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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated remarkable
capabilities in processing and generating content across multiple data modalities.
However, a significant drawback of MLLMs is their reliance on static training
data, leading to outdated information and limited contextual awareness. This
static nature hampers their ability to provide accurate and up-to-date responses,
particularly in dynamic or rapidly evolving contexts. Though integrating Mul-
timodal Retrieval-augmented Generation (Multimodal RAG) offers a promising
solution, the system would inevitably encounter the multi-granularity noisy cor-
respondence (MNC) problem, which hinders accurate retrieval and generation.
In this work, we propose RagVL, a novel framework with knowledge-enhanced
reranking and noise-injected training, to address these limitations. We instruction-
tune the MLLM with a simple yet effective instruction template to induce its
ranking ability and serve it as a reranker to precisely filter the top-k retrieved
images. For generation, we inject visual noise during training at the data and to-
ken levels to enhance the generator’s robustness. Extensive experiments on four
datasets verify the effectiveness of our method. Code and models are available at
https://anonymous.4open.science/r/RagVL-F694.

1 INTRODUCTION

As an attempt towards Artificial General Intelligence (AGI), Large Language Models (LLMs) have
made significant strides in language understanding and human-like text generation (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023). However, true AGI requires more than just lin-
guistic capabilities. It necessitates a comprehensive understanding and interaction with the world,
encompassing multiple modalities beyond text. Thus, the recent progress of Multimodal Large Lan-
guage Models (MLLMs) in handling multimodal information has attracted the community. By pro-
cessing and generating content across different modalities, MLLMs aim to create a more holistic and
nuanced understanding of the world, closer to how humans perceive and interpret information. This
integration of modalities enables MLLMs to perform tasks that require contextual understanding
from multiple data sources, such as Visual Question Answering (VQA) (Goyal et al., 2017; Hudson
& Manning, 2019; Marino et al., 2019), Table Question Answering (Lu et al., 2022), Text-to-image
Generation (Ramesh et al., 2021; Yu et al., 2022; Aghajanyan et al., 2022), etc.

Nevertheless, the promising performance of language models primarily relies on the knowledge
implicitly stored in their massive parameters, leading to several issues such as long-tail knowl-
edge gaps (Asai et al., 2024), generating hallucinations (Ye & Durrett, 2022), and poor model
interpretability. To better adapt to knowledge-intensive tasks and real-world scenarios, Retrieval-
augmented Language Models (RALM) (Lewis et al., 2020; Lin et al., 2023; Izacard & Grave, 2020;
Karpukhin et al., 2020) employ a dense retriever to retrieve up-to-date knowledge from external
memories for grounded generation. Similarly, Multimodal Retrieval-augmented Generation (Multi-
modal RAG) enhances MLLMs by dynamically retrieving relevant information from external multi-
modal data sources before generation. This allows the models to incorporate real-time, contextually
accurate visual information, significantly improving the factuality and accuracy of their outputs.
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Figure 1: Difference between traditional VQA and multimodal knowledge-seeking question answer-
ing. An example from WebQA (Chang et al., 2022) reveals the challenge of multi-granularity noisy
correspondence (MNC).

As illustrated in Figure 1, to answer the information-seeking query, the model must retrieve and
reason over external visual knowledge, which differs from traditional VQA on the left and is non-
trivial. To solve this, MuRAG (Chen et al., 2022) makes the first endeavor to extend RAG to multiple
modalities. It is built upon ViT (Dosovitskiy et al., 2020) and T5 (Raffel et al., 2020) and pre-trained
to encode image-text pairs for both answer generation and retrieval. MuRAG embeds items into an
external memory and handles queries for retrieving multimodal knowledge from the same memory.

However, integrating multimodal RAG would inevitably introduce the multi-granularity noisy cor-
respondence problem (MNC) (Huang et al., 2021). As shown in Figure 1, MNC refers to the noise
at two different granularities: (I) Coarse-grained noise (query-caption). During the retrieval stage,
coarse-grained captions result in retrieving similar but negative images (e.g., ‘Uxmal Gobernador
Uxmal,Yucatan, Mexico Governer’s Palace, seen from House of the Old Woman’ and ‘Palacio del
Gobernador-Uxmal-Yucatan-Mexico0277 Palace of the Governor in Uxmal’). (II) Fine-grained
noise (query-image). The retriever and generator must distinguish fine-grained visual elements to
formulate the responses. Any discrepancies between the images and the question can introduce
noise, thereby compromising the accuracy of the results. In this scenario, the classical CLIP (Rad-
ford et al., 2021) struggles to match the query with the image during the retrieval phase (see in
Table 1). Also, identifying the correct correspondence amidst the fine-grained noise to provide an
answer to the query is a challenge.

To this end, we propose RagVL, a novel framework with knowledge-enhanced reranking and noise-
injected training, to mitigate MNC in multimodal RAG. In the retrieval stage, we instruction-tune
the MLLM with a simple yet effective instruction template to induce its ranking ability. Given that
MLLMs are inherently capable of understanding cross-modal information, we employ the fine-tuned
model as a reranker to evaluate the relevance between the query and the image, which precisely
selects top-N candidates that are more related to the query semantically. Subsequently, we apply an
adaptive threshold to filter the candidates, collaborating with the reranker to alleviate the fine-grained
mismatches. To further mitigate the impact of fine-grained mismatches during the generation phase,
we introduce noise at both data and token levels in the training process. Specifically, at the data level,
we perform negative sampling for single-image input questions within the single/multiple-image
interleaved dataset, supplementing them with references from hard negative images. At the token
level, we introduce additional visual uncertainty to images through Gaussian noise and reassign
training loss weights by comparing the logits of the distorted and original inputs.

In a nutshell, the main contributions of this work are as follows:

• We achieve effective and robust multimodal retrieval-augmented generation with a three-stage
pipeline. Additionally, we address the inherent multi-granularity noisy correspondence (MNC)
problem in multimodal retrieval-augmented generation.

• We introduce the knowledge-enhanced reranking and noise-injected training technique to mitigate
the coarse-grained and fine-grained noise from MNC.
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• Extensive experiments on multimodal knowledge-seeking QA and retrieval tasks demonstrate the
effectiveness of the proposed framework.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODEL

Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive
performances in handling multi-format information (Driess et al., 2023; Huang et al., 2024; Achiam
et al., 2023). MLLMs are generally built upon existing Large Language Models (LLMs) and inte-
grating visual information as input tokens by utilizing an additional vision encoder (e.g. CLIP) and
a bridging connector (e.g. MLP). For instance, LLaVA (Liu et al., 2024b;a) adopts one/two linear
MLP to project visual tokens and align the feature dimension with word embeddings, while BLIP-
2 (Li et al., 2023) leverages a group of learnable query tokens to extract information in a query-based
manner. By connecting the visual and textual modalities, MLLMs significantly enhance human-AI
interaction and demonstrate remarkable capabilities in understanding and generating multimodal
content. Despite these advances, MLLMs tend to underperform in knowledge-intensive tasks (e.g.
WebQA and MultimodalQA (Talmor et al., 2021)) that require seeking up-to-date information. Since
the knowledge stored in their massive parameters is currently limited, it is crucial for MLLMs to re-
sort to external memories for grounded generation.

2.2 MULTIMODAL RETRIEVAL-AUGMENTED GENERATION

Enhancing language models by incorporating relevant information from diverse knowledge sources
has been shown to improve performance across various NLP tasks (Borgeaud et al., 2022; Lewis
et al., 2020). DPR (Karpukhin et al., 2020) trains the retriever using in-batch documents and sam-
ples negative examples for contrastive learning, allowing the pre-trained retriever to excel in open-
domain question answering. REALM (Guu et al., 2020) and RAG (Lewis et al., 2020) treat the re-
trieved passages as latent variables and train the retriever-generator system jointly, leading to more
effective retrieval-augmented generation models. Inspired by textual RAG, Plug-and-play (Tiong
et al., 2022) retrieves relevant image patches using GradCAM (Selvaraju et al., 2017) to local-
ize relevant parts based on the query. MuRAG (Chen et al., 2022) proposes the first multimodal
retrieval-augmented Transformer, which accesses an external non-parametric multimodal memory
to augment language generation. To better connect candidates and model their relations during re-
trieval, SKURG (Yang et al., 2023) employs an Entity-centered Fusion Encoder to align sources
from different modalities and determines the number of retrieval steps adaptively using a unified
Retrieval-generation Decoder. However, none of these works specifically focus on MNC in multi-
modal RAG, which is the primary focus of our research. Experimental results show that the proposed
knowledge-enhanced reranking and noise-injected training effectively improves multimodal RAG.

3 METHODOLOGY

3.1 PRELIMINARIES

The traditional Retrieval-augmented Language Model (RALM) acquires knowledge from the exter-
nal memory M and utilizes the knowledge in grounded outputs to promote accurate and explainable
generation. The retriever R first retrieves the top-K most relevant contexts C = {c1, · · · , ck} from
M for the given question q. Subsequently, the autoregressive language model generates answers
based on these retrieved contexts. Under the multimodal setting, the retriever needs to compare the
textual queries with the multimodal documents and find the best matches for the generator G. In this
paper, we focus on retrieving the visual-related contexts to study open-world multimodal question
answering.

3.2 MULTIMODAL RETRIEVER

We follow the dual-encoder architecture based on CLIP text encoder Φtext and image encoder Φimg .
Before the retrieval stage, given image-query pairs (v, q) from the dataset D, we first apply the image
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Figure 2: Overview of our proposed RagVL. In the retrieval stage, we utilize the CLIP model and
faiss to find the top-K most relevant images through Maximum Inner Product Search (MIPS) (Guo
et al., 2020). Subsequently, the highly similar top-K images are reranked into top-N with the fine-
tuned MLLM reranker. Finally, the top-N images are fed into the MLLM generator along with the
query for accurate generation.

encoder Φimg to encode each image and build the image memory M using faiss (Douze et al., 2024).
From the external memory M, the retriever aims to retrieve a small set of images that support the
textual query q. Specifically, we encode the query with the text encoder Φtext and use MIPS over
all of the image candidates v ∈ M as follows,

M̂ = TopK(M|q) = TopK
v∈M

Φtext(q) · Φimg(v). (1)

The top-K images with the highest inner product scores, i.e. the nearest top-K neighbors M̂ =
{v1, v2, · · · , vk}, are retrieved as the candidate images for answer generation.

3.3 INDUCING RANKING ABILITY OF MLLMS

CLIP stands out across a wide range of multimodal representations and retrieval tasks as a power-
ful and highly transferable model. However, when encountering long-tail distribution or domain-
specific terms, CLIP fails to match the proper pairs across text and images. It results in lower
accuracy and higher demand of k value to increase the recall rate of supporting materials, which is
time- and resource-consuming. More importantly, simply aligning different modalities is insufficient
for real-time multimodal queries, leading to severe performance degradation in knowledge-intensive
situations (see in Table 1). To mitigate this, we resort to MLLMs for their capabilities of semantic
understanding. In general, MLLMs are pre-trained on vast image-text pairs for feature alignment and
fine-tuned on language-image instruction-tuning datasets for instruction following. With this pre-
injected multimodal knowledge, they are inherently capable of understanding semantically relevant
contents across both visual and textual modalities at a deeper level, while CLIP merely computes
similarity between vectors. Therefore, to mitigate the bottleneck challenge of multimodal RAG, we
introduce the flexible knowledge-enhanced reranking to induce the ranking ability of MLLMs.

Ranking Data Construction To enhance the ranking capability of MLLMs, we construct the
instruction-following data based on each multimodal QA dataset. We treat each query and the
ground truth images as relevant, while the hard negative images as irrelevant. We construct two
types of ranking tasks and require the model to generate ‘Yes’ for the relevant pairs and ‘No’ for the
irrelevant pairs. Intuitively, the caption-aware style brings more additional knowledge for the model
to distinguish the relevance between the image and query. Therefore, we train the reranker with the
caption-aware ranking task. In addition, the instruction tuning for ranking can be either blended
into the supervised fine-tuning of downstream tasks or conducted separately. See the details of the
instruction template in Table 9.
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Knowledge-enhanced Reranking By simply asking the question “Based on the image and its
caption, is the image relevant to the question? Answer ‘Yes’ or ‘No’.”, we measure the relevance
between the image and query with the probability p of generating ‘Yes’ calculated from the output
logits. Thus, reranking the top-K candidates into top-N can be formulated as follows,

M̃ = TopN(M̂|ϕ) = TopN
(v,c)∈M̂

pϕ(v, c, q), (2)

pϕ(v, c, q) =
exp(logit(y1 = “Yes”|v, c, q))

exp(logit(y1 = “Yes”|v, c, q)) + exp(logit(y1 = “No”|v, c, q))
, (3)

where v, c, and q denote the image, corresponding caption, and query, respectively. ϕ is the weight
of the reranker. y1 denotes the first token in the generated output.

Adaptive Threshold Since the reranked images might still have low relevance p to the query, they
can negatively affect answer generation, potentially performing worse than not including the images.
To further improve the retrieval accuracy, we apply an adaptive threshold η to filter out candidates
when p < η. We set two types of thresholds: the natural threshold and the adaptive threshold.
The natural threshold refers to η = 0.5, which is the natural boundary for our binary classification
ranking. For more precise retrieval, we experiment on the validation set and utilize the intersection
point of the interpolated curve of exact match and mismatch as the adaptive threshold. In this way,
the model can avoid the distraction from irrelevant images. By forcing the MLLM to jointly consider
the query, caption, and image, the simple yet effective question template stimulates and enhances the
model’s ranking ability with multimodal knowledge, thereby supporting the trustworthy generation.

3.4 NOISE-INJECTED TRAINING

Compared to providing a fixed number of images each time, the task with single/multiple images
interleaved is more aligned with real-world scenarios. However, it also presents challenges in deter-
mining the optimal number of images to provide each time and in extracting relevant information
rather than distracting information from the provided images. Though the reranker performs well in
selecting relevant images, irrelevant ones still inevitably disturb the accurate generation.

Inspired by VCD (Leng et al., 2024), visual uncertainty amplifies language priors, and contrasting
the logits obtained from the enhanced language priors with the original logits can better highlight
visual relevance. In light of this, we propose enhancing the model’s robustness by injecting vi-
sual noise during training, both at the data level and token level: (I) For single-image/multi-image
interleaved datasets, we sample randomly from the hard negatives to ensure that each instruction-
following data has the same amount of image input. (II) We introduce additional visual uncertainty
by applying a Gaussian noise mask and contrasting the logits to reweight the loss for each token.

Noise-injected Data Construction For datasets that may require both single and multiple image
inputs, we standardize the number of image inputs for each sample in the instruction-following data
to the maximum number needed for any question. In the case of WebQA, where each question
requires 1-2 images for answering, we randomly sample 1 image from the hard negatives as an
injected noise for the single-image query. The model is required to distinguish between relevant and
irrelevant visual information, which strengthens its capability of visual understanding.

Noise-injected Logits Contrasting Although injecting noise into the dataset can help the model
better adapt to noisy environments, it can also be a double-edged sword, making the training process
more unpredictable. Instead of the simple Maximum Likelihood Estimation (MLE) loss, we need a
more robust objective (Xiao et al., 2024) to guide the model to learn the correlation between visual
tokens and textual (query) tokens accurately. Thus, we resort to reweight the training loss and first
employ the forward diffusion process (Ho et al., 2020) to distort the image:

f (vt | vt−1) = N
(
vt;

√
1− γvt−1, γI

)
, f (vT | v0) =

T∏
t=1

f (vt | vt−1) , (4)

where I and v0 denote an identity matrix and the original image, respectively. We gradually distort
the original image by adding the Gaussian noise for T steps and γ controls the the amount of noise

5
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added in each step. Subsequently, given a textual query x and an image input v, the model generates
two logit distributions conditioned on different visual posteriors: the original v and distorted v∗.
By contrasting the logit distributions obtained from these two conditions, we can get the contrastive
probability distribution of the i-th sample at time step t as follows,

∆logit(yi,t|vi, v∗i , xi, yi,<t) = logitθ(yi,t|vi, xi, yi,<t)− logitθ(yi,t|v∗i , xi, yi,<t), (5)
where yi,t and yi,<t denote the token at time step t and the generated tokens sequence up to the time
step t−1 of the i-th sample, respectively. Subsequently, we can obtain the visual correlation weight:

wi,t = ∆logit(yi,t|vi, v∗i , xi, yi,<t). (6)
Following Xiao et al. (2024) to post-process and smooth the weights, we finally reassign the weight
of each token in the vanilla MLE loss, which can be formulated as follows,

Li,t
INJ = − w̃i,t∑l

k=1 w̃i,k

· logpθ(yi,t|vi, xi, yi,<t), (7)

where l and w̃ represent the length of textual tokens and the smooth weight, respectively.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENT SETUP

Datasets and Evaluation Metrics For evaluation, we consider the image-related subsets of two
multimodal QA datasets WebQA and MultimodalQA. Both datasets contain multimodal knowledge-
seeking query-answer pairs. Since the test set labels from both datasets are not publicly available, the
training and validation sets in our work are new subsets of the original training data, while the test
sets are sourced from the original validation sets. Each query is associated with a set of hard negative
distractors so that two evaluation setups can be used, namely distractor and full-wiki. However, we
only consider the full-wiki setting to demonstrate the superiority of our retrieval-rerank-generation
pipeline. Additionally, we conduct more experiments on Flickr30K (Young et al., 2014) and MS-
COCO (Lin et al., 2014) to evaluate the performance on caption-to-image retrieval tasks. More
details can be found in Appendix A, B and E.

4.2 EVALUATION ON MULTIMODAL KNOWLEDGE-SEEKING

Results of Retrieval Table 1 shows the performance of knowledge-enhanced rerankers on Mulit-
modalQA and WebQA. The experimental results show that the retriever performs weakly regarding
precise recall (R@1 and R@2) on both datasets, making it difficult for accurate multimodal retrieval-
augmented generation. Since the captions from the two datasets are basically names of objects or
places, it isn’t easy to adapt to the scenarios using vanilla contrastive learning, as proven in the
table. After inducing the ranking abilities of MLLMs, our proposed method effectively improves
the retrieval performance by a large margin. Specifically, with five MLLMs, our method consis-
tently improves R@2 on WebQA by an average of 40%. The results are significantly improved after
reranking the Top-K candidates from four different retrievers. Notably, on MultimodalQA, it reaches
the upper limit of Recall@20 (98.26%) from CLIP on LLaVA-v1.5-13B and InternVL2-1/2B. These
demonstrate the superior performance of our proposed method in multimodal knowledge retrieval.

Generalizabilities of Caption-aware Instruction Tuning To further validate the generalizability
of our method, on one hand, we test the reranker fine-tuned on the WebQA training set on MMQA.
As shown in Figure 3a, the reranker trained on WebQA exhibits competitive performance in terms of
R@1, R@5, and R@10, and even matches the original reranker’s performance with InternVL2-1/2B.
On the other hand, we randomly select different portions of data from WebQA to train InternVL2-2B
in a low-resource setting, and obtain the probability distribution of the reranker outputting ‘Yes’ for
correctly recalled images. Figure 3b shows the robust performance of our proposed method under the
low-resource settings. With only 2.5% of the original data, the reranker significantly outperforms the
strong retriever baseline, InternVL-G, in terms of R@2. As the data scale increases, the probability
of correctly recalling images also improves, stabilizing around 20%, and the recall metrics follow
a similar trend. In summary, these two points fully demonstrate the strong generalizability of our
proposed method across datasets as well as in low-resource settings within the same dataset, making
it easily adaptable to more scenarios. We provide an evaluation on LLaVA-v1.5-13B and make
further discussion in Appendix F.
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Table 1: Performance of knowledge-enhanced rerankers on multimodal knowledge-seeking. The
reranking is conducted based on the top 20 candidates from the retrievers (see details in Ap-
pendix A). The best scores in each setting are in bold.

Methods
MultimodalQA WebQA

R@1 R@5 R@10 R@2 R@5 R@10

CLIP-ViT-L/14-336px 84.78 94.35 95.65 57.10 71.96 84.86
w/ SFT 83.04 94.35 94.78 55.09 73.23 81.94

Vis-BGE-base 49.57 74.78 82.61 28.78 43.62 54.56
Vis-BGE-m3 43.48 66.52 72.17 26.69 40.75 51.14
InternVL-C 82.17 95.65 96.96 64.90 81.22 88.09
InternVL-G 82.17 95.22 97.39 64.90 80.23 88.28

Reranking Top-K from CLIP-ViT-L/14-336px

LLaVA-v1.5-13B 72.61 90.87 95.22 45.35 65.87 80.56
w/ caption-aware IT 98.26 98.26 98.26 79.74 88.14 89.77

mPLUG-Owl2 67.83 87.39 93.91 43.26 63.80 79.38
w/ caption-aware IT 90.87 96.09 97.39 71.27 85.08 88.97

Qwen-VL-Chat 68.26 89.57 92.61 47.64 67.22 80.42
w/ caption-aware IT 91.30 95.65 97.39 80.12 88.53 89.96

InternVL2-1B 47.39 84.78 93.91 34.99 57.49 74.72
w/ caption-aware IT 98.26 98.26 98.26 82.00 88.78 89.94

InternVL2-2B 66.52 88.70 93.91 42.79 62.48 77.97
w/ caption-aware IT 98.26 98.26 98.26 81.91 88.94 89.94

Reranking Top-K from Different Retrievers

LLaVA-v1.5-13B
w/ Vis-BGE-base 88.70 88.70 88.70 59.61 64.71 65.70
w/ Vis-BGE-m3 84.78 84.78 84.78 57.57 62.26 63.03
w/ InternVL-C 98.70 98.70 98.70 82.08 90.79 92.72
w/ InternVL-G 97.83 97.83 97.83 81.91 90.24 92.31

LLaVA-v1.5-13B mPLUG-Owl2 Qwen-VL-Chat InternVL2-1B InternVL2-2B
Model type
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Figure 3: Generalizabilities of caption-aware instruction tuning. (a) compares the performance of
the reranker fine-tuned on WebQA with the one fine-tuned on MultimodalQA, evaluated on Multi-
modalQA. (b) visualizes the changes in the probability distribution of correctly recalled items and
the recall rate of the reranker under low-resource settings as the scale of the training dataset varies.

4.3 EVALUATION ON MULTIMODAL RETRIEVAL-AUGMENTED GENERATION

Reranking Performance with Thresholds Due to the strong performance of the reranker in low-
resource settings, we train InternVL2-1/2B as the rerankers using only 20% of the data, considering
efficiency. As shown in Figure 4, we collect the relevance probability of the image candidates af-
ter reranking and the results prove the superiority of our proposed knowledge-enhanced reranking.
Among the train, validation, and test sets, the relevance probabilities of correct recalls are concen-
trated in the highest range. Since there is still a portion of erroneous recalls, we plotted the interpo-
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Figure 4: Density distribution of the relevance probability of correct and incorrect recalls on WebQA
after reranking from the InternVL2-2B reranker.

Table 2: Performance of InternVL2-2B reranker on two benchmark datasets. P and R denote preci-
sion and recall, respectively. The best scores in each setting are in bold.

Methods
MultimodalQA WebQA

P R F1 P R F1

CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89

Caption-aware Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 59.26 82.05 68.82
w/ Natural Threshold 100.00 97.83 98.90 74.89 80.59 77.64
w/ Adaptive Threshold 100.00 97.83 98.90 88.34 68.29 77.03

lated curves of correct recalls and erroneous recalls on the validation set and took the x-coordinate of
their intersection point as the adaptive threshold. Due to the perfect performance on MultimodalQA
with the natural threshold, we set the adaptive threshold to the same as the natural threshold.

As demonstrated in Table 2, our proposed knowledge-enhanced reranking method demonstrates su-
perior performances. We train the reranker with the caption-aware instructions and achieve better
performance across all metrics compared to directly using CLIP for top-N retrieval. When the adap-
tive threshold η is activated, the model accurately filters out irrelevant images, improving accuracy
and F1 score. Specifically, in WebQA, when η is set to an intuitively reasonable value of 0.5, the
corresponding F1 score increases by 29.75%. In MultimodalQA, the reranker successfully identifies
all ground truth images from the retrieved top-K candidates when η is set to 0.5, proving the strong
capability of our proposed method in retrieval reranking.

Results of Retrieval-augmented Generation Table 3 displays the results on multimodal ques-
tion answering which requires retrieving images. The baselines without retrieval show limited per-
formance, even the powerful gpt-3.5-turbo-0125 fails to answer the knowledge-intensive questions.
Notably, the backbone LLMs of InternVL2-1/2B (Qwen2-0.5B-Instruct and internlm2-chat-1 8b)
perform poorly while their multimodal counterparts are somewhat improved. This phenomenon in-
dicates that MLLMs can indeed learn world knowledge from different modalities and store it inside
the parameters. Moreover, as a more timely and flexible approach for knowledge updates, retrieval-
augmented generation also offers the potential for better knowledge integration in MLLMs.

After applying our proposed pipeline, all configurations on InternVL2-1B and InternVL2-2B
demonstrate excellent performance of retrieval-augmented generation, approaching or even surpass-
ing the performance of Oracle. When the natural threshold is activated, there is a significant increase
in the accuracy of recalling the correct images (as shown in Table 2), leading to substantial improve-
ments in all metrics across both datasets. Moreover, this improvement is more evident in the single-
image scenario. This is because we fixed the number of images recalled each time, and setting the
threshold allows us to filter out erroneously recalled images, resulting in a consistent performance
enhancement. However, when adopting adaptive thresholds, the improvement in results is not as
significant as with natural thresholds. This can be seen from Table 2, where, despite a substantial
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Table 3: Performance of multimodal knowledge-seeking question answering on WebQA and Multi-
modalQA. In addition to the overall results, we report the accuracy of single-image and multi-image
input with Single. and Multi. for WebQA, respectively. Oracle refers to directly feeding the ground
truth image to the generator after NIT (Noise-injected Training). The best scores in each setting are
in bold.

Methods
MultimodalQA WebQA

EM Single. Multi. Overall

w/o Retrieval-augmented Generation

Qwen2-0.5B-Instruct 10.43 17.29 19.33 18.20
internlm2-chat-1 8b 10.43 23.25 32.58 27.40
gpt-3.5-turbo-0125 25.22 40.80 54.49 46.88
InternVL2-1B 19.57 26.10 43.57 33.86
InternVL2-2B 25.22 30.37 48.20 38.29

InternVL2-1B w/ Retrieval-augmented Generation

InternVL2-1B
w/ CLIP Top-N 50.87 35.98 48.65 41.61
w/ InternVL-G Top-N 49.57 38.88 49.11 43.43

RagVL w/o NIT 54.78 38.09 50.91 43.79
w/ Natural Threshold 54.78 40.43 50.96 45.11
w/ Adaptive Threshold 54.78 40.64 50.98 45.23

RagVL w/ NIT 68.26 53.07 72.53 61.72
w/ Natural Threshold 68.70 56.68 72.49 63.71
w/ Adaptive Threshold 68.70 56.71 72.60 63.78

Oracle 69.13 60.09 73.23 65.93

InternVL2-2B w/ Retrieval-augmented Generation

InternVL2-2B
w/ CLIP Top-N 61.30 40.80 48.88 44.39
w/ InternVL-G Top-N 60.00 41.92 48.45 44.82

RagVL w/o NIT 64.78 41.68 48.40 44.67
w/ Natural Threshold 65.65 44.71 48.97 46.60
w/ Adaptive Threshold 65.65 44.37 48.98 46.42

RagVL w/ NIT 73.04 53.91 72.62 62.23
w/ Natural Threshold 73.48 57.25 73.01 64.25
w/ Adaptive Threshold 73.48 57.94 72.47 64.40

Oracle 73.48 60.66 73.59 66.41

increase in accuracy, there is a significant drop in recall. Therefore, natural thresholds are a better
and more efficient choice for retrieval-augmented generation.

Table 4: Ablation study on WebQA with
InternVL2-2B. NLC and ND refer to Noise-
injected Logits Contrasting and Noise-injected
Data, respectively.

Methods
WebQA

Single. Multi. Overall

RagVL (η = 0.5) 57.25 73.01 64.25
w/o Reranker 53.63 71.79 61.70
w/o ND 57.11 71.24 63.39
w/o NLC 56.42 72.40 63.52
w/o ND & NLC 56.27 70.10 62.42

Ablation Studies To validate the efficacy of
each component in our proposed method, we
conduct a set of ablation experiments on We-
bQA with InternVL2-2B, and the results are
reported in Table 4. For “w/o Reranker”, we
directly retrieve Top-2 images with CLIP in
the inference stage. The use of the reranker
in RagVL shows an improvement in all met-
rics (Single., Multi. and Overall) compared to
“w/o Reranker”. For “w/o ND”, we replace the
noise-injected dataset with the vanilla dataset.
Ablating ND results in a performance decrease
on all metrics. Introducing noise at both data
and token levels helps the model learn to distin-
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(a) “How many primary colors are found on the head of the Violet Turaco?”

(b) “Which is better maintained, the carving on the front of the Palace of the Governor in Uxmal or the Bird
carving above the doorway in Mexico, Architecture?”

Figure 5: Visualization of attention heatmaps w/ and w/o NIT. Displayed from left to right are the
attention maps for the base model (w/o IT), the model fine-tuned w/o NIT, and the model fine-tuned
w/ NIT, respectively, with each corresponding to its respective question in the caption.

guish between the candidate images more effectively in multi-image inference. Since NLC enhances
the model’s robustness at the token level, ablating it leads to a decrease in all metrics on WebQA.
This decline is more pronounced when both NLC and ND are ablated, especially in multi-image
inference scenarios. Therefore, our proposed training method, which injects noise at the data and
token levels, helps reduce the distractions from noise and mitigate MNC during inference time.

4.4 QUALITITIVE ANALYSIS

As illustrated in Figure 5, we visualize the attention heatmaps from the three models, providing
insights into how each model focuses on the details of the input image. The attention weights are
calculated by accumulating the attention score between image tokens and text tokens across all
layers. Obviously, the model w/ NIT provides more focused attention on the crucial parts of the
query than the other two models. More cases can be seen in Appendix I.

5 CONCLUSION
In this paper, we present a robust framework for enhancing Multimodal Large Language Models
(MLLMs) through knowledge-enhanced reranking and noise-injected training to tackle the multi-
granularity noisy correspondence (MNC) problem in multimodal retrieval-augmented generation.
Our comprehensive approach addresses both coarse-grained and fine-grained noise, significantly
improving retrieval accuracy and generation robustness. The results from our extensive exper-
iments on the WebQA and MultimodalQA datasets demonstrate the superiority of our proposed
method, especially in scenarios requiring fine-grained visual understanding and robust generation.
By instruction-tuning MLLMs for reranking and injecting visual noise during training, we enhance
the model’s capability to handle real-world noisy data and improve its overall performance in mul-
timodal tasks.
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A DATA STATISTICS AND EVALUATION METRICS

Table 5: Overall statistics of
datasets.

Dataset Train Dev Test

WebQA 15K 3.7K 2.5K
MultimodalQA 2K 420 230
Flickr30K 29K 1K 1K
MS-COCO 113K 5K 5K

Table 6: Recall@20 of different retrievers.

Methods MultimodalQA WebQA Flickr30K MS-COCO

CLIP-ViT-L/14-336px 98.26 90.27 96.54 96.84
Vis-BGE-base 88.70 65.89 93.64 95.86
Vis-BGE-m3 84.78 63.14 91.48 91.98
InternVL-C 98.70 93.27 98.92 98.64
InternVL-G 97.83 92.78 99.22 99.02

WebQA consists of queries requiring 1-2 images or text snippets, while 44% of image-based and
99% of text-based queries need multiple knowledge sources. Following the vanilla evaluation set-
ting, we measure the overlap of key entities between the generated output and ground truth answer
as Accuracy.

MultimodalQA contains multimodal questions over tables, text, and images. We focus on the QA
pairs requiring only image information, which are annotated as ‘ImageQ’ and attached to 1 image
each. The evaluation metric used is Exact Match (EM).

Flickr30K consists of 31,000 images sourced from Flickr, each accompanied by five captions. Con-
sistent with the setup of Lee et al. (2018), we allocate 1,000 images for validation, 1,000 for testing,
and use the remaining images for training.

MS-COCO comprises 123,287 images, each paired with five captions. Following the protocol in
Lee et al. (2018), we designate 113,287 images for training, 5,000 for validation, and 5,000 for
testing.
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B IMPLEMENTATION DETAILS

To evaluate the effectiveness and generalizability of our proposed method, this paper leverages sev-
eral cutting-edge MLLMs as the backbone, including LLaVA-v1.5-13B (Liu et al., 2024a), mPLUG-
Owl2 (Ye et al., 2024), Qwen-VL-Chat (Bai et al., 2023), and InternVL (Chen et al., 2024). We em-
ploy the frozen CLIP-ViT-L/14-336px as the vision and text encoder. For RagVL, we first train the
reranker model with the caption-aware ranking task. Subsequently, we use CLIP to retrieve top-K
candidates and rerank them into top-N with the fine-tuned reranker. K is set to 20, while N is set
to 2 for WebQA and 1 for MultimodalQA. All trainings are conducted under the LoRA (Hu et al.,
2021) setting. For evaluation, we use greedy decoding to ensure reproducibility and report the best
performance. All experiments are conducted on 8 40G NVIDIA A100 GPUs.

C COMPUTATIONAL EFFICIENCY

Table 7 presents the inference time for different settings on 4 A100 GPUs. As shown, “CLIP Top-K”
only requires a small amount of time due to fast inner product search, while our proposed method re-
quires more time on reranking the retrieved candidates. Though the MLLM reranker shows powerful
retrieval performance, the efficiency will be a major issue that limits its development.

Table 7: Inference time per sample. Each infer-
ence with the reranker involves 20 evaluations of
image relevance and one generation of an answer.

Approach Time Cost

CLIP Top-K 1.23s
+ InternVL2-2B reranker 5.11s
+ LLaVA-v1.5-13B reranker 6.24s

Thanks to advances in inference acceleration,
we can address the efficiency issue from dif-
ferent perspectives. For example, FlashAtten-
tion (Dao et al., 2022) enables faster inference
with lower resources by using tiling to reduce
the number of memory reads/writes between
GPU memories. PagedAttention (Kwon et al.,
2023) resorts to the classical virtual memory
and paging techniques in operating systems to
achieve near-zero waste and flexible sharing of
KV cache memory. To be more specific, we can
share the attention calculation of textual tokens
among different candidates and parallelize the computation of visual tokens to maximize resource
utilization and accelerate inference since the textual instructions of all candidates during the rerank-
ing process are identical. As a successful attempt, Prompt Cache (Gim et al., 2024) has made
similar efforts to reduce latency in time-to-first-token, which improves 8x for GPU-based inference
and maintains output accuracy.

D EFFECT OF CAPTIONS

Table 8: Reranking performance of different mod-
els on WebQA.

Methods
WebQA Ranking WebQA QA

Acc Recall@2

CLIP-ViT-L/14-336px - 57.10
LLaVA-v1.5-13B 67.74 45.35

w/ caption-agnostic IT 89.62 54.45
w/ caption-aware IT 93.99 79.74

We conduct experiments on test sets of WebQA
ranking and QA datasets to verify the validity
of captions in retrieving relevant sources. In
WebQA QA task, we retrieve top-20 candidate
images using CLIP and rerank them into top-
2 with our instruction-tuned reranker models.
As shown in Table 8, the vanilla LLaVA-v1.5-
13B performs poorly on both tasks. The models
trained on the ranking task outperform the base-
line, particularly the one trained on the caption-
aware task. This demonstrates the superiority
of our simple yet effective instruction templates
in inducing the ranking ability of MLLMs.

E PERFORMANCE ON CAPTION-TO-IMAGE RETRIEVAL

To further verify the effectiveness and generalizability of our proposed reranking method, we con-
duct more experiments on Flickr30K and MS-COCO. We construct the reranking tasks and prompt
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Table 9: The instruction template for ranking and generation tasks. The retrieval-augmented QA
task allows multi-image input, whereas the ranking tasks consider one image at a time.

Task Instruction Answer
Multimodal Retrieval-augmented QA <image> · · · <image> {question} A phrase

Caption-agnostic Ranking
<image> Question:{question} Is this image relevant to the
question? Answer ‘Yes’ or ‘No’.

Yes / No

Caption-aware Ranking (QA)
<image> Image Caption:{caption} Question:{question}
Based on the image and its caption, is the image relevant to the
question? Answer “Yes” or “No”.

Yes / No

0.0 0.2 0.4 0.6 0.8 1.0
Relevance Probability

2

4

6

8

10

12

14

16

18

D
en

si
ty

 D
is

tr
ib

ut
io

n

Correct Recalls Incorrect Recalls

(a) Train set

0.0 0.2 0.4 0.6 0.8 1.0
Relevance Probability

2

4

6

8

10

12

14

16

18

D
en

si
ty

 D
is

tr
ib

ut
io

n

(0.93, 2.44)

Correct Recalls

Incorrect Recalls

Correct Recalls

Incorrect Recalls

(b) Validation set

0.0 0.2 0.4 0.6 0.8 1.0
Relevance Probability

2

4

6

8

10

12

14

16

18

D
en

si
ty

 D
is

tr
ib

ut
io

n

Correct Recalls Incorrect Recalls

(c) Test set

Figure 7: Density distribution of the relevance probability of correct and incorrect recalls on WebQA
after reranking from the LLaVA-v1.5-13B reranker.

the reranker with the instruction “<image> Image Caption:{caption} Is the image relevant to
the caption? Answer ‘Yes’ or ‘No’”. As shown in Table 10, our proposed method still outperforms
the majority of existing retrievers across all metrics, except for InternVL-G, which is specifically
designed for image-text matching. Our approach primarily focuses on cases where the query is a
question, and the keys are captions and images. In contrast, in these two caption-to-image retrieval
datasets, the query is a caption, and the key is an image. Thus, our method not only demonstrates
superior performance in multimodal RAG but also maintains generalizability and competitiveness
in traditional text-to-image retrieval.

F MORE EVALUATIONS ON LLAVA-V1.5-13B
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Figure 6: Retrieval performance on WebQA with
LLaVA-v1.5-13B under low-resource settings.

Low-resource Settings on WebQA As
shown in Figure 6, the experiments with
LLaVA-v1.5-13B under low-resource settings
also verified the robustness of our proposed
method in reranker training. With only 2.5%
of the original data, the reranker significantly
surpasses the original baseline, InternVL-G,
in R@2 and almost reaches the performance
peak. This inspires us to further explore
the performance of low-resource instruction
fine-tuning for models with different parameter
sizes in future work, aiming to enhance the
generalizability and efficiency of MLLMs in
instruction fine-tuning and downstream task
deployment.

Reranking Performance with Thresholds
Similarly, we train LLaVA-v1.5-13B as the reranker using only 20% of the data. As shown in
Figure 7, the relevance probabilities of correct recalls are concentrated in the highest range. The
adaptive threshold is high enough to filter out most of the incorrect candidates.
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Table 10: Performance of knowledge-enhanced rerankers on caption-to-image retrieval. The best
scores in each setting are in bold.

Methods
Flickr30K MS-COCO

R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-L/14-336px 66.90 89.00 93.36 57.18 83.24 91.90
Vis-BGE-base 57.38 83.28 89.60 52.94 81.22 90.12
Vis-BGE-m3 52.18 78.18 86.06 43.14 73.44 84.42
InternVL-C 81.50 95.94 97.82 71.82 92.06 96.62
InternVL-G 84.28 96.88 98.44 76.20 94.24 97.54

Reranking Top-K from CLIP-ViT-L/14-336px

LLaVA-v1.5-13B 79.90 94.52 96.24 71.10 92.02 95.96
w/ caption-aware IT 83.04 95.34 96.34 74.64 93.16 95.62

mPLUG-Owl2 76.16 94.12 95.98 65.44 90.34 95.38
w/ caption-aware IT 81.38 94.70 96.08 69.96 91.30 95.36

Qwen-VL-Chat 82.70 94.80 96.26 74.40 92.72 95.98
w/ caption-aware IT 84.40 95.18 96.30 76.62 93.56 96.26

InternVL2-1B 67.74 92.56 96.04 55.76 87.14 94.02
w/ caption-aware IT 83.02 95.12 96.38 74.24 92.78 96.02

InternVL2-2B 67.74 92.56 96.04 71.32 92.06 95.82
w/ caption-aware IT 83.78 95.14 96.32 75.86 93.40 96.10

Reranking Top-K from Different Retrievers

LLaVA-v1.5-13B
w/ Vis-BGE-base 80.76 92.56 93.44 74.12 92.36 95.02
w/ Vis-BGE-m3 79.64 90.46 91.34 71.94 88.96 91.18
w/ InternVL-C 83.56 97.12 98.58 75.00 94.26 97.36
w/ InternVL-G 83.26 97.16 98.80 75.06 94.36 97.60

Table 11: Performance of LLaVA-v1.5-13B reranker on two benchmark datasets. P and R denote
precision and recall, respectively. The best scores in each setting are in bold.

Methods
MultimodalQA WebQA

P R F1 P R F1

CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89

Blended Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.05 78.99 66.25
w/ Natural Threshold 100.00 97.39 98.68 67.94 78.00 72.62
w/ Adaptive Threshold 100.00 97.39 98.68 84.13 62.70 71.85

Ranking-only Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.59 79.74 66.87
w/ Natural Threshold 100.00 97.83 98.90 68.31 78.52 73.06
w/ Adaptive Threshold 100.00 97.83 98.90 80.38 68.35 73.88

As shown in Table 11, our proposed knowledge-enhanced reranking method demonstrates superior
performances. We train the reranker under two settings: (i)Blended training of ranking and QA
tasks. (ii) Training exclusively with the ranking task. Whether training with the blended or separate
setting, our approach achieves better performance across all metrics than directly using CLIP for top-
N retrieval. When the adaptive threshold η is activated, the model accurately filters out irrelevant
images, resulting in improved accuracy and F1 score. Specifically, in WebQA, when η is set to an
intuitively reasonable value of 0.5, the corresponding F1 score increases by 25.17% after training
on the ranking-only task. In MultimodalQA, the reranker successfully identifies all ground truth
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Table 13: Performance of multimodal question answering on two benchmark datasets requiring
image retrieval. In addition to the overall results, we report the accuracy of single-image and multi-
image input with Single. and Multi. for WebQA, respectively. Oracle refers to directly feeding the
ground truth image to the generator. The best scores in each training setting are in bold.

Methods
MultimodalQA WebQA

EM Single. Multi. Overall

w/o Retrieval-augmented Generation

Vicuna-v1.5-13B 8.26 32.43 42.82 37.05
Llama-2-13b-chat-hf 0.43 16.23 21.27 18.47
LLaVA-v1.5-13B 42.61 31.92 50.37 40.12

LLaVA-v1.5-13B w/ Retrieval-augmented Generation

LLaVA-v1.5-13B
w/ CLIP Top-N 75.65 41.29 47.54 44.07
w/ InternVL-G Top-N 75.22 42.37 47.71 44.74

RagVL w/o NIT 78.70 41.03 48.09 44.17
w/ Natural Threshold 79.57 44.50 48.47 46.26
w/ Adaptive Threshold 79.57 44.05 49.00 46.25

RagVL w/ NIT 78.70 57.06 76.18 65.56
w/ Natural Threshold 79.57 60.86 76.83 67.95
w/ Adaptive Threshold 79.57 61.76 76.90 68.49

Oracle 79.13 65.51 77.04 70.63

images from the retrieved top-K candidates when η is set to 0.5, proving the strong capability of our
proposed method in retrieval reranking.

Table 12: Ablation study on WebQA with
LLaVA-v1.5-13B. NLC and ND refer to Noise-
injected Logits Contrasting and Noise-injected
Data, respectively.

Methods
WebQA

Single. Multi. Overall

RagVL (η = 0.5) 60.86 76.83 67.95
w/o Reranker 58.67 75.66 66.22
w/o ND 61.67 75.19 67.68
w/o NLC 60.08 76.24 67.26
w/o ND & NLC 60.68 74.92 67.01

w/ Blended Reranker 58.15 74.97 65.63

For “w/ Blended Reranker”, we utilize the
blended reranker for both reranking and gen-
eration, which is trained with noise-injected
data and vanilla MLE loss. Though we di-
rectly mix the ranking and QA datasets due
to a lack of sufficient datasets, the blended
reranker still performs competitively. Since
training the blended reranker requires precise
adjustments (Yu et al., 2024) to the composition
of the training datasets to achieve better results,
the results show a promising direction for fu-
ture research (unifying reranker and generator),
which further demonstrates the generalizability
and superiority of our proposed method.

Results of Retrieval-augmented Generation
Table 13 displays the results of LLaVA-v1.5-
13B on MultimodalQA and WebQA. Our pro-
posed approach still outperforms baselines on
all configurations. Due to a larger amount of parameters, LLaVA-v1.5-13B outperforms InternVL2-
1/2B in answer generation. What’s more, the adaptive threshold works better on LLaVA-v1.5-13B
because the relevance probabilities of correct recalls are more focused in the high range. Therefore,
our proposed method is also applicable to models with larger parameters.

Ablation Studies As shown in Table 12, we ablate the proposed approaches on WebQA with
LLaVA-v1.5-13B. Similar to the results from InternVL2-2B, the benefits from reranking and noise
injection are still significant. Specially, to explore the possibility of unifying reranker and generator,
we utilize the blended reranker for both retrieval and generation. The results are very promising,
and there is still significant room for optimization.
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G EVALUATION ON GENERAL BENCHMARK DATASETS

Table 14: Evaluation on three general benchmark
datasets.

Models MME
MMBench SEED

EN-test Image

InternVL2-1B 1769.2 61.72 65.60
w/ WebQA NIT 1671.3 60.76 64.32

InternVL2-2B 1839.8 72.25 71.60
w/ WebQA NIT 1743.2 70.46 70.60

While training a model on specific tasks can re-
duce its generalization capabilities (Ling et al.,
2023), a moderate trade-off in universality is
often acceptable to significantly enhance task-
specific performance. As demonstrated in Ta-
ble14, we evaluated our approach on three gen-
eral datasets: MME (Fu et al., 2024), MM-
Bench (Liu et al., 2025), and SEED-Image (Li
et al., 2024). Following noise-injected fine-
tuning on WebQA, performance declined only
marginally—by 5.2%–5.5%, 1.6%–2.5%, and
1.4%–1.9% on MME, MMBench, and SEED-
Image, respectively. However, this fine-tuning
resulted in a substantial improvement of approximately 40% on WebQA as shown in Table 3, high-
lighting the effectiveness of our method in balancing specialization and generalization.

H COMPARISON OF CONTRASTIVE LOGITS CALCULATION IN VCD AND
RAGVL

Although both our method and VCD use contrastive logit calculation, there are fundamental differ-
ences in their implementation and motivation. Our approach employs contrastive logit calculation
during fine-tuning, rather than inference. VCD, by contrast, applies this calculation exclusively
during inference and does not involve fine-tuning. Additionally, we introduce two types of noise
during training: token-level noise and data-level noise (negatively sampled images). VCD only in-
corporates token-level noise during inference. By injecting noise at both levels during training, we
leverage the ∆logits as visual correlation weights to reassign the loss for each token, guiding the
model to focus on relevant visual elements. Importantly, inference in our method involves standard
decoding, not contrastive decoding.

We draw inspiration from VCD, where visual uncertainty amplifies language priors, and contrasting
the logits obtained from enhanced language priors with the original logits better highlights visual
relevance. However, our motivation extends beyond mitigating irrelevant factors from a single re-
trieved image to addressing those arising from multiple images. In contrast, VCD focuses on better
attending to visual tokens within a single ground truth image. Thus, the motivations underlying our
use of contrastive logits differ fundamentally from those of VCD.

I MORE CASE STUDIES

In this section, we provide more attention heatmap visualization of cases requiring single image or
multiple images for inferencing.
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(a) “Are the homes at the Main Shopping Street in Enniskillen or the church behind it taller?”

(b) “What color is the facade of bakery Sattin et Fils in Rethel, France?”

(c) “What text is on the signage in front of the Rijksmuseum?”

(d) “What color is the logo on China Merchants Bank Tower?”

Figure 8: More single-image cases on WebQA.
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(a) “Which guitar looks more like a tool that might cut a tree; Gene Simmons’ Guitar or Gibson L-3 archtop
guitar?”

(b) “Are the colors of the word lyric different in the Lyric Theater, Blacksburg and Lyric Theater, Georgia
signs?”

Figure 9: More multi-image cases on WebQA.
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