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Abstract

Proof assistants like Lean have revolutionized mathematical proof verification by
providing high levels of accuracy and reliability. Although large language models
(LLMs) have demonstrated potential in mathematical reasoning, their advancement
in formal theorem proving is hindered by the scarcity of large, high-quality training
datasets. To address this challenge, we present a novel approach to generate
extensive Lean 4 proof data from natural language mathematical problems at
the high school and undergraduate levels. Specifically, we synthesize 8 million
formal statements with corresponding proofs, leveraging this dataset to fine-tune
the DeepSeekMath 7B model. The resulting model, DeepSeek-Prover, achieves
a pass rate of 50% on the Lean 4 miniF2F benchmark, surpassing the previous
state-of-the-art result of 41.0%. These findings underscore the potential of large-
scale synthetic data in significantly enhancing the theorem-proving capabilities of
LLMs.

1 Introduction

Formal mathematical languages, such as Lean [Moura and Ullrich, 2021], Isabelle [Paulson, 1994],
and Coq [The Coq Development Team], have enabled the development of computer-verifiable
proofs [Avigad, 2023]. However, constructing formal proofs remains a labor-intensive process that
requires both substantial effort and specialized expertise—often challenging even for experienced
mathematicians. To ease the burden of writing formal proofs, recent approaches [Polu and Sutskever,
2020, Jiang et al., 2021, Han et al., 2021, Polu et al., 2022, Lample et al., 2022, Jiang et al., 2022,
Yang et al., 2023] have explored the use of language models to automatically generate proofs for given
formal statements. Despite this progress, the performance of these methods has been constrained by
the limited availability of high-quality formal proof data.

To address this limitation, we propose an iterative methodology for generating large-scale Lean 4
proof data from natural language mathematical problems. Our approach utilizes large language
models to translate competition-level problems from high school and undergraduate mathematics
into formal statements, followed by the generation of verifiable proofs using the Lean 4 prover. The
model is fine-tuned with this synthetic data, and the data generation process is repeated to further
refine the model. This iterative pipeline, executed with the continuously enhanced DeepSeekMath 7B
model [Shao et al., 2024], continues until no further improvement in model performance is observed.
Ultimately, our final dataset comprises 8 million formal statements paired with corresponding proofs.
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Figure 1: Overview of our approach. Our pipeline starts by autoformalizing a broad range of
mathematical problems into formal statements. Inconsistent or overly simplistic statements are
discarded. The remaining high-quality statements are then iteratively processed, attempting either to
prove or refute them (i.e., prove their negation), until one is verified by the Lean 4 prover. The verified
pairs of natural language problems and their formalization, formal statements (or their negations) and
their corresponding proofs are used to fine-tune the model, enhancing its theorem-proving ability.
This process repeats until no further performance gains are observed.

We evaluate the theorem proving performance in Lean 4 of the resulting model, DeepSeek-Prover,
using the miniF2F benchmark [Zheng et al., 2022]. DeepSeek-Prover achieves a pass rate of 50% on
the test set of the miniF2F, surpassing the previous state-of-the-art result of 41.0%. Ablation studies
reveal that our iterative training process progressively enhances the model’s problem-solving ability
with each iteration, further demonstrating the effectiveness of our approach.

2 Approach

Our approach consists of an iterative cycle of dataset synthesis and model training, as shown in
Figure 1. Each phase is described in detail below.

Informal Data Curation. We collect mathematical problems in natural language by scraping
online resources containing high school and undergraduate exercises, exams, and competitions. After
cleaning the data, we curated a dataset of 869,659 high-quality math problems, focusing on algebra
and number theory.

Model Initialization. The model, initialized from DeepSeekMath-Base 7B [Shao et al., 2024], is
fine-tuned on MMA dataset [Jiang et al., 2023], which includes formal statements from Mathlib,
the standard mathematical library for Lean 4. This enhances the model’s basic autoformalization
capabilities. Additionally, we include theorem-proving data from LeanDojo [Yang et al., 2023],
adapted from a next-tactic prediction task to full-proof generation. We refer to the resulting model
and its further improved versions as DeepSeek-Prover.

Model Scoring and Hypothesis Rejection. Initially, many autoformalized statements were low
quality. To improve this, we introduced a scoring mechanism that prompts DeepSeek-Prover to assess
each statement using a chain-of-thought approach. Statements are categorized as "excellent," "good,"
"above average," "fair," or "poor." Statements rated "fair" or "poor" are discarded. Additionally, some
provable statements contained inconsistent hypotheses leading to vacuous conclusions. To filter these,
DeepSeek-Prover attempts to prove the statement with False as the conclusion. Successful proofs of
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these transformed statements reveal inconsistent hypotheses, and these statements are discarded. This
process refines the dataset, leaving 712,073 high-quality formal statements for proof generation.

Statement Proving. With a large corpus of high-quality formal statements, DeepSeek-Prover
attempts to generate proofs. Since some synthesized statements may be semantically incorrect and
therefore unprovable, brute-force search would be inefficient. To optimize this, we exploit the logical
symmetry between a statement and its negation. Dual concurrent proof searches are initiated for each
statement—one for Γ ⊢ P and another for Γ ⊢ ¬P . DeepSeek-Prover samples up to k times for each
statement until a valid proof for either is found. All validated proofs, whether for the statement or
its negation, are used to further train DeepSeek-Prover. This method enriches the dataset with both
propositions and their negations, even if the original propositions were incorrectly formalized.

Iterative Enhancement. Since the pipeline relies on DeepSeek-Prover, improving its performance
after each iteration is crucial. Verified pairs of formal statements (or their negations) and their
corresponding proofs are used to enhance the model’s theorem-proving capabilities. Pairs of natural
language problems and their formalized counterparts, when correctly proved, are also collected to
improve the model’s autoformalization abilities. With each cycle of refinement, DeepSeek-Prover’s
performance in both autoformalization and theorem proving incrementally improves, contributing
to better dataset synthesis. This iterative process continues until no further performance gains are
observed.

3 Experiments

3.1 Main Results

Benchmark and metric. We assess the theorem-proving capabilities of DeepSeek-Prover using the
miniF2F benchmark [Zheng et al., 2022], which comprises 244 problems ranging from elementary
arithmetic to competition-level challenges, including those from the American Invitational Mathemat-
ics Examination (AIME), the American Mathematics Competitions (AMC), and the International
Mathematical Olympiad (IMO). Our experiments are based on the Lean 4 version of miniF2F, as
provided by the LeanDojo project [Yang et al., 2023]. The primary evaluation metric is pass@K,
which indicates the model’s ability to generate a correct proof within K attempts.

Evaluation results. Table 1 presents a comparison of various theorem-proving methods on the
miniF2F-test dataset. DeepSeek-Prover achieves a pass rate of 50.0% with a 64 × 1024 sampling
budget, significantly surpassing the previous state-of-the-art pass rate of 41.0% achieved by Hypertree
Proof Search [Lample et al., 2022] with 64 × 5000 tree search steps. Notably, DeepSeek-Prover
achieves a considerable pass rate of 46.3% with only 128 sampling steps, surpassing most previous
methods with few computational resources allocated. These results demonstrate DeepSeek-Prover’s
robustness and its ability to tackle complex proofs even under varying resource constraints.

Method Sampling Budget miniF2F-test

COPRA (Code Llama) [13] 500 5.7%
COPRA (GPT-3.5) [13] 60 9.0%
COPRA (GPT-4) [13] 60 26.6%
Llemma-7B [2] 3200 26.2%
Llemma-34B [2] 3200 25.8%
ReProver [16] - 26.5%
LLMStep [15] 3200 27.9%
GPT-f [11] 64× 4096 36.6%
Hypertree Proof Search [7] 64× 5000 41.0%

DeepSeekMath-Base [12] 128 19.67%

DeepSeek-Prover (Ours)
128 46.3%

64× 128 48.8%
64× 1024 50.0%

Table 1: Comparison of state-of-the-art methods on the miniF2F-test dataset.
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3.2 Ablation Studies

We performed ablation studies to evaluate the contributions of different components of DeepSeek-
Prover, using pass@128 as the evaluation metric on the miniF2F-test dataset. The results are
summarized in Table 2.

Model #Tokens miniF2F-test

- - 27.5%
Mathlib 0.2B 31.2%

Synthetic Data 3.1B 42.6%

(a)

Scored Class miniF2F-test

"fair" and "poor" 38.1%
"excellent", "good" and 42.6%"above average"

(b)

Iteration miniF2F-test

0 34.0%
1 39.3%
2 41.4%
3 45.1%
4 46.3%

(c)

Dataset Size miniF2F-test

1,000 24.18%
10,000 31.97%

100,000 37.7%
1,000,000 38.11%
8,066,621 40.16%

(d)

Table 2: Ablation studies of data synthesis and model training components.

Effectiveness of Large-Scale Autoformalization. We conducted a comparative analysis between
our autoformalized synthetic dataset and the human-written Mathlib dataset (the standard mathemati-
cal library of Lean 4), as shown in Table 2a. The models trained on our synthetic data substantially
outperformed those trained solely on Mathlib data. This process employed an expert iteration strategy
[Polu and Sutskever, 2020], where formal proofs were iteratively generated and used to fine-tune the
model until performance improvements plateaued.

Effectiveness of Formal Statement Scoring. We evaluated the impact of formal statement quality
on model performance by training on both high- and low-scoring proofs. As shown in Table 2b,
models trained on high-score proofs outperformed those trained on low-score proofs by 4.5%. This
result highlights the importance of accurate statement scoring for filtering lower-quality statements
and improving overall performance.

Effectiveness of Iterative Enhancement. The results in Table 2c show a clear correlation between
the number of iterations in data synthesis and improved theorem-proving performance. Each iteration
refines the model’s ability to handle increasingly complex proofs, resulting in significant performance
gains. This iterative enhancement approach contributes to the generation of higher-quality synthetic
data and bolsters the model’s theorem-proving capabilities.

Effectiveness of Scaling Synthetic Theorem-Proving Data. As illustrated in Table 2d, there is
a clear relationship between the size of the synthetic dataset and the model’s performance on the
miniF2F benchmark. Performance increases consistently with the size of the dataset, highlighting
the critical role of large-scale data in advancing automated theorem proving. This underscores the
necessity of systematic, large-scale data generation for further progress in the field.

4 Conclusion

In this paper, we introduced a method for generating extensive synthetic proof data from high-school
and undergraduate-level mathematical competition problems. This approach significantly improved
the performance of the DeepSeekMath 7B model in automated theorem proving (ATP) when trained
on this synthetic dataset. Our model surpasses all previous state-of-the-art methods on the miniF2F-
test benchmark for theorem proving in Lean 4. While our current work primarily focuses on algebra
and number theory problems at the middle school and undergraduate levels, future work will aim to
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broaden the scope of mathematical domains, enhancing the general applicability of our approach to a
wider range of theorem proving tasks.

Broader Impact

The research presented in this paper has the potential to significantly advance automated theorem
proving through the use of large-scale synthetic proof data generated from informal mathematical
problems. This progress can facilitate the development of tools for formalizing mathematical
reasoning, supporting the broader mathematical and educational communities.
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