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Abstract
The Kappa statistic is a popular chance cor-001
rected measure of agreement used as a relia-002
bility measure for annotation in the field of003
NLP, however its method for estimating chance004
agreement is not suitable for sequence annota-005
tion tasks, which are extremely prevalent in the006
field. The non-suitability is grounded in several007
complicating factors such as variation in span008
density across documents and constraints on009
span connectivity and overlap. In this paper,010
we propose a novel model for random annota-011
tion generation as the basis for chance agree-012
ment estimation for sequence annotation tasks.013
The model is jointly motivated by the specific014
characteristics of text sequence labeling tasks015
and acknowledgement of differences in anno-016
tation tendencies among annotators. Based on017
the proposed randomization model and related018
comparison approach, we successfully derive019
the analytical form of the distribution for com-020
puting the probable location of each annotated021
text segment, and subsequently chance agree-022
ment. We illustrate the approach in a simulation023
experiment and then apply it to several system024
outputs of CoNLL03 corpus annotation to eval-025
uate its applicability, thus substantiating both026
the accuracy and efficacy of our method.027

1 Introduction028

Reliable annotation is an essential ingredient for029

NLP research agendas, both for enabling super-030

vised learning methods, and also for evaluation.031

Though not frequently employed for evaluation032

of model performance in the field of NLP, one of033

the most widely accepted metrics for evaluation034

of annotation reliability is Cohen’s Kappa, which035

offers an assessment of inter-rater reliability that is036

adjusted in order to avoid offering credit for the por-037

tion of observed agreement that can be attributed038

to chance. Some NLP tasks, such as Named En-039

tity Recognition, and other span detection/labeling040

tasks, lack an appropriate chance corrected met-041

ric. This paper addresses that gap by proposing042

such a measure for these NLP tasks, illustrating its 043

application in a simulation experiment, and then 044

applying it to several system outputs of CoNLL03 045

corpus annotation. 046

Many previous studies have served as caution- 047

ary tails regarding the used of agreement mea- 048

sures that do not adjust for chance agreement, mak- 049

ing the case that they might cause unfair compar- 050

isons among different tasks or systems since dif- 051

ferent tasks and systems are associated with dif- 052

ferent levels of chance agreement (Ide and Puste- 053

jovsky, 2017; Komagata, 2002; Gates and Ahn, 054

2017; Rand, 1971; Lavelli et al., 2008; Artstein 055

and Poesio, 2008). Additionally, in the absence 056

of a correction for the agreement by chance, the 057

measurement values have a tendency to fall within 058

a narrow range, which makes it more difficult to 059

observe reliable differences between approaches 060

(Eugenio and Glass, 2004). Therefore, estimating 061

and correcting for chance agreement has become a 062

critical step for annotation system evaluation, Apart 063

from exceptional cases where chance agreement is 064

small enough to be considered negligible. 065

From another angle, chance agreement is valu- 066

able apart from its role in estimating reliability in 067

that it can also be used to quantify the difficulty of 068

an annotation task. It is an important open problem 069

to distinguish the difficulty of different annotation 070

tasks, although we can qualitatively apply the in- 071

tuition that large search spaces, large numbers of 072

segments, and short segments usually correspond 073

to more difficult sequence annotation tasks. Chance 074

agreement allows us to quantitatively measure the 075

difficulty level of different tasks and is consistent 076

with human intuition. 077

The main contributions of our work are summa- 078

rized as follows: 079

• We propose a novel random annotation model 080

that incorporates different annotator tendencies, 081

while taking into account the characteristics of 082

processing each segment in the context of the 083
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whole in sequence annotation task. The random084

annotation model can be further divided into two085

sub-models, which allows treating the case where086

overlap is allowed or not as separate cases. We087

also apply chance agreement to measure the dif-088

ficulty of an annotation task. To our knowledge,089

this is the first random annotation model that can090

be applied to complex text annotation tasks.091

• In view of the fact that many popular similarity092

measures are additive, the modeling of all de-093

pendent annotation segments in a text has been094

simplified to model each segment separately, al-095

though the location of each segment is still re-096

stricted by other segments in the same text. We097

successfully derive the analytical forms for the098

corresponding probability distributions of ran-099

dom annotations.100

• We offer a simple formulation of the approach101

based on the discovery that the probabilities of102

most possible random locations for the same seg-103

ment are the same, and thus we are able to offer a104

formalization that avoids redundant calculations.105

We discuss the asymptotic properties of the agree-106

ment by chance, and point out that chance agree-107

ment can be ignored when target annotations are108

sparse.109

• We design and implement both simulation-based110

and naturalistic experiments. The experimental111

results demonstrate that our proposed method is112

accurate, effective and computationally efficient.113

In the remainder of the paper we begin by laying114

our a theoretical framing for the work in a review of115

the past literature. We then explain our method. We116

first evaluate our method with a simulation study117

that enables broad exploration of the behavior of118

the approach and then follow up with applications119

to naturalistic corpora. We conclude with a dis-120

cussion of limitations, ethical considerations, and121

future work.122

2 Theoretical Foundation and Motivation123

Estimation of chance agreement is a key element124

in the evaluation of classification tasks. However,125

though the field of NLP features a wide variety of126

span detection and labeling tasks, currently there127

is no widely adopted chance corrected metric for128

them.129

In classification tasks, the Kappa coefficient is130

one of the most popular chance-corrected inter-131

annotator agreement measures (Komagata, 2002; 132

Artstein and Poesio, 2008; Eugenio and Glass, 133

2004; Hripcsak and Rothschild, 2005; Powers, 134

2015; Cunningham and et al., 2014). The Kappa 135

coefficient is defined as (Ao−Ae)/(1−Ae), where 136

Ao is the observed agreement without chance agree- 137

ment correction, and Ae is the expected agree- 138

ment assuming random annotation. To estimate 139

the chance agreement Ae, the key problem is how 140

to build a random annotation model with reason- 141

able assumptions. Many of the existing options 142

assume independent annotations among different 143

annotators, where each annotator is associated with 144

some probability distribution that models the se- 145

lection between categorical options (Artstein and 146

Poesio, 2008). 147

Chance-corrected agreement is unarguably de- 148

sirable for the evaluation of complex text annota- 149

tion tasks beyond classification. Within this scope 150

are structured prediction tasks, which include a 151

plethora of information extraction tasks (Lampert 152

et al., 2016; Esuli and Sebastiani, 2010; Dai, 2018). 153

In these tasks, the problem of agreement by chance 154

is more challenging to estimate than for simple 155

classification tasks. In classification tasks, both the 156

set of decisions that need to be made and the set of 157

options for each of these decisions are consistent 158

across annotators. For span prediction tasks, in 159

contrast, annotators first identify spans that need 160

to be labeled, and then choose a category for each 161

span. Disagreement can occur at either level. It 162

might be that they don’t segment the text into the 163

same spans, or they may assign the same span to a 164

different label. 165

Take the Named Entity Recognition (NER) task 166

(Cunningham and et al., 2014; Esuli and Sebas- 167

tiani, 2010) as example, the number of entities 168

and the length of each entity might vary widely 169

among different annotators for the same text. Table 170

1 demonstrates a toy NER task annotated by two 171

annotators. The text includes nine tokens that are 172

each represented by one letter. The "Observed" 173

column displays the observed annotations (high- 174

lighted text) for the same text from two annotators. 175

Unlike simple annotation tasks, an annotator has 176

the flexibility of choosing the number of entities 177

and length of each entity. In this toy example, anno- 178

tator 1 annotated two entities: one is “CDE” with 179

3 tokens, the other is “HI” with 2 tokens. Annota- 180

tor 2 annotated only one entity of “EFGH” with 4 181

tokens. 182
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Observed Random Invalid Random

Annotator 1 ABCDEFGHI ABCDEFGHI ABCDEFGHI
Annotator 2 ABCDEFGHI ABCDEFGHI ABCDEFGHI

Table 1: Example of a Toy Named Entity Annotation.

Unfortunately, to our knowledge, there is cur-183

rently no existing method for estimating agreement184

by chance for span prediction tasks like NER (Ide185

and Pustejovsky, 2017; Cunningham and et al.,186

2014). Although inter-annotator agreement estima-187

tion has become an important and necessary step188

for annotation evaluation, how to estimate chance189

agreement for complex text annotation is still a190

long-standing open problem. In line with this, and191

as pointed out by many previous studies, the sam-192

ple space of a sequence annotation tasks like this193

is usually not well-defined (Ide and Pustejovsky,194

2017; Cunningham and et al., 2014). For instance,195

we do not know how many non-entities exist in196

a text and do not even know how many tokens a197

non-entity should contain. Due to differences in198

annotation tendencies across annotators, the theo-199

retical sample spaces are also different for individ-200

ual annotators. Considering this variation in terms201

of differences in annotator preferences, some anno-202

tators like to merge adjacent information together,203

while others get used to labeling them as separate204

spans. Some annotators prefer to include ancillary205

surrounding text within a span, while others try to206

keep segments as short as possible. All of these fac-207

tors make it challenging to estimate the agreement208

by chance for sequence annotation tasks.209

While the specific problem of estimating chance210

agreement for span prediction tasks is an open prob-211

lem, we must acknowledge that some relevant re-212

search has been done in connection with classifi-213

cation and clustering problems that informs our214

work and provides a continuum that our problem215

extends (Hennig et al., 2015; Fränti et al., 2014;216

Rezaei and Fränti, 2016; van der Hoef and War-217

rens, 2019; Warrens and van der Hoef, 2019; Meilă,218

2007; Vinh et al., 2010). As mentioned, estimating219

agreement by chance is relatively simple in classi-220

fication, because the sample space is fixed and the221

same for each annotator. In clustering problems,222

on the other hand, the situation is more challenging223

and somewhat more similar to that of span predic-224

tion problems. Conceptually, one might consider225

the elements that are within the same span might226

be analogous to elements within the same cluster.227

The most commonly used randomization model228

for clustering is the permutation model (Gates and229

Ahn, 2017), where all possible clusters with a fixed 230

number of clusters and a fixed size of each cluster 231

are randomly generated with equal probability. On 232

the other hand, what makes span prediction differ- 233

ent from the clustering case is that the permutation 234

model in clustering does not put any constraints on 235

the position of annotations in the same cluster. An- 236

notations in the same cluster can be distributed any- 237

where. This assumption is not suitable in sequence 238

annotations because annotations of the same seg- 239

ment are connected together and usually do not 240

break into multiple fragments. In other words, an- 241

notators handle each segment as a whole, rather 242

than labeling each token independently. 243

The variation in sample spaces caused by dif- 244

ferent labeling tendencies in light of connectivity 245

constraints between segments make this problem 246

quite challenging, especially when the annotated 247

segments are required to be disjoint. Thus, in view 248

of the characteristics of span prediction tasks and 249

different annotation tendencies, we propose a new 250

random annotation model that is compatible with 251

these needs. 252

Our random annotation model first separately 253

models the tendencies of each annotator. In partic- 254

ular, given observed annotations in a corpus, our 255

random model learns how to perform the annota- 256

tion task in a way that models tendencies without 257

attending to the task-relevant characteristics that 258

should distinguish between cases, thus uniformly 259

randomizing the location of entities and preserving 260

the annotator’s distribution of segment lengths per 261

category. Moreover, in order to meet the different 262

requirements of various applications, we design 263

two sub-models: the overlapping model and non- 264

overlapping model in order to accommodate both 265

the case where the task requires non-overlapping 266

spans and the case where no such requirement is 267

stipulated. For instance, the "Random" column in 268

Table 1 shows an example of random annotation 269

for each annotator. The random annotation for an- 270

notator 1 still has two entities: a 3-token one and 271

a 2-token one with randomized locations. Invalid 272

random examples are given at the "Invalid random" 273

column in Table 1, since neither the number nor 274

the length of entities are the same as the observed 275

annotation. Note that the number of entities and 276
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the length of each entity in the random annotation277

model are fixed for each annotator, but not being278

the same for all annotators for the same task. This is279

a common choice in the random annotation model280

because it reflects the different annotation tenden-281

cies of each annotator, which results in different282

chance agreements.283

As a final motivating observation, we note that284

many similarity measures are additive. In other285

words, the comparison between the annotations of286

different annotators is an accumulation of compar-287

isons between all pairs consisting of one labeled288

segment from one annotator with one from the289

other annotator. For example, the most popular290

metric F1 score for binary classification can be291

written as 2a/(2a+ b+ c), where a is the number292

of items labeled as positive by both annotators, b293

and c are the numbers of items rated as positive by294

one annotator but negative by the other (Hripcsak295

and Rothschild, 2005). Note that 2a + b + c is296

a constant when the number and length of spans297

are both observed. The rating of positive agree-298

ment a is the total number of positive agreements299

within the set of pairs of labeled segments with300

one from each annotator in a pair. We can simplify301

the modeling of the random sequence annotation302

by considering each segment separately instead of303

multiple ones together, even though each labeled304

segment is still subject to the constraints of other305

labeled segments in the same text if no overlap306

among segments is allowed. We successfully de-307

rive the analytical form for the distribution of the308

location of each single labeled segment. We also309

find that the probability is the same at most loca-310

tions for each labeled segment, thereby avoiding a311

lot of redundant calculations. Details are presented312

in the next section.313

3 Method314

In this section, we first offer the specification of315

the random annotation model for sequence anno-316

tation, otherwise known as span prediction, then317

present the calculation, approximation, and asymp-318

totic properties of chance agreement by random319

annotation. We focus on the most challenging non-320

overlapping models. Finally, we give a definition of321

the difficulty of an annotation task based on chance322

agreement. Due to space limitations, we only list323

the main conclusions and ideas in this section. For324

proof details, please refer to the appendix.325

We adopt the named entity annotation (NER)326

as a representative of complex text sequence an- 327

notation tasks to demonstrate how to estimate the 328

chance agreement or performance for sequence 329

annotation evaluation. Given a text T = {t1 ≺ 330

t2 ≺ . . . ≺ tn} with a sequence of n tokens 331

ti, i ∈ {1, . . . , n}, and a pre-defined tag set C = 332

{c1, . . . , cm} with m categorical tags; as a typi- 333

cal task in information extraction, named entity 334

recognition aims to locate and classify segments 335

of text T into pre-defined categories C, such as 336

recognizing disease, medication, and symptom in- 337

formation from clinical notes. Mathematically, 338

the annotation task for NER can be formulated 339

as a function Φ : T × C 7→ Ω, where Ω is 340

the set of all possible annotations. For any ψ ∈ 341

Ω, ψ = {ψ1,1, . . . , ψ1,k1 , . . . , ψm,1, . . . , ψm,km}, 342

where ψ is an annotation of segments for all 343

pre-defined categories, ki is the number of seg- 344

ments for i-th category. For an annotation seg- 345

ment ψi,j = {sti,j , ai,j}, sti,j denotes the index of 346

the first token and ai,j denotes the length for the 347

j-th segment with i-th category respectively. To 348

simplify the discussion, in the following we will 349

focus on single-tag text annotation (i.e., m = 1, 350

ψ = {ψ1, . . . , ψk}, ψj = {stj , aj}) since it is 351

straightforward to generalize the following tech- 352

niques to multi-tag annotation as shown in the ex- 353

periments. 354

To estimate the chance agreement, we need to 355

define what we mean by random annotation. We 356

cannot directly apply the permutation model for 357

random clustering to sequence annotation tasks, 358

because there is no constraint on the locations of 359

annotations within the same cluster. The permuta- 360

tion model violates the intra-segment connectivity 361

assumption that should hold in most text annota- 362

tions. To tackle this problem, we propose a novel 363

random annotation model that can take into ac- 364

count different annotators’ choices and maintain 365

the integrity of each text segment. 366

Random Sequence Annotation Model The ran- 367

dom annotation model is a model that fixes the 368

number and length of annotated segments for each 369

annotator (but allows for differences across dif- 370

ferent annotators) and generates all possible an- 371

notation configurations with equal probability. In 372

other words, for a k-segment random annotation 373

Ψ = {Ψ1, . . . ,Ψk} with each randomly annotated 374

segment Ψi = {STi, ai}, it has equal probabilities 375

for all possible start indices {st1, . . . , stk} with 376

fixed lengths a1, . . . , ak. For annotator 1 in Table 377
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1, we have k = 2, a1 = 3, ST1 ∈ {1, . . . , 7}, and378

a2 = 2, ST2 ∈ {1, . . . , 8}. The definition of a379

random annotation segment {STi, ai} indicates its380

connectivity. All tokens in the same segment are381

consecutive without break and the index of the last382

token in the i-th annotated segment is STi+ai−1.383

In contrast, a random cluster generated by the per-384

mutation model for random clustering does not385

require this property. Note that the permutation386

of different entities is still allowed in our model387

as long as the segments within each entity remain388

contiguous, in other words, that the entity is per-389

muted as a whole. As shown in the "Annotator 1"390

row of Table 1, different from the observed two391

entities with 3 and 2 tokens (“CDF” and “HI”),392

the left and right positions of the annotated en-393

tities in our random model with 3 and 2 tokens394

(“EFG” and “BC”) can be swapped as illustrated395

in the "Random" column. With regards to differ-396

ent applications, the random annotation model can397

be further divided into two sub-models, namely,398

the overlapping model and the non-overlapping399

model. The overlapping model allows segments400

to overlap with each other, so each STi can take401

any value between 1 and n− ai + 1, whereas the402

non-overlapping model does not allow segments to403

overlap, i.e., STi ≥ STj + aj or STj ≥ STi + ai404

for any i ̸= j. Because the overlapping model is405

much easier to handle, and it can be easily derived406

from the non-overlapping one, we only focus on407

the non-overlapping model here.408

The problem of estimating chance agreement409

for annotation evaluation can thus be described as410

follows:411

Problem Definition. Assume there are two inde-412

pendent random annotations, Ψ1 for annotator 1413

and Ψ2 for annotator 2 on the same text of length414

n. The problem is to estimate the expected sim-415

ilarity E(Sim(Ψ1,Ψ2)) based on a random non-416

overlapping annotation model.417

Here we want to emphasize that for annota-418

tion of the same text, different annotators can419

label different numbers of text segments with420

different lengths. In this paper, we use right421

index instead of right subscript to represent the422

index of annotators, for example, k1 represents423

the number of segments annotated by annota-424

tor 1, and k2 for annotator 2. We notice that425

most agreement measures, regardless of being426

token level or entity level, can be formulated as427

segment-wise measures, i.e., Sim(ψ1, ψ2) =428

f(ϕ1,1(ψ11, ψ21), . . . , ϕk1,k2(ψ1k1, ψ2k2)), 429

where ψ1i = {st1i, a1i} is the i-th annotated 430

segment for annotator 1 and ψ2j = {st2j , a2j} 431

is the j-th one for annotator 2. While it is 432

challenging to estimate the chance agreement for 433

a large number of dependent segments together 434

with the random non-overlapping annotation 435

model, the function f is additive for many popular 436

measures. This fact allows us to process each 437

segment individually, which greatly simplifies the 438

estimation. We call the segment-wise measure 439

with additive function f additive measure. 440

Proposition1 For the additive sim- 441

ilarity measure, the expected chance 442

agreement is E(Sim(Ψ1,Ψ2)) = 443

f(Eϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2))). 444

Note that in the non-overlapping random annota- 445

tion model, the position of each random annotation 446

segment is dependent on all the other random an- 447

notation segments within the same document from 448

the same annotator. Since we assume all possible 449

random annotations are equally likely, the prob- 450

lem of estimating the location distribution for each 451

segment is equivalent to count the number of all 452

possible configurations when we fix the location of 453

the corresponding segment. 454

Proposition2 For the non-overlapping random 455

annotation model, the number of all random anno- 456

tations with the i-th segment fixed as: 457

Π(STi = l) = π(l − 1, 0)π(n− l − a+ k, k − 1)+∑
i1 ̸=i

π(l − ai1 , 1)π(n− l − a+ ai1 + k − 1, k − 2)+

∑
i1 ̸=i

∑
i2 ̸=i

π(l − ai1 − ai2 + 1, 2)π(n− l − a+ ai1 + ai2 + k − 2, k − 3)

+ . . .+ π(l − a+ ai + k − 2, k − 1)π(n− l − ai + 1, 0),

(1) 458

where π(n, r) = n!/(n − r)! is the number of 459

permutations of n things taken r at a time, k is the 460

number of segments, ai denotes the length of the 461

i-th segment and a =
∑

i ai is the total length of 462

annotations. Then the corresponding probability 463

is p(STi = l) = Π(STi = l)/π(n − a + k, k), 464

for 1 ≤ l ≤ n − ai + 1. Here we treat each 465

text segment as a different annotation, regardless 466

of whether they have the same length. If we do 467

not need to distinguish among entities of the same 468

length, this formula can also be applied after a 469

simple modification. 470

Proof sketch. We can divide all possible random 471

annotations with STi = l into k disjoint sets with 472

m annotation segments located on the left of the 473

specified i-th segment ψi and the remaining k − 474
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m−1 segments on the right side. The cardinality of475

each set with selected left m annotation segments476

(which then determines the segments on the right )477

is the number of all possible annotations on the left478

l − 1 times the number for n− l − ai of tokens on479

the right side.480

If we fix the order of m selected random annota-481

tion segments ψi1 , ..., ψim , the random annotation482

of the left l − 1 tokens is equivalent to distribute483

l − 1 −
∑m

j=1 aij objects into m + 1 spaces, be-484

fore the first annotation segment, between adjacent485

segments, and after the last one. This is a well stud-486

ied problem (integer weak composition into a fixed487

number of parts) with (l−1−
∑m

j=1 aij +m)!/(l−488

1−
∑m

j=1 aij )!/m! possible configurations. Since489

we treat all annotation segments as different ones,490

there are m! permutations for the left m segments491

and (k−m− 1)! for the right k−m− 1 ones, and492

the cardinality of each set is π(l−
∑m

j=1 aij +m−493

1,m)×π(n−l−a+
∑m

j=1 aij+k−m, k−m−1).494

Based on the above derivation, the number of all495

possible configurations when we fix the location of496

a segment can be expressed by Equation 1.497

However, it is computationally expensive to cal-498

culate Equation 1 for all possible random locations499

of each text segment when the sequence is very500

long. To solve this issue, we find that Π(STi = l)501

is the same for most locations when the text is of502

length n≫ a.503

Proposition3. STi is uniformly distributed for504

a−ai−k+2 ≤ sti ≤ n−a+k, i.e., Π(sti = l1) =505

Π(sti = l2) for ∀a−ai−k+2 ≤ l1, l2 ≤ n−a+k506

.507

We further observe that it is not necessary to508

estimate chance agreement in all cases. Intuitively,509

we expect the chance agreement is small enough510

to be ignored when annotating sparse information511

in long texts and find that it is indeed the case. In512

most named entity recognition tasks, for example,513

the average tokens in annotated sentence is usually514

large than 20 (Roth and Yih, 2004).515

Proposition4. The expected similarity516

E(Sim(Ψ1,Ψ2)) → 0 when n≫ a1+a2, where517

a1 and a2 are the total lengths of all annotated518

segments for annotator 1 and annotator 2.519

Proposition5. For the overlapping random an-520

notation model, p(STi = l) = 1/(n− ai + 1), for521

1 ≤ l ≤ n− ai + 1.522

In summary, we have proposed random sequence523

annotation models for both non-overlapping and524

overlapping cases. Under the condition of an ad-525

ditive similarity measure, we greatly simplify the 526

estimation of the expected chance agreement in 527

Proposition 1, and give its corresponding analytical 528

formula in Proposition 2. We point out in Proposi- 529

tion 3 that each randomly annotated segment has 530

the same probability for most locations except for 531

a few ones at the left and right ends, which fur- 532

ther reduces the computational cost. In addition, 533

for long texts with sparse annotation information, 534

the expected chance agreement is so small that it 535

can be ignored, and this is proven in Proposition 536

4. The above conclusions are all for the case of the 537

non-overlapping case, and the other case is very 538

simple to deal with because it is subject to uniform 539

distribution. 540

Another important application of chance agree- 541

ment is to define the difficulty of an annotation task 542

from the perspective of agreement by chance. Usu- 543

ally, evaluating the difficulty of annotation tasks is 544

highly subjective and there are no good quantita- 545

tive indicators. We utilize the chance agreement to 546

define the difficulty of annotation tasks as follows: 547

Definition The difficulty level of an annota- 548

tion task can be defined as 1 − E(Sim(Ψ,Ψ)) 549

if there is a gold standard annotation Ψ or as 550

average similarity of all annotator pairs 1 − 551∑v
i,j=1E(Sim(Ψ1,Ψ2))/v2, where v is the num- 552

ber of annotators. 553

4 Experiments 554

In order to demonstrate the accuracy and efficacy 555

of our method, we design simulation experiments 556

for sequence annotations1. Since chance agree- 557

ment estimation for the overlapping model is much 558

simpler than chance agreement estimation for the 559

non-overlapping model, all experiments in this pa- 560

per are set up with the non-overlapping constraint. 561

Specifically, for the estimation of the probability 562

distribution for random text annotation, we set to 563

label four segments with lengths of 1, 5, 10, and 564

15 on a sequence of length 100. Figure 1 shows 565

the probability distributions of the four segments at 566

all possible locations calculated with the analytical 567

formula in Proposition 2. The four distributions are 568

approximately distributed as the inverted trapezoids 569

with high ends and flat middle part, which confirms 570

1All experiments are implemented with MATLAB on a
2017 Mac Pro. The configuration of the Mac Pro is 2.9 GHz
Intel Core i7 processor and 16GB 2133 MHz LPDDR3 mem-
ory. The evaluation tool and datasets will be released as open-
source after the review period.
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Figure 1: The probability distributions for all possible locations of each random segment in a length=100 sequence
annotated with four segments. The lengths of the four segments are 1, 5, 10, 15, from left to right.

the conclusions of Proposition 2 and 3.2571

The problem of chance estimation and correction572

is unique in that, to our knowledge, there is no real573

benchmark data that can be used to evaluate the574

performance. Therefore, most classic works in this575

field use synthetic data to illustrate and evaluate576

the effect of chance correction, such as Komagata577

(2002),Eugenio and Glass (2004), and Artstein and578

Poesio (2008). Intuitively, we know that the chance579

agreement is related to the size of the search space,580

the number of annotated objects, and the lengths of581

the annotated objects. We design the correspond-582

ing comparison experiments by varying these three583

factors.584

We design three sets of comparison experiments585

by varying the length of text (simulation 1), the586

number (simulation 2) and length (simulation 3) of587

entities. In case A of simulation 1 shown in Table 2,588

we use 1 or 0 to indicate that each token in the text589

sequence is labeled or not. For the same sequence590

with 20 tokens, annotator 1 labels 3 entities with591

lengths of 2, 3, and 4. Annotator 2 labels 3 entities592

with lengths of 3, 4, and 5. The annotations of593

case B for two annotators are the same as in case594

A, the only difference is that ten 0s are added af-595

ter the 20 tokens, that is, neither annotator 1 nor596

annotator 2 have labeled the extra 10 tokens. As re-597

ported in Table 4, because F1 score only focuses on598

the annotated tokens, the observed agreement (F1599

score) is the same in both cases. However, since the600

labeled information in case B is relatively sparse,601

the chance agreement in case B is smaller, and the602

corresponding corrected F1 score is larger which603

means the agreement is higher. In simulation 2,604

the text length and the total number of annotated605

tokens remain the same, but the number of anno-606

tated entities changes from 3 in case A to 1 in case607

B. In simulation 3, the text length and the number608

2The calculation time of the whole process is about 0.01
seconds.

of annotated entities remain the same, whereas the 609

number of annotated tokens in case B is tripled. 610

The results in Table 4, and 7 show that the longer 611

the text, or the more entities, or the shorter the en- 612

tities, the smaller the chance agreement and the 613

higher the difficulty level. This is consistent with 614

our intuition. 615

The main purpose of chance correction is to use 616

different baselines for different tasks. In addition, 617

chance correction may also change the ranking of 618

model performance for the same task, although 619

this is not common. As shown in the table 6, the 620

gold standard annotation labels 6 entities with size 621

of 3, 3, 3, 3, 3, 16. The annotator1 labels 5 3- 622

token entities correctly but misses the 16-token 623

entity. The annotator2 labels the 16-token entities 624

correctly but misses 5 3-token entities. Note that 625

the observed F1 score of annotator1 is lower than 626

that of annotator2. But after the chance correction, 627

the result is opposite (see table 7). 628

To evaluate our model in real data, we estimate 629

the chance agreement of 11 state-of-the-art NER 630

models (Liu et al., 2021) on CoNLL03 NER dataset 631

(Sang and De Meulder, 2003), the results are shown 632

in Table 8. Although it is difficult to validate chance 633

agreement for real data without ground truth, we 634

can see that the range of F1 scores is enlarged 635

after the chance correction. We also divide the 636

entire 3453 sentences of CoNLL03 data into two 637

approximately equivalent subsets according to the 638

difficulty level: subset1 with difficulty level less 639

than 0.175 and subset2 with difficulty level greater 640

than or equal to 0.175. As the results show, with 641

respect to the performance ranking for 11 NER 642

models, the rankings change significantly across 643

different datasets. In addition, the performance 644

ranking of all 11 models on subset2 also differs 645

slightly before and after chance correction. 646
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Observed (case A) Observed (case B)

Annotator1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Annotator2 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 2: Sequence Annotation Simulation 1.

Observed (case A) Observed (case B)

Annotator1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Annotator2 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Table 3: Sequence Annotation Simulation 2.

Sim1 Obs F1 Chance F1 Cor F1 Diff Level Sim2 Obs F1 Chance F1 Cor F1 Diff Level

CaseA 0.8571 0.5335 0.6938 0.4606 CaseA 0.8571 0.5335 0.6938 0.4606
CaseB 0.8571 0.3544 0.7787 0.6416 CaseB 0.8571 0.6455 0.5970 0.3478

Table 4: Chance Agreement Estimation for Sequence Annotation Simulation 1 and 2.

Observed (case A) Observed (case B)

Annotator1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
Annotator2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Table 5: Sequence Annotation Simulation 3.

Gold Standard 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Annotator1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Annotator2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6: Sequence Annotation Simulation 4.

Sim3 Obs F1 Chance F1 Cor F1 Diff Level Sim4 Obs F1 Chance F1 Cor F1

CaseA 0.8571 0.1830 0.8251 0.8144 Anno1 0.6522 0.5013 0.3026
CaseB 0.8571 0.6455 0.5970 0.3478 Anno2 0.6808 0.5437 0.3005

Table 7: Chance Agreement Estimation for Sequence Annotation Simulation 3 and 4.

Model F1-all F1-subset1 F1-subset2 TimeObs Rank Cor Rank Obs Rank Cor Rank Obs Rank Cor Rank

A 0.923 3 0.901 3 0.919 2 0.911 2 0.9369 3 0.9035 4 23
B 0.905 7 0.878 7 0.889 7 0.878 7 0.9305 6 0.8938 6 23
C 0.9072 6 0.881 6 0.892 6 0.881 6 0.9320 5 0.8963 5 23
D 0.902 8 0.874 8 0.885 8 0.874 8 0.9261 7 0.8878 7 23
E 0.785 11 0.730 11 0.731 11 0.707 11 0.8537 11 0.7838 11 19
F 0.846 9 0.805 9 0.815 9 0.798 9 0.8929 9 0.8391 9 18
G 0.925 2 0.904 2 0.917 3 0.908 3 0.9414 2 0.9103 2 24
H 0.921 4 0.898 4 0.913 4 0.904 4 0.9368 4 0.9036 3 24
I 0.932 1 0.913 1 0.922 1 0.914 1 0.9500 1 0.9232 1 23
J 0.9073 5 0.882 5 0.903 5 0.894 5 0.9240 8 0.8851 8 22
K 0.802 10 0.752 10 0.759 10 0.737 10 0.8537 10 0.7854 10 16

Table 8: Chance Agreement Estimation for CoNLL03 Dataset. Obs is short for observed F1 as reported in
corresponding real NER model (A-K), Cor is short for corrected F1. Time denotes the running time for chance
estimation in seconds.

5 Conclusion and Discussion647

In this paper, we propose a novel sequence ran-648

dom annotation model that takes into account the649

different annotation styles of annotators and the650

characteristics of sequence annotations. For com-651

plex cases where labeled objects are required to652

be disjoint, we investigate the corresponding dis-653

tribution characteristic and remove redundant cal-654

culations. We also derive an analytical formula to655

calculate the exact distribution. Our focus in this 656

work is how to establish a general framework and 657

corresponding fast algorithm for calculating sim- 658

ilarity by chance in complex text annotations. To 659

the best of our knowledge, this is the first model 660

and method that can calculate chance similarity 661

for complex annotation tasks. The framework and 662

method proposed in this paper are applicable to all 663

additive similarity measures. 664
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6 Limitations665

Since this is the first work on chance estimation666

for sequence annotation, there is no other similar667

work to provide as a baseline for direct comparison.668

In addition, chance estimation lacks benchmark669

data with ground truth, although we have applied670

it to real data in order to demonstrate its utility.671

The current analysis of its effectiveness is mainly672

based on simulated data and whether it is consistent673

with human intuition. We expect that this work674

will stimulate more related work and benchmark675

data creation. The chance estimation in this paper676

focuses on the comparison between two annotators,677

and we plan to extend it to team-wise agreement678

for more than two annotators or systems.679

7 Ethics Statement680

The use of data on this project strictly adhered to681

ethical standards required by the National Institute682

of Health (NIH).683

In addition to upholding ethical principles in con-684

ducting this work, we believe this work contributes685

to professional standards for rigor in the field. In686

particular, we expect that this paper will facilitate687

fair comparison of various annotation tasks or sys-688

tems and reduce random chance agreement caused689

by different annotation styles and metrics. Chance690

agreement can also be used as a quantitative aid691

to measure the difficulty of annotation task. This692

provides a new perspective for evaluating different693

annotation tasks.694
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8 Appendix 780

Proposition1 For the additive simi- 781

larity measure, the expected chance 782

agreement is E(Sim(Ψ1,Ψ2)) = 783

f(Eϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2))). 784

Proof . 785

Since the function f is additive, the or- 786

der of the function f and expectation can 787

be interchanged. We have E(Sim(Ψ1,Ψ2)) = 788

E(f(ϕ1,1(Ψ11,Ψ21), . . . , ϕk1,k2(Ψ1k1,Ψ2k2))) = 789

f(E(ϕ1,1(Ψ11,Ψ21)), . . . , E(ϕk1,k2(Ψ1k1,Ψ2k2))). 790

Originally, to estimate the expectation 791

of similarity by chance, we need to sum 792

up the similarity in a high-dimensional 793

space of all possible random annotations, 794

i.e., E(Sim(Ψ1,Ψ2)) =
∑

Ψ11
. . .

∑
Ψ1k1

795∑
Ψ21

. . .
∑

Ψ2k2
f(.) × p(Ψ11 = 796

ψ11, . . . ,Ψ2k2 = ψ2k2). Now we can sim- 797

plify it to multiple low-dimensional summations, 798

such as E(ϕi,j(Ψ1i,Ψ2j)), under the condition of 799

additive measure. 800

Note that in the non-overlapping random annota- 801

tion model, the position of each random annotation 802

segment is dependent on all the other random an- 803

notation segments within the same document from 804

the same annotator. Since we assume all possible 805

random annotations are equally likely, the prob- 806

lem of estimating the location distribution for each 807

segment is equivalent to count the number of all 808

possible configurations when we fix the location of 809

the corresponding segment. 810

Proposition3. STi is uniformly distributed for a− 811

ai − k+ 2 ≤ sti ≤ n− a+ k, i.e., Π(sti = l1) = 812

Π(sti = l2) ∀ a− ai − k+2 ≤ l1, l2 ≤ n− a+ k 813

. 814

It is clear that proposition 3 and proposition 3* 815

are equivalent. 816

Proposition3*. Π(sti = l) = Π(sti = l+1)∀a− 817

ai − k + 2 ≤ l ≤ n− a+ k − 1 . 818

Proof sketch. Use mathematical induction 819

Initial step: when k = 1, Π(st1 = l) = 1 and 820

p(st1 = l) = 1/(n−a1+1), for 1 ≤ l ≤ n−a1+1. 821

So the proposition 3* is true at k = 1. 822

Inductive step: assume the proposition 3* holds for 823

k = r. When k = r + 1, we partition all possible 824

configurations with sti = l into r + 1 disjoint 825

scenarios: the r scenarios with stj = l + ai for all 826

j ̸= i and the rest, i.e., the scenarios with a different 827

annotation segment next to ψi from right side or 828

none annotation segment next to ψi from right side. 829

So Π(sti = l) =
∑

j ̸=iΠ(sti = l&stj = l+ai)+ 830
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Π(sti = l & stj ̸= l + ai, ∀j ̸= i).831

We also partition all possible configurations with832

sti = l + 1 into r + 1 disjoint scenarios: the r833

scenarios with stj = l + 1 − aj for all j ̸= i834

and the rest, i.e., the scenarios with a different835

annotation segment next to ψi from left side or836

none annotation segment next to ψi from left side.837

Similarly, Π(sti = l + 1) =
∑

j ̸=iΠ(sti = l +838

1 & stj = l + 1 − aj) + Π(sti = l + 1 & stj ̸=839

l + 1− aj ,∀j ̸= i).840

Since there is a bijection between the scenario841

of sti = l & stj ̸= l + ai, ∀j ̸= i and the one842

of sti = l + 1 & stj ̸= l + 1 − aj ,∀j ̸= i by843

identity mapping except the annotation segment ψi844

and the un-annotated token next to it with indices845

from l to l + ai, Π(sti = l & stj ̸= l + ai, ∀j ̸=846

i) = Π(sti = l + 1&stj ̸= l + 1 − aj , ∀j ̸= i).847

For the pair of scenarios sti = l & stj = l + ai848

and sti = l + 1 & stj = l + 1 − aj , they can be849

convert to scenarios st∗i = l & a∗i = ai + aj and850

st∗i = l+1−aj&a∗i = ai+aj by merging ψi and851

ψj . Based on the assumption that the proposition 3*852

holds at k = r, their cardinalities should be equal853

since there is only r segments after the combination854

and a− (ai + aj)− (k− 1) + 2 ≤ l, l+1− aj ≤855

n − a + (k − 1). Therefore, Π(sti = l & stj =856

l + ai) = Π(sti = l + 1 & stj = l + 1− aj) and857

the proposition 3* holds for k = r + 1.858

It is a tight bound since we have to satisfy the859

condition of 0 ≤ l −
∑m

j=1 aij +m − 1 and 0 ≤860

n−l−a+
∑m

j=1 aij +k−m for all 0 ≤ m ≤ k−1861

and ij ̸= i. This is the same as a− ai − k + 2 ≤862

l ≤ n− a+ k.863

Figure 2: Convert the case of k = r + 1 to the case of
k = r by merging two adjacent text segments ψi and
ψj , the blue box represents the segment ψi , and the red
box represents the adjacent segment ψj .

Proposition4. The expected similarity864

E(Sim(Ψ1,Ψ2)) → 0 when n≫ a1+a2, where865

a1 and a2 are the total lengths of all annotated866

segments for annotator 1 and annotator 2.867

Proof sketch. According to the proof process868

of Proposition 2, we know the number of all pos-869

sible random annotations of k segments with total 870

length a for a text with n tokens is π(n− a+ k, k). 871

Thus, the total number of comparisons between 872

random annotations from annotator 1 and annota- 873

tor 2 is π(n− a1 + k1, k1)× π(n− a2 + k2, k2) 874

under the independent annotation assumption. It is 875

straight forward that the segment-wise agreement 876

ϕi1,i2(ψ1i1 , ψ2i2) is zero if there is no overlap be- 877

tween the i1-th text segment annotated by annotator 878

1 and the i2-th text segment annotated by annotator 879

2. The agreement between two annotators is zero if 880

there is no overlap among all k1+k2 annotated text 881

segments. The situation is equivalent to combining 882

the annotation results of the two annotators and re- 883

quiring no overlap among all k1+k2 text segments 884

in the same text. The total number of such possible 885

annotations is π(n− a1− a2+ k1+ k2, k1+ k2). 886

Therefore, the probability of zero chance agree- 887

ment p(Sim(Ψ1,Ψ2)) = 0) = π(n − a1 − a2 + 888

k1+k2, k1+k2)/π(n−a1+k1, k1)/π(n−a2+ 889

k2, k2) = (n−a1−a2+k1+k2)× . . . (n−a1− 890

a2+1)/((n−a1+k1)× . . . (n−a1+1)× (n− 891

a2 + k2) × . . . (n − a2 + 1)) → 1 because both 892

numerator and denominator are to the (k1+ k2)-th 893

power of n and n≫ a1+a2 ≥ k1+k2. Thus, we 894

have E(Sim(Ψ1,Ψ2)) → 0 when n≫ a1 + a2. 895

Proposition5. For the overlapping random an- 896

notation model, p(STi = l) = 1/(n− ai + 1), for 897

1 ≤ l ≤ n− ai + 1. 898

Proof sketch. This conclusion is straight forward 899

because a random text segment annotation with 900

length ai can be placed at any feasible locations 901

with equal probability without the non-overlapping 902

constraint. 903

Computational complexity for random text an- 904

notation. The computational cost of calculating 905

the probability distribution of the location of k 906

random annotated text segments is bounded by 907

((k − 1) × a − k2 + 2k) × 2k × (k − 1) multi- 908

plications and ((k− 1)× a− k2 + 2k)× (2k − 1) 909

additions. 910

In order to calculate the probability distributions 911

for random text annotation, according to the propo- 912

sition 2 and the proposition 3, we could calculate 913

the probability of a− ai− k+2 possible positions 914

for each random annotated text segment with for- 915

mula 1. And the analytical formula is a summation 916

of 2k terms, and each term is equivalent to k − 1 917

multiplications, so the computational complexity is 918

bounded by
∑k

i=1(a−ai−k+2)×2k×(k−1) = 919

((k − 1)× a− k2 + 2k)× 2k × (k − 1) multipli- 920
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cations and
∑k

i=1(a − ai − k + 2) × (2k − 1) =921

((k−1)×a−k2+2k)× (2k−1) additions. Since922

the formula 1 is a subset convolution, It may be923

possible to speed up this calculation with the fast924

subset convolution algorithm.925

According to the above computational complex-926

ity analysis, we know that the probability distri-927

bution of the location of each random annotated928

segment can be calculated efficiently using the for-929

mula 1 when the number of text segments k is930

small. But with the increase of k, the computa-931

tional cost will increase rapidly. Fortunately, when932

the text sequence is long enough and the annotated933

information is sparse, we can use the uniform dis-934

tribution to approximate the distribution.935

Uniform approximation. The probability distri-936

bution of the location of a random annotated text937

segment can be approximated by uniform distri-938

bution with p(sti = l) = 1/(n − ai + 1), for939

1 ≤ l ≤ n−ai+1 if (n−a+k)/(n−ai+1) > α,940

where α is a preset threshold which is close to 1941

and less than 1, for example α = 0.99 .942

We observe that the probability distribution of943

the location of a random annotated text segment is944

approximately inverted trapezoid distributed with945

highest probabilities at both ends. And the majority946

of the whole distribution is flat when n >> a. It947

is straight forward to calculate the p(sti = 1) =948

π(n−a+k−1, k−1)/π(n−a+k, k) = 1/(n−949

a + k). So the distribution could be approximate950

with uniform distribution if the highest probability951

1/(n− a+ k) is close to the uniform probability952

1/(n− ai + 1), i.e., (n− a+ k)/(n− ai + 1) is953

close to 1 if n >> a.954

CoNLL03 NER dataset and system outputs.955

To evaluate our model in real data, we estimate956

the chance agreement of 11 state-of-the-art NER957

models on CoNLL03 NER dataset, the results are958

shown in Table 8. CoNLL-2003 is a named en-959

tity recognition dataset that is released as a part of960

CoNLL-2003 shared task: language-independent961

named entity recognition. This corpus consists of962

Reuters news stories between August 1996 and963

August 1997. There are four types of annotated964

entities: persons (PER), organizations (ORG), lo-965

cations (LOC) and miscellaneous names (MISC).966

We downloaded 15 system outputs for the English967

test set from the Explained Board website after968

approval. Since 4 system outputs use different sen-969

tence segmentation, we limit our comparison to970

11 system outputs that use the same sentence seg-971

mentation. The test set consists of 231 articles that 972

include 3453 sentences. 973
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