artstein and
Poesio (2008). Intuitively, we know that the chance
agreement is related to the size of the search space,
the number of annotated objects, and the lengths of
the annotated objects. We design the correspond-
ing comparison experiments by varying these three
factors.

We design three sets of comparison experiments
by varying the length of text (simulation 1), the
number (simulation 2) and length (simulation 3) of
entities. In case A of simulation 1 shown in Table 2,
we use 1 or O to indicate that each token in the text
sequence is labeled or not. For the same sequence
with 20 tokens, annotator 1 labels 3 entities with
lengths of 2, 3, and 4. Annotator 2 labels 3 entities
with lengths of 3, 4, and 5. The annotations of
case B for two annotators are the same as in case
A, the only difference is that ten Os are added af-
ter the 20 tokens, that is, neither annotator 1 nor
annotator 2 have labeled the extra 10 tokens. As re-
ported in Table 4, because F1 score only focuses on
the annotated tokens, the observed agreement (F1
score) is the same in both cases. However, since the
labeled information in case B is relatively sparse,
the chance agreement in case B is smaller, and the
corresponding corrected F1 score is larger which
means the agreement is higher. In simulation 2,
the text length and the total number of annotated
tokens remain the same, but the number of anno-
tated entities changes from 3 in case A to 1 in case
B. In simulation 3, the text length and the number

’The calculation time of the whole process is about 0.01
seconds.

of annotated entities remain the same, whereas the
number of annotated tokens in case B is tripled.
The results in Table 4, and 7 show that the longer
the text, or the more entities, or the shorter the en-
tities, the smaller the chance agreement and the
higher the difficulty level. This is consistent with
our intuition.

The main purpose of chance correction is to use
different baselines for different tasks. In addition,
chance correction may also change the ranking of
model performance for the same task, although
this is not common. As shown in the table 6, the
gold standard annotation labels 6 entities with size
of 3, 3, 3, 3, 3, 16. The annotator]l labels 5 3-
token entities correctly but misses the 16-token
entity. The annotator2 labels the 16-token entities
correctly but misses 5 3-token entities. Note that
the observed F1 score of annotatorl is lower than
that of annotator2. But after the chance correction,
the result is opposite (see table 7).

To evaluate our model in real data, we estimate
the chance agreement of 11 state-of-the-art NER
models (Liu et al., 2021) on CoNLL03 NER dataset
(Sang and De Meulder, 2003), the results are shown
in Table 8. Although it is difficult to validate chance
agreement for real data without ground truth, we
can see that the range of F1 scores is enlarged
after the chance correction. We also divide the
entire 3453 sentences of CoNLLO03 data into two
approximately equivalent subsets according to the
difficulty level: subsetl with difficulty level less
than 0.175 and subset2 with difficulty level greater
than or equal to 0.175. As the results show, with
respect to the performance ranking for 11 NER
models, the rankings change significantly across
different datasets. In addition, the performance
ranking of all 11 models on subset2 also differs
slightly before and after chance correction.



| Observed (case A) |

Observed (case B)

Annotator] | 00011000111000111100 | 000110001110001111000000000000
Annotator2 | 00111000111100111110|001110001111001111100000000000
Table 2: Sequence Annotation Simulation 1.
| Observed (case A) | Observed (case B)
Annotator] | 00011000111000111100 | 00000011111111100000
Annotator2 | 00111000111100111110 | 00001111111111110000
Table 3: Sequence Annotation Simulation 2.
Siml | ObsF1 | Chance F1 | CorF1 | Diff Level | Sim2 | ObsF1 | Chance F1 | CorF1 | Diff Level
CaseA | 0.8571 0.5335 0.6938 0.4606 CaseA | 0.8571 0.5335 0.6938 0.4606
CaseB | 0.8571 0.3544 0.7787 0.6416 CaseB | 0.8571 0.6455 0.5970 0.3478
Table 4: Chance Agreement Estimation for Sequence Annotation Simulation 1 and 2.
| Observed (case A) | Observed (case B)
Annotator] | 00000000111000000000 | 00000011111111100000
Annotator2 | 00000000111100000000 | 00001111111111110000
Table 5: Sequence Annotation Simulation 3.
Gold Standard | 11100111001110011100111001111111111111111
Annotator] 11100111001110011100111000000000000000000
Annotator2 00000000000000000000000001111111111111111
Table 6: Sequence Annotation Simulation 4.
Sim3 | Obs F1 | Chance F1 | CorF1 | Diff Level | Sim4 | ObsF1 | ChanceF1 | CorFl
CaseA | 0.8571 0.1830 0.8251 0.8144 Annol | 0.6522 0.5013 0.3026
CaseB | 0.8571 0.6455 0.5970 0.3478 Anno2 | 0.6808 0.5437 0.3005
Table 7: Chance Agreement Estimation for Sequence Annotation Simulation 3 and 4.
Model \ Fl-all Fl-subsetl F1-subset2 | T
ode [ Obs [ Rank [ Cor [ Rank [ Obs [ Rank | Cor [ Rank | Obs [ Rank [ Cor [ Rank | me
A 0.923 3| 0901 310919 2 | 0911 2 | 09369 | 3 | 09035 | 4 |23
B 0.905 7 |o88 | 7 | o089 | 7 |088 | 7 |0905]| 6 | 08938 | 6 |23
C 09072 | 6 | 0.881 6 | 082 | 6 | 088 6 | 09320 | 5 |08%63| 5 |23
D 0.902 8 | 0874 | 8 | o085 | 8 | o084 | 8 | 0926l 7 |oss18 | 7 | 23
E 0.785 1| 0730 | 11 | 0730 | 11 | 0707 | 11 | 08537 | 11 | 0788 | 11 | 19
F 0.846 9 | 085 | 9 |o085] 9 [0798 | 9 | 08929 | 9 | 08391 9 18
G 0.925 2 | 094 | 2 |0917 | 3 |098 | 3 | 09414 | 2 |09103| 2 |24
H 0.921 4 | 0898 | 4 | 0913 | 4 | 0904 | 4 | 09368 | 4 | 09036 | 3 |24
I 0.932 1 0913 1 0.922 1 0914 1 0.9500 1 0.9232 1 23
J 09073 | 5 | 0882 | 5 093 | 5 | 084 | 5 | 09240 | 8 | 08851 8 | 22
K 0.802 10 | 0752 | 10 | 0759 | 10 | 0737 | 10 | 08537 | 10 | 07854 | 10 | 16
Table 8: Chance Agreement Estimation for CoNLLO3 Dataset. Obs is short for observed F1 as reported in

corresponding real NER model (A-K), Cor is short for corrected F1. Time denotes the running time for chance

estimation in seconds.

5 Conclusion and Discussion

In this paper, we propose a novel sequence ran-
dom annotation model that takes into account the
different annotation styles of annotators and the
characteristics of sequence annotations. For com-
plex cases where labeled objects are required to
be disjoint, we investigate the corresponding dis-
tribution characteristic and remove redundant cal-
culations. We also derive an analytical formula to

calculate the exact distribution. Our focus in this
work is how to establish a general framework and
corresponding fast algorithm for calculating sim-
ilarity by chance in complex text annotations. To
the best of our knowledge, this is the first model
and method that can calculate chance similarity
for complex annotation tasks. The framework and
method proposed in this paper are applicable to all
additive similarity measures.



6 Limitations

Since this is the first work on chance estimation
for sequence annotation, there is no other similar
work to provide as a baseline for direct comparison.
In addition, chance estimation lacks benchmark
data with ground truth, although we have applied
it to real data in order to demonstrate its utility.
The current analysis of its effectiveness is mainly
based on simulated data and whether it is consistent
with human intuition. We expect that this work
will stimulate more related work and benchmark
data creation. The chance estimation in this paper
focuses on the comparison between two annotators,
and we plan to extend it to team-wise agreement
for more than two annotators or systems.

7 Ethics Statement

The use of data on this project strictly adhered to
ethical standards required by the National Institute
of Health (NIH).

In addition to upholding ethical principles in con-
ducting this work, we believe this work contributes
to professional standards for rigor in the field. In
particular, we expect that this paper will facilitate
fair comparison of various annotation tasks or sys-
tems and reduce random chance agreement caused
by different annotation styles and metrics. Chance
agreement can also be used as a quantitative aid
to measure the difficulty of annotation task. This
provides a new perspective for evaluating different
annotation tasks.
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8 Appendix

Propositionl For  the additive simi-
larity = measure, the expected chance
agreement  is  E(Sim(V1,¥2)) =

J(Ed1,1(V11,921)), ..., E(dp1k2(Vik, V252))).

Proof .

Since the function f is additive, the or-
der of the function f and expectation can
be interchanged. We have E(Sim(¥1,V2)) =
E(f(¢1,1(W11,921),..., dp1p2(Pg1, ¥2i2))) =
F(E(P11(V11,921)),..., E(dr1 k2(V1k1, ¥22))).

Originally, to estimate the expectation
of similarity by chance, we need to sum
up the similarity in a high-dimensional

space of all possible random annotations,

ie, BE(Sim(V1,92)) = 3 gy, -2 g1,
Dwoy e, () < p(¥l =
Ply,..., U2 = 92k2). Now we can sim-

plify it to multiple low-dimensional summations,
such as E(¢; j(¥1;, ¥2;)), under the condition of
additive measure.

Note that in the non-overlapping random annota-
tion model, the position of each random annotation
segment is dependent on all the other random an-
notation segments within the same document from
the same annotator. Since we assume all possible
random annotations are equally likely, the prob-
lem of estimating the location distribution for each
segment is equivalent to count the number of all
possible configurations when we fix the location of
the corresponding segment.

Proposition3. ST; is uniformly distributed for a —
a;—k+2<st; <n—a+k,ie.,(st; =11) =
H(Sti = lg)Va—ai—k—FQ < ll,lz < n—a+k

It is clear that proposition 3 and proposition 3*
are equivalent.

Proposition3*. I1(st; = 1) = (st; =1+1)Va—
ai—k+2<li<n—a+k-1.

Proof sketch. Use mathematical induction
Initial step: when k = 1, II(st; = [) = 1 and
p(st1 =1)=1/(n—a1+1),forl <1 <n—ay+1.
So the proposition 3* is true at k = 1.

Inductive step: assume the proposition 3* holds for
k =r. When k = r + 1, we partition all possible
configurations with st; = [ into r + 1 disjoint
scenarios: the 7 scenarios with st; = [ + a; for all
j # i and the rest, i.e., the scenarios with a different
annotation segment next to v; from right side or
none annotation segment next to ; from right side.
Soll(st; =1) =3, ,; (st; = l&st; = l+a;)+



(st; =1 & st # 14 a;,Vj #1).

We also partition all possible configurations with
st; = I + 1 into r + 1 disjoint scenarios: the r
scenarios with st; = [ + 1 — a; for all j # i
and the rest, i.e., the scenarios with a different
annotation segment next to v; from left side or
none annotation segment next to ¢; from left side.
Similarly, II(st; = 1 +1) = >, H(st; = [ +
L& st =1+1—aj) +1(st; =1+ 1& st; #
I+1—aj,Vj#i).

Since there is a bijection between the scenario
of st; = 1 & st; # 1 + a;,Vj # i and the one
of st =1+1 & st; #1+1—a;,Vj # iby
identity mapping except the annotation segment );
and the un-annotated token next to it with indices
from [ to [ + a;, H(Sti =& st; 75 [+ a;,Vj 7&
i) =T(st; =1+ 1&st; #1+1—aj,Vj # i).
For the pair of scenarios st; = [ & st; = 1+ a;
and st; = [ +1& st; =1+ 1 — a;, they can be
convert to scenarios sty = [l & a} = a; + a; and
st¥ =1+1—a;&a; = a;+aj by merging 1); and
1j. Based on the assumption that the proposition 3*
holds at k = r, their cardinalities should be equal
since there is only r segments after the combination
anda— (a; +aj) — (k—1)+2<[Ll+1—qa; <
n — a + (k — 1). Therefore, II(st; = [ & st; =
l+ai) :H(Sti:l+1&8tj :l-i-l—aj)and
the proposition 3* holds for k = r + 1.

It is a tight bound since we have to satisfy the
condition of 0 < [ — 27:1 ai; +m—1land 0 <
n—l—a+Z;-n:1 ai; +k—mforall0 <m < k-1
and i; # 4. This is the same as a —a; — k +2 <
[ <n—a+k.

I 1+1
[ —— p— 1
e o o o110 O OO O -
B o e e o e e =0
D E——— 1
e o eoljo® ."...Iooo

k = r by merging two adjacent text segments 1; and
1);, the blue box represents the segment 1); , and the red
box represents the adjacent segment ).

Proposition4. The expected similarity
E(Sim(¥1,¥2)) — 0 whenn > al + a2, where
al and a2 are the total lengths of all annotated
segments for annotator 1 and annotator 2.

Proof sketch. According to the proof process
of Proposition 2, we know the number of all pos-

sible random annotations of k£ segments with total
length a for a text with n tokens is w(n — a + k, k).
Thus, the total number of comparisons between
random annotations from annotator 1 and annota-
tor2is m(n —al + k1, k1) x m(n — a2 + k2, k2)
under the independent annotation assumption. It is
straight forward that the segment-wise agreement
Giy in (P15, ,12;,) is zero if there is no overlap be-
tween the 7 -th text segment annotated by annotator
1 and the 72-th text segment annotated by annotator
2. The agreement between two annotators is zero if
there is no overlap among all £1+ k2 annotated text
segments. The situation is equivalent to combining
the annotation results of the two annotators and re-
quiring no overlap among all k1 + k2 text segments
in the same text. The total number of such possible
annotations is m(n — al — a2 + k1 + k2, k1 + k2).
Therefore, the probability of zero chance agree-
ment p(Sim(¥1,¥2)) =0) = 7(n —al — a2 +
E1+k2,k1+E2)/m(n—al+ k1, k1) /m(n—a2+
k2,k2) = (n—al—a2+kl+k2)x...(n—al—
a2+1)/(n—al+kl)x...(n—al+1) x (n—
a2+ k2) x ...(n — a2+ 1)) — 1 because both
numerator and denominator are to the (k1 + £2)-th
power of n and n > al +a2 > k1+ k2. Thus, we
have E(Sim(V1,¥2)) — 0 when n > al + a2.

Proposition5. For the overlapping random an-
notation model, p(ST; =1) = 1/(n — a; + 1), for
1<li<n-—a;+1.

Proof sketch. This conclusion is straight forward
because a random text segment annotation with
length a; can be placed at any feasible locations
with equal probability without the non-overlapping
constraint.

Computational complexity for random text an-
notation. The computational cost of calculating
®the probability distribution of the location of k
random annotated text segments is bounded by
(k—1) x a—k?+2k) x 28 x (k — 1) multi-
Jplications and ((k — 1) x a — k2 + 2k) x (2¥ — 1)
additions.

In order to calculate the probability distributions
for random text annotation, according to the propo-
sition 2 and the proposition 3, we could calculate
the probability of a — a; — k + 2 possible positions
for each random annotated text segment with for-
mula 1. And the analytical formula is a summation
of 2* terms, and each term is equivalent to k — 1
multiplications, so the computational complexity is
bounded by Zle(a—ai—k‘+2) x 2% x(k—1) =
(k—1) x a — k® 4 2k) x 2F x (k — 1) multipli-
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cations and Zle(a —a;—k+2)x(2F-1)=
((k—1) x a—k?+42k) x (2¥ — 1) additions. Since
the formula 1 is a subset convolution, It may be
possible to speed up this calculation with the fast
subset convolution algorithm.

According to the above computational complex-
ity analysis, we know that the probability distri-
bution of the location of each random annotated
segment can be calculated efficiently using the for-
mula 1 when the number of text segments k is
small. But with the increase of k, the computa-
tional cost will increase rapidly. Fortunately, when
the text sequence is long enough and the annotated
information is sparse, we can use the uniform dis-
tribution to approximate the distribution.

Uniform approximation. The probability distri-
bution of the location of a random annotated text
segment can be approximated by uniform distri-
bution with p(st; = 1) = 1/(n — a; + 1), for
1<i<n-—a;+1lif(n—a+k)/(n—a;+1) > a,
where « is a preset threshold which is close to 1
and less than 1, for example o = 0.99 .

We observe that the probability distribution of
the location of a random annotated text segment is
approximately inverted trapezoid distributed with
highest probabilities at both ends. And the majority
of the whole distribution is flat when n >> a. It
is straight forward to calculate the p(st; = 1) =
Tn—a+k—1,k=1)/r(n—a+kk)=1/(n—
a + k). So the distribution could be approximate
with uniform distribution if the highest probability
1/(n — a + k) is close to the uniform probability
1/(n—a;+1),ie,(n—a+k)/(n—a;+1)is
closeto 1if n >> a.

CoNLL03 NER dataset and system outputs.
To evaluate our model in real data, we estimate
the chance agreement of 11 state-of-the-art NER
models on CoNLLO03 NER dataset, the results are
shown in Table 8. CoNLL-2003 is a named en-
tity recognition dataset that is released as a part of
CoNLL-2003 shared task: language-independent
named entity recognition. This corpus consists of
Reuters news stories between August 1996 and
August 1997. There are four types of annotated
entities: persons (PER), organizations (ORG), lo-
cations (LOC) and miscellaneous names (MISC).
We downloaded 15 system outputs for the English
test set from the Explained Board website after
approval. Since 4 system outputs use different sen-
tence segmentation, we limit our comparison to
11 system outputs that use the same sentence seg-
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mentation. The test set consists of 231 articles that
include 3453 sentences.



