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Abstract

Sparse autoencoders (SAEs) have been suc-
cessfully used to discover sparse and human-
interpretable representations of the latent activa-
tions of LLMs. However, we would ultimately
like to understand the computations performed
by LLMs and not just their representations. The
extent to which SAEs can help us understand com-
putations is unclear because they are not designed
to “sparsify” computations in any sense, only la-
tent activations. To solve this, we propose Jaco-
bian SAEs (JSAEs), which yield not only spar-
sity in the input and output activations of a given
model component but also sparsity in the compu-
tation (formally, the Jacobian) connecting them.
With a naïve implementation, the Jacobians in
LLMs would be computationally intractable due
to their size. One key technical contribution is
thus finding an efficient way of computing Jaco-
bians in this setup. We find that JSAEs extract a
relatively large degree of computational sparsity
while preserving downstream LLM performance
approximately as well as traditional SAEs. We
also show that Jacobians are a reasonable proxy
for computational sparsity because MLPs are ap-
proximately linear when rewritten in the JSAE ba-
sis. Lastly, we show that JSAEs achieve a greater
degree of computational sparsity on pre-trained
LLMs than on the equivalent randomized LLM.
This shows that the sparsity of the computational
graph appears to be a property that LLMs learn
through training, and suggests that JSAEs might
be more suitable for understanding learned trans-
former computations than standard SAEs.
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1. Introduction
Sparse autoencoders (SAEs) have emerged as a power-
ful tool for understanding the internal representations of
large language models (Bricken et al., 2023; Cunningham
et al., 2023; Gao et al., 2024; Rajamanoharan et al., 2024b;
Lieberum et al., 2024; Lawson et al., 2024; Braun et al.,
2024; Kissane et al., 2024; Rajamanoharan et al., 2024a).
By decomposing neural network activations into sparse, in-
terpretable components, SAEs have helped researchers gain
significant insights into how these models process informa-
tion (Marks et al., 2024; Lieberum et al., 2024; Temple-
ton et al., 2024b; O’Brien et al., 2024; Farrell et al., 2024;
Paulo et al., 2024; Balcells et al., 2024; Lan et al., 2024;
Brinkmann et al., 2025; Spies et al., 2024).

When trained on the activation vectors from neural network
layers, SAEs learn to reconstruct the inputs using a dic-
tionary of sparse ‘features’, where there are many more
features than basis dimensions of the inputs, and each fea-
ture tends to capture a specific, interpretable concept. How-
ever, the goal of this paper is to improve understanding of
computations in transformers. While SAEs are designed
to disentangle the representations of concepts in the LLM,
they are not designed to help us understand the computations
performed with those representations.

One approach to understanding computation would be to
train two SAEs, one at the input and one at the output
of an MLP in a transformer. We can then ask how the
MLP maps sparse latent features at the inputs to sparse
features in the outputs. For this mapping to be interpretable,
it would be desirable that it is sparse, in the sense that each
latent in the SAE trained on the output depends on a small
number of latents of the SAE trained on the input. These
dependencies can be understood as a computation graph or
‘circuit’ (Olah et al., 2020; Cammarata et al., 2020). SAEs
are not designed to encourage this computation graph to be
sparse. To address this, we develop Jacobian SAEs (JSAEs),
where we include a term in the objective to encourage SAE
bases with sparse computational graphs, not just sparse
activations. Specifically, we treat the mapping between the
latent activations of the input and output SAEs as a function
and encourage its Jacobian to be sparse by including an L1

penalty term in the loss function.

With a naïve implementation, it is intractable to compute
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Figure 1. A diagram illustrating our setup. We have two SAEs: one trained on the MLP inputs and the other trained on the MLP outputs.
We then consider the function fs, which takes the latent activations of the first SAE and returns the latent activations of the second SAE,
i.e., fs(sx) = sy. The function fs is described by the function composition of the TopK activation function of the first (input) SAE τk,
the decoder of the first SAE dx, the MLP f , and the encoder of the second (output) SAE ey. We note that the activation function τk is
included for computational efficiency only; see Section 4.2 for details. JSAEs optimize for fs having a sparse Jacobian matrix, which
we illustrate by reducing the number of edges in the computational graph that corresponds to fs. Traditional SAEs have sparse SAE
latents on either side of the MLP but a dense computational graph between them; JSAEs have both sparse SAE latents and a sparse
computational graph. Importantly, Jacobian sparsity approximates the computational graph notion, but, as we discuss in Section 5.4 and
Appendix B, this approximation is highly accurate due to the fact that fs is a mostly linear function.

Jacobian matrices because each matrix would have on the or-
der of a trillion elements, even for modestly sized language
models and SAEs. Therefore, one of our core contributions
is to develop an efficient means to compute Jacobian ma-
trices in this context. The approach we develop makes it
possible to train a pair of Jacobian SAEs with only approxi-
mately double the computational requirements of training a
single standard SAE (Section 4.2). These methods enabled
us to make three downstream findings.

First, we find that Jacobian SAEs successfully induce spar-
sity in the Jacobian matrices between input and output SAE
latents relative to standard SAEs without a Jacobian term
(Section 5.1). We find that JSAEs achieve the desired in-
crease in the sparsity of the Jacobian with only a slight
decrease in reconstruction quality and model performance
preservation, which remain roughly on par with standard
SAEs. We also find that the input and output latents learned
by Jacobian SAEs are approximately as interpretable as
standard SAEs, as quantified by auto-interpretability scores.
Importantly, we also find that the "computational units"
discovered by JSAEs are often highly interpretable – for ex-
ample, JSAEs find an output latent corresponding to whether
the text is in German, which is computed using several input
latents corresponding to tokens frequently found in German
text (Section 5.2).

Second, inspired by Heap et al. (2025), we investigated
the behavior of Jacobian SAEs when applied to random

transformers, i.e., where the parameters have been reini-
tialized. We find that the degree of Jacobian sparsity that
can be achieved when JSAEs are applied to a pre-trained
transformer is much greater than the sparsity achieved for
a random transformer (Section 5.3). This preliminary find-
ing suggests that Jacobian sparsity may be a useful tool for
discovering learned computational structure.

Lastly, we find that Jacobians accurately approximate com-
putational sparsity in this context because the function we
are analyzing (i.e., the combination of JSAEs and MLP) is
approximately linear (Section 5.4).

Our source code can be found at
https://github.com/lucyfarnik/jacobian-saes.

2. Related work
2.1. Sparse autoencoders

SAEs have been widely applied to ‘disentangle’ the repre-
sentations learned by transformer language models into a
very large number of concepts, a.k.a. sparse latents, features,
or dictionary elements (Sharkey et al., 2022; Cunningham
et al., 2023; Bricken et al., 2023; Gao et al., 2024; Raja-
manoharan et al., 2024b; Lieberum et al., 2024). Human
experiments and quantitative proxies apparently confirm that
SAE latents are much more likely to correspond to human-
interpretable concepts than raw language-model neurons,
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i.e., the basis dimensions of their activation vectors (Cun-
ningham et al., 2023; Bricken et al., 2023; Rajamanoharan
et al., 2024a). SAEs have been successfully applied to mod-
ifying the behavior of LLMs by using a direction discovered
by an SAE to “steer” the model towards a certain concept
(Makelov, 2024; O’Brien et al., 2024; Templeton et al.,
2024b).

Our work is based on SAEs but has a very different aim:
standard SAEs only sparsify activations, while JSAEs also
sparsify the computation graph between them (Figure 1).

2.2. Transcoders

In this paper, we focus on MLPs. Dunefsky et al. (2024);
Templeton et al. (2024a) developed transcoders, an alter-
native SAE-like method to understand MLPs. However,
JSAEs and transcoders take radically different approaches
and solve radically different problems. This is perhaps easi-
est to see if we look at what transcoders and JSAEs sparsify.
JSAEs are fundamentally an extension of standard SAEs:
they train SAEs at the input and output of the MLP and
add an extra term to the objective such that these sparse
latents are also appropriate for interpreting the MLP (Fig-
ure 1). In contrast, transcoders do not sparsify the inputs and
outputs; they work with dense inputs and outputs. Instead,
transcoders, in essence, sparsify the MLP hidden states.
Specifically, a transcoder is an MLP that you train to match
(using a mean squared error objective) the input-to-output
mapping of the underlying MLP from the transformer. The
key difference between the transcoder MLP and the under-
lying MLP is that the transcoder MLP is much wider, and
its hidden layer is trained to be sparse.

Thus, transcoders and JSAEs take fundamentally different
approaches. Each transcoder latent tells us ‘there is com-
putation in the MLP related to [concept].’ By comparison,
JSAEs learn a pair of SAEs (which have mostly interpretable
latents) and sparse connections between them. At a con-
ceptual level, JSAEs tell us that ‘this feature in the MLP’s
output was computed using only these few input features’.
Ultimately, we believe that the JSAE approach, grounded in
understanding how the SAE basis at one layer is mapped to
the SAE basis at another layer, is potentially powerful and
worth thoroughly exploring.

Importantly, it is worth emphasizing that JSAEs and
transcoders are asking fundamentally different questions,
as can be seen in terms of e.g., differences in what they
sparsify. As such, it is not, to our knowledge, possible to
design meaningful quantitative comparisons, at least not
without extensive future work to develop very general auto-
interpretability methods for evaluating methods of under-
standing MLP circuits.

2.3. Automated circuit discovery

In “automated circuit discovery”, the goal is to isolate the
causally relevant intermediate variables and connections
between them necessary for a neural network to perform a
given task (Olah et al., 2020). In this context, a circuit is
defined as a computational subgraph with an interpretable
function. The causal connections between elements are de-
termined via activation patching, i.e., modifying or replacing
the activations at a particular site of the model (Meng et al.,
2022; Zhang & Nanda, 2023; Wang et al., 2022; Hanna
et al., 2023). In some cases, researchers have identified sub-
components of transformer language models with simple
algorithmic roles that appear to generalize across models
(Olsson et al., 2022).

Conmy et al. (2023) proposed a means to automatically
prune the connections between the sub-components of a
neural network to the most relevant for a given task using ac-
tivation patching. Given a choice of task (i.e., a dataset and
evaluation metric), this approach to automated circuit dis-
covery (ACDC) returns a minimal computational subgraph
needed to implement the task, e.g., previously identified
‘circuits’ like Hanna et al. (2023). Naturally, this is compu-
tationally expensive, leading other authors to explore using
linear approximations to activation patching (Nanda, 2023;
Syed et al., 2024; Kramár et al., 2024). Marks et al. (2024)
later improved on this technique by using SAE latents as
the nodes in the computational graph.

In a sense, these methods are supervised because they re-
quire the user to specify a task. Naturally, it is not feasible
to manually iterate over all tasks an LLM can perform, so
a fully unsupervised approach is desirable. With JSAEs,
we take a step towards resolving this problem, although the
architecture introduced in this paper initially only applies to
a single MLP layer and not an entire model. Additionally, to
the best of our knowledge, no automated circuit discovery
algorithm sparsifies the computations inside of MLPs.

There are also other approaches which focus on locating
relevant computation in ML models by estimating the con-
tribution of individual model components (Shah et al., 2024;
Balasubramanian et al., 2024).

3. Background
3.1. Sparse autoencoders

In an SAE, we have input vectors, x ∈ X = Rmx . We want
to approximate each vector x by a sparse linear combination
of vectors, sx ∈ Sx = Rnx . The dimension of the sparse
vector, nx, is typically much larger than the dimension of
the input vectors mx (i.e. the basis is overcomplete).

In the case of SAEs, we treat the vectors as inputs to an
autoencoder with an encoder ex : X → Sx and a decoder
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dx : Sx → X defined by,

sx = ex(x) = ϕ(Wenc
x x+ benc

x ) (1)

x̂ = dx(sx) = Wdec
x sx + bdec

x (2)

Here, the parameters are the encoder weights Wenc ∈
Rnx×mx , decoder weights Wdec ∈ Rmx×nx , encoder bias
benc

x ∈ Rnx , and decoder bias bdec
x ∈ Rmx . The non-

linearity ϕ can be, for instance, ReLU. These parameters
are then optimized to minimize the difference between x
and x̂, typically measured in terms of the mean squared
error (MSE), while imposing an L1 penalty on the latent
activations sx to incentivize sparsity.

3.2. Automatic interpretability of SAE latents

In order to compare the quality of different SAEs, it is
desirable to be able to quantify how interpretable its latents
are. A popular approach to quantifying interpretability at
scale is to collect the examples that maximally activate a
given latent, prompt an LLM to generate an explanation of
the concept the examples have in common, and then prompt
an LLM to predict whether a given prompt activates the
SAE latent given the generated explanation. We can then
score the accuracy of the predicted activations relative to
the ground truth. There are several variants of this approach
(e.g., Bills et al., 2023; Choi et al., 2024); in this paper, we
use “fuzzing” where the scoring model classifies whether
the highlighted tokens in prompts activate an SAE latent
given an explanation of that latent (Paulo et al., 2024).

4. Methods
The key idea with a Jacobian SAE is to train a pair of SAEs
on the inputs and outputs of a neural network layer while
additionally optimizing the sparsity of the Jacobian of the
function that relates the input and output SAE latent acti-
vations (Figure 1). In this paper, we apply Jacobian SAEs
to multi-layer perceptrons (MLPs) of the kind commonly
found in transformer language models (Radford et al., 2019;
Biderman et al., 2023).

4.1. Setup

Consider an MLP mapping from x ∈ X to y ∈ Y , i.e.,
f : X → Y or y = f(x). We can then train two k-sparse
SAEs, one on x and the other on y. The resulting SAEs
map from each of x and y to corresponding sparse latents
sx ∈ Sx and sy ∈ Sy, i.e., sx = ex(x) and sy = ey(y),
where ex is the encoder of the first SAE and ey is the encoder
of the second SAE. Each of these SAEs also has a decoder
that maps from the sparse latents back to an approximation
of the original vector: x̂ = dx(sx) and ŷ = dy(sy).

We may now consider the function fs : SX → SY , which
intuitively represents the function, f , but written in terms

of the sparse bases learned by the SAE pair for the original
vectors x and y. Specifically, we define fs by

fs = ey ◦ f ◦ dx ◦ τk (3)

where ◦ denotes function composition. Here, dx : Sx → X
maps the sparse latents given as input to fs to “dense” inputs.
Then, f : X → Y maps the dense inputs to dense outputs.
Finally, ey : Y → Sy maps the dense outputs to sparse out-
puts. Note that fs first applies the TopK activation function
τk to the sparse inputs, sx. Critically, with k-sparse SAEs,
we produce the sparse inputs by sx = ex(x), implying that
sx only has k non-zero elements. In that setting, TopK does
not change the inputs, i.e. sx = τk(sx), but it does affect the
Jacobian and, in particular, allows us to compute it much
more efficiently (Section 4.2).

At a high level, we want the function fs to be ‘sparse’,
in the sense that each of its input dimensions (i.e. SAE
latent activations) only affects a small number of its output
dimensions, and each of its output dimensions only depends
on a small number of its input dimensions. We quantify the
sparsity of fs in terms of its Jacobian matrix. The Jacobian
of fs is, in index notation:

Jfs,i,j =
∂fs,i(sx)

∂sx,j
. (4)

Intuitively, we can consider maximizing the sparsity of the
Jacobian as minimizing the number of edges in the compu-
tational graph connecting the input and output nodes (Fig-
ure 1), i.e. maximizing the number of near-zero elements
in the Jacobian matrix. We note that the Jacobian is not a
perfect measure of the sparsity of the computational graph,
but it is an accurate proxy (see Section 5.4 and Appendix B)
while being computationally tractable.

We simultaneously train two separate SAEs on the input and
output of a transformer MLP with the objectives of low re-
construction error and sparse relations between the separate
SAE latents (via the Jacobian). We do not need to optimize
for the sparsity of the latent activations via a penalty term
in the loss function because we use k-sparse autoencoders,
which keep only the k largest latent activations per token
position. Hence, our loss function is

L = MSE(x, x̂) + MSE(y, ŷ) +
λ

k2

ny∑
i=1

nx∑
j=1

|Jfs,i,j | (5)

Here, k is the number of non-zero elements in the TopK
activation function, nx, ny are the dimensionalities of the
latent spaces of the input and output SAEs, respectively, and
λ is the coefficient of the Jacobian loss term. We divide
by k2 because, as we will see later, there are at most k2

non-zero elements in the Jacobian. Finally, note that if we
set λ = 0, then our objective effectively trains traditional
SAEs for each of x and y independently.
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Figure 2. JSAEs induce a much greater degree of sparsity in the
elements of the Jacobian of fs than traditional SAEs. The bars
show the average proportion of Jacobian elements with absolute
values above certain thresholds. At most k × k elements can be
nonzero, so we take 100% on the y-axis to mean k × k. The
average was taken across 10 million tokens. This example is from
layer 15 of Pythia-410m. For layer 3 of Pythia-70m and layer 7 of
Pythia-160m, see Figure 34, for more quantitative information on
Jacobian sparsity across model sizes, layers, and hyperparameters
see Figures 24, 25, and 26. We present further discussion of the
sparsity of the Jacobian in Appendix F.

4.2. Making the Jacobian calculation tractable

Computing the Jacobian naively (e.g., using an automatic
differentiation package) is computationally intractable, as
the full Jacobian has sizeB×ny×nx whereB is the number
of tokens in a training batch nx is the number of SAE latents
for the input, and ny is the number of SAE latents for the
output. Unfortunately, typical values are around 1, 000 for
B and around 32, 000 for nx and ny (taking as an example
a model dimension of 1, 000 and an expansion factor of
32). Combined, this gives a Jacobian with around 1 trillion
elements. This is obviously far too large to work with in
practice, and our key technical contribution is to develop an
efficient approach to working with this huge Jacobian.

Our first insight is that for each element of the batch, we
have a ny×nx Jacobian, where nx and ny are around 32, 000.
This is obviously far too large. However, remember that
we are interested in the Jacobian of fs, so the input is the
sparse SAE latent vector, sx and the output is the sparse
SAE latent vector, sy. Importantly, as we are using k-sparse
SAEs, only k elements of the input and output are “on”
for any given token. As such, we really only care about
the k × k elements of the Jacobian of fs, corresponding
to the inputs and outputs that are “on”. This reduces the
size of the Jacobian by around six orders of magnitude,
and renders the computation tractable. However, to make
this work formally, we need all elements of the Jacobian
corresponding to “off” elements of the input and output to
be zero. This is where the τk in the definition of fs becomes
important. Specifically, the τk ensures that the gradient of

Text is in German

"von"

"Berlin"

Text about Nazi Germany

"Austria"

"Kle"

"Pf"

"sch"

Common tokens
in German text

Place names in
German-speaking

countries

Figure 3. JSAEs allow us to locate the "input features" of each
feature computed by the MLP. For instance, in Pythia-410m, the
MLP at layer 15 is computing the feature "this text is in German".
JSAEs discover the inputs which the MLP uses to decide whether
this feature should be on or off. These inputs correspond to tokens
frequently found in German text, place names in German-speaking
countries, and text about Nazi Germany. See Appendix C for
details.

fs wrt any of the inputs that are “off” is zero. Without τk,
the Jacobian could be non-zero for any of the inputs, even
if changing those inputs would not make sense, as it would
give more than k elements being “on” in the input, and thus
could not be produced by the k-sparse SAE.

Our second insight was that computing the Jacobian by
automatic differentiation would still be relatively inefficient,
e.g., requiring k backward passes. Instead, for standard
GPT-2-style MLPs, we noticed that an extremely efficient
Jacobian formula can be derived by hand, requiring only
three matrix multiplications and along with a few pointwise
operations. We present this derivation in Appendix A.

With these optimizations in place, training a pair of JSAEs
takes about twice as long as training a single standard SAE.
We measured this by training ten of each model on Pythia-
70m with an expansion factor of 32 for 100 million tokens on
an RTX 3090. The average training durations were 72mins
for a pair of JSAEs and 33 mins for a traditional SAE, with
standard deviations below 30 seconds for both.

5. Results
Our experiments were performed on LLMs from the Pythia
suite (Biderman et al., 2023), the figures in the main text
contain results from Pythia-410m unless otherwise specified.
We trained on 300 million tokens with k = 32 and an expan-
sion factor of 64 for Pythia-410m and 32 for smaller models.
We reproduced all our experiments on multiple models and
found the same qualitative results (see Appendix E).
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number of non-zero Jacobian values is k2 = 1024. In accordance with Figure 5, all evaluation metrics degrade for values of the coefficient
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5.1. Jacobian sparsity, reconstruction quality, and
auto-interpretability scores

First, we compared the Jacobian sparsity for standard SAEs
and JSAEs. Note that, unlike with SAE latent activations,
there is no mechanism for producing exact zeros in the
Jacobian elements corresponding to active latents. Hence,
we consider the number of near-zero elements rather than
the number of exact zeros. To quantify the difference in
sparsity between the two, we looked at the proportion of
the elements of the Jacobian above a particular threshold
when aggregating over 10 million tokens (Figure 2). Here,
we found that JSAEs dramatically reduced the number of
large elements of the Jacobian relative to traditional SAEs.
We also note that the Jacobians are not only sparse on each
individual token, but also when averaged across a large
number of tokens (see Figure 36 in the appendix).

Importantly, the degree of sparsity depends on our choice
of the coefficient λ of the Jacobian loss term. Therefore,
we trained multiple JSAEs with different values of this
parameter. As we might expect, for small values of λ, i.e.,
little incentive to sparsify the Jacobian, the input and output
SAEs perform similarly to standard SAEs (Figure 4 blue
lines), including in terms of the variance explained by the
reconstructed activation vectors and the increase in the cross-
entropy loss when the input activations are replaced by their

reconstructions. Unsurprisingly, as λ grows larger and the
Jacobian loss term starts to dominate, our evaluation metrics
degrade. Interestingly, this degradation happens almost
entirely in the output SAE rather than the input SAE —
we leave it to future work to investigate this phenomenon
further.

Critically, Figure 4 suggests there is a ‘sweet spot’ of the
λ hyperparameter where the SAE quality metrics remain
reasonable, but the Jacobian is much sparser than for stan-
dard SAEs. To further investigate this trade-off, we plotted a
measure of Jacobian sparsity (the proportion of elements of
the Jacobian above 0.01) against the average cross-entropy
(Figures 4, 5, and 29). We found that there is indeed a sweet
spot where the average cross-entropy is only slightly worse
than a traditional SAE, while the Jacobian is far sparser.
For Pythia 410m (Figure 5) this value is around λ = 0.5,
whereas for Pythia-70m, it is around λ = 1 (Figure 29). We
choose this value of the Jacobian coefficient (i.e. λ = 0.5 for
Pythia-410m in the main text, and λ = 1 for Pythia-160m
in the Appendix) in other experiments.

We also measure the interpretability of JSAE latents using
the automatic interpretability pipeline developed by Paulo
et al. (2024) and compare this to traditional SAEs. We find
that JSAEs achieve similar interpretability scores (Figure 6).

6



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

0.5 0.6 0.7 0.8
Average cross-entropy score
(1 = perfect reconstruction)

0

250

500

N
um

be
r o

f J
ac

ob
ia

n
el

em
en

ts
 a

bo
ve

 0
.0

1 1
0.5

0.1

3

0.3

10

0.2

0.01

0.7

0.05

0.001

300

Figure 5. The trade-off between reconstruction quality and Jaco-
bian sparsity as we vary the Jacobian loss coefficient. Each dot
represents a pair of JSAEs trained with a specific Jacobian coeffi-
cient. The value of λ is included for some points. We can see that
a coefficient of roughly λ = 0.5 is optimal for Pythia-410m with
k = 32. Note that the CE loss score is the average of the CE loss
scores of the pre-MLP JSAE and the post-mlp JSAE. Measured
on layer 15 of Pythia-410m, similar charts with a wider range of
models and metrics can be found in Figures 27, 28, and 29.

0 5 10 15 20

Layer

0%

50%

100%

A
ut

o-
in

te
rp

 sc
or

e

JSAEs (input SAE)
Traditional SAEs (input SAE)
JSAEs (output SAE)
Traditional SAEs (output SAE)

Figure 6. Automatic interpretability scores of JSAEs are very simi-
lar to traditional SAEs. Measured on all odd-numbered layers of
Pythia-410m using the “fuzzing” scorer from Paulo et al. (2024).
For all layers of Pythia-70m see Figure 37.

5.2. Max-activating examples of JSAEs

Next, we interpreted the "max-activating" examples of
JSAEs in order to verify that JSAEs can locate semanti-
cally meaningful computational units. Namely, we took
the latents of the output SAE i which have large Jacobian
values when averaging across a wide distribution of text.
Then for each output SAE latent i, we found the 10 input
SAE latents j which have the largest average Jacobian el-
ements Jfs,i,j . We find that these combinations are often
highly interpretable. For example, as shown in Figure 3,
the very first output latent of layer 15 of Pythia-410m as
sorted by average Jacobian value corresponds to "this text
is in German". We find that it is computed as a function of
input latents corresponding to:

• Tokens which frequently appear in German text, such
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Figure 7. Jacobians are substantially more sparse in pre-trained
LLMs than in randomly initialzied transformers. This holds both
when you actively optimize for Jacobian sparsity with JSAEs, and
when you don’t optimize for it and use traditional SAEs. The figure
shows the proportion of Jacobian elements with absolute values
above certain thresholds. At most k2 elements can be nonzero, we
therefore take k2 to be 100% on the y-axis. Jacobians are signifi-
cantly more sparse in pre-trained transformers than in randomly
re-initialized transformers. This shows that Jacobian sparsity is, at
least to some extent, connected to the structures that LLMs learn
during training. This stands in contrast to recent work by Heap
et al. (2025) showing that traditional SAEs achieve roughly equal
auto-interpretability scores on randomly initialized transformers
as they do on pre-trained LLMs. Measured on layer 15 of Pythia-
410m, for layer 3 of Pythia-70m see Figure 38. Averaged across
10 million tokens.

as "Pf", "sch", "Kle", and "von"

• Names of places where people speak German, such as
"Berlin" or "Austria"

• Words and phrases related to the Third Reich, such
as "Nazi", "concentration camp", "Hitler", and "Holo-
caust"

For a few of handpicked examples, see Appendix C. A large
number of examples which are not handpicked is available
at tinyurl.com/jsaes-qualitative.

5.3. Performance on re-initialized transformers

To confirm that JSAEs are extracting information about
the complex learned computation, we considered a form of
control analysis inspired by Heap et al. (2025). Specifically,
we would expect that trained transformers have carefully
learned specific, structured computations while randomly
initialized transformers do not. Thus, a possible desider-
atum for tools in mechanistic interpretability is that they
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Figure 8. The function fs, which combines the decoder of the first SAE, the MLP, and the encoder of the second SAE, is mostly linear.
Specifically, the vast majority of scalar functions going from sx,j to sy,i are linear. (a) Examples of linear, JumpReLU, and other functions
relating individual input SAE latents and output SAE latents. See Figure 9 for more examples. (b) For the empirically observed sx and
randomly selected i, j (of those corresponding to active SAE latents), the vast majority of scalar functions from sx,j to sy,i are linear. For
details see Appendix B. The proportion of linear function also noticeably increases with JSAEs compared to traditional SAEs, meaning
that JSAEs induce additional linearity in fs. (c) Because the vast majority of functions are linear, the Jacobian usually precisely predicts
the change observed in the output SAE latent when we make a large change to the input SAE latent’s value (namely subtracting 1, note
that the empirical median value of sx,j is 2.5). Each dot corresponds to an (sx,j , sy,i) pair. For 97.7% of pairs (across a sample size of 10
million) their Jacobian value nearly exactly predicts the change we see in the output SAE latent when making large changes to the input
SAE latent’s activation, i.e. |∆sy,i| ≈ |Jfs,ij |. The scatter plot shows a randomly selected subset of 1,000 (sx,j , sy,i) pairs. For further
details see Appendix B. Measured on layer 15 of Pythia-410m, for layer 3 of Pythia-70m see Figure 39, for the linearity results on other
models and hyperparameters see Figures 15, 16, and 17.

ought to work substantially better when analyzing the com-
plex computations in trained LLMs than when applied to
LLMs with randomly re-initialized weights. This is pre-
cisely what we find. Specifically, we find that the Jacobians
for trained networks are always substantially sparser than
the corresponding random trained network, and this holds
for both traditional SAEs and JSAEs (Figure 7). Further, the
relative improvement in sparsity from the traditional SAE
to the JSAE is much larger for trained than random LLMs,
again indicating that JSAEs are extracting structure that
only exists in the trained network. Note that we also see that
for traditional SAEs, there is a somewhat more sparse Jaco-
bian for the trained than randomly initialized transformer.
This makes sense: we would hope that the traditional SAE
basis is somewhat more aligned with the computation (as
expressed by a sparse Jacobian) than we would expect by
chance. However, it turns out that without a “helping hand”
from the Jacobian sparsity term, the alignment in a tradi-
tional SAE is relatively small. Thus, Jacobian sparsity is a
property related to the complex computations LLMs learn
during training, which should make it substantially useful
for discovering the learned structures of LLMs.

5.4. fs is mostly linear

Importantly, the Jacobian is a local measure. Thus, strictly
speaking, a near-zero element of the Jacobian matrix implies
only that a small change to the input SAE latent does not
affect the corresponding output SAE latent. It may, however,
still be the case that a large change to the input SAE latent
would change the output SAE latent. We investigated this
question and found that fs is usually approximately linear in
a wide range and is often close to linear. Specifically, of the
scalar functions relating individual input SAE latents sx,j
to individual output SAE latents sy,i, the vast majority are
linear (Figure 8b). This is important because, for any linear
function, its local slope is completely predictive of its global
shape, and therefore, a near-zero Jacobian element implies
a near-zero causal relationship. For the scalar functions
which are not linear, we frequently observed they have a
JumpReLU structure1 (Erichson et al., 2019). Notably, a
JumpReLU is linear in a subset of its input space, so even for
these scalar functions the first derivative is still an accurate
measure within some range of sx,j values. It is also worth

1By JumpReLU, we mean any function of the form f(x) =
aJumpReLU(bx + c). Recall that JumpReLU(x) = x if x > d
and 0 otherwise. a, b, c, d ∈ R are constants.
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noting that with JSAEs, the proportion of linear functions is
noticeably higher than with traditional SAEs, so at least to a
certain extent, JSAEs induce additional linearity in the MLP.
To confirm these results, we plotted the Jacobian against
the change of output SAE latent sy,i as we change the input
SAE latent sx,j by subtracting 1 (Figure 8c)2. We found
that 97.7% of the time, |∆sy,i| ≈ |Jfs,ij |. For details see
Appendix B. While these results are strongly suggestive, we
would caution that it is difficult to interpret them definitively
as we are not evaluating the reconstruction error for a linear
model fitted to the input-output relationship for the MLP
latents.

6. Conclusion
We introduced Jacobian sparse autoencoders (JSAEs), a new
approach for discovering sparse computation in LLMs in a
fully unsupervised way. We found that JSAEs induce spar-
sity in the Jacobian matrix of the function that represents an
MLP layer in the sparse basis found by JSAEs, with minimal
degradation in the reconstruction quality and downstream
performance of the underlying model and no degradation
in the interpretability of latents. We demonstrated that the
computation found by JSAEs is often highly interpretable,
allowing us to see not only the concepts computed by MLPs,
but also the "input concepts" which are used to compute
each "output concept". We also found that Jacobian sparsity
is substantially greater in pre-trained LLMs than in ran-
domly initialized ones suggesting that Jacobian sparsity is
indeed a proxy for learned computational structure. Lastly,
we found that Jacobians are a highly accurate measure of
computational sparsity due to the fact that the MLP in the
JSAE basis consists mostly of linear functions relating input
to output JSAE latents.
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A. Efficiently computing the Jacobian
A simple form for the Jacobian of the function fs = ey ◦ f ◦ dx ◦ τk, which describes the action of an MLP layer f in the
sparse input and output bases, follows from applying the chain rule. Note that here, the subscripts fs, ey, etc. denote the
function in question rather than vector or matrix indices. For the GPT-2-style MLPs that we study, the components of fs are:

1. TopK. This function takes sparse latents sx and outputs sparse latents s̄x. Importantly, sx = s̄x. This step makes the
backward pass of the Jacobian computation more efficient but does not affect the forward pass.

s̄x = τk(sx) (6)

2. Input SAE Decoder. This function takes sparse latents s̄x and outputs dense MLP inputs x̂:

x̂ = dx(s̄x) = Wdec
x s̄x + bdec

x (7)

3. MLP. This function takes dense inputs x̂ and outputs dense outputs y:

z = W1x̂+ b1 , y = W2ϕMLP(z) + b2 (8)

where ϕMLP is the activation function of the MLP (e.g., GeLU in the case of Pythia models).

4. Output SAE Encoder. This function takes dense outputs y and outputs sparse latents sy:

sy = ey(y) = τk
(
Wenc

y y + benc
y

)
(9)

The Jacobian Jfs ∈ Rny×nx for a single input activation vector has the following elements, in index notation:

Jfs,ij =
∂sy,i

∂sx,j
=

∑
kℓmn

∂sy,i

∂yk

∂yk
∂zℓ

∂zℓ
∂x̂m

∂x̂m
∂s̄x,n

∂s̄x,n

∂sx,j
(10)

We compute each term like so:

1. Output SAE Encoder derivative:

∂sy,i

∂yk
= τ ′k

∑
j

W enc
ij yj + benc,i

W enc
y,ik =

{
W enc

y,ik if i ∈ K2

0 otherwise
(11)

where K2 is the set of indices selected by the TopK activation function τk of the second (output) SAE. Importantly, the
subscript k does not indicate the k-th element of τk, whereas it does indicate the k-th column of W enc

y,ik.

2. MLP derivatives:

∂yk
∂zℓ

=W2,kℓ ϕ
′
MLP(zℓ) ,

∂zℓ
∂x̂m

=W1,ℓm (12)

3. Input SAE Decoder derivative:

∂x̂m
∂s̄x,n

=W dec
x,mn (13)

4. TopK derivative:

∂s̄x,n

∂sx,j
=

{
1 if j ∈ K1

0 otherwise
(14)

where K1 is the set of indices (corresponding to SAE latents) that were selected by the TopK activation function τk of
the first (input) SAE, which we explicitly included in the definition of fs above.

12
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When we combine all the terms:

Jfs,ij =

{∑
kℓmW enc

y,ikW2,kℓ ϕ
′
MLP(zℓ)W1,ℓmW dec

x,mj if i ∈ K2 ∧ j ∈ K1

0 otherwise
(15)

Let Wenc(active)
y ∈ Rk×my and Wdec(active)

x ∈ Rmx×k contain the active rows and columns, i.e., the rows and columns
corresponding to the K2 or K1 indices respectively. The Jacobian then simplifies to:

J(active)
fs

= Wenc(active)
y W2︸ ︷︷ ︸
Rk×dMLP

· ϕ′MLP(z)︸ ︷︷ ︸
RdMLP×dMLP

·W1W
dec(active)
x︸ ︷︷ ︸

RdMLP×k

(16)

where dMLP is the hidden size of the MLP. Note that J(active)
fs

is of size k × k, while the full Jacobian matrix Jfs is of size
ny × nx. However, J(active)

fs
contains all the nonzero elements of Jfs , so it is all we need to compute the loss function to train

Jacobian SAEs (Section 4.1).

A.1. JSAEs with GLUs

The equations above can be easily adapted to work with gated linear units (GLUs), which are significantly more common in
modern LLMs than GPT-2-style MLPs.

To do this, we modify the MLP equations like so:

g = Wgx̂+ bg (17)
s = ϕMLP(g) (18)
h = W1x̂+ b1 (19)
z = h⊙ s (20)
y = W2z+ b2 (21)

where ⊙ is elementwise multiplication.

We then modify the derivatives accordingly:

∂yk
∂zℓ

=W2,kℓ (22)

∂zℓ
∂x̂m

= hℓ
∂sℓ
∂x̂m

+ sℓ
∂hℓ
∂x̂m

(23)

∂hℓ
∂x̂m

=W1,ℓm (24)

∂sℓ
∂gℓ

= ϕ′MLP(gℓ) (25)

∂gℓ
∂x̂m

=Wg,ℓm (26)

(27)

Combining the terms again:

Jfs,ij =

{∑
kℓmW enc

y,ikW2,kℓ (hℓ ϕ
′
MLP(gℓ)Wg,ℓm + sℓW1,ℓm)W dec

x,mj if i ∈ K2 ∧ j ∈ K1

0 otherwise
(28)

The Jacobian is then:

J(active)
fs

= Wenc(active)
y W2︸ ︷︷ ︸
Rk×dMLP

· (diag (h⊙ ϕ′MLP(g))Wg + diag(s)W1)︸ ︷︷ ︸
RdMLP×mx

·Wdec(active)
x︸ ︷︷ ︸
Rmx×k

(29)
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B. fs is approximately linear
Consider the scalar function fs,(i,j)|sx : R → R which takes as input the j-th latent activation of the first SAE (i.e. sx,j) and
returns as output the i-th latent activation of the second SAE (i.e., sy,i), while keeping the other elements of the input vector
fixed at the same values as sx. In other words, this function captures the relationship between the j-th input SAE latent and
the i-th output SAE latent in the context of sx. Geometrically, we start off at the point sx, and we move from it through the
input spaces in parallel to the j-th basis vector, and then we observe how the output of fs projects onto the i-th basis vector.
Formally,

fs,(i,j)|sx(x) = fs (ψ(sx, i, x))j (30)

ψ(sx, i, x)k =

{
x if i = k

sx,j otherwise
(31)

These are the functions shown in Figure 8a, of which the vast majority are linear (Figure 8b).

As we showed in Figure 8c, the absolute value of a Jacobian element nearly perfectly predicts the change we see in the
output SAE latent activation value when we make a large intervention on the input SAE latent activation. However, in the
same figure, there is a small cluster of approximately 2.5% of samples, where the Jacobian element is near zero, but the
change observed in the downstream feature is quite large. We proceed by exploring the cause behind this phenomenon.

Note that each point in Figure 8 corresponds to a single scalar function fs,(i,j)|sx (a pair of latent indices). An expanded
version of Figure 8 is presented in Figure 10. Importantly, we show the ‘line’, the top-left cluster, and outliers visible in
Figure 8 in different colors, which we re-use in the following charts (Figures 11 and 12). It also includes 10K samples,
compared to 1K in Figure 8c: as above, most samples remain on the line, but the greater number of samples makes the
behavior of the top-left cluster and outliers clearer.

Figure 11 illustrates some examples of functions fs,(i,j)|sx taken from each category shown in Figure 8, i.e., the line, cluster,
and outliers. The vast majority of functions belong to the line category and are typically either linear or akin to JumpReLU
activation functions (which include step functions as a special case). By contrast, the minority of functions belonging to the
cluster or outliers are typically also JumpReLU-like, except where the unmodified input latent activation is close to the
point where the function ‘jumps’, so when we subtract an activation value of 1 from the input (as in Figures 8c and 10), this
moves to the flat region where the output latent activation value is zero.

As we can see, the vast majority of these functions are either linear or JumpReLUs. Indeed, we verify this across the sample
size of 10,000 functions and find that 88% are linear, 10% are JumpReLU (excl. linear, which is arguably a special case
of JumpReLU), and only 2% are neither3. This result is encouraging – for a linear function, the first-order derivative is
constant, so its value (i.e., the corresponding element of the Jacobian) completely expresses the relationship between the
input and output values (up to a constant intercept). For the 88% of these scalar functions that are linear, the Jacobian thus
accurately captures the notion of computational sparsity that interests us, rather than serving only as a proxy. And for the
10% of JumpReLUs, the Jacobians still perfectly measure the computational change we observe when changing the input
latent within some subset of the input space.

While we expect the remaining 2% of scalar functions (Jacobian elements) to contribute only a small fraction of the
computational structure of the underlying model, we preliminarily investigated their behavior. Figure 12 shows 12 randomly
selected non-linear, non-JumpReLU fs,(i,j)|sx functions. Even though these functions are nonlinear, they are still reasonably
close to being linear, i.e., their first derivative is still predictive of the change we see throughout the input space. Indeed,
most of them are on the diagonal line in Figure 10.
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Figure 9. Additional examples of scalar functions between sx,j to sy,i. The top row shows linear functions, the middle row shows
JumpReLU functions, and the bottom row shows other functions. Recall that linear functions constitute a majority of the functions we
observe empirically and that using JSAEs instead of traditional SAEs further increases the proportion of linear functions.
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Figure 10. An expanded version of Figure 8c, measured on layer 3 of Pythia-70m. A scatter plot showing that values of Jacobian elements
tend to be approximately equal to the change we see in the downstream feature when we modify the value of the upstream feature, namely
when we subtract 1 from it. Each dot corresponds to an (input SAE latent, output SAE latent) pair. Unlike Figure 8c, this figure colors in
the dots depending on which cluster they belong to – blue for "on the line", green for "in the cluster", red for "outlier". Additionally, this
figure contains 10,000 samples (rather than 1,000 as in Figure 8c), which allows us to see more of the outliers and edge cases, though at
the cost of visually obfuscating the fact that 97.5% of the samples are on the diagonal line, 2.1% are in the cluster, and 0.4% are outliers.
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Figure 11. A handful of fs,(i,j)|sx functions corresponding to the points in Figure 10. The color matches the group (and therefore the
color) they were assigned in Figure 10. The red dashed vertical line denotes s(l)x,i , i.e. the activation value of the SAE latent before we
intervened on it. Note that the functions are not selected randomly but rather hand-selected to demonstrate the range of functions. We will
quantitatively explore what proportion of fs,(i,j)|sx functions have which structure in other figures.
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Figure 12. A random selection of the non-linear, non-JumpReLU fs,(i,j)|sx functions. Note that non-linear, non-JumpReLU functions
only constitute about 2% of fs,(i,j)|sx functions. Even though these functions are clearly somewhat non-linear, their slope does still
change quite slowly for the most part, which means that a first-order derivative at any point in the function is still reasonably predictive of
the function’s behavior in at least some portion of the input space (though there are some rare exceptions). The color again matches the
group (and therefore the color) they were assigned in Figure 10; the red dashed vertical line denotes s(l)x,i , i.e. the activation value of the
SAE latent before we intervened on it.
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Figure 13. Distribution of second-order derivatives of functions fs,(i,j)|sx . Includes all functions, regardless of whether they are linear,
JumpReLU, or neither. For a version that only includes non-linear, non-JumpReLU functions, see Figure 14. (a) The mean of the
second-order derivative over the region of the input space. (b) The mean of the absolute value of the second-order derivative over the
region of the input space. (c) The maximum value the second-order derivative takes in the region of the input space. Note that we are
approximating the second derivative by looking at changes over a very small region (specifically 0.005), i.e., we do not take the limit as
the size of this small region goes to zero; this is important because derivatives which would otherwise be undefined or infinite become
finite with this approximation and therefore can be shown on the histograms. Also, we note that the means and maxima are taken over the
region of the input space in which SAE features exist; see the footnote on page 14.
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Figure 14. Distribution of second-order derivatives of functions fs,(i,j)|sx . Unlike Figure 13, this figure only includes the subset of the
functions that are neither linear nor JumpReLU=like. (a) The mean of the second-order derivative over the region of the input space. (b)
The mean of the absolute value of the second-order derivative over the region of the input space. (c) The maximum value the second-order
derivative takes in the region of the input space. Note that we are approximating the second derivative by looking at changes over a very
small region (specifically 0.005), i.e. we do not take the limit as the size of this small region goes to zero; this is important because
derivatives which would otherwise be undefined or infinite become finite with this approximation and therefore can be shown on the
histograms. Also, we note that the means and maxima are taken over the region of the input space in which SAE features exist; see the
footnote on page 14.
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Figure 15. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained
on the feed-forward network at different layers of Pythia-70m, 160m, and 410m with fixed expansion factors R = 64 and k = 32. We
computed the fractions over 1 million samples.
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Figure 16. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 3 of Pythia-70m (left) and layer 7 of Pythia-160m (right), with fixed expansion factors R = 64 and
k = 32 and varying Jacobian loss coefficient (Section 4). We computed the fractions over 1 million samples.
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Figure 17. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 3 of Pythia-70m with varying expansion factors (and hence numbers of latents; left) but fixed sparsities
k = 32, and varying sparsities but fixed expansion factors R = 64 (Section 4). We computed the fractions over 1 million samples.
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We can measure this more precisely by looking at the second-order derivative of fs,(i,j)|sx . A zero second-order derivative
across the whole domain would imply a linear function and, therefore, perfect predictive power of the Jacobian, while the
larger the absolute value of the second-order derivative, the less predictive the Jacobian will be. This distribution is shown in
Figure 13. The same distribution, which only includes the non-linear, non-JumpReLU functions, is shown in Figure 14. On
average, the second derivative is extremely small for all features and effectively zero for the vast majority.

C. Qualitative examples of the computations discovered by JSAEs
A common approach to interpreting LLM components like neurons or SAE latents is to collect token sequences and the
corresponding activations over a text dataset (e.g., Yun et al., 2021; Bills et al., 2023). For example, the greatest latent
activations may be retained, or activations from different quantiles of the distribution over the dataset (Bricken et al., 2023;
Choi et al., 2024; Paulo et al., 2024).

We determined the set of ‘top’ output SAE latent indices by collecting the mean absolute values of non-zero Jacobian
elements over a text dataset and sorting the output latents in descending order. Then, for each output latent, we found the
input SAE latents that were most strongly connected to the output latent, again by sorting the input latents in descending
order of the mean absolute value of non-zero Jacobian elements over the dataset. Finally, for both the output and input
latents, we collected the individual latent activations over text samples with a context length of 16 tokens, retaining samples
where at least one token produced a non-zero activation for the SAE latent. We chose a short context length to conveniently
display the examples in a table format, and display here the top eight examples for each latent index, sorting the examples in
descending order of the maximum latent activation over its tokens.

Each of the following figures comprises a table for a single output SAE latent (in pink), and a series of tables for the input
latents with the greatest influences on the output latent, as determined by the mean absolute value of non-zero Jacobian
elements. Conceptually, one may consider each figure as describing a single ‘function’, where the output and input latents
represent the function output and inputs, respectively. Each table within the figure of examples displays a list of at most 12
examples, each comprising 16 tokens; we exclude the end-of-sentence token for brevity. The values of non-zero Jacobian
elements and the activations of the corresponding input and output SAE latent indices are indicated by the opacity of the
background color for each token. We take the opacity to be the element or activation divided by the maximum value over the
dataset, i.e., all the examples with a non-zero Jacobian element for a given pair of input and output SAE latent indices. For
clarity, we report the maximum element or activation alongside the colored tokens.

3Note that we are testing whether functions are linear or JumpReLUs only in the region of input space within which SAE activations
exist. In particular, this means that we are excluding negative numbers. More specifically, the domain within which we test the function’s
structure is [0,max(5, s

(l)
x,i + 1)]. In 92% of cases, s(l)x,i + 1 < 5; the median s

(l)
x,i is 2.5.

22



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

Example tokens Max. activation

W enn Sie aufWe iter k lic ken ist I hr Bonus ver 5.596

roA14ber fl A14ss ig geworden ist . Lau f zeit 36Mon ate 5.542

es mussvon einer aus lAnd ischen Bank sein . Log ischer we ise 5.522

. Sie kAnnen sich j eder zeit abmelden . i . Click Here 5.387

bei der Be re it st ell ungunse rer D ien ste . \n 5.315

s icher lich schongehA rt haben , kann es sehr ze 5.275

G eld aus . \n J umpNo multiple accounts or free bonuses in a 5.254

we il beborrowingfoodfromChina , next .. Ohwhat awebwe 5.247

k auf en will , kann ich tro tz demdasGoldV isa be 5.225

befA14rwort ete auch die vol l stAnd ige K ontrol le A14ber 5.223

bonuscodes2019 , so dass einWe g in einW ett bA14 5.208

re Immob il ie in Span ien auf ih ren Namenbeh 5.207

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 34455.

Example tokens Max. activation

dam it ein ver stand en , dass wirCookies verw enden . Die 1.292× 101

we isen , dass Sie nicht mehr als 11 Mon ate a uss er hal 1.229× 101

st super auf me ineWA14n schee ing egangen . Ins 1.173× 101

GoldenV isa ), die gle ich zeit ig er la ub t , dass 1.167× 101

fA14rdasGoldV isa in 2013 er lass en . Zu dies em 1.152× 101

W enn Sie aufWe iter k lic ken ist I hr Bonus ver 1.139× 101

age : W enn ich die Immob il ie durch eine Ges ells chaft 1.134× 101

ungabsch icken d auer b ren ner zurA14ck le hnen : 1.132× 101

lich die IDK arte ver l Ang ert werden , das sehr s chn 1.126× 101

te " \n"A uf alle WA14n schee ing egangen 1.125× 101

keine oderan le icht er fA14 ll bare Bedingungengek 1.124× 101

hat Span ien ein Ges etz er lass en , dass einemN icht 1.116× 101

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 39503. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 15130 tokens, and has a mean of 3.966× 10−1 (rank 0 for the output
SAE latent) and a standard deviation of 7.743× 10−2 over its non-zero values.
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Example tokens Max. activation

ZA14 rich St utt gart Le ipzig / H alle 6.834

OTCcad ets , students , and staff ofAns bachMiddleHighSchool 6.788

Out reach announced that twogroups of students fromAns bachMiddleHighSchoolwon 6.693

ride fromZur ich to Rh ine Falls ( witha small section of our 6.679

aud . U55Brandenbur gerTor Bus20000U hr die 6.644

at the Ans bachMiddleHighSchool track . \nGrammyawardwinning 6.566

, Ans bach , Germany , onMay18 , 2015 . Fryewas 6.546

parents to attend . \nW ies baden students find matha little fish 6.480

into the Gi essen b acht al valley . On the trail along the edge 6.471

was the first case for the bMCKob len z office . Capt . 6.448

ol ie . Follow the signs Brandenbur gerTor BrandenburgGate or 6.423

for the Kob len z office . \nbMC ’ s CaptainDennisBrand 6.391

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 3387. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 10355 tokens, and has a mean of 3.437× 10−1 (rank 1 for the output
SAE latent) and a standard deviation of 2.873× 10−2 over its non-zero values.

Example tokens Max. activation

, DrAlex Germanand his teamfound the main reason for that is the 1.149× 101

for Nuclear Physics , Rup recht Kar ls University , the GermanCancerResearch 1.142× 101

, Chris Kend rick , Sally Anne F itter andPennyGerman . \nMore 1.137× 101

1 . 2 in Czech oslov akia , 1 . 1 in the GermanDemocratic 1.119× 101

mind , intellect "), fromPro to− German ic *mund iz , * 1.089× 101

andHydeF li ppo ’sAut obahn articles fromThe GermanWay and 1.084× 101

"L ili Mar lene ", the song that GermanandAmerican soldiers both loved 1.075× 101

ls− Univers itAt , the GermanCancerResearchCenter ( DKFZ ), 1.070× 101

. In addition , DrGerman ’ s team also confirmed that cats ate about 1.068× 101

Art . 3 of the German Constitution that addresses equality before the law . \n 1.064× 101

under constant international external laboratory control of the Germanacc reditation system In stand . 1.052× 101

But the history of carn ival canbe traced back to German ic tribes who 1.051× 101

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 41811. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 764 tokens, and has a mean of 1.619× 10−1 (rank 2 for the output
SAE latent) and a standard deviation of 8.654× 10−3 over its non-zero values.
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Example tokens Max. activation

National Archives report " Hit ler ’ s Shadow : NaziWar Crim inals , 1.203× 101

Th ousands of Holocaust victims transported to Nazi concentration campsbyaFrench railway company 1.195× 101

AirCorps after WW II (where he survived a year as aNazi prisoner 1.170× 101

aname inspired by the chief Ukrainian Nazi leader , Ste panBand era ) 1.168× 101

Powers refused cooperation with the company until connections withNaziGermanywere severed . \n 1.155× 101

orrow , theWorld ! ," from1944 , abouta teen− ageNazi 1.145× 101

, 000FrenchJews to Nazi concentration camps , though experts disagree on its degree 1.145× 101

of the Jewishpeople during the Nazi era it was the work of whiteEuropeans 1.118× 101

computing pioneer , and his development of asystem to crack Nazicodes in order 1.099× 101

it hadno effective control over operations during the Nazi occupation from1940 to1944 1.090× 101

it withheavywater+ Nazi chemicals , prayed to god for assistance , struck 1.079× 101

symbol of Russian resistance to Nazi invasion . Russia ’s "Window on theWest 1.067× 101

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32619. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 316 tokens, and has a mean of 1.518× 10−1 (rank 3 for the output
SAE latent) and a standard deviation of 1.193× 10−2 over its non-zero values.

Example tokens Max. activation

ownedby the vonW aken itz family in14 34 . The same family 1.605× 101

World Nuclear Industry Status Report2013 , July . \n8Davidvon Hipp el 1.526× 101

as Marta , one of the singing vonTra pp children . She i12 1.509× 101

knockdown kiss is administered whenVon locks lips withGGway more enthusi astically than 1.437× 101

, I assume . Gre ta Garbo is here withVon , and not 1.427× 101

HATETHAT I DON ’ T HATEYOU " \n Fel ix von 1.423× 101

was already published150 years agoby the german physician Hermannvon Hel 1.388× 101

new life byEdwardvon LA ngusandaugmented reality technologies , exploring 1.377× 101

(19 28 , Josephvon Stern berg ; silent ). AT ribute to 1.366× 101

ily Von has again been sight ed in that infamous suit . Was Metroeconom 1.352× 101

artists and performers , known as the Castle vonTra pp , will immin 1.341× 101

ung . Degen feld− F ests chr ift , Vienna : von Lag 1.320× 101

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 63157. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 84 tokens, and has a mean of 1.479× 10−1 (rank 4 for the output SAE
latent) and a standard deviation of 8.717× 10−3 over its non-zero values.
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Example tokens Max. activation

Dum ont aGJohnAx el rod , MSNBC al umnow at Berlin 1.040× 101

for determining adhesive and tensile strengths (w inner of the Berlin− Branden 1.026× 101

That DemonWithinwas selected for the 64 th Berlin International Film Festival Pan 1.025× 101

M irt l , andM . Schmid , eds . Berlin : Springer 1.017× 101

processes in tropical forests ( pp . 153− 172 ). Springer , Berlin , 1.011× 101

Twenty− five years after the fall of the Berlin wall in1989 , Cont 1.008× 101

the Berlin Wall : legacy SA− 2 , SA− 3 , SA− 9.963

emerged after the collapse of the Berlin Wall and the end of the coldwar 9.932

fall of the Berlin Wallwas a great spur to Germany , though it took 9.898

exhibitions in museumsand galleries in CapeTown , Johannesburg , Berlin andC 9.885

of the following options for the Berlin to Sch ild ow route : Michel in 9.885

t have to get anewone ( with the Berlin citizen center , it 9.847

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 63657. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 195 tokens, and has a mean of 1.387× 10−1 (rank 5 for the output
SAE latent) and a standard deviation of 6.091× 10−3 over its non-zero values.

Example tokens Max. activation

no zzles , are knownfrom the MercedesGLA . In addition , Mercedes 3.361

anopenend− hole . \nMoreover , when cathe ters of this type 2.830

Nasm ith . machine rollers for conveyor belt The invention relates , inter alia 2.829

cathe ters which havea closed distal end . The principles of the invention therefore 2.757

are also suitable . \n If it is possible for you to get your blood 2.487

analogmatching devices canbeusedadvantage ously for and monitoring and diagnostics of process 2.399

be the case that such support canbe secured , for example , in cases 2.249

ic acid . Pro per ventilation and her met ically sealed production apparatus are therefore 2.240

of residence , in particular copyright , data protection and competition law . The provider 2.234

products of this typework great for increasing your store ’s revenue , as they 2.133

action by the customer or from errors in the information provided by the latter . 2.113

optionally a rear axle differential lock . \n In contrast to the prospective main competitor 2.099

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 7969. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 331 tokens, and has a mean of 1.322× 10−1 (rank 6 for the output
SAE latent) and a standard deviation of 1.176× 10−2 over its non-zero values.
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Example tokens Max. activation

anda private one . With a public key , it A~ s possible to 5.947

Cons olid ation 2592 . In the last years of its active life , 5.068

forward the realization of artistic works linked to this whole context , taking into account 4.883

test different runtimeenvironments . As aconsequence , cloud− based tool ing currently 4.585

release I recommend to havea look at J SF− Spring ( http :// 4.558

customer satisfaction . \nWhat is more , with the app , it ’s possible 4.501

of the hotel . On the hotel land it is possible to camp in tents 4.438

introduce additional modifications do not forget about re− publ ishing the whole site so 4.426

change is requested , this tool enables to knowwhich other requirements , design and 4.418

structures / steel constructions , according to the highest requirements . \nDependingon 4.370

2O3 , or , more precisely , amixture of NOandNO 4.309

if you haveany questions ( youcan also havea look at our website 4.272

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 18964. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 3502 tokens, and has a mean of 1.209× 10−1 (rank 7 for the output
SAE latent) and a standard deviation of 2.073× 10−2 over its non-zero values.

Example tokens Max. activation

will enjoymusic inspired in or byAmerica , France , Austria , Scotland , 1.170× 101

in the world since its adoption by the Austrian army in1977 . Now available 1.116× 101

, Australia , China , Austria , England , Israel and Ireland . \nThrough 1.112× 101

teaching the basics of KungFu in Russia , Austria , Spain , China 1.053× 101

occupied areas in1848 ; by the1880 s , the Austrian− governed 1.042× 101

Russia , andAmericanAmbassador to Austria , William Eacho , we had the 1.033× 101

, which traces its roots to the work of the ColdWar Austrian− American 1.016× 101

released in Germany , Austria and Switzerland . \n Irish man inAmericawas recorded 1.014× 101

W ahl led to an invitation by the Austrian Ministry of Culture , for myself 9.958

of State from Austria , Poland , andHungary , Min isters from Israel and 9.951

practice first abroad , in countries such as Spain , Germany or Austria , where 9.771

. \nThe Chechenyouth , who came to Austria as a refugee , 9.769

(j) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 28112. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 200 tokens, and has a mean of 1.156× 10−1 (rank 8 for the output
SAE latent) and a standard deviation of 8.429× 10−3 over its non-zero values.
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Example tokens Max. activation

Reynolds& JakeGy ll enha al Ar rives ! \n Earlier tonight during 9.162

Gy ll enha al , RyanReynolds , andRebeccaFerguson star in the 8.938

JimMcEl re ath , MarioAnd ret ti , GaryBet ten haus 8.771

M . ; Sp icken he uer , A . ; W agen fA14 8.518

followed byNickH ohl be inwho finished fourth . \n If Friday night 8.185

aud . U55Brandenbur gerTor Bus20000U hr die 8.145

the ritual He iden j acht en are not really a closed chapter of history 8.071

the husband to the late MaryJaneHol tz cl aw . Scoopwas 8.004

aG Chris Harlow ... Eric F ink be iner ... MikeDeutsch , FAA 7.912

dingMusicProducerand Artist LAEL , Jeff Schneewe is , 7.688

team is only hitting . 242 as ateam . Bob Stein bock joined 7.678

Redd , TinaDen ise L oll is , Timothy RayHol tz cl 7.668

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 4287. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 1820 tokens, and has a mean of 1.131× 10−1 (rank 9 for the output
SAE latent) and a standard deviation of 2.500× 10−2 over its non-zero values.

Example tokens Max. activation

Mah avir Mer i Dr is hti Me in . One afternoon hewas resting 1.030× 101

haben . \nUn se rer Me in ungnachwird es in dennA 9.290

waukee Magazine prof iled Le in bachand the UEC last year . \n 8.524

aboutMilwaukee ’ s UrbanEcologyCenter? \nKenLe in bach , 7.583

DOKOPYAR BHAREAL FAZOme in bol new 7.505

andsong writing team of P ia Le in onenandJon i T ial 7.337

on . April 27 , 2015 . By . DomEinhorn . Cosm 6.740

termgrowthand sustainability . Luc asAnd S hel by . EinSmith . 6.319

− top casino sites worldwide DasV ere in ig te KAn ig reich 6.226

zond heid / vo eding− met− we in ig− cal orie 6.008

inated A . C . Ke in m ies as their candidate . \nment 5.644

my heart to live . \nD ilon me in tumap ni bet abi 5.064

(l) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 62769. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 48 tokens, and has a mean of 1.121× 10−1 (rank 10 for the output
SAE latent) and a standard deviation of 7.225× 10−3 over its non-zero values.

28



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

Example tokens Max. activation

op316 (18 67 ). Vienna PO / Carl osKle iber . \n 1.541× 101

, J ape , K rystal Kle ar , Kormac ’ s Big 1.460× 101

, JordanKleeman , goes over some of the upcoming features coming to the 1.445× 101

GoldenWings Music . Following his early beginnings onE el keKle ijn ’ 1.431× 101

apenem resistant Pseudomonas aeruginosa ( CRPA ), Klebs iella pneumoniae ( 1.373× 101

drink . I bring myKleanK ante enwithmeeverywhereanduse 1.336× 101

ina G arr ig ues ); 2009− Barcelona (w / K le pac 1.293× 101

jin (w / K le pac ); 2010− Budapest (w / Med 1.263× 101

. \nDogpoisonNo . 2 : In sect icides . \nF le 5.116

there andnoonewas boarding yet . We parked the car , sch le 4.971

mark the perm al ink . \nF le as or evenworse , we 4.956

left . \nG le beRdSouth to Route1 . Turn right onto 4.754

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 14871. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 30 tokens, and has a mean of 1.095× 10−1 (rank 11 for the output
SAE latent) and a standard deviation of 9.772× 10−3 over its non-zero values.

Example tokens Max. activation

LuciaRodriguez ( Com cast ) as Chair− Elect ; EmmaPf ister ( 1.913× 101

another clever design fromPf ister , but it ’ s really hard to set 1.897× 101

cast Administration fromBoston University . \nEmmaPf ister ( Tre asure r 1.854× 101

t ips / my college application essay one of my jobs at Pf izer since 1.817× 101

, Pf izer , andCompumed ics Limited , among others . \n Profile 1.781× 101

. PfannkuchandM . O . J . Thomas , eds 1.711× 101

case in Pf le ide rer andIVGImmob il ien . The 1.685× 101

am ore ; RonaldBra ut ig am , p f ; LeovanDoes 7.684

Pen elopeTh wait es , p f . \nMoz art , W 6.898

). Yu ja Wang , p f . \nRachman in ov , 6.714

ino , p f . \nResp igh i , O . Belk is 6.594

Pre vin , p f . \nBoc cher ini , L . String 6.460

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32693. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 24 tokens, and has a mean of 1.092× 10−1 (rank 12 for the output
SAE latent) and a standard deviation of 9.177× 10−3 over its non-zero values.
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Example tokens Max. activation

A . A . planned , coordinated andschmoozed for four months 2.058× 101

there andnoonewas boarding yet . We parked the car , sch le 2.045× 101

intervention . Formost of uspoorschmucks it ’ s just something 2.004× 101

− to− speech . Now print out acopy of this page , sch 1.945× 101

st inky melting stage whereyoucan just schm ear it on crust y 1.934× 101

PaulVI for he res y , schismand scandal ten years ago , 1.926× 101

slate , sch ist , quartz ite , and limestone on the west ; met 1.909× 101

he res y , schismand scandal , it is in fact more grave 1.893× 101

is needed to schirm ish ona3 area front . USSRshould in 1.881× 101

aswhat the French call changes to the " sch ol astic rhythms ." \n 1.877× 101

’ s sch tick was newand the momentwas right ," and that we 1.876× 101

ac ris , ro bin sch ul z , will . i . am , 1.849× 101

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 30568. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 449 tokens, and has a mean of 1.049× 10−1 (rank 13 for the output
SAE latent) and a standard deviation of 1.109× 10−2 over its non-zero values.

Example tokens Max. activation

31 . \nRa ich JW , Sch les inger WH , 1992 . 1.313× 101

HealthandCare , the Sch les wig− Hol stein Ministry for Social Affairs 1.276× 101

Productions celebrated Justin Sch leg el ’s birthday by presenting himwithavery special 1.274× 101

from Politics and Society to Culture and Entertainment . Ber lin : Sch les inger 1.262× 101

irling andmixingand clear mixing lines visible in it ( Sch lie ren as 1.247× 101

K yle Schwar ber maybe out for the season , but the home 1.231× 101

aSab ot age . Arnold Schwar zeneg ger is backand looking 1.229× 101

21 ) but Sch les inger ’s pla te number suggests a earlier publication date 1.224× 101

the ’ one field ’ target . \n Just aboutone field bySchwar 1.222× 101

ville , Texas , Sch re iner University is a small four year private college 1.218× 101

) spoke at an event of BDO 10 . Sch if ff ah 1.211× 101

, MikeSch re iber and countless more . She volunteers at Dade Correction 1.203× 101

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 47756. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 451 tokens, and has a mean of 1.040× 10−1 (rank 14 for the output
SAE latent) and a standard deviation of 1.167× 10−2 over its non-zero values.
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Example tokens Max. activation

li L ai a~K34 al~ aIJi e~ i aIJI a12l aIJI c12 al 1.484× 101

e~N , aa ei ah l eoaL aI cI e~ 1.478× 101

L ij aoa34Ia1 l j aI e3434 . e~ 1.422× 101

a N cl a i al a14eGla~~ l~ to be , ei cK~a 1.419× 101

aHa I eL cl e~ aa1a~e~~ IIJ : I suspect 1.385× 101

: content cK~ a12l aIJi e~ i , e~cocLa12k , 1.385× 101

l~e~e~Na12a1e~ i , iGaa G eI 1.379× 101

Ii aoi k ). \naL I aaL l Ig egeLa 1.378× 101

co aI a1L , ei e~co I12 ea1 i 1.374× 101

aI aLa I eao I LH i14I 2 J li eg12 1.374× 101

the contents page ( cLa12ke ). aa , e~ 1.368× 101

aIJi e~ i aii a12l al e~Na1 l~aHN , aH : 1.362× 101

(q) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 59459. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 1602 tokens, and has a mean of 1.036× 10−1 (rank 15 for the output
SAE latent) and a standard deviation of 1.771× 10−2 over its non-zero values.

Figure 18. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 34455, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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Example tokens Max. activation

kevAl retro fAr gadefArdenkAns lig e . Barn 4.636

v lig ut s ikt Aver Lipnos j An . Mys ig ochbarn 4.549

ochfArfAr st Ar k are , upp till 20timmar ut an 4.370

kar , mendumAste vara in log gadsoman st Al ld 4.337

Detkan fin nas fl er pro jek t dArLarsBank vall med ver 4.165

C ancel . E tt exemp el pA fore x hand el Ar att 4.149

Sp es ial sp ill ut val gavm ors ommeog 4.121

atal ogenunderDownload s i menyndArduenk elt bl A 4.080

A till A ! Cong rat zEvaNystrAmandAd riel Young ! 4.037

kApaEurooch sAl ja US Dollar . \n Results per trade binary 3.989

vAn lig at mos fAr ochskA narum , dockkans 3.985

i smakpA det som ble ig jen . \nE arn ed the 3.977

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 64386.

Example tokens Max. activation

Sp es ial sp ill ut val gavm ors ommeog 1.218× 101

ass el ogandendanskekonge af denGl252 ; cks 1.175× 101

i smakpA det som ble ig jen . \nE arn ed the 1.137× 101

var konge af Danmark fra 1906 til 1912 . Han var det 230 1.136× 101

v lig ut s ikt Aver Lipnos j An . Mys ig ochbarn 1.018× 101

kevAl retro fAr gadefArdenkAns lig e . Barn 1.007× 101

Detkan fin nas fl er pro jek t dArLarsBank vall med ver 9.832

vAn lig at mos fAr ochskA narum , dockkans 9.703

. Detg l der de fl este v arer , her under l sk 9.656

LA~ ks et ind en12 42 m10 69m1191 m 9.561

pAChalmersfAr att kunna se dem . Sometimes I like to add 9.513

jeg g ings , stock ings well anything that covers my legs , is 9.509

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 23581. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 2755 tokens, and has a mean of 2.578× 10−1 (rank 0 for the output
SAE latent) and a standard deviation of 2.428× 10−2 over its non-zero values.
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Example tokens Max. activation

. \n400 Pet ermansBj erg 2940 m1200 m2940 7.399

fromSigurd . I think wewere lied to . Don ’ t youhave 7.343

d"was invented by veter in arian SigurdKe il gaard in the 6.987

usMetzPed ers en the film stars S ver rir Gudn 6.918

beganworking as an artist and teacher . \n In g ib j Ar g 6.917

ALEV intage MetalCh airs FromB ali ByBjA r kheimWith 6.837

house , makingReadAlso : In grid N ils enBio , D ating 6.760

film shot in Trin idad in 2013 , work byAyv ind F 6.647

ogRoms dal , in Norway . \n484 Lavang st ind en 6.632

K j ell ! \n I intended the first piece to basically bean introduction 6.463

world aroundme . Cong ratulations to Tor stein Horgmo , the latest 6.459

andmodern technology . \nAs Tar je N issen− M eyer writes : 6.413

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 48028. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 3567 tokens, and has a mean of 2.417× 10−1 (rank 1 for the output
SAE latent) and a standard deviation of 1.944× 10−2 over its non-zero values.

Example tokens Max. activation

., Netherlands , Italy , Canada , Denmark , Norway , andTurkey ) and 9.613

EU , Germany , Norway , USandUK ). \nPROMAN hasbeen 9.009

Alaska and the Ale ut ian Islands , Green land , Britain , Norway , 8.417

), Russia , Norwayand Iceland which promotes dialogue , practical cooperation anddevelopment . 8.119

Sah ara . Sohavehuman rights bodies fromNorwayand elsewhere . \nThe 8.066

the matern ity leave in Norway (46weeks ), Denmark ( 52weeks ) 8.006

W ochenendeoderanFe iert agen . THE Norwegian Fisher y Council 7.970

lands and islands and through the Norwegian f j ords and will continue to operate 7.870

single marketby following Norway ’ s modelby joining the EuropeanEconomicArea . 7.853

can either subs ist without Norway or simplydeadzone it by stacking Uk r 7.850

is amember of the Norwegian Visual Artists Association and theYoung Artists ’ Society 7.838

Children Norwayhasbeenawarded the service contract for the Support to the Education Sector 7.760

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 11698. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 295 tokens, and has a mean of 1.344× 10−1 (rank 2 for the output
SAE latent) and a standard deviation of 6.924× 10−3 over its non-zero values.
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Example tokens Max. activation

kar , mendumAste vara in log gadsoman st Al ld 1.023× 101

kApaEurooch sAl ja US Dollar . \n Results per trade binary 9.895

l addningochk lar att kopp las till slut st eg eller 9.721

kevAl retro fAr gadefArdenkAns lig e . Barn 9.363

pAChalmersfAr att kunna se dem . Sometimes I like to add 9.343

vAn lig at mos fAr ochskA narum , dockkans 8.634

ochfArfAr st Ar k are , upp till 20timmar ut an 8.587

C ancel . E tt exemp el pA fore x hand el Ar att 8.477

dd rar mellan oli kaproduk ter . Dev ices andsystemson 7.977

A till A ! Cong rat zEvaNystrAmandAd riel Young ! 7.812

Detkan fin nas fl er pro jek t dArLarsBank vall med ver 7.368

pooloch le k pl ats ! Trev lig personal . \n− ub 7.195

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 22804. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 895 tokens, and has a mean of 1.342× 10−1 (rank 3 for the output
SAE latent) and a standard deviation of 9.149× 10−3 over its non-zero values.

Example tokens Max. activation

so i fixed it myself but thats the first place you will get rust . 5.811

Models for Rust ingT ail gate Str uts . \nTak ata recalls at 5.395

becauseyou gave in easily Rust ic guys country awomanwho is very to 5.063

bring to full resolution . Graphics are fromaRust ic W re ath collection 4.752

Rust ic Pic nic Table PopularOutdoorFurn iture HandmadeByApp al 3.102

we present . R ust ic Pic nic TableAmazing 31 All uring Ideas Tables 2.680

seeing . I have it in rust y pots and here it is in an 2.359

yields a Future , gen . cor out ine schedules the generator to beresumed 2.104

operations in order to ensure that the resulting LLVM IRcanbe ing ested 1.849

with@ gen . cor out ine . \n In Python2 , the sub 1.805

from ‘ ()<> ‘. The ‘ / ‘ hasnomeaning besides beinga 1.739

you will have to upload the . pub file andcopy its contents to authorized 1.702

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 12754. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 7 tokens, and has a mean of 1.168× 10−1 (rank 4 for the output SAE
latent) and a standard deviation of 5.760× 10−3 over its non-zero values.
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Example tokens Max. activation

Turkey the LeagueB victory . \nSweden , making its NationsLeaguedebut 1.362× 101

68m10 38m1218 mHPon the Norwegian− Swed ish 1.330× 101

for Latv ian independence , R iga hasbeen ruled byGermans , Swed 1.286× 101

bar . \nsummerwhen the Swedebegan to shine . \nCup 1.180× 101

en , Al Un ser , SwedeSavage , BobbyUn ser , Gordon 1.124× 101

25ppm in Denmark , France , Spain , SwedenandUK . \n" 1.107× 101

\nThis studywas supported by the SwedishResearchCouncil ( GrantK2015− 1.090× 101

Canada , Finland , Italy , Swedenand the UK . In the next few 1.088× 101

ra ps in English , French , Spanish , SwedishandMand arin . You 1.076× 101

, the Middle East and Southeast Asia . \n In reality , the Swedishand 1.070× 101

this threat is foundfrom different countries such as Sweden , Malaysia , India , 1.040× 101

iron ore mine in the world . It ’ s ownedby the Swedishgovernment 1.020× 101

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 30912. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 175 tokens, and has a mean of 1.133× 10−1 (rank 5 for the output
SAE latent) and a standard deviation of 6.893× 10−3 over its non-zero values.

Example tokens Max. activation

ga , 2012 ClA ir se achnA3 PAN ob , 8.579

la ri PaulBergagus Walter Gilbert . \nDh ’ ain mic 8.236

A j ir agusSparAn abh fu il lu achaH 8.205

a l A3 dA il ar ansuAN omh . TA 7.989

. An sannAN mA3 r don i om ath A3 ir 5 7.893

ire adhChunCe oil agus tr AN RnaG . Is 7.412

mA nd (" mind , reason "). Related to Old English my nt an 7.394

2013 nau irl is AN g iol ca igh mi ot ail ( 7.251

. \nImportodekromprogramo estas fac ila . \nA 7.154

\nA I iu event o lig i A L as al la orig ina 7.080

A il te ! St air nahAi ire ann will take you on 7.046

b ild oj de event oj k aj b ild oj dek ateg orio 7.012

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 57769. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 321 tokens, and has a mean of 8.286× 10−2 (rank 6 for the output
SAE latent) and a standard deviation of 1.343× 10−2 over its non-zero values.
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Example tokens Max. activation

iGe eIKe i , i i iL~ 2.700

i H1 iLIJ i l l i i i l e I 2.051

do that ? \n1 :10 : 38KEVIN : If you 1.881

e~e3 ei eIK i l ii iLl i i l 1.822

i iL~ ik14 e IJ el , e i iL14 ikl 1.763

L i ik~e ei . e I i Il eL 1.637

IIJ aI aoI !! \n aI a al~c2e~a I cli aI 1.592

e314 e IJ ege I i g14 i l e 1.564

Bin is one of pictures that are related with the picture before in the collection 1.488

iLGe i iL14 ikl e3eiL14 ikl i 1.467

sealed bearing . Now I feel kinda like a*****$$ for asking in 1.458

eL ik I ik ii l ik iLl i h I 1.416

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 42113. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 3 tokens, and has a mean of 7.971× 10−2 (rank 7 for the output SAE
latent) and a standard deviation of 6.880× 10−3 over its non-zero values.

Example tokens Max. activation

and arthritis . \nY og ar aj Gugg ulu : Ing redients include 1.332× 101

EuropeandRest ofWorld . Ing redients of this market are Sol vents . 1.315× 101

\n04 . Ing ros so , L io hn& Salv atore− Fl 1.298× 101

ancon el audio original enIng les . El cost odeadmisiA3n 1.298× 101

2 , 000 calorie diet . *DailyValue not established . \nOtherIng 1.245× 101

Smooth ie , Six Ing red ient Sp ir ul ina Snack ies 1.201× 101

. 100 Ing redients InA Pictures ForKitchenNumber79 Is Im possible !. 1.173× 101

Ind io PapagoTe pezcohu ite Cream2OzIng redients : 1.153× 101

. MaIng alls hadno cabinets or refrigerator andshe raised five children and 1.137× 101

under stood Ing red ient , With Rec ipes , SimplyRec ipes ’ explanation 1.132× 101

rop ur Ing redients is a global supplier of ingredients and services developed to create 1.065× 101

Bah asa Ing gr is Sing kat is just about the imagewe ascertained on 1.045× 101

(j) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 8827. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 21 tokens, and has a mean of 7.330× 10−2 (rank 8 for the output SAE
latent) and a standard deviation of 5.439× 10−3 over its non-zero values.
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Example tokens Max. activation

to scholars in Oriental Studies , Med ieval Literature , and History , The Gh 9.650

ia world . Be part of amedieval revolution against theWord Kingand his 8.678

trying to makea living in amedieval town full of warriors , sor ce 8.207

acouplewho play medievalandRenaissance instruments , sing , danceand celebrate at 8.198

Sem ikh ahwas the rise of the medieval university , which began to issue 8.038

located in Med ieval Spon Street , Cov entry . MarkAndrew offers an 8.015

armies of the Cal iph ates , through the action of bloodymedieval battles , 7.999

NgawangNamgy al , father andun ifier of medievalBh ut 7.911

, I needed to knowwhat are they ate in medieval northern England?Lots 7.847

thAnnualAwardWin ningLough rea Med ieval Festival takes place from the 7.761

or like the individual parts in a ’ cycle ’ of Med ieval mystery plays 7.681

id yll ic picture for the season . \nThe medievalcharm of Vil n 7.672

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 21697. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 87 tokens, and has a mean of 6.570× 10−2 (rank 10 for the output
SAE latent) and a standard deviation of 6.127× 10−3 over its non-zero values.
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Example tokens Max. activation

football of his career , Russell Wilson finished Monday night ’swin over the Minnesota 1.082× 101

. ST . PAUL , Minn . (AP )− The MinnesotaDepartment 1.068× 101

the Minnesota Birth Center ; andD ian na J ol les , faculty at 1.060× 101

the Minnesota Historical Society . \nBeginningwith the1929 volume there is a 1.060× 101

. \nTheWinnipeg Row ing Club , the MinnesotaBoatCluband the Saint 1.055× 101

MiamiMarl ins MilwaukeeBrew ers MinnesotaTw ins . KentuckyWild cats Win C 1.050× 101

H . Allen . The lock out of the musicians at the Minnesota Orchestra has 1.042× 101

Post started spec ulating this past week that the MinnesotaOrche str al Association might 1.032× 101

The MinnesotaWild have recalled defense manRyanMurphyfromA HLIowa per a 1.032× 101

An index to the Minnesota period ical collection in the South St . Paul Library 1.010× 101

Marl ins MilwaukeeBrew ers Minnesota . Add the United States of Baseball to your 1.003× 101

PaulL ur line Row ing Club as the MinnesotaandWinnipeg Row ing Association 1.002× 101

(l) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 13110. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 61 tokens, and has a mean of 6.486× 10−2 (rank 11 for the output
SAE latent) and a standard deviation of 6.027× 10−3 over its non-zero values.

Example tokens Max. activation

, 2019Posted in Official NewsTags : Fl utter programmingLeaveacommenton 6.019

? \n If you ’ re not familiar with the Fl utter programminglanguageand 5.044

Your Business withAmazon FBA? \nWhyYou ShouldMaster Fl utter Programming 4.472

mater the sought− after Google Fl utter language . Let ’ s beginnow 3.056

WhyYou ShouldMaster Fl utter Programming?rub ber plants indoor rubber plant growing 2.706

ew ar Mah ots av will be celebrated from8 th April to10 th 1.795

compatible with the industry . \nWidget s for your website . Orderthem . 1.511

this place . Eleanor notices this upon first arriving , thinking to herself that " 1.489

of illness and health . \nFind outwhy Swift SkinandW ound is 1.488

, some patients feel a st inging sensation from the injection & think it isn 1.473

You can also use the Contact Information widget from the FormW idget s . 1.358

Col oring Pages . ImageSource : houzz . com . FreeOnline 1.283

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 26452. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 4 tokens, and has a mean of 6.316× 10−2 (rank 12 for the output SAE
latent) and a standard deviation of 6.164× 10−3 over its non-zero values.
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Example tokens Max. activation

beenmade in extending Medicaidcoverage toAmerican Indians andAlaska N atives , the 1.224× 101

percent ofAmerican Indian andAlaska Native children were enrolled in Medicaid or CHIP 1.224× 101

uninsured rate for American Indian andAlaska Native children and families remainun accept ably 1.153× 101

issues in the Park Service . \nFormerAlaska governorand advisory boardchairmanTony 1.147× 101

andmindset for the Alaska Conce aled HandgunPerm it . T aught 1.106× 101

popular appet izers , s oupsandsandwiches . \nLoc ally caughtAlaska seafood 1.082× 101

is Canada , Alaska andHawaii . Your mattress will be refund ed , however 1.081× 101

for shipping quotes to other destinations such asAlaska andHawaii . \nThis product 1.079× 101

MooseandWolf hunt . \nWe hunt the AlaskaYuk onmoose 1.066× 101

row se listings of Member users here at Alaska Fl irt that are associated with 1.064× 101

Cherry , BLM ’ sAlaska regional manager , said the agencywas pleased 1.057× 101

. The paint appeared to still bewet . The package includes AlaskaYuk on 1.045× 101

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32153. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 100 tokens, and has a mean of 6.202× 10−2 (rank 13 for the output
SAE latent) and a standard deviation of 5.347× 10−3 over its non-zero values.

Example tokens Max. activation

Han over , Wake , andForsy th havemore than half of their 1.788× 101

he told SMSFAd vis er . \nMrForsy th explained this 1.643× 101

arr ion " ’ . Thanks toAnthony Fors ofAbsolute Clean for volunte ering 1.616× 101

O read more into AT OIDs than they should ," MrForsy th 1.531× 101

sonSuperConsult ing director Stuart Forsy th said shortly after the release of 1.517× 101

web homes fors ale . com helpyou find the Jacksonville , FLhomes 1.051× 101

uit your id ols ; fors akeyour fonddo ings ; and the promised 7.176

you , nor fors akeyou " ( Heb . 13 : 5 ); 6.366

for comfort in my difficult situation . Do not fors akeme , Good Jesus 6.248

ume already led many to fors ake the temple , andhold her ordin ances 5.815

which needs to be confessed and fors aken . \n2 . We profit from 5.704

be submitted bye− mail ( sc anned to fors ik ring@ lease 5.697

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 56394. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 8 tokens, and has a mean of 5.939× 10−2 (rank 14 for the output SAE
latent) and a standard deviation of 3.459× 10−3 over its non-zero values.
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Example tokens Max. activation

Norwegian f j ords around St ord , Norway . \nReadmoreaboutour 1.093× 101

250m crossing undera f j ordbetween Krist ians undandA ver 1.089× 101

coast in Turkey , cru ising the F j ords of Norway , etc , 1.033× 101

zonesand sc rambleup to the top of the f j ord . There 1.001× 101

60m1610 mSognogF j ordane , Norway . 9.988

lands and islands and through the Norwegian f j ords and will continue to operate 9.885

You will also experience a f j ord cruise on the mightySogne 9.601

f j 80 stud is just slightly larger , so all I had to do 9.451

steering boxanyways , so I decided to convert to f j 80 tie 9.137

is 57 . 5kg , Sagne f j orden , Norway , in 9.027

\n426Al ks f j ord j A~ kel en120 4 m113 8.791

k j v Noah : November29 , Ethical dile mmasoccurwhen a situation 8.114

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 36481. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 36 tokens, and has a mean of 5.820× 10−2 (rank 15 for the output
SAE latent) and a standard deviation of 4.891× 10−3 over its non-zero values.

Figure 19. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 64386, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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Example tokens Max. activation

surge into the cathode , producinga current that does the all − important work 6.720

so that he avoids distribution of designated product that apparently does not meet legal requirements 6.606

, but also expansive alien environments that do their part to make the audience feel 6.584

of 2016 ( 88 percent )were opportun istic attacks that did not target a 6.467

to make therapeutic claims , were found to doso . \n Unfortunately the proposed 6.406

. Children are the most severely affected by poverty because they do not have the 6.331

hospital admissions ; emergencyroom visits that do not result in admission are excluded . 6.282

a court order . Propos als relating to children often do not need to 6.264

. S uitable exercises for pregnantwomen are those that do not strain the lower 6.255

? \n Unfortunately , the traditional Chineseapproach to training in the modernworld does 6.240

also request fat shaming to bemade illegal because it does not haveany 6.232

select the1 dB degradation to noise as the interference standard , since it does 6.221

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 60542. Output latent 60542
responds to a very specific use of the word “do”: its use as a pro-verb. In a pro-verb a simple verb stands in for another more complex one
and here “do” is a shorthand for an action that can only be understood from the context, for example, in “were found to do so” the “to do
so” stands in for “to make therapeutic claims”. Some of the inputs include very different uses of “do”, one for example deals with the
“Done” in “Donegal”, an Irish county. However, another input includes a subtly different use of “do”: cases where “do” is used as an
auxiliary, modifying another verb, as in “[t]his does not meet the requirements”. Clearly this circuit is creating a very fine distinction
between different ways the word “do” can be used, a distinction we make in language comprehension, but one we would have trouble
identifying or describing.

Example tokens Max. activation

Your information will not be stored onHSBC ’ s systems if youdo 2.098× 101

. Children are the most severely affected by poverty because they do not have the 2.077× 101

surge into the cathode , producinga current that does the all − important work 2.056× 101

. 001 ) andfewer over tri aged children who did not require inpatient management 2.043× 101

, but also expansive alien environments that do their part to make the audience feel 2.032× 101

us at your own cost within days of delivery . If youdo not 2.027× 101

them post menopausal . Theywere comparedwithmore than 600womenwho did not 2.014× 101

despite the risk . When persecution came , they did not scatter . They remained 2.001× 101

levels protect public health and welfare if they do not exceed45 dB . \n 1.997× 101

so that he avoids distribution of designated product that apparently does not meet legal requirements 1.996× 101

hospital admissions ; emergencyroom visits that do not result in admission are excluded . 1.984× 101

. S uitable exercises for pregnantwomen are those that do not strain the lower 1.976× 101

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 21465. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 13107 tokens, and has a mean of 2.529× 10−1 (rank 0 for the output
SAE latent) and a standard deviation of 5.392× 10−2 over its non-zero values.

41



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

Example tokens Max. activation

. We expect the market to do the opposite ofwhat the indicators are saying 1.438× 101

with the 2018 elections looming . \nThey believe that Trump hasdoneagood 1.313× 101

only thing that shewanted in the world , but she did abad thing 1.292× 101

led by its President JimCor cor an , havedoneawonderful job of 1.292× 101

MBTA doesso as well . And many state lawsdo the same . 1.264× 101

a" t ote ; " I just buy the boxes .) These doa 1.261× 101

can ’ t win games , you ’ re in trouble . \n Saint s did a 1.258× 101

beex orbit ant . You needdoyour own research to find out the 1.257× 101

up for grabs , it ’ s alwaysJewsdoing the grabbing ! \nHere 1.251× 101

your musclesdo the work , going at asn ail ’s pacedoesn ’ t 1.246× 101

toworry aboutwhether the Blackhawks are doing the right thing with defense 1.244× 101

You ’ re doing the same thing onAmazon throughsponsoredadsand proving yourself 1.239× 101

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 61756. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2683 tokens, and has a mean of 1.076× 10−1 (rank 1 for the output
SAE latent) and a standard deviation of 2.253× 10−2 over its non-zero values.

Example tokens Max. activation

A dugrand lux e , il fait cequ ’ on lui dit , 1.044× 101

. ParamAsinformaciA3n , haga cl ic en el la zoab 9.095

cl ase de ing l Asy por hacer la present aciA3n . A E 8.587

quA h aces ? \n if youwant to goback to a previous 6.694

si vous fa ite descodes ! \n l NGNh121 NI1 5.713

co , donde se real iza la segunda esc enay final mente , 5.181

into the software . The K art ra interface is faire ly well designed for 4.361

which they draw drinking water . \nLeg isl ators must find the faire st 4.314

endoen . \n ’ Living withFran ’, van af zondag 4.312

. Dekache ls makenve el lawa ai . We ver 4.253

organis ieren of tm als ih re eigen enGames . Es tut uns le 4.225

eenponer los huev osen el interior del huA sp 4.202

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 51331. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 90 tokens, and has a mean of 8.908× 10−2 (rank 2 for the output SAE
latent) and a standard deviation of 9.883× 10−3 over its non-zero values.
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Example tokens Max. activation

the middle ofwar again . \nThe SeventhDone gal took part in the 1.341× 101

all hurting tonight . I ’ ll share details later this week . \nDone ! 1.216× 101

fit or there ’ s somethingwrong please contact us . \nDonewithMulti 1.211× 101

this point . \nDone . Will be interested to learn moreabout this myself 1.192× 101

the goal of Universal Male− Female Liter acyadone deal . \nNo 1.191× 101

feeling of being let down , overwhelmedanddone in . Dis appoint ment is 1.191× 101

there ’ s somethingwrong please contact us ! \nDonewithEgg− shaped 1.188× 101

first gin distilled in Co . Done gal . DAo lamAn is the 1.179× 101

Cl osure and re clamation of amining property is acomplex process . Done 1.168× 101

they could take . \nThe Done gal Guards , like no other arm of 1.155× 101

were able to finish rebuilding efforts , and the Done gal Guardsfound themselves in 1.150× 101

out his heart to the doneky . Oneday , Keshavawas 1.146× 101

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 11694. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 540 tokens, and has a mean of 7.039× 10−2 (rank 3 for the output
SAE latent) and a standard deviation of 1.967× 10−2 over its non-zero values.

Example tokens Max. activation

relax mechanisms . \nOn the other hand , between the classic models , it 1.057× 101

protein . For zinc prot oporph yr in , on the other hand , 1.020× 101

compared to Cauc as ians . On the other hand , the latter havea 9.974

all change associated withun ification . \nOn the first point , see J 9.717

) the effect of class size varies across students . \nOn the first form 9.667

disease . \nOn the secondday of hospitalization , B its y ’ s 9.630

muchscope for development . On the other hand , there is muchscope for 9.605

for whom it is of minimaluse . On the other hand , when hazards 9.602

regulates its collective temperature at different ambient air temperatures ; on the left side it 9.537

is . On the inside there are also lent icular films that diffuse the view 9.520

associated with these ex libr ises . On the onehand , one part of 9.519

states . On the other hand , we need to define our destinations in a 9.441

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 48418. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 91 tokens, and has a mean of 5.105× 10−2 (rank 4 for the output SAE
latent) and a standard deviation of 9.043× 10−3 over its non-zero values.
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Example tokens Max. activation

of the date of filing of the petition . \nA change of name or 5.590

the jury . \nAn interruption of the opposing counsel withaspeech rather than 5.370

of these statutory changes . \nA newform , called a"Dis closure 5.359

. The Court will examineonly marginally whether the principle is fulfilled . A detailed 5.215

filing of the petition . \nA merger is recorded bymeans of a petition 5.214

hadcommittedacrimewhile out on release : obstruction of justice . \nA 4.802

does not accept liability for failure to deliver within the stated time . \nA 4.802

igated sentencing . An experienced Mar ic opaCountyDUI Attorney will knowwhat 4.660

169 of the Revised Statutes . \nAn te cedent : Ref erring to a 4.463

trial ; judge ’s availability limited . \nA second discrimination trial against the University 4.404

agrounds for dealing with the issue . A pharmacy is also nearbywhich sells 4.393

to complywith its requirements . The court noted that "[ a ] dvance 4.323

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32517. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 1 tokens, and has a mean of 5.015× 10−2 (rank 5 for the output SAE
latent) and a standard deviation of 0.000 over its non-zero values.

Example tokens Max. activation

photos . Import ant : This product does not include the techniques used in the 1.195× 101

pumpyou are looking for . \nThis product does not contain 1 , 1.182× 101

Furthermore , exp or ail . organdweb sites associated does not sell user 1.146× 101

. \nThe nameT ee bergdoes not appearonany of the top 1.130× 101

suggestion for ASC Utt imate . \nDoyou do not need toworry about 1.123× 101

ube . comLimiteddoes not endorseany user submission , and expressly disclaim s 1.119× 101

ube . comLimiteddoes not permit copyright infring ing activities or infringement of intellectual 1.119× 101

’ s family , it doesn ’ t for Mark he told Ost rov 1.095× 101

ig ences . com website orwebpage , Dil ig encesdoes not represent or 1.087× 101

market , it does not help anyonenomaterhow great the thought is . 1.085× 101

marketing , Blogging , internet marketing \ t . \nTheworld doesn ’ t 1.075× 101

a daily basis . \nHey , I don ’ t know if I ’m posting 1.075× 101

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 23968. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2561 tokens, and has a mean of 4.760× 10−2 (rank 6 for the output
SAE latent) and a standard deviation of 1.204× 10−2 over its non-zero values.
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Example tokens Max. activation

youcanloweryour standard of living . And alower standard of living does 9.428

?Of course not . A post humous diagnosis does not changewho he 9.376

holds equity in a private business or hasa large portfolio this does not 9.172

that this is a negative review , the above observations do constitute qu ib bles 9.046

Tax ote re andpermanent hair loss , those warnings do not appearonany 8.894

haveno responsibility or control over them . The existence of these links does not 8.834

and ambitious . \nM ission success does not require these complexmaneu vers , 8.667

. Please note these restrictions do not apply to exhib itors . \nTo help 8.648

Yellow stone if there are only that manysub species . That does not include 8.556

But the Tribunal explained , " Training alone does not meet the requirements of due 8.529

\nSome schools prefer to be data controllers . Thisdoesmake it easier for 8.483

extreme heat . It ’ s naturally darker colour doesn ’ t do itself any 8.473

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 19973. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2691 tokens, and has a mean of 4.681× 10−2 (rank 7 for the output
SAE latent) and a standard deviation of 9.146× 10−3 over its non-zero values.

Example tokens Max. activation

play andrevenue . Well , that no longer appears to be the case . 8.329

than he believes or cares to say . Poll s now demonstrate this to be 8.314

systems are often thought to bemuchmore securely protected than is actually the case 7.874

relations with residents . Unfortunately , withsomeboards this is not always the case 7.272

some cases the spam detection stoppedworking . This is no longer the case . 7.104

’ t ) and if there are no clear winners betweenthem (which is usually 7.036

found the same to be true for them !). Ch ur ro Fried Ice Cream 6.854

. \nHowever , even if that is not correct , the Court erroneously uses 6.826

final . However , that ’ s not always the case . There are plenty 6.787

if that were not badenough for Thor pe ’s membership , in the same 6.773

the lease period has expired andno oil hasbeenproduced . If this is 6.688

or missingfrom the root of the domainyouadded . If this is the 6.680

(j) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 13058. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 431 tokens, and has a mean of 4.528× 10−2 (rank 8 for the output
SAE latent) and a standard deviation of 1.961× 10−2 over its non-zero values.
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Example tokens Max. activation

Compan ies must giveworkers the information they need to perform their jobs safely , 1.448× 101

too short to drink bad coffee that makesyouperform poorly and feel awful . 1.448× 101

ofyour reserve fund . Byperforminga reserve study , youcan determine how 1.426× 101

gmail account , performmy edit , and then un install in a matter 1.410× 101

worn fill at the tail pipe as permitted to perform every engineand every rate 1.409× 101

s car just got awayfromhimandheperformeda lazy spin into the 1.400× 101

from , modify , publish , edit , translate , distribute , perform , display 1.400× 101

The firm did not perform impurity testing during stability ontwo products since 2016 . 1.397× 101

stop thinking aboutmess ing up . You performedso tent atively that youhoped 1.389× 101

like how black hat hackers are incent iv ized bymoney to perform malicious activities 1.388× 101

andpaymentsencouragePBM s to actually perform to their contractual guarantees instead of 1.367× 101

individual educational plans ; assists in inventory control ; andperforms other duties related to 1.364× 101

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 56700. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 574 tokens, and has a mean of 4.375× 10−2 (rank 9 for the output
SAE latent) and a standard deviation of 1.275× 10−2 over its non-zero values.

Example tokens Max. activation

share the posts as if your life dependedon it . Which it doesn ’ t 8.326

encounters an impossible reality that shouldn ’ t exist , but does . \nA 8.273

ask !Who knew las agnawas for dessert ?We sure didn ’ t 7.129

to make sure that it works correctly and it does . \nWhat ’ 6.960

, status and aside . Not everyWordPress theme supports post formats and those that 6.757

you ever thankedme? \nnoyou actually did , but I cancount 6.578

if this would kick in , but it didn ’ t . \n After installing 6.342

don ’ t need convincing . Butdoyouknowwho does? \nAnd 6.318

big one . It seems towork . Ordoes it ?Then three fish 6.302

. It seems towork . Ordoes it ?Then three fish get the 6.277

Spin !You dont switch butyour opponentdoessoyou can stack damageon 6.275

Somehow I envisioned our family as a family of four . I still do 6.228

(l) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 46097. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 3589 tokens, and has a mean of 3.995× 10−2 (rank 10 for the output
SAE latent) and a standard deviation of 2.127× 10−2 over its non-zero values.
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Example tokens Max. activation

its spark . Employees are not inspired , stakeholders are becoming color less andyou 5.325

are talking about are humans , and not robots , andsoa greater amount 4.681

nice " not too fast , not too slow"rhythmand settled in to 4.430

endupbeing aboutcommunication not between professions , but with clients and families 4.387

pre− s lic ed is easiest not too thin , and nothingwet 4.313

, I did not knowhow the French health care worked and I did not 4.230

move frequently , not beon school district census rolls , and are less likely 4.183

Total PM . Away of life . Nota job . \n It was 4.141

the fire which does not burn , the waterwhich does notwet the hands 4.113

I do not move , I do not breath . I close myeyesand 4.075

It was not for ameetingwithan international leader . \nAnd it was 4.069

such thing as safe plastic aG not for youandyour family , and not 4.018

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 4510. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 133 tokens, and has a mean of 3.978× 10−2 (rank 11 for the output
SAE latent) and a standard deviation of 1.006× 10−2 over its non-zero values.

Example tokens Max. activation

witnessing before movingon to more difficult or resistant areas . Rather the opposite was 1.143× 101

decision making authority . Actually , the opposite is implied . Letme put it 1.059× 101

shouldcome before focusing onone ’ s own , and I feel the reverse 1.048× 101

t faith . It ’ s actually the opposite of hope . Our other options 1.017× 101

tourist − rich locale , but rather , the opposite is true . El is 1.004× 101

goodguy ; if anything the opposite was said when saying Zimmerman ’ s 9.978

out of fear mode , you return to love mode . The opposite of love 9.799

in anyway−− just the opposite . The fine balance betweensupp len ess 9.498

. process as perform argues the opposite : that learn onmethodmust take heavily 9.484

says the right words to us , but he acts just the opposite . He 9.464

’ s abad thing , in this case , it means the opposite . 9.423

− EGR− val veWithout voltage applied , it ’s just the opposite 9.166

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 28695. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 53 tokens, and has a mean of 3.952× 10−2 (rank 12 for the output
SAE latent) and a standard deviation of 7.511× 10−3 over its non-zero values.
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Example tokens Max. activation

\n I ’ve got to admit , I ’veheardsome"dooz ie 8.284

silent film . Google ’ s ever changing"googledood le " logo 7.809

our annual celebrations canbe . Dopp el k lic kedenNumber Sl 7.234

3 . \nHere ’ s another dooz ie : BothAv ig dor 7.154

doingafewdood les of people in suits with their arms crossed . 6.835

the institutions tend first information in using the has hers , print able dood 6.828

eeF aret . Thiswas long before the Doob ie Brothers ever thought 6.275

keepingwere a part of our life and Iwanted to knowaboutDoob 6.262

an object I doremember is DoobeeF aret . It was a 6.177

adoptme . Nameon birth c irt ificate was babydoy j ohn 6.137

found that dood lers performed29% better than non− dood lers 5.989

adov ish Fedand institutional instability in the US ," said KyleRod 5.951

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 26469. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 29 tokens, and has a mean of 3.831× 10−2 (rank 13 for the output
SAE latent) and a standard deviation of 1.040× 10−2 over its non-zero values.

Example tokens Max. activation

Span ien k auf en , kAnnen Sie eine span ische Auf enthal ts 8.197

dabe i auch auf Sportw et ten , die manauchbequ 8.086

acht eine Ab zocke , da herwA14r de ich rA14ck 8.018

k auf en will , kann ich tro tz demdasGoldV isa be 7.818

ft wer de ich A fter imDrA14ck GlA14ck OnlineCasinoanTurn 7.550

andundmehr ! \nFrage : Kann ich ein span is ches 7.512

sind . \nFrage : Kann ich eine Finanz ierung er hal 7.413

, dass es ges etz lich an erk ann te An gehAr ige 7.390

Kann ich nurwe ite remp fe h len ." \n" This 7.366

we isen , dass Sie dire kt oder ind ire kt In hab er der 7.351

we isen , dass Sie nicht mehr als 11 Mon ate a uss er hal 7.351

age : W enn ich die Immob il ie durch eine Ges ells chaft 7.225

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 14813. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2 tokens, and has a mean of 3.811× 10−2 (rank 14 for the output SAE
latent) and a standard deviation of 8.688× 10−3 over its non-zero values.
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Example tokens Max. activation

. \n4 Does the Pale o Diet Elim inate HealthyFoodsLikeBrown 3.101

for all for profit show tickets as required by Louisiana law . \nDoes not 3.047

0334 . \nDoesmy infant / child needa ticket for the show 2.843

000 . \nDoesCODE undertake its owndue diligence ? \nYes , should 2.575

duties . \nDoes this meanwe are moving to asystemwhere the Pope 1.695

am ore ; RonaldBra ut ig am , p f ; LeovanDoes 1.543

. \nDoesn ’ t clog pores nordoescauseanyacnebreak out 1.511

. \nDoeshehavea lot of toys ?Yeah , canwe bring 1.511

. DoesBenBishop fix their go alt ending?Where doAlexander Rad ul 1.479

. Does this mean that the leaders who engage in the methods are badpeople 1.479

. Doesyours look as pretty as mine? \n I ’ mgoing to 1.479

day . \nDoesyour marketingteam regularly grapp le withproblems? If so 1.306

(q) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 41425. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 17 tokens, and has a mean of 3.734× 10−2 (rank 15 for the output
SAE latent) and a standard deviation of 8.725× 10−3 over its non-zero values.

Figure 20. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 60542, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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D. Training
Our training implementation is based on the open-source SAELens library (Bloom et al., 2024). We train each pair of SAEs
on 300 million tokens from the Pile (Gao et al., 2020), excluding the copyrighted Books3 dataset, for a single epoch. Except
where noted, we use a batch size of 4096 sequences, each with a context size of 2048. At a given time, we maintain 32 such
batches of activation vectors in a buffer that is shuffled before training, which reduces variance in the training signal.

We use the Adam optimizer (Kingma & Ba, 2017) with the default beta parameters and a constant learning-rate schedule
with 1% warm-up steps, 20% decay steps, and a maximum value of 5× 10−4 Additionally, we use 5% warm-up steps for
the coefficient of the Jacobian term in the training loss. We initialize the decoder weight matrix to the transpose of the
encoder, and we scale the decoder weight vectors to unit norm at initialization and after each training step (Gao et al., 2024).

Except where noted, we choose an expansion factor R = 32, keep the k = 32 largest latents in the TopK activation function
of each of the input and output SAEs, and choose a coefficient of λ = 1 for the Jacobian term in the training loss.

D.1. Training signal stability

We initially considered the following setup:

sx = ex(x) , x̂ = dx(sx) , y = f(x̂) , sy = ey(y) , ŷ = dy(sy) (32)

The problem with this arrangement is that the second SAE depends on an output from the first SAE. Since both SAEs are
trained simultaneously, we found that this compromised training signal stability – whenever the first SAE changed, the
training distribution of the second SAE changed with it. Additionally, at the start of training, when the first SAE was not yet
capable of outputting anything meaningful, the second SAE had no meaningful training data at all, which not only made it
impossible for the second SAE to learn but also made the first SAE less stable via the Jacobian sparsity loss term.

To address this problem, we instead used this setup:

sx = ex(x) , x̂ = dx(sx) , y = f(x) , sy = ey(x) , ŷ = dy(sy) (33)

Importantly, we pass the actual pre-MLP activations x rather than the reconstructed activations x̂ into the MLP f . In addition
to improving training stability, we believe this setup to be more faithful to the underlying model because both SAEs are
trained on the unmodified activations that pass through the MLP.

E. Evaluation
We evaluated each of the input and output SAEs during training on ten batches of eight sequences, where each sequence has
a context size of 2048, i.e., approximately 160K tokens. We computed the sparsity of the Jacobian, measured by the mean
number of absolute values above 0.01 for a single token, separately after training. In this case, we collected statistics over
10 million tokens from the validation subset of the C4 text dataset.

For reconstruction quality, we report the mean cosine similarity between input activation vectors and their autoencoder
reconstructions, the explained variance (MSE reconstruction error divided by the variance of the input activation vectors),
and the MSE reconstruction error.

For model performance preservation, we report the cross-entropy loss score, which is the increase in the cross-entropy loss
when the input activations are replaced by their autoencoder reconstruction divided by the increase in the loss when the
input activations are ablated (set to zero).

For sparsity, we report the number of ‘dead’ latents that have not been activated (i.e., appeared in the k largest latents of
the TopK activation function) within the preceding 10 million tokens during training and the number of latents that have
activated fewer than once per 1 million tokens during training on average.

Given an expansion factor of 64, k = 32, and a Jacobian loss coefficient of 1, i.e., fixed hyperparameters, we find that the
reconstruction error and cross-entropy loss score are consistently better for the input SAE than the output SAE. Additionally,
we find that the performance is generally poorer for the intermediate layers than early and later layers.
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Figure 21. Reconstruction quality metrics for Jacobian SAEs trained on the feed-forward networks at every layer (residual block) of
Pythia transformers. The cosine similarity is taken between the input and reconstructed activation vectors, and the explained variance is
the MSE reconstruction error divided by the variance of the input activations. For each SAE, the expansion factor is R = 64 and k = 32;
the Jacobian loss coefficient is 1.
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Figure 22. Model performance preservation metrics for Jacobian SAEs trained on the feed-forward networks at every layer (residual block)
of Pythia transformers. The cross-entropy loss score is the increase in the cross-entropy loss when the input activations are replaced by
their autoencoder reconstruction divided by the increase when the input activations are ablated (set to zero). For each SAE, the expansion
factor is R = 64 and k = 32; the Jacobian loss coefficient is 1.
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Figure 23. Sparsity metrics per layer for Jacobian SAEs trained on the feed-forward networks at every layer (residual block) of Pythia
transformers. Recall that the L0 norm per token for each of the input and output SAEs is fixed at k by the TopK activation function. For
each SAE, the expansion factor is R = 64 and k = 32; the Jacobian loss coefficient is 1.
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Figure 24. Reconstruction quality, model performance preservation, and sparsity metrics against the number of latents. Here, we consider
Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m (model dimension 512) with k = 32. Recall that the
maximum number of non-zero Jacobian values is k2 = 1024. The reconstruction quality and cross-entropy loss score improve as the
number of latents increases, and the number of dead features grows more quickly for the output SAE than the input SAE. See Appendix E
for details of the evaluation metrics.
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Figure 25. Reconstruction quality, model performance preservation, and sparsity metrics against the k largest latents to keep in the TopK
activation function. Here, we consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion factor
R = 64. Recall that the maximum number of non-zero Jacobian values is k2. The reconstruction quality and cross-entropy loss score
improve as k increases, and the number of dead features decreases. See Appendix E for details of the evaluation metrics.
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Figure 26. Reconstruction quality, model performance preservation, and sparsity metrics against the Jacobian loss coefficient. Here, we
consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion factor R = 64 and k = 32. Recall
that the maximum number of non-zero Jacobian values is k2 = 1024. In accordance with Figure 5, all evaluation metrics degrade for
values of the coefficient above 1. See Appendix E for details of the evaluation metrics.

53



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

0

0.5

1
E

xp
la

in
ed

V
ar

ia
nc

e

01020
0

0.5

1

Jacobian L1 Norm

C
ro

ss
-E

nt
ro

py
L

os
s

Sc
or

e

0200400600800

Abs. Jacobian Values > 0.005

Input SAE Output SAE

0200400600

Abs. Jacobian Values > 0.01

Figure 27. Pareto frontiers of the explained variance and cross-entropy loss score against different sparsity measures when varying the
Jacobian loss coefficient. Here, we consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion
factor R = 64 and k = 32. Recall that the maximum number of (dead) latents is 32768 (64 times the model dimension 512), and the
maximum number of non-zero Jacobian values is k2 = 1024. See Appendix E for details of the evaluation metrics.
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Figure 28. Pareto frontiers of the explained variance and cross-entropy loss score against different sparsity measures when varying the
Jacobian loss coefficient. The coefficient has a relatively small impact on the reconstruction quality and sparsity of the input SAE, whereas
it has a large effect on the sparsity of the output SAE and elements of the Jacobian matrix. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 7 of Pythia-160m with expansion factor R = 64 and k = 32. Recall that the maximum number of
(dead) latents is 49152 (64 times the model dimension 768), and the maximum number of non-zero Jacobian values is k2 = 1024. See
Appendix E for details of the evaluation metrics.
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Figure 29. The trade-off between reconstruction quality and Jacobian sparsity as we vary the Jacobian loss coefficient. Each dot represents
a pair of JSAEs trained with a specific Jacobian coefficient. Measured on layer 3 of Pythia-70m with k = 32.

We speculate that it is necessary to tune our hyperparameters for each layer individually to achieve improved performance;
see, for example, Figures 26 and 4 for the variation of our evaluation metrics against the coefficient of the Jacobian loss term
for individual layers of Pythia-70m and 160m.

F. More data on Jacobian sparsity
In Figure 23 we showed that Jacobians are much more sparse with JSAEs than traditional SAEs. To this end, we provided
a representative example of what the Jacobians look like with JSAEs vs traditional SAEs. Some readers may object that
this is not an apples-to-apples comparison since JSAEs are optimizing for lower L1 on the Jacobian, so it may be the case
that JSAEs merely induce Jacobians with smaller elements, but their distribution may still be the same. To address this
criticism, the examples are L2 normalized; we provide un-normalized versions as well as L1 normalized versions of the
example Jacobians in Figure 30. We also provide a histogram and a CDF of the distribution of absolute values of Jacobian
elements in Figure 32, which is taken across 10 million tokens.

F.1. Jacobian norms

In this section, we address an objection we expect some readers will have to our measures of sparsity. Our main metric for
sparsity is the percentage of elements with absolute values above certain small thresholds (e.g. Figure 2). However, one
can imagine two distributions with the same degree of sparsity, but vastly different results on this metric due to a different
standard deviation. For instance, imagine two Gaussian distributions, both with µ = 0 but with significantly different
standard deviations, σ1 ≫ σ2. They would score very differently on our metric, but their degrees of sparsity would not be
meaningfully different (since sparsity requires there to be a small handful of relatively large elements). Since our L1 penalty
encourages the Jacobians to be smaller, it could be that they simply become more tightly clustered around 0. However,
this is not the case. We can measure this by looking at the "norms" of the Jacobian, i.e. we flatten the Jacobian, treat it
as a vector, and compute its Lp norms. If the Jacobian is merely becoming smaller, we would expect all of its Lp norms
to decrease at roughly the same rate. On the other hand, if the Jacobian is becoming sparser, we would expect its L1, L2

norms to decrease while its L4, . . . , L∞ norms, which depend more strongly on the presence or absence of a few large
elements, should stay roughly the same. We present these results in Figure 35, as we can see, the Jacobian does become
slightly smaller, but most of the effect we see is indeed the Jacobian becoming significantly more sparse.
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Figure 30. Comparison of Jacobians from traditional SAEs vs JSAEs, same as Figure 2 but with different normalization. (a) Not
normalized. (b) L2 normalized. Measured on layer 15 of Pythia-410m.
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Figure 31. Comparison of Jacobians from traditional SAEs vs JSAEs, same as Figure 2 but with different normalization. (a) L1 normalized.
(b) L2 normalized. Measured on layer 3 of Pythia-70m.
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Figure 32. Further data showing that JSAEs induce much greater Jacobian sparsity than traditional SAEs. (a) A histogram of the absolute
values of Jacobian elements in JSAEs versus traditional SAEs. JSAEs induce significantly more sparse Jacobians than standard SAEs.
This means that there is a relatively small number of input-output feature pairs which explain a very large fraction of the computation
being performed. Note that only the k × k elements corresponding to active latents are included in the histogram – the remaining
(ny − k) × (nx − k) elements are zero by definition both for JSAEs and standard TopK SAEs. The histogram was collected over 10
million tokens from the validation subset of the C4 text dataset, which produced 10.24 billion feature pairs. (b) The cumulative distribution
function of the absolute values of Jacobian elements, again demonstrating that JSAEs induce significantly more computational sparsity
than traditional SAEs. Measured on layer 15 of Pythia-410m.
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Figure 33. JSAEs induce a much greater degree of sparsity in the elements of the Jacobian than traditional SAEs. Identical to Figure 2 but
measured on layer 3 of Pythia-70m.
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Figure 34. Histograms that show the frequency of absolute values of non-zero Jacobian elements for different values of the coefficient of
the Jacobian loss term. As the coefficient increases, the frequency of larger values decreases, i.e., the Jacobian becomes sparser. We
provide further details in Figure 32.
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Figure 35. Lp norms of the Jacobians. We measure these by flattening the Jacobians and treating them as a vector. These results imply
that the Jacobians are in fact becoming more sparse, as opposed to merely becoming smaller (see Section F.1). Averaged across 1 million
tokens, measured on layer 3 of Pythia-70m.
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Figure 36. The Jacobians aren’t only sparse locally (i.e. on each token in each prompt), but also globally (i.e. when averaged across many
tokens), much more so than with traditional SAEs. In particular, here we consider the full ny × nx Jacobian (i.e. not slicing based on the
TopK), which we average across 10 million tokens ( 1

N

∑
prompt,token J) before considering its summary statistics. This is an important

measure as it confirms that the connections found by JSAEs are indeed sparse in a global sense, not just when conditioning on a specific
model input. Measured on layer 15 of Pythia-410m. Note that the small numbers on the y-axis are due to the fact that, unlike in e.g.
Figure 2, here we set 100% to be ny × nx rather than k × k. We also note that for each element in the Jacobian, we are only taking the
average over the tokens on which the corresponding output SAE latent is selected by the TopK activation function (i.e. when at least one
element in the row of the Jacobian is nonzero); this is important because otherwise this measure would significantly conflate the sparsity
of the Jacobian itself with the sparsity of the activations of each individual latent.
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Figure 37. Automatic interpretability scores of JSAEs are very similar to traditional SAEs. Measured on all layers of Pythia-70m using
the “fuzzing” scorer from Paulo et al. (2024).
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Figure 38. Jacobians are substantially more sparse in pre-trained LLMs than in randomly initialized transformers. This holds both when
you actively optimize for Jacobian sparsity with JSAEs, and when you don’t optimize for it and use traditional SAEs. The proportion of
Jacobian elements with absolute values above certain thresholds. The figure shows the proportion of Jacobian elements with absolute
values above certain thresholds. Identical to Figure 7 but measured on layer 3 of Pythia-70m.
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Figure 39. The function fs, which combines the decoder of the first SAE, the MLP, and the encoder of the second SAE, is mostly linear.
Identical to Figure 8 but measured on layer 3 of Pythia-70m.
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