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Abstract

Sparse autoencoders (SAEs) have been suc-
cessfully used to discover sparse and human-
interpretable representations of the latent activa-
tions of LLMs. However, we would ultimately
like to understand the computations performed
by LLMs and not just their representations. The
extent to which SAEs can help us understand com-
putations is unclear because they are not designed
to “sparsify” computations in any sense, only la-
tent activations. To solve this, we propose Jaco-
bian SAEs (JSAEs), which yield not only spar-
sity in the input and output activations of a given
model component but also sparsity in the compu-
tation (formally, the Jacobian) connecting them.
With a naive implementation, the Jacobians in
LLMs would be computationally intractable due
to their size. One key technical contribution is
thus finding an efficient way of computing Jaco-
bians in this setup. We find that JSAEs extract a
relatively large degree of computational sparsity
while preserving downstream LLM performance
approximately as well as traditional SAEs. We
also show that Jacobians are a reasonable proxy
for computational sparsity because MLPs are ap-
proximately linear when rewritten in the JSAE ba-
sis. Lastly, we show that JSAEs achieve a greater
degree of computational sparsity on pre-trained
LLMs than on the equivalent randomized LLM.
This shows that the sparsity of the computational
graph appears to be a property that LLMs learn
through training, and suggests that JSAEs might
be more suitable for understanding learned trans-
former computations than standard SAEs.
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1. Introduction

Sparse autoencoders (SAEs) have emerged as a power-
ful tool for understanding the internal representations of
large language models (Bricken et al., 2023; Cunningham
et al., 2023; Gao et al., 2024; Rajamanoharan et al., 2024b;
Lieberum et al., 2024; Lawson et al., 2024; Braun et al.,
2024; Kissane et al., 2024; Rajamanoharan et al., 2024a).
By decomposing neural network activations into sparse, in-
terpretable components, SAEs have helped researchers gain
significant insights into how these models process informa-
tion (Marks et al., 2024; Lieberum et al., 2024; Temple-
ton et al., 2024b; O’Brien et al., 2024; Farrell et al., 2024;
Paulo et al., 2024; Balcells et al., 2024; Lan et al., 2024;
Brinkmann et al., 2025; Spies et al., 2024).

When trained on the activation vectors from neural network
layers, SAEs learn to reconstruct the inputs using a dic-
tionary of sparse ‘features’, where there are many more
features than basis dimensions of the inputs, and each fea-
ture tends to capture a specific, interpretable concept. How-
ever, the goal of this paper is to improve understanding of
computations in transformers. While SAEs are designed
to disentangle the representations of concepts in the LLM,
they are not designed to help us understand the computations
performed with those representations.

One approach to understanding computation would be to
train two SAEs, one at the input and one at the output
of an MLP in a transformer. We can then ask how the
MLP maps sparse latent features at the inputs to sparse
features in the outputs. For this mapping to be interpretable,
it would be desirable that it is sparse, in the sense that each
latent in the SAE trained on the output depends on a small
number of latents of the SAE trained on the input. These
dependencies can be understood as a computation graph or
‘circuit’ (Olah et al., 2020; Cammarata et al., 2020). SAEs
are not designed to encourage this computation graph to be
sparse. To address this, we develop Jacobian SAEs (JSAEs),
where we include a term in the objective to encourage SAE
bases with sparse computational graphs, not just sparse
activations. Specifically, we treat the mapping between the
latent activations of the input and output SAEs as a function
and encourage its Jacobian to be sparse by including an L!
penalty term in the loss function.

With a naive implementation, it is intractable to compute
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Figure 1. A diagram illustrating our setup. We have two SAEs: one trained on the MLP inputs and the other trained on the MLP outputs.
We then consider the function f, which takes the latent activations of the first SAE and returns the latent activations of the second SAE,
i.e., fs(sx) = sy. The function f, is described by the function composition of the TopK activation function of the first (input) SAE 7y,
the decoder of the first SAE dx, the MLP f, and the encoder of the second (output) SAE e,. We note that the activation function 7, is
included for computational efficiency only; see Section 4.2 for details. JSAEs optimize for fs having a sparse Jacobian matrix, which
we illustrate by reducing the number of edges in the computational graph that corresponds to fs. Traditional SAEs have sparse SAE
latents on either side of the MLP but a dense computational graph between them; JSAEs have both sparse SAE latents and a sparse
computational graph. Importantly, Jacobian sparsity approximates the computational graph notion, but, as we discuss in Section 5.4 and
Appendix B, this approximation is highly accurate due to the fact that f, is a mostly linear function.

Jacobian matrices because each matrix would have on the or-
der of a trillion elements, even for modestly sized language
models and SAEs. Therefore, one of our core contributions
is to develop an efficient means to compute Jacobian ma-
trices in this context. The approach we develop makes it
possible to train a pair of Jacobian SAEs with only approxi-
mately double the computational requirements of training a
single standard SAE (Section 4.2). These methods enabled
us to make three downstream findings.

First, we find that Jacobian SAEs successfully induce spar-
sity in the Jacobian matrices between input and output SAE
latents relative to standard SAEs without a Jacobian term
(Section 5.1). We find that JSAEs achieve the desired in-
crease in the sparsity of the Jacobian with only a slight
decrease in reconstruction quality and model performance
preservation, which remain roughly on par with standard
SAEs. We also find that the input and output latents learned
by Jacobian SAEs are approximately as interpretable as
standard SAEs, as quantified by auto-interpretability scores.
Importantly, we also find that the "computational units"
discovered by JSAEs are often highly interpretable — for ex-
ample, JSAEs find an output latent corresponding to whether
the text is in German, which is computed using several input
latents corresponding to tokens frequently found in German
text (Section 5.2).

Second, inspired by Heap et al. (2025), we investigated
the behavior of Jacobian SAEs when applied to random

transformers, i.e., where the parameters have been reini-
tialized. We find that the degree of Jacobian sparsity that
can be achieved when JSAEs are applied to a pre-trained
transformer is much greater than the sparsity achieved for
a random transformer (Section 5.3). This preliminary find-
ing suggests that Jacobian sparsity may be a useful tool for
discovering learned computational structure.

Lastly, we find that Jacobians accurately approximate com-
putational sparsity in this context because the function we
are analyzing (i.e., the combination of JSAEs and MLP) is
approximately linear (Section 5.4).

Our source code can be found at

https://github.com/lucyfarnik/jacobian-saes.

2. Related work

2.1. Sparse autoencoders

SAEs have been widely applied to ‘disentangle’ the repre-
sentations learned by transformer language models into a
very large number of concepts, a.k.a. sparse latents, features,
or dictionary elements (Sharkey et al., 2022; Cunningham
et al., 2023; Bricken et al., 2023; Gao et al., 2024; Raja-
manoharan et al., 2024b; Lieberum et al., 2024). Human
experiments and quantitative proxies apparently confirm that
SAE latents are much more likely to correspond to human-
interpretable concepts than raw language-model neurons,
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i.e., the basis dimensions of their activation vectors (Cun-
ningham et al., 2023; Bricken et al., 2023; Rajamanoharan
et al., 2024a). SAEs have been successfully applied to mod-
ifying the behavior of LLMs by using a direction discovered
by an SAE to “steer” the model towards a certain concept
(Makelov, 2024; O’Brien et al., 2024; Templeton et al.,
2024b).

Our work is based on SAEs but has a very different aim:
standard SAEs only sparsify activations, while JSAEs also
sparsify the computation graph between them (Figure 1).

2.2. Transcoders

In this paper, we focus on MLPs. Dunefsky et al. (2024);
Templeton et al. (2024a) developed transcoders, an alter-
native SAE-like method to understand MLPs. However,
JSAEs and transcoders take radically different approaches
and solve radically different problems. This is perhaps easi-
est to see if we look at what transcoders and JSAEs sparsify.
JSAEs are fundamentally an extension of standard SAEs:
they train SAEs at the input and output of the MLP and
add an extra term to the objective such that these sparse
latents are also appropriate for interpreting the MLP (Fig-
ure 1). In contrast, transcoders do not sparsify the inputs and
outputs; they work with dense inputs and outputs. Instead,
transcoders, in essence, sparsify the MLP hidden states.
Specifically, a transcoder is an MLP that you train to match
(using a mean squared error objective) the input-to-output
mapping of the underlying MLP from the transformer. The
key difference between the transcoder MLP and the under-
lying MLP is that the transcoder MLP is much wider, and
its hidden layer is trained to be sparse.

Thus, transcoders and JSAEs take fundamentally different
approaches. Each transcoder latent tells us ‘there is com-
putation in the MLP related to [concept].” By comparison,
JSAEs learn a pair of SAEs (which have mostly interpretable
latents) and sparse connections between them. At a con-
ceptual level, JSAEs tell us that ‘this feature in the MLP’s
output was computed using only these few input features’.
Ultimately, we believe that the JSAE approach, grounded in
understanding how the SAE basis at one layer is mapped to
the SAE basis at another layer, is potentially powerful and
worth thoroughly exploring.

Importantly, it is worth emphasizing that JSAEs and
transcoders are asking fundamentally different questions,
as can be seen in terms of e.g., differences in what they
sparsify. As such, it is not, to our knowledge, possible to
design meaningful quantitative comparisons, at least not
without extensive future work to develop very general auto-
interpretability methods for evaluating methods of under-
standing MLP circuits.

2.3. Automated circuit discovery

In “automated circuit discovery”, the goal is to isolate the
causally relevant intermediate variables and connections
between them necessary for a neural network to perform a
given task (Olah et al., 2020). In this context, a circuit is
defined as a computational subgraph with an interpretable
function. The causal connections between elements are de-
termined via activation patching, i.e., modifying or replacing
the activations at a particular site of the model (Meng et al.,
2022; Zhang & Nanda, 2023; Wang et al., 2022; Hanna
et al., 2023). In some cases, researchers have identified sub-
components of transformer language models with simple
algorithmic roles that appear to generalize across models
(Olsson et al., 2022).

Conmy et al. (2023) proposed a means to automatically
prune the connections between the sub-components of a
neural network to the most relevant for a given task using ac-
tivation patching. Given a choice of task (i.e., a dataset and
evaluation metric), this approach to automated circuit dis-
covery (ACDC) returns a minimal computational subgraph
needed to implement the task, e.g., previously identified
‘circuits’ like Hanna et al. (2023). Naturally, this is compu-
tationally expensive, leading other authors to explore using
linear approximations to activation patching (Nanda, 2023;
Syed et al., 2024; Kramdr et al., 2024). Marks et al. (2024)
later improved on this technique by using SAE latents as
the nodes in the computational graph.

In a sense, these methods are supervised because they re-
quire the user to specify a task. Naturally, it is not feasible
to manually iterate over all tasks an LLM can perform, so
a fully unsupervised approach is desirable. With JSAE:s,
we take a step towards resolving this problem, although the
architecture introduced in this paper initially only applies to
a single MLP layer and not an entire model. Additionally, to
the best of our knowledge, no automated circuit discovery
algorithm sparsifies the computations inside of MLPs.

There are also other approaches which focus on locating
relevant computation in ML models by estimating the con-
tribution of individual model components (Shah et al., 2024;
Balasubramanian et al., 2024).

3. Background
3.1. Sparse autoencoders

In an SAE, we have input vectors, x € X = R™. We want
to approximate each vector x by a sparse linear combination
of vectors, sy € S = R™. The dimension of the sparse
vector, ny, is typically much larger than the dimension of
the input vectors mx (i.e. the basis is overcomplete).

In the case of SAEs, we treat the vectors as inputs to an
autoencoder with an encoder e; : X — S and a decoder
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dy : S — X defined by,

sx = ex(x) = ¢(Wx + bi™) (1
% = dy(sy) = W, + b )

Here, the parameters are the encoder weights We,. €
R™*™xdecoder weights Wy, € R™x*"xencoder bias
be™ € R™, and decoder bias bd € R™. The non-
linearity ¢ can be, for instance, ReLU. These parameters
are then optimized to minimize the difference between x
and X, typically measured in terms of the mean squared
error (MSE), while imposing an L' penalty on the latent
activations sy to incentivize sparsity.

3.2. Automatic interpretability of SAE latents

In order to compare the quality of different SAEs, it is
desirable to be able to quantify how interpretable its latents
are. A popular approach to quantifying interpretability at
scale is to collect the examples that maximally activate a
given latent, prompt an LLM to generate an explanation of
the concept the examples have in common, and then prompt
an LLM to predict whether a given prompt activates the
SAE latent given the generated explanation. We can then
score the accuracy of the predicted activations relative to
the ground truth. There are several variants of this approach
(e.g., Bills et al., 2023; Choi et al., 2024); in this paper, we
use “fuzzing” where the scoring model classifies whether
the highlighted tokens in prompts activate an SAE latent
given an explanation of that latent (Paulo et al., 2024).

4. Methods

The key idea with a Jacobian SAE is to train a pair of SAEs
on the inputs and outputs of a neural network layer while
additionally optimizing the sparsity of the Jacobian of the
function that relates the input and output SAE latent acti-
vations (Figure 1). In this paper, we apply Jacobian SAEs
to multi-layer perceptrons (MLPs) of the kind commonly
found in transformer language models (Radford et al., 2019;
Biderman et al., 2023).

4.1. Setup

Consider an MLP mapping from x € X toy € ), ie.,
f:X = Yory = f(x). We can then train two k-sparse
SAEs, one on x and the other on y. The resulting SAEs
map from each of x and y to corresponding sparse latents
sx € Sxand sy € Sy, ie, sy = ex(x) and sy = ey(y),
where e, is the encoder of the first SAE and ey is the encoder
of the second SAE. Each of these SAEs also has a decoder
that maps from the sparse latents back to an approximation
of the original vector: X = dx(sx) and § = dy(sy).

We may now consider the function f; : Sx — Sy, which
intuitively represents the function, f, but written in terms

of the sparse bases learned by the SAE pair for the original
vectors x and y. Specifically, we define f; by

fs:eyofodxo'rk 3)

where o denotes function composition. Here, dy : Sx — X
maps the sparse latents given as input to f, to “dense” inputs.
Then, f : X — ) maps the dense inputs to dense outputs.
Finally, ey : Y — S, maps the dense outputs to sparse out-
puts. Note that f; first applies the TopK activation function
Tk to the sparse inputs, sy. Critically, with k-sparse SAEs,
we produce the sparse inputs by sy = ex(x), implying that
sx only has k£ non-zero elements. In that setting, TopK does
not change the inputs, i.e. sx = 7 (sx), but it does affect the
Jacobian and, in particular, allows us to compute it much
more efficiently (Section 4.2).

At a high level, we want the function f; to be ‘sparse’,
in the sense that each of its input dimensions (i.e. SAE
latent activations) only affects a small number of its output
dimensions, and each of its output dimensions only depends
on a small number of its input dimensions. We quantify the
sparsity of f, in terms of its Jacobian matrix. The Jacobian
of fs is, in index notation:

“

Intuitively, we can consider maximizing the sparsity of the
Jacobian as minimizing the number of edges in the compu-
tational graph connecting the input and output nodes (Fig-
ure 1), i.e. maximizing the number of near-zero elements
in the Jacobian matrix. We note that the Jacobian is not a
perfect measure of the sparsity of the computational graph,
but it is an accurate proxy (see Section 5.4 and Appendix B)
while being computationally tractable.

We simultaneously train two separate SAEs on the input and
output of a transformer MLP with the objectives of low re-
construction error and sparse relations between the separate
SAE latents (via the Jacobian). We do not need to optimize
for the sparsity of the latent activations via a penalty term
in the loss function because we use k-sparse autoencoders,
which keep only the k largest latent activations per token
position. Hence, our loss function is

Ty  ny

N - A
£ = MSE(x, %) + MSE(y,9) + 15 > > |y )

i=1 j=1

Here, £ is the number of non-zero elements in the TopK
activation function, n, ny are the dimensionalities of the
latent spaces of the input and output SAEs, respectively, and
A is the coefficient of the Jacobian loss term. We divide
by k? because, as we will see later, there are at most k2
non-zero elements in the Jacobian. Finally, note that if we
set A = 0, then our objective effectively trains traditional
SAEs for each of x and y independently.
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Figure 2. JSAEs induce a much greater degree of sparsity in the
elements of the Jacobian of f, than traditional SAEs. The bars
show the average proportion of Jacobian elements with absolute
values above certain thresholds. At most & x k elements can be
nonzero, so we take 100% on the y-axis to mean k X k. The
average was taken across 10 million tokens. This example is from
layer 15 of Pythia-410m. For layer 3 of Pythia-70m and layer 7 of
Pythia-160m, see Figure 34, for more quantitative information on
Jacobian sparsity across model sizes, layers, and hyperparameters
see Figures 24, 25, and 26. We present further discussion of the
sparsity of the Jacobian in Appendix F.

4.2. Making the Jacobian calculation tractable

Computing the Jacobian naively (e.g., using an automatic
differentiation package) is computationally intractable, as
the full Jacobian has size B x ny x nx where B is the number
of tokens in a training batch ny is the number of SAE latents
for the input, and ny is the number of SAE latents for the
output. Unfortunately, typical values are around 1, 000 for
B and around 32, 000 for ny and ny (taking as an example
a model dimension of 1,000 and an expansion factor of
32). Combined, this gives a Jacobian with around 1 trillion
elements. This is obviously far too large to work with in
practice, and our key technical contribution is to develop an
efficient approach to working with this huge Jacobian.

Our first insight is that for each element of the batch, we
have a ny Xny Jacobian, where ny and ny are around 32, 000.
This is obviously far too large. However, remember that
we are interested in the Jacobian of f;, so the input is the
sparse SAE latent vector, s and the output is the sparse
SAE latent vector, s,. Importantly, as we are using k-sparse
SAEs, only k elements of the input and output are “on”
for any given token. As such, we really only care about
the k x k elements of the Jacobian of f;, corresponding
to the inputs and outputs that are “on”. This reduces the
size of the Jacobian by around six orders of magnitude,
and renders the computation tractable. However, to make
this work formally, we need all elements of the Jacobian
corresponding to “off”” elements of the input and output to
be zero. This is where the 7, in the definition of f5 becomes
important. Specifically, the 7 ensures that the gradient of
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Figure 3. JSAEs allow us to locate the "input features" of each
feature computed by the MLP. For instance, in Pythia-410m, the
MLP at layer 15 is computing the feature "this text is in German".
JSAE:s discover the inputs which the MLP uses to decide whether
this feature should be on or off. These inputs correspond to tokens
frequently found in German text, place names in German-speaking
countries, and text about Nazi Germany. See Appendix C for
details.

fs wrt any of the inputs that are “off” is zero. Without 7y,
the Jacobian could be non-zero for any of the inputs, even
if changing those inputs would not make sense, as it would
give more than k elements being “on” in the input, and thus
could not be produced by the k-sparse SAE.

Our second insight was that computing the Jacobian by
automatic differentiation would still be relatively inefficient,
e.g., requiring k£ backward passes. Instead, for standard
GPT-2-style MLPs, we noticed that an extremely efficient
Jacobian formula can be derived by hand, requiring only
three matrix multiplications and along with a few pointwise
operations. We present this derivation in Appendix A.

With these optimizations in place, training a pair of JSAEs
takes about twice as long as training a single standard SAE.
We measured this by training ten of each model on Pythia-
70m with an expansion factor of 32 for 100 million tokens on
an RTX 3090. The average training durations were 72mins
for a pair of JSAEs and 33 mins for a traditional SAE, with
standard deviations below 30 seconds for both.

5. Results

Our experiments were performed on LLMs from the Pythia
suite (Biderman et al., 2023), the figures in the main text
contain results from Pythia-410m unless otherwise specified.
We trained on 300 million tokens with k£ = 32 and an expan-
sion factor of 64 for Pythia-410m and 32 for smaller models.
We reproduced all our experiments on multiple models and
found the same qualitative results (see Appendix E).
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Figure 4. Reconstruction quality, model performance preservation, and sparsity metrics against the Jacobian loss coefficient. JSAEs
trained on layer 7 of Pythia-160m with expansion factor 64 and k = 32; see Figure 26 for layer 3 of Pythia-70m. Recall that the maximum
number of non-zero Jacobian values is k> = 1024. In accordance with Figure 5, all evaluation metrics degrade for values of the coefficient

above 1. See Appendix E for details of the evaluation metrics.

5.1. Jacobian sparsity, reconstruction quality, and
auto-interpretability scores

First, we compared the Jacobian sparsity for standard SAEs
and JSAEs. Note that, unlike with SAE latent activations,
there is no mechanism for producing exact zeros in the
Jacobian elements corresponding to active latents. Hence,
we consider the number of near-zero elements rather than
the number of exact zeros. To quantify the difference in
sparsity between the two, we looked at the proportion of
the elements of the Jacobian above a particular threshold
when aggregating over 10 million tokens (Figure 2). Here,
we found that JSAEs dramatically reduced the number of
large elements of the Jacobian relative to traditional SAEs.
We also note that the Jacobians are not only sparse on each
individual token, but also when averaged across a large
number of tokens (see Figure 36 in the appendix).

Importantly, the degree of sparsity depends on our choice
of the coefficient A\ of the Jacobian loss term. Therefore,
we trained multiple JSAEs with different values of this
parameter. As we might expect, for small values of A, i.e.,
little incentive to sparsify the Jacobian, the input and output
SAEs perform similarly to standard SAEs (Figure 4 blue
lines), including in terms of the variance explained by the
reconstructed activation vectors and the increase in the cross-
entropy loss when the input activations are replaced by their

reconstructions. Unsurprisingly, as A grows larger and the
Jacobian loss term starts to dominate, our evaluation metrics
degrade. Interestingly, this degradation happens almost
entirely in the output SAE rather than the input SAE —
we leave it to future work to investigate this phenomenon
further.

Critically, Figure 4 suggests there is a ‘sweet spot’ of the
A hyperparameter where the SAE quality metrics remain
reasonable, but the Jacobian is much sparser than for stan-
dard SAEs. To further investigate this trade-off, we plotted a
measure of Jacobian sparsity (the proportion of elements of
the Jacobian above 0.01) against the average cross-entropy
(Figures 4, 5, and 29). We found that there is indeed a sweet
spot where the average cross-entropy is only slightly worse
than a traditional SAE, while the Jacobian is far sparser.
For Pythia 410m (Figure 5) this value is around A = 0.5,
whereas for Pythia-70m, it is around A = 1 (Figure 29). We
choose this value of the Jacobian coefficient (i.e. A = 0.5 for
Pythia-410m in the main text, and A = 1 for Pythia-160m
in the Appendix) in other experiments.

We also measure the interpretability of JSAE latents using
the automatic interpretability pipeline developed by Paulo
et al. (2024) and compare this to traditional SAEs. We find
that JSAEs achieve similar interpretability scores (Figure 6).
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Figure 5. The trade-off between reconstruction quality and Jaco-
bian sparsity as we vary the Jacobian loss coefficient. Each dot
represents a pair of JSAEs trained with a specific Jacobian coeffi-
cient. The value of A is included for some points. We can see that
a coefficient of roughly A = 0.5 is optimal for Pythia-410m with
k = 32. Note that the CE loss score is the average of the CE loss
scores of the pre-MLP JSAE and the post-mlp JSAE. Measured
on layer 15 of Pythia-410m, similar charts with a wider range of
models and metrics can be found in Figures 27, 28, and 29.
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Figure 6. Automatic interpretability scores of JSAEs are very simi-
lar to traditional SAEs. Measured on all odd-numbered layers of
Pythia-410m using the “fuzzing” scorer from Paulo et al. (2024).
For all layers of Pythia-70m see Figure 37.

5.2. Max-activating examples of JSAEs

Next, we interpreted the "max-activating” examples of
JSAE:s in order to verify that JSAEs can locate semanti-
cally meaningful computational units. Namely, we took
the latents of the output SAE 7 which have large Jacobian
values when averaging across a wide distribution of text.
Then for each output SAE latent ¢, we found the 10 input
SAE latents 5 which have the largest average Jacobian el-
ements J;_; ;. We find that these combinations are often
highly interpretable. For example, as shown in Figure 3,
the very first output latent of layer 15 of Pythia-410m as
sorted by average Jacobian value corresponds to "this text
is in German". We find that it is computed as a function of
input latents corresponding to:

» Tokens which frequently appear in German text, such
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Figure 7. Jacobians are substantially more sparse in pre-trained
LLMs than in randomly initialzied transformers. This holds both
when you actively optimize for Jacobian sparsity with JSAEs, and
when you don’t optimize for it and use traditional SAEs. The figure
shows the proportion of Jacobian elements with absolute values
above certain thresholds. At most k2 elements can be nonzero, we
therefore take k2 to be 100% on the y-axis. Jacobians are signifi-
cantly more sparse in pre-trained transformers than in randomly
re-initialized transformers. This shows that Jacobian sparsity is, at
least to some extent, connected to the structures that LLMs learn
during training. This stands in contrast to recent work by Heap
et al. (2025) showing that traditional SAEs achieve roughly equal
auto-interpretability scores on randomly initialized transformers
as they do on pre-trained LL.Ms. Measured on layer 15 of Pythia-
410m, for layer 3 of Pythia-70m see Figure 38. Averaged across
10 million tokens.

as "Pf", "sch", "Kle", and "von"

» Names of places where people speak German, such as
"Berlin" or "Austria"

* Words and phrases related to the Third Reich, such

as "Nazi", "concentration camp", "Hitler", and "Holo-
caust"

For a few of handpicked examples, see Appendix C. A large
number of examples which are not handpicked is available
at tinyurl.com/jsaes-qualitative.

5.3. Performance on re-initialized transformers

To confirm that JSAEs are extracting information about
the complex learned computation, we considered a form of
control analysis inspired by Heap et al. (2025). Specifically,
we would expect that trained transformers have carefully
learned specific, structured computations while randomly
initialized transformers do not. Thus, a possible desider-
atum for tools in mechanistic interpretability is that they
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Figure 8. The function f,, which combines the decoder of the first SAE, the MLP, and the encoder of the second SAE, is mostly linear.
Specifically, the vast majority of scalar functions going from sy ; to sy ; are linear. (a) Examples of linear, JumpReLU, and other functions
relating individual input SAE latents and output SAE latents. See Figure 9 for more examples. (b) For the empirically observed sx and
randomly selected 7, j (of those corresponding to active SAE latents), the vast majority of scalar functions from s ; to sy ; are linear. For
details see Appendix B. The proportion of linear function also noticeably increases with JSAEs compared to traditional SAEs, meaning
that JSAEs induce additional linearity in fs. (c) Because the vast majority of functions are linear, the Jacobian usually precisely predicts
the change observed in the output SAE latent when we make a large change to the input SAE latent’s value (namely subtracting 1, note
that the empirical median value of sy ; is 2.5). Each dot corresponds to an (s, ;, Sy,;) pair. For 97.7% of pairs (across a sample size of 10
million) their Jacobian value nearly exactly predicts the change we see in the output SAE latent when making large changes to the input
SAE latent’s activation, i.e. |Asy ;| & |J¢, ;|- The scatter plot shows a randomly selected subset of 1,000 (sy,;, Sy,;) pairs. For further
details see Appendix B. Measured on layer 15 of Pythia-410m, for layer 3 of Pythia-70m see Figure 39, for the linearity results on other
models and hyperparameters see Figures 15, 16, and 17.

ought to work substantially better when analyzing the com-  5.4. f is mostly linear
plex computations in trained LLMs than when applied to
LLMs with randomly re-initialized weights. This is pre-
cisely what we find. Specifically, we find that the Jacobians
for trained networks are always substantially sparser than
the corresponding random trained network, and this holds
for both traditional SAEs and JSAEs (Figure 7). Further, the
relative improvement in sparsity from the traditional SAE
to the JSAE is much larger for trained than random LLMs,
again indicating that JSAEs are extracting structure that
only exists in the trained network. Note that we also see that
for traditional SAEs, there is a somewhat more sparse Jaco-
bian for the trained than randomly initialized transformer.
This makes sense: we would hope that the traditional SAE
basis is somewhat more aligned with the computation (as
expressed by a sparse Jacobian) than we would expect by
chance. However, it turns out that without a “helping hand”
from the Jacobian sparsity term, the alignment in a tradi-
tional SAE is relatively small. Thus, Jacobian sparsity is a
property related to the complex computations LL.Ms learn
during training, which should make it substantially useful
for discovering the learned structures of LLMs. 'By JumpReLU, we mean any function of the form f(z) =

aJumpReLU(bx + ¢). Recall that JumpReLU(z) = z if z > d
and 0 otherwise. a, b, ¢, d € R are constants.

Importantly, the Jacobian is a local measure. Thus, strictly
speaking, a near-zero element of the Jacobian matrix implies
only that a small change to the input SAE latent does not
affect the corresponding output SAE latent. It may, however,
still be the case that a large change to the input SAE latent
would change the output SAE latent. We investigated this
question and found that f is usually approximately linear in
a wide range and is often close to linear. Specifically, of the
scalar functions relating individual input SAE latents s, ;
to individual output SAE latents sy ;, the vast majority are
linear (Figure 8b). This is important because, for any linear
function, its local slope is completely predictive of its global
shape, and therefore, a near-zero Jacobian element implies
a near-zero causal relationship. For the scalar functions
which are not linear, we frequently observed they have a
JumpReLU structure! (Erichson et al., 2019). Notably, a
JumpReLU is linear in a subset of its input space, so even for
these scalar functions the first derivative is still an accurate
measure within some range of s, ; values. It is also worth
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noting that with JSAEs, the proportion of linear functions is
noticeably higher than with traditional SAEs, so at least to a
certain extent, JSAEs induce additional linearity in the MLP.
To confirm these results, we plotted the Jacobian against
the change of output SAE latent sy ; as we change the input
SAE latent s, ; by subtracting 1 (Figure 8c)?. We found
that 97.7% of the time, |Asy ;| ~ |Jy, ;;|. For details see
Appendix B. While these results are strongly suggestive, we
would caution that it is difficult to interpret them definitively
as we are not evaluating the reconstruction error for a linear
model fitted to the input-output relationship for the MLP
latents.

6. Conclusion

We introduced Jacobian sparse autoencoders (JSAEs), a new
approach for discovering sparse computation in LLMs in a
fully unsupervised way. We found that JSAEs induce spar-
sity in the Jacobian matrix of the function that represents an
MLP layer in the sparse basis found by JSAEs, with minimal
degradation in the reconstruction quality and downstream
performance of the underlying model and no degradation
in the interpretability of latents. We demonstrated that the
computation found by JSAEs is often highly interpretable,
allowing us to see not only the concepts computed by MLPs,
but also the "input concepts" which are used to compute
each "output concept”. We also found that Jacobian sparsity
is substantially greater in pre-trained LLMs than in ran-
domly initialized ones suggesting that Jacobian sparsity is
indeed a proxy for learned computational structure. Lastly,
we found that Jacobians are a highly accurate measure of
computational sparsity due to the fact that the MLP in the
JSAE basis consists mostly of linear functions relating input
to output JSAE latents.
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A. Efficiently computing the Jacobian

A simple form for the Jacobian of the function fs = ey o f o dy o 73, which describes the action of an MLP layer f in the
sparse input and output bases, follows from applying the chain rule. Note that here, the subscripts f;, ey, etc. denote the
function in question rather than vector or matrix indices. For the GPT-2-style MLPs that we study, the components of f, are:

1. TopK. This function takes sparse latents s and outputs sparse latents Sy. Importantly, s, = Sx. This step makes the

backward pass of the Jacobian computation more efficient but does not affect the forward pass.
Sx = Tk(Sx)
2. Input SAE Decoder. This function takes sparse latents sx and outputs dense MLP inputs X:
% = dy(5y) = W5, 4 bl
3. MLP. This function takes dense inputs X and outputs dense outputs y:
z=WX+b, y=Wdur(z)+by
where ¢pp is the activation function of the MLP (e.g., GeLU in the case of Pythia models).

4. Output SAE Encoder. This function takes dense outputs y and outputs sparse latents s,:
Sy = ey(y) = Tk (W;ncy + b)e,nc)
The Jacobian Jy, € R™*™ for a single input activation vector has the following elements, in index notation:

Jfoij =

Osyi _ 3 sy Oy 0z Odm O3y
0Osy,j iyt Oyr 0z¢ Oy, 055, O5x j

We compute each term like so:
1. Output SAE Encoder derivative:

3sy_¢
Yk

-

ey | e _ [ ek
E i enc, ik — .
. W ! y.ik 0 otherwise

6)

(N

®

€))

(10)

Y

where K, is the set of indices selected by the TopK activation function 75 of the second (output) SAE. Importantly, the

subscript k does not indicate the k-th element of 7, whereas it does indicate the k-th column of ye‘fk

2. MLP derivatives:

8yk (92:[
o Wa ke dvip(2e) Fra Wi em
3. Input SAE Decoder derivative:
oz
mo_ Wdec
agx N X,mn

4. TopK derivative:

05,, [1 ifjek
05y j 0 otherwise

(12)

13)

(14)

where K is the set of indices (corresponding to SAE latents) that were selected by the TopK activation function 73, of

the first (input) SAE, which we explicitly included in the definition of f above.
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When we combine all the terms:

Jo = ) 2oem Wyl Wake dae(2) Wi em Wlke ifiekynjek, (15)
Fortd 0 otherwise

Let W;"C(a“ive) € RFXmy and Wee@ctive) ¢ RmxXk contain the active rows and columns, i.e., the rows and columns
corresponding to the /C; or Ky indices respectively. The Jacobian then simplifies to:

J("::ctive) — VV}e/nc(aclive)VV2 . d)]/\/ILP (Z) . W] W;iec(active) ( 1 6)
. —_—— — ——
RF X dyvip RAMLP X AMLP RAMLP Xk

where dyp is the hidden size of the MLP. Note that J (ficm'e) is of size k x k, while the full Jacobian matrix J ¢_is of size

ny X ny. However, J (J;“:nve) contains all the nonzero elements of J ¢, so it is all we need to compute the loss function to train
Jacobian SAEs (Section 4.1).

A.1. JSAEs with GLUs

The equations above can be easily adapted to work with gated linear units (GLUs), which are significantly more common in
modern LLMs than GPT-2-style MLPs.

To do this, we modify the MLP equations like so:

g = W,X + b, (17)
s = ¢mrr(g) (18)
h=W;x+b, (19)
z=hos (20)
y =Wz + b (21)
where © is elementwise multiplication.
We then modify the derivatives accordingly:
Yk
= Wa (22)
2
82’@ 88@ (9/1@
=h 23
0t BT O )
oh
55 = Wim (24)
xm.
88@ ’
ot 25
dge dmrp(9e) (25)
9g¢
- m 26
8@,,1 g0 ( )
27

Combining the terms again:

ke WS Wt (e DA (90) Wt + 50 Waom) WSS if i € K A j € Ky o8)
Fortd 0 otherwise
The Jacobian is then:
J(f?tive) — W)e/nc(active)wz . (dlag (h e QS]/\/[LP(g)) Wg 4 dlag(S)W]) . Wgec(aclive) (29)
———

Rk X dmLp RIMLP X my Rmxxk
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B. f, is approximately linear

Consider the scalar function f; (; j)|s, : R — R which takes as input the j-th latent activation of the first SAE (i.e. s ;) and
returns as output the i-th latent activation of the second SAE (i.e., sy ;), while keeping the other elements of the input vector
fixed at the same values as sy. In other words, this function captures the relationship between the j-th input SAE latent and
the i-th output SAE latent in the context of sy. Geometrically, we start off at the point sy, and we move from it through the
input spaces in parallel to the j-th basis vector, and then we observe how the output of f projects onto the i-th basis vector.
Formally,

fs,(i,j) Sx(x) =fs (w(sxa i7x))j (30)
(s, 2)) = {x o=k (31)
sx,; otherwise

These are the functions shown in Figure 8a, of which the vast majority are linear (Figure 8b).

As we showed in Figure 8c, the absolute value of a Jacobian element nearly perfectly predicts the change we see in the
output SAE latent activation value when we make a large intervention on the input SAE latent activation. However, in the
same figure, there is a small cluster of approximately 2.5% of samples, where the Jacobian element is near zero, but the
change observed in the downstream feature is quite large. We proceed by exploring the cause behind this phenomenon.

Note that each point in Figure 8 corresponds to a single scalar function f; (; ;)|s, (a pair of latent indices). An expanded
version of Figure 8 is presented in Figure 10. Importantly, we show the ‘line’, the top-left cluster, and outliers visible in
Figure 8 in different colors, which we re-use in the following charts (Figures 11 and 12). It also includes 10K samples,
compared to 1K in Figure 8c: as above, most samples remain on the line, but the greater number of samples makes the
behavior of the top-left cluster and outliers clearer.

Figure 11 illustrates some examples of functions f; (; ;)[s, taken from each category shown in Figure 8, i.e., the line, cluster,
and outliers. The vast majority of functions belong to the line category and are typically either linear or akin to JumpReLLU
activation functions (which include step functions as a special case). By contrast, the minority of functions belonging to the
cluster or outliers are typically also JumpReL U-like, except where the unmodified input latent activation is close to the
point where the function ‘jumps’, so when we subtract an activation value of 1 from the input (as in Figures 8c and 10), this
moves to the flat region where the output latent activation value is zero.

As we can see, the vast majority of these functions are either linear or JumpReLUs. Indeed, we verify this across the sample
size of 10,000 functions and find that 88% are linear, 10% are JumpReLU (excl. linear, which is arguably a special case
of JumpReLU), and only 2% are neither’. This result is encouraging — for a linear function, the first-order derivative is
constant, so its value (i.e., the corresponding element of the Jacobian) completely expresses the relationship between the
input and output values (up to a constant intercept). For the 88% of these scalar functions that are linear, the Jacobian thus
accurately captures the notion of computational sparsity that interests us, rather than serving only as a proxy. And for the
10% of JumpReLUs, the Jacobians still perfectly measure the computational change we observe when changing the input
latent within some subset of the input space.

While we expect the remaining 2% of scalar functions (Jacobian elements) to contribute only a small fraction of the
computational structure of the underlying model, we preliminarily investigated their behavior. Figure 12 shows 12 randomly
selected non-linear, non-JumpReLU f (; ;)|s, functions. Even though these functions are nonlinear, they are still reasonably
close to being linear, i.e., their first derivative is still predictive of the change we see throughout the input space. Indeed,
most of them are on the diagonal line in Figure 10.
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Figure 9. Additional examples of scalar functions between sy ; to sy,;. The top row shows linear functions, the middle row shows
JumpReLU functions, and the bottom row shows other functions. Recall that linear functions constitute a majority of the functions we
observe empirically and that using JSAEs instead of traditional SAEs further increases the proportion of linear functions.

15



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

Correlation between Jacobian value and change in downstream feature
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Figure 10. An expanded version of Figure 8c, measured on layer 3 of Pythia-70m. A scatter plot showing that values of Jacobian elements
tend to be approximately equal to the change we see in the downstream feature when we modify the value of the upstream feature, namely
when we subtract 1 from it. Each dot corresponds to an (input SAE latent, output SAE latent) pair. Unlike Figure 8c, this figure colors in
the dots depending on which cluster they belong to — blue for "on the line", green for "in the cluster”, red for "outlier". Additionally, this
figure contains 10,000 samples (rather than 1,000 as in Figure 8c), which allows us to see more of the outliers and edge cases, though at
the cost of visually obfuscating the fact that 97.5% of the samples are on the diagonal line, 2.1% are in the cluster, and 0.4% are outliers.
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Figure 11. A handful of f; (; j)|s, functions corresponding to the points in Figure 10. The color matches the group (and therefore the
color) they were assigned in Figure 10. The red dashed vertical line denotes s&, i.e. the activation value of the SAE latent before we

intervened on it. Note that the functions are not selected randomly but rather hand-selected to demonstrate the range of functions. We will
quantitatively explore what proportion of f; (; ;)|s, functions have which structure in other figures.
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Figure 12. A random selection of the non-linear, non-JumpReLU f; (; jy|s, functions. Note that non-linear, non-JumpReLU functions
only constitute about 2% of f (; )|s, functions. Even though these functions are clearly somewhat non-linear, their slope does still
change quite slowly for the most part, which means that a first-order derivative at any point in the function is still reasonably predictive of

the function’s behavior in at least some portion of the input space (though there are some rare exceptions). The color again matches the
©)

X,%°

group (and therefore the color) they were assigned in Figure 10; the red dashed vertical line denotes s, ;, i.e. the activation value of the

SAE latent before we intervened on it.

18



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

a
( ) 5000 o
k=
3
O 2500 A
O T T T T
-0.02 0.00 0.02 0.04 0.06
Mean second derivative across the function
(b)
£ 5000 -
S
Q
0 -

(=)

T T T T T
100 200 300 400 500
Mean absolute value of second derivative across the function

~
N2
Count

()]

S

S

S S

1
(=) . |

T T I T T T
10000 20000 30000 40000 50000 60000
Maxmum absolute value of second derivative across the function

Figure 13. Distribution of second-order derivatives of functions f; (; j|s,. Includes all functions, regardless of whether they are linear,
JumpReLU, or neither. For a version that only includes non-linear, non-JumpReLU functions, see Figure 14. (a) The mean of the
second-order derivative over the region of the input space. (b) The mean of the absolute value of the second-order derivative over the
region of the input space. (c) The maximum value the second-order derivative takes in the region of the input space. Note that we are
approximating the second derivative by looking at changes over a very small region (specifically 0.005), i.e., we do not take the limit as
the size of this small region goes to zero; this is important because derivatives which would otherwise be undefined or infinite become
finite with this approximation and therefore can be shown on the histograms. Also, we note that the means and maxima are taken over the
region of the input space in which SAE features exist; see the footnote on page 14.
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Figure 14. Distribution of second-order derivatives of functions f (; jy|s,. Unlike Figure 13, this figure only includes the subset of the
functions that are neither linear nor JumpReLU=like. (a) The mean of the second-order derivative over the region of the input space. (b)
The mean of the absolute value of the second-order derivative over the region of the input space. (c) The maximum value the second-order
derivative takes in the region of the input space. Note that we are approximating the second derivative by looking at changes over a very
small region (specifically 0.005), i.e. we do not take the limit as the size of this small region goes to zero; this is important because
derivatives which would otherwise be undefined or infinite become finite with this approximation and therefore can be shown on the

histograms. Also, we note that the means and maxima are taken over the region of the input space in which SAE features exist; see the
footnote on page 14.
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Pythia-70m Pythia-160m Pythia-410m
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Figure 15. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained
on the feed-forward network at different layers of Pythia-70m, 160m, and 410m with fixed expansion factors R = 64 and k = 32. We
computed the fractions over 1 million samples.
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Figure 16. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 3 of Pythia-70m (left) and layer 7 of Pythia-160m (right), with fixed expansion factors R = 64 and
k = 32 and varying Jacobian loss coefficient (Section 4). We computed the fractions over 1 million samples.
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Figure 17. The fractions of Jacobian elements that exhibit a linear relationship between the input and output SAE latent activations, a
JumpReLU-like relationship, and an uncategorized relationship, as described in Section 5.4. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 3 of Pythia-70m with varying expansion factors (and hence numbers of latents; left) but fixed sparsities
k = 32, and varying sparsities but fixed expansion factors R = 64 (Section 4). We computed the fractions over 1 million samples.
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We can measure this more precisely by looking at the second-order derivative of f (; j)|s,- A zero second-order derivative
across the whole domain would imply a linear function and, therefore, perfect predictive power of the Jacobian, while the
larger the absolute value of the second-order derivative, the less predictive the Jacobian will be. This distribution is shown in
Figure 13. The same distribution, which only includes the non-linear, non-JumpReLU functions, is shown in Figure 14. On
average, the second derivative is extremely small for all features and effectively zero for the vast majority.

C. Qualitative examples of the computations discovered by JSAEs

A common approach to interpreting LLM components like neurons or SAE latents is to collect token sequences and the
corresponding activations over a text dataset (e.g., Yun et al., 2021; Bills et al., 2023). For example, the greatest latent
activations may be retained, or activations from different quantiles of the distribution over the dataset (Bricken et al., 2023;
Choi et al., 2024; Paulo et al., 2024).

We determined the set of ‘top’ output SAE latent indices by collecting the mean absolute values of non-zero Jacobian
elements over a text dataset and sorting the output latents in descending order. Then, for each output latent, we found the
input SAE latents that were most strongly connected to the output latent, again by sorting the input latents in descending
order of the mean absolute value of non-zero Jacobian elements over the dataset. Finally, for both the output and input
latents, we collected the individual latent activations over text samples with a context length of 16 tokens, retaining samples
where at least one token produced a non-zero activation for the SAE latent. We chose a short context length to conveniently
display the examples in a table format, and display here the top eight examples for each latent index, sorting the examples in
descending order of the maximum latent activation over its tokens.

Each of the following figures comprises a table for a single output SAE latent (in pink), and a series of tables for the input
latents with the greatest influences on the output latent, as determined by the mean absolute value of non-zero Jacobian
elements. Conceptually, one may consider each figure as describing a single ‘function’, where the output and input latents
represent the function output and inputs, respectively. Each table within the figure of examples displays a list of at most 12
examples, each comprising 16 tokens; we exclude the end-of-sentence token for brevity. The values of non-zero Jacobian
elements and the activations of the corresponding input and output SAE latent indices are indicated by the opacity of the
background color for each token. We take the opacity to be the element or activation divided by the maximum value over the
dataset, i.e., all the examples with a non-zero Jacobian element for a given pair of input and output SAE latent indices. For
clarity, we report the maximum element or activation alongside the colored tokens.

3Note that we are testing whether functions are linear or JumpReLUs only in the region of input space within which SAE activations
exist. In particular, this means that we are excluding negative numbers. More specifically, the domain within which we test the function’s

structure is [0, max(5, s(fz + 1)]. In 92% of cases st 41 < 5; the median s,((lz is 2.5.

X > Ox,1
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Example tokens Max. activation

W-We- lic ken ist -Bon us. 5.596
ro_Lau-36 Mon. 5.542
es mussJOH einer aus1A nd ischen Bank sein . Log ischer we ise 5.522
. SiekAnnen sich j B88F zeit abmelden . i . Click Here 5.387
-re. st_D ien.. \n 5.315
cher Jch Sei@iizeh A  haben  Kames seh 7¢ 5275

G-\nJ ump No multiple accounts or free bonuses in a 5.254

we-borrowing foodfrom China, next .. Ohwhatawebwe 5.247
Kaufen will_Kannich tro @demdas GoldY is be 2%
ber A L4r§iGHei e di vo 1A ndige K ontol e Aldber 223

bonus codes 2019, soMASSIGIH We gin Gl W ett bA 14 5.208
re Immob il ie in Spanien -N-beh 5.207

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 34455.

Example tokens Max. activation

dam it ein ver[SEN@EN , dass wir Cookies verw enden . Die 1.292 x 10*
we isen , dass Sie nicht mehr als 11 Mon|ate @USS ér hal 1.229 x 10
st super_A14n_ 1.173 x 10!
GoldenV isa ),_ 1.167 x 10!
FA LbrdasGold i in 201 r JSEER  Zu dies L1 0
W Efifi Sieauf We [iter'K lic ken ist ThrBonus ver 1.139 x 10*
age : W giifliehl die Immob il ie dlifeh eine Ges ells chaft 1.134 x 10!
wngabschicken daert ren ner sur ATAGRIeien: L 10
lich die IDK arte ver | Ang[@ffiwerden , das sehr s chn 1.126 x 10
te "\n" Auf alle W A14n sche 8ilig cg BgeN 1.125 x 10
ReiiEoderAIeEERy 1+ MBEDCOgugeigek 1121~ 10
hat Span ien €iil Ges etz er JaSSIeH, dass einemN icht 1.116 x 10!

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 39503. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 15130 tokens, and has a mean of 3.966 x 10! (rank 0 for the output
SAE latent) and a standard deviation of 7.743 x 10~2 over its non-zero values.
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Example tokens Max. activation
ZA14[fiCh St utt [GaF0 Lo [ipZig/ H SIS 6.834
OTCcadets , students , and staff of Ans-Middle High School 6.788
Outreach announced that two groups of students from Ans-Middle High Schoolwon 6.693
ride fromZurich to Rh. Falls ( withasmall section of our 6.679
aud . U55Branden bur.Tor Bus20000U hr die 6.644
at the Ans -Middle HighSchool track . \nGrammy awardwinning 6.566
,Ans-, Germany , onMay18 , 2015 . Fryewas 6.546
parents to attend . \nW ies b- students find matha little fish 6.480
into the Gi-b acht al valley . Onthe trail alongthe edge 6.471
was the first case for the bMCKob lenl office . Capt. 6.448
ol ie . Follow the signs Branden bur.Tor Brand enburg Gate or 6.423
for the Kob lenl office . \nbMC "’ s Captain Dennis Brand 6.391

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 3387. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 10355 tokens, and has a mean of 3.437 x 10~ (rank 1 for the output
SAE latent) and a standard deviation of 2.873 x 10~2 over its non-zero values.

Example tokens Max. activation
s DrAlex-and his team found the main reason for that is the 1.149 x 10!
for Nuclear Physics , Rup recht Kar Is University , the-CancerReseaIch 1.142 x 10!
, Chris Kend rick , Sally AnneF itter andPenny-. \nMore 1.137 x 10!
1.2inCzechoslov akia,1 .1in the-Democratic 1.119 x 10!
mind, intellect "), fromPro to—-ic smund iz , * 1.089 x 10!
andHydeF 1i ppo’sAutobahn articles fromThe-Way and 1.084 x 10!
"L ili Marlene ", the song that -andAmerican soldiers bothloved 1.075 x 10!
Is— Univers itAt , the-CancerResearchCenter(DKFZ ), 1.070 x 10!
. In addition ,Dr-’ steam also confirmed that cats ate about 1.068 x 10!
Art.3of the- Constitution that addresses equality before the law . \n 1.064 x 10!
under constant international external laboratory control of the-acc reditation systemIn stand . 1.052 x 10!
But the history of carn ival canbe traced back to-ic tribes who 1.051 x 10!

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 41811. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 764 tokens, and has a mean of 1.619 x 10~* (rank 2 for the output
SAE latent) and a standard deviation of 8.654 x 10~2 over its non-zero values.
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Example tokens

Max. activation

National Archives report " Hit/ler|” s Shadow :-War Crim inals , 1.203 x 10!
Thousands of Holocaust victims transported to- concentration camps by aFrench railway company 1.195 x 10*
AirCorps after WW II (where he survived ayear as a- prisoner 1.170 x 10!
aname inspired by the chief Ukrainian- leader , StepanBand era ) 1.168 x 10!
Powers refused cooperation with the company until connections With-Germanywere severed . \n 1.155 x 10*
orrow , the World ! ," from1944 , aboutateen— age- 1.145 x 10!
, 000FrenchJews to- concentration camps , though experts disagree on its degree 1.145 x 10*
of the Jewish people during the-era it was the work of white Europeans 1.118 x 10!
computing pioneer , and his development of asystem to crack-codes in order 1.099 x 10!
it hadno effective control over operations during the-occupation from1940 to 1944 1.090 x 10*
it withheavy water+ -chemicals , prayed to god for assistance , struck 1.079 x 10*
symbol of Russian resistance to-invasion . Russia’s "Window on the West 1.067 x 10*

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32619. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 316 tokens, and has a mean of 1.518 x 10! (rank 3 for the output

SAE latent) and a standard deviation of 1.193 x 10~2 over its non-zero values.

Example tokens

Max. activation

ownedby the -W aken itz family in 14 34 . The same family 1.605 x 10!
World Nuclear Industry Status Report2013, July . \n8David-Hipp el 1.526 x 10!
asMarta , one of the singing -Trapp children . Sheil2 1.509 x 10!
knockdown kiss is administered when-locks lips withGGway more enthusi astically than 1.437 x 10!
, Tassume . Gre ta Garbo is here with- , and not 1.427 x 10!
HATETHAT IDON’ THATEYOU " \nFel ix- 1.423 x 10!
was already published 150 years agoby the german physician Herm ann-Hel 1.388 x 10!
new life byEdward-LA ngusandaugmented reality technologies , exploring 1.377 x 10!
(1928 ,Joseph-Stern berg ; silent ). AT ribute to 1.366 x 10!
ily -has againbeen sight ed in that infamous suit . Was Metroeconom 1.352 x 10!
artists and performers , known as the Castle -Trapp, will immin 1.341 x 10!
ung . Degen feld— F ests chr ift , Vienna :-Lag 1.320 x 10!

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 63157. Paired with the output
SAE latent with index 344535, the Jacobian element is non-zero for 84 tokens, and has a mean of 1.479 x 107! (rank 4 for the output SAE

latent) and a standard deviation of 8.717 x 102 over its non-zero values.
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Example tokens Max. activation
DumontaGJohnAx el rod , MSNBC al umnow at- 1.040 x 10!
for determining adhesive and tensile strengths (w inner of the-— Branden 1.026 x 10!
That DemonWithinwas selected for the 64 th- International Film Festival Pan 1.025 x 10!
M irt 1,andM . Schmid, eds - Springer 1.017 x 10!
processes in tropical forests (pp.153—172 ). Springer , - , 1.011 x 10!
Twenty— five years after the fall of the-wall in1989 , Cont 1.008 x 10!
the BB Wall : legacy SA-2, SA-3, SA- 9.963
emerged after the collapse of the -Wall and the end of the cold war 9.932
fall of the -Wall was a great spur to Germany , though it took 9.898
exhibitions in museumsand galleries in CapeTown , Johannesburg, -andC 9.885
of the following options for the-to Sch ild ow route : Michel in 9.885
thave to get anew one ( with the- citizen center , it 9.847

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 63657. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 195 tokens, and has a mean of 1.387 x 10! (rank 5 for the output
SAE latent) and a standard deviation of 6.091 x 10~2 over its non-zero values.

Example tokens Max. activation
no zzles , are known-MercedesGLA . In addition , Mercedes 3.361
anopenend— hole . \nMoreover , when cathe ters of this - 2.830
Nasm ith . machine rollers for conveyor belt The invention relates , inter - 2.829
cathe ters whichhaveaclosed distal end . The principles of the invention - 2.757
are also suitable . \n If it is-for you to get your blood 2.487
analog matching devices canbe used advantageously for and monitoring and_of process 2.399
be the case that such support canbe secured , for- , in cases 2.249
ic acid . Proper ventilation and hermet ically sealed production apparatus are- 2.240
of residence , in_ copyright , data protection and competition law . The provider 2.234
products of this -work great for increasing your store ’srevenue , as they 2.133
action by the customer or from errors in the information provided by the- . 2.113
optionally arear axle differential lock . \nIn-to the prospective main competitor 2.099

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 7969. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 331 tokens, and has a mean of 1.322 x 10~* (rank 6 for the output
SAE latent) and a standard deviation of 1.176 x 10~2 over its non-zero values.
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Example tokens Max. activation
anda private one . Witha public key, it A~ s-to 5.947
Cons olid ation 2592 . In the last -of its active life , 5.068
forward the realization of artistic works-to this whole-takjng into- 4.883
test different runtimeenvironments . As a_, cloud— based tool ing currently 4.585
release Irecommend to have a- at J SF— Spring ( http :// 4.558
customer satisfaction .\nWhat is more , with the app, it ’ s- 4.501
of the hotel . On the hotel land it is -to campin tents 4.438
introduce additional modifications do not forget about re— publ ishing the whole site . 4.426
change is requested , this tool enables to-which other requirements ,|design and 4.418
structures / steel constructions , according to the highest requirementsl\nDep endingon 4.370
203, or, more- , amixture of NOand NO 4.309
if youhaveany questions ( youcan also have a- at our website 4.272

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 18964. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 3502 tokens, and has a mean of 1.209 x 10~ * (rank 7 for the output
SAE latent) and a standard deviation of 2.073 x 10~2 over its non-zero values.

Example tokens Max. activation
will enjoy music inspired in orby America , France ,- , Scotland , 1.170 x 10*
in the world since its adoption by the-army in1977 . Now available 1.116 x 10!
, Australia , China ,-, England, Israel and Ireland . \nThrough 1.112 x 10!
teaching the basics of KungFuin Russia ,-, Spain , China 1.053 x 10!
occupied areas in 1848 ; by the 1880 s , the- governed 1.042 x 10!
Russia , and American Ambassador to- , William Eacho , we had the 1.033 x 10!
,which traces its roots to the work of the ColdWaI- American 1.016 x 10!
released in Germany ,-and Switzerland . \n Irish man in Americawas recorded 1.014 x 10!
W ahl led toan invitation by the-Ministry of Culture , for myself 9.958
of State from-, Poland , and Hungary , Min isters from Israel and 9.951
practice first abroad, in countries such as Spain , Germany or-,where 9.771
.\nThe Chechenyouth , who came to-as arefugee , 9.769

(j) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 28112. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 200 tokens, and has a mean of 1.156 x 10~* (rank 8 for the output
SAE latent) and a standard deviation of 8.429 x 10~2 over its non-zero values.
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Example tokens Max. activation
Reynolds & Jake Gy 11 en. al Ar rives ! \n Earlier tonight during 9.162
Gy ll en. al , RyanReynolds , and RebeccaFerguson star in the 8.938
JimMcElre ath , MarioAnd ret ti , Gary Bet ten- 8.771
M. ;Spicken.uer,A. ;WagenIA14 8.518
followed by Nick H ohl.in who finished fourth . \n If Friday night 8.185
aud . U55Brand en.gerTor Bus20000U hr die 8.145
the ritual He idenlacht enare not really aclosed chapter of history 8.071
the husband to the late Mary Jane Hol tz .aw .Scoopwas 8.004
aG Chris Harlow ... Eric Fink[B§iner ... MikeDeutsch , FAA 7.912
ding MusicProducerand Artist LAEL , Jeff Sch nee. is , 7.688
team is only hitting . 242 asateam . Bob Steinlock joined 7.678
Redd, TinaDen ise L oll is , Timothy RayHol tz . 7.668

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 4287. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 1820 tokens, and has a mean of 1.131 x 10~ * (rank 9 for the output
SAE latent) and a standard deviation of 2.500 x 10~2 over its non-zero values.

Example tokens Max. activation
Mah avir MeriDris hti Me.. One afternoon hewas resting 1.030 x 10!
haben . \nUnse rer Me.ung nachwird es in dennA 9.290
waukee Magazine prof iled Le.bach and the UEC last year . \n 8.524
aboutMilwaukee * s Urban Ecology Center ? \nKen Le.bach , 7.583
DOKOPY ARBHAREALFAZO me.bol new 7.505
andsong writing team of P ia Le.onen andJoniT ial 7.337
on. April 27,2015 . By . Dom-horn .Cosm 6.740
termgrowthand sustainability .LucasAndS helby . EinSmith . 6.319
— top casino sites worldwide DasV erefin/ig te KAn ig reich 6.226
zond heid / vo eding— met— wein ig— cal orie 6.008
inated A . C. Kelinm ies as their candidate . \nment 5.644
my heart to live . \nD ilon meiintumap ni bet abi 5.064

(1) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 62769. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 48 tokens, and has a mean of 1.121 x 10~* (rank 10 for the output
SAE latent) and a standard deviation of 7.225 x 10~2 over its non-zero values.
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Example tokens Max. activation
op316 (1867 ). ViennaPO / Carl os- iber . \n 1.541 x 10!
,Jape , K rystal -ar , Kormac’ sBig 1.460 x 10!
, Jordan-eman , goes over some of the upcoming features coming to the 1.445 x 10!
GoldenWings Music . Following his early beginnings onE el ke- ijn”’ 1.431 x 10!
apenem resistant Pseud omonas aeruginosa (CRPA ), -bs iella pneumoniae ( 1.373 x 10!
drink . I bring my-anK ante en withme everywhere and use 1.336 x 10!
ina G arr ig ues ); 2009— Barcelona (w /K.pac 1.293 x 10!
jin (w/K.pac ); 2010— Budapest (w / Med 1.263 x 10!
.\nDogpoisonNo . 2 : In sect icides . \nFle 5.116
there andnoonewas boarding yet . We parked the car , schle 4.971
mark the perm al ink . \nFle as orevenworse , we 4.956
left . \nG le beRd South to Route1 . Turn right onto 4.754

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 14871. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 30 tokens, and has a mean of 1.095 x 10~ (rank 11 for the output
SAE latent) and a standard deviation of 9.772 x 10~2 over its non-zero values.

Example tokens Max. activation
LuciaRodriguez (Com cast ) as Chair— Elect ; Emma. ister ( 1.913 x 10!
another clever design from. ister , but it * s really hard to set 1.897 x 10!
cast Administration from Boston University . \nEmma. ister (Tre asure r 1.854 x 10!
t ips / my college application essay one of my jobs at.izer since 1.817 x 10!
,.izer , and Compumed ics Limited , among others . \n Profile 1.781 x 10!
..annkuchandM .0 .J.Thomas, eds 1.711 x 10!
case in.le ide rer andIV GImmob il ien . The 1.685 x 10!
amore ; RonaldBrautigam, pf ; LeovanDoes 7.684
Penelope Thwaites , pf. \nMoz art , W 6.898
). YujaWang ,pf.\nRachmaninov, 6.714
ino,pf.\nRespighi,O.Belkis 6.594
Previn, pf.\nBoccher ini ,L. String 6.460

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32693. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 24 tokens, and has a mean of 1.092 x 10~* (rank 12 for the output
SAE latent) and a standard deviation of 9.177 x 10~2 over its non-zero values.
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Example tokens Max. activation
A . A .planned, coordinated and.m 00 zed for four months 2.058 x 10!
there andnoonewas boarding yet . We parked the car ,.le 2.045 x 101
intervention . Formost of uspoor.mucks it * s just something 2.004 x 10!
— to—speech . Now print outacopy of this page ,. 1.945 x 10!
st inky melting stage where you can just .m ear it on crusty 1.934 x 10!
Paul VI forheresy, .ism and scandal ten years ago, 1.926 x 10!
slate ,. ist , quartz ite , and limestone on the west ; met 1.909 x 10!
heresy ,.ism and scandal , it is in fact more grave 1.893 x 10*
is needed to.irm ishona3area front . USSR should in 1.881 x 10!
aswhat the French call changes to the ".01 astic rhythms ." \n 1.877 x 10t
’ s. tick was new and the momentwas right ," and that we 1.876 x 10!
ac ris , ro bin.ulz, will .1.am, 1.849 x 10!

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 30568. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 449 tokens, and has a mean of 1.049 x 10~! (rank 13 for the output
SAE latent) and a standard deviation of 1.109 x 10~2 over its non-zero values.

Example tokens Max. activation
31.\nRaichJW, Sch.ingerWH ,1992 . 1.313 x 10!
Healthand Care , the Sch.wig— Hol stein Ministry for Social Affairs 1.276 x 10*
Productions celebrated Justin Sch. el ’s birthday by presenting himwitha very special 1.274 x 10*
from Politics and Society to Culture and Entertainment . Ber lin : Sch.inger 1.262 x 10!
irling andmixingand clear mixing lines visible in it (Sch.ren as 1.247 x 10!
Kyle Sch-ber may be out for the season , but the home 1.231 x 10!
aSabotage . Arnold Sch-zen eg ger is backand looking 1.229 x 10t
21) but Sch.inger ’s pla te number suggests a earlier publication date 1.224 x 10!
the *one field ’ target . \n Just aboutone field bySch- 1.222 x 10!
ville , Texas , Sch. iner University is asmall four year private college 1.218 x 10!
) spoke at an event of BDO 10 . Sch.ffah 1.211 x 10!
, Mike Sch. iber and countless more . She volunteers at D ade Correction 1.203 x 10t

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 47756. Paired with the output
SAE latent with index 344535, the Jacobian element is non-zero for 451 tokens, and has a mean of 1.040 x 10~* (rank 14 for the output
SAE latent) and a standard deviation of 1.167 x 10~2 over its non-zero values.
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Example tokens Max. activation

0 o R i - 228 1451 < 10
e~l,alei_cIe~ 1.478 x 10!
Lfijlaoa34Tal | jjallc3454 . |c~| 1.422 x 10
a Ncla ial@l4eGla==1¥ o be . cicK~a 1.419 x 10*
AFTA TEIG] -~ | 2 SNSRI : 1 suspect 1.385 x 10*
: content _e~l,-cLa12. 1.385 x 10!
-e~la12.e~l,-el 1.379 x 10!
Ti @6ik ). \nal IfaL 1jig88cEa 1.378 x 10!
Coal @il cic~gg1128a1fi 1.374 x 10!
‘al 81 AE ao FURTAT 2 il 2 12 1.374 x 10!

the contents page(cLa12Ie ). al,. 1.368 x 10*

al - it a120 - NATIEAHN L2 > 10°

(q) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 59459. Paired with the output
SAE latent with index 34455, the Jacobian element is non-zero for 1602 tokens, and has a mean of 1.036 x 10~ (rank 15 for the output
SAE latent) and a standard deviation of 1.771 x 10~2 over its non-zero values.

Figure 18. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 34455, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k£ = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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Example tokens Max. activation

kevAl retro fArgadeFATHBNKA nsfligle . Barn 4.636
V_Lipnosj An . Mys ig- 4.549
ochfArfAr st Arkare , uppfillll 20 tim mar ut an 4.370
kar ,_log-an st- 4.337
Det_pro jek-LaIs Bank_ 4.165
Cancel . E.exemp-x hand el- 4.149
Spes ial sp ill ut val gavm orsGfiime og 4.121

atal ogenunder Downloads i menyn-k. blA 4.080
A-A ! Cong rat zEvaNy-andAd riel Young ! 4.037
kApaEuro-Al.US Dollarl\n Results per trade binary 3.989

vAn lig atmos f Arochsk A narum , Gackkans 3985
i smak pAldetsomPbi€iig jen . \nEarned the 3.977

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 64386.

Example tokens Max. activation

Spes ial sp ill ut val gavim orsBilimeog 1.218 x 10!
ass el bgandendanskekon ge[flIH G1252 ; cks 1.175 x 10!
ismak_\nlarnedthe 1.137 x 10!
var kon ge/af Dan mark[ff@]1906 til 1912 HanVar/def230 1.136 x 10
v lig Ut SHKEAVEH Lipnos j An . Mys ig ochbarn 1.018 x 10*
kevAl retro fArgadefAF@ERKA nsfligle . Barn 1.007 x 101
Det_LarsBank_ 9.832
vAn lig @ mos f Arochsk A narum , dockkans 9.703
. Detg 1 derdefll este v arer , herunder 1 sk 9.656
LA~Kksetiilden1242m1069m1191m 9.561
.Chalmers_SometimesI like to add 9.513

_stock ings well anything that covers my legs , is 9.509

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 23581. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 2755 tokens, and has a mean of 2.578 x 10! (rank 0 for the output
SAE latent) and a standard deviation of 2.428 x 10~2 over its non-zero values.

32



Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations

Example tokens Max. activation
.\n400 PetermansBj.2940 m1200 m2940 7.399
from Sig. . I think wewere lied to . Don’ t youhave 7.343
d"was invented by veter in arian Sig.Ke il -in the 6.987
usMetzPed ers en the film stars S ver.Gudn 6.918
beganworking asan artist and teacher . \nIng ib- 6.917
ALEYV intage Metal Ch airs FromB ali By Bj -heimWith 6.837
house , making Read Also : In grid N.enBio , D ating 6.760
film shot in Trin idad in 2013 , work byAyv.F 6.647
ogRoms., in Norway . \n484 Lavang st inden 6.632
K j.! \nIintended the first piece to basically bean introduction 6.463
world aroundme . Cong ratulations to Tor-Horg., the latest 6.459
andmodern technology . \nAs Tar.N issen— M eyer writes : 6.413

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 48028. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 3567 tokens, and has a mean of 2.417 x 10~ * (rank 1 for the output
SAE latent) and a standard deviation of 1.944 x 10~2 over its non-zero values.

Example tokens Max. activation
., Netherlands , Italy , Canada ,- ) - ,and Turkey ) and 9.613
EU , Germany , NOBW@Y . US and UK ). \nPROM AN has been 9.009
Alaska and the Ale ut ian Islands , Greenland , Britain , - , 8.417
), Russia, -and Iceland which promotes dialogue , practical cooperation anddevelopment . 8.119
Sah ara . Sohavehuman rights bodies from-and elsewhere . \nThe 8.066
the matern ity leave in- (46 weeks ), Denmark! ( 52 weeks ) 8.006
W ochenendeoderanFe iert agen . THE_ Fisher y Council 7.970
lands and islands and through the_f j ords and will continue to operate 7.870
single marketby following - ’ smodel by joining the European EconomicArea . 7.853
can either subs ist without-or simply dead zone it by stacking Uk r 7.850
is amember of the_ Visual Artists Association and the Young Artists * Society 7.838
Children-has beenawarded the service contract for the Support to the Education Sector 7.760

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 11698. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 295 tokens, and has a mean of 1.344 x 10~* (rank 2 for the output
SAE latent) and a standard deviation of 6.924 x 10~2 over its non-zero values.
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Example tokens Max. activation
Kar - men d HASENARAHA log Bedsom st Ald 1028 10
kA paEuro och-US Dollar . \n Results per trade binary 9.895

add ning ochaR att RGP las till slut steg cller 9721
kevAl retro f] -ade_e .Barn 9.363
pA Chal mers FAFait RElna§8dem . Sometimes I like to add 9.343

vAn lig at mos f Aroch§KA narum , dockkans 8.634
och FATAR st AFKare , GGG 20fiimar ifan ST
Cancel . E-emp- fore x hand el- 8.477
dd rar mellan oli _ . Dev ices and systemson 7.977
A-A ! Cong rat zEvaNystrAmand Ad riel Young ! 7.812

Detkan fin nas. er pro jek t-Lars Bank_ 7.368
pool och.k pl. ! - personal . \n—ub 7.195

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 22804. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 895 tokens, and has a mean of 1.342 x 107! (rank 3 for the output
SAE latent) and a standard deviation of 9.149 x 10~2 over its non-zero values.

Example tokens Max. activation
soi fixed it myselfbut thats the first place you will get-. 5.811
Models for-ingT ail gate Str uts . \nTak ata recalls at 5.395
becauseyou gave in easily -ic guys country awoman who is very to 5.063
bring to full resolution . Graphics are from a- ic Wre ath collection 4.752
Rust ic Pic nic Table Popular Outdoor Furn iture Hand made By App al 3.102
we present . Riust ic Pic nic Table Amazing 31 All uring Ideas Tables 2.680
seeing . I have it in rusty pots and here it is inan 2.359
yields a Future , gen . cor out ine schedules the generator to beresumed 2.104
operations in order to ensure that the resulting LLVM IR canbeing ested 1.849
with@ gen . cor outine . \nInPython2, the sub 1.805
from ‘ ()<> ‘. The ‘ / “ hasnomeaning besides beinga 1.739
you will have to upload the . pub file andcopy its contents to authorized 1.702

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 12754. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 7 tokens, and has a mean of 1.168 x 10~! (rank 4 for the output SAE
latent) and a standard deviation of 5.760 x 102 over its non-zero values.
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Example tokens Max. activation
Turkey the LeagueB victory . \n-en , making its Nations League debut 1.362 x 10!
68m1038m12 18 mHPon the Norwegian—-ish 1.330 x 10*
for Latv ian independence , R iga hasbeen ruled by Germans , - 1.286 x 10!
bar . \nsummerwhen the-e began to shine . \nCup 1.180 x 10*
en, AlUn ser ,-eSavage , Bobby Un ser , Gordon 1.124 x 10!
25ppmin Denmark , France , Spain , -andUK .\n" 1.107 x 10!
\n This study was supported by the-ResearchCouncil (GrantK2015- 1.090 x 10*
Canada, Finland , Italy ,-and the UK . In the next few 1.088 x 10!
rapsin English , French, Spanish, -andMand arin . You 1.076 x 10*
. the Middle East and Southeast Asia . \nIn reality , the Siliedishand 1.070 x 10!
this threat is foundfrom different countries such as- , Malaysia, India , 1.040 x 10!
iron ore mine in the world . It > sownedby the - government 1.020 x 10!

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 30912. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 175 tokens, and has a mean of 1.133 x 107! (rank 5 for the output
SAE latent) and a standard deviation of 6.893 x 10~2 over its non-zero values.

Example tokens Max. activation

ga, 2012 CIA i seichn A PANob , 8.579
la ri Paul Berg ag.Walter Gilbert I\n_ 8.236
A j ir agll§ Spar An@BiH fuliliiilach aH 8.205
al A3dAlillaransu AN omh . TA 7.989

.AnsannANmA3 Idonlom ath-S 7.893
ire adhChunCe/oil ag.tr-R.G- 7.412
m- (" mind , reason "). Related to Old English my nt an 7.394
2013 nau irl is AN g iol cafigiimi ot ail ( 7.251

. \nImportodekromprogram o-fac- 7.154
\nA-eventI lig _ orig ina 7.080

Alil te ! St air nah/AiJifSHHR will take youon 7.046

bild ojde event- ild - ateg- 7.012

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 57769. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 321 tokens, and has a mean of 8.286 x 1072 (rank 6 for the output
SAE latent) and a standard deviation of 1.343 x 10~2 over its non-zero values.
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Example tokens Max. activation
iGe elKei,iiil~ 2.700
iHJiLITi1liiilel 2.051
do that ?\n1 : 10 : 33KEVINJIf you 1.881
e~e3 eielKiliiilliil 1.822
iiL~ik14elJel,ei iL.ikl 1.763
Liik~eei.elillell 1.637
IIJ alaol !! \nalaal~c2e~a I cli al 1.592
e3ldellegeligldiile 1.564
Bin is one of pictures that are related with the picture before in the collection 1.488
iLGei iL14 ikl e3eil14 ikl i 1.467
sealed bearing . Now I feel kinda like a s $$ for asking in 1.458
eLik[Iik ii ik iLlihlI 1.416

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 42113. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 3 tokens, and has a mean of 7.971 x 10~2 (rank 7 for the output SAE
latent) and a standard deviation of 6.880 x 10~2 over its non-zero values.

Example tokens Max. activation
and arthritis . \nY ogar aj Guggulu :. redients include 1.332 x 10!
Europe and Rest of World . redients of this market are Sol vents . 1.315 x 10!
\n04..ros so, Liohné& Salv atore— Fl 1.298 x 10!
ancon el audio original en. les . El cost odeadmisiA3n 1.298 x 10*
2,000 calorie diet . *Daily Value not established . \nOther. 1.245 x 10!
Smooth ie ,Six.red ient Sp ir ul ina Snack ies 1.201 x 10!
. 100. redients InA Pictures ForKitchen Number79 Is Im possible !. 1.173 x 10!
Indio PapagoTepezcohu ite CreamZOZ. redients : 1.153 x 10!
.Ma. alls hadno cabinets or refrigerator andshe raised five children and 1.137 x 10!
under stood.red ient , With Rec ipes , SimplyRec ipes ° explanation 1.132 x 10!
rop ur. redients is a global supplier of ingredients and services developed to create 1.065 x 10!
Bah asa.gr is Sing kat is just about the imagewe ascertained on 1.045 x 10!

(G) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 8827. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 21 tokens, and has a mean of 7.330 x 102 (rank 8 for the output SAE
latent) and a standard deviation of 5.439 x 10~2 over its non-zero values.
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Example tokens Max. activation
to scholars in Oriental Studies ,Med- Literature , and History , The Gh 9.650
iaworld . Be part of a- revolution against the Word Kingand his 8.678
trying tomakea living in a-town full of warriors , sor ce 8.207
acouplewho play-and Renaissance instruments , sing , danceand celebrate at 8.198
Semikh ahwas the rise of the- university , whichbegan to issue 8.038
located in Med-Spon Street , Cov entry . Mark Andrew offers an 8.015
armies of the Caliph ates , through the action of bloody- battles , 7.999
NgawangNamgy al , father andun ifier of fiGdievalBh ut 7.911
, Ineeded to know what are they ate in- northern England ? Lots 7.847
th Annual Award Win ning L ough rea Med- Festival takes place from the 7.761
or like the individual parts ina’ cycle ’ of Med-mystery plays 7.681
id yll ic picture for the season . \nThe-charm of Viln 7.672

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 21697. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 87 tokens, and has a mean of 6.570 x 1072 (rank 10 for the output
SAE latent) and a standard deviation of 6.127 x 10~ over its non-zero values.
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Example tokens Max. activation
football of his career , Russell Wilson finished Monday night *swin over the- 1.082 x 10!
.ST.PAUL, Minf . (AP)- The [JlllESO@ Department 1.068 x 10
the- Birth Center ; andDiannal ol les , faculty at 1.060 x 10!
the- Historical Society . \nBeginning with the 1929 volume there is a 1.060 x 10!
. \nThe Winnipeg Row ing Club , the [VilG80M8 Boat Cluband the Saint 1.055 x 10
MiamiMarl ins Milwaukee Brew ers -Tw ins . Kentucky Wild cats Win C 1.050 x 10!
H. Allen . The lock out of the musicians at the- Orchestra has 1.042 x 10!
Post started spec ulating this past week that the-Orche str al Association might 1.032 x 10!
The-Wild have recalled defense manRyanMurphyfromA HLIowapera 1.032 x 10!
Anindex to the-period ical collection in the South St . Paul Library 1.010 x 10!
Marl ins Milwaukee Brew ers - . Add the United States of Baseball to your 1.003 x 10!
Paul L ur line Row ing Club as the-andWinnipeg Row ing Association 1.002 x 10!

(1) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 13110. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 61 tokens, and has a mean of 6.486 x 10~ 2 (rank 11 for the output
SAE latent) and a standard deviation of 6.027 x 10~2 over its non-zero values.

Example tokens Max. activation
,2019Posted in Official NewsTags : Fl-pro gramming Leaveacommenton 6.019
?\nIf you’ re not familiar with the Fl-programming language and 5.044
Your Business with Amazon FBA ?\nWhy You Should Master Fl-Programming 4.472
mater the sought— after Google Fl utter language . Let’ s begin now 3.056
Why You Should Master Fl utter Programming ?rub ber plants indoor rubber plant growing 2.706
ew ar Mah ots av will be celebrated from 8 th April to 10 th 1.795
compatible with the industry . \nWidget s for your website . Orderthem . 1.511
this place . Eleanor notices this upon first arriving , thinking to herself that " 1.489
of illness and health . \nFind outwhy Swift Skinand W ound is 1.488
,some patients feel a st inging sensation from the injection & think it isn 1.473
You can also use the Contact Information widget from the FormW idget s . 1.358
Col oring Pages . Image Source : houzz . com . Free Online 1.283

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 26452. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 4 tokens, and has a mean of 6.316 x 1072 (rank 12 for the output SAE
latent) and a standard deviation of 6.164 x 10~2 over its non-zero values.
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Example tokens

Max. activation

beenmade in extending Medicaid coverage to American Indians and-N atives , the 1.224 x 10!
percent of American Indian and-Native children were enrolled in Medicaid or CHIP 1.224 x 10!
uninsured rate for American Indian and-Native children and families remainun accept ably 1.153 x 10!
issues in the Park Service . \nFormer- governor and advisory board chairman Tony 1.147 x 10*
and mindset for the -Con ce aled Hand gunPerm it . T aught 1.106 x 10*
popular appet izers , soupsandsandwiches . \nLoc ally caught-seafood 1.082 x 10!
is Canada, -andHawaii . Your mattress will be refund ed , however 1.081 x 10!
for shipping quotes to other destinations such as-andHawaii . \nThis product 1.079 x 10!
Mo ose and Wolf hunt . \nWe hunt the -Yuk onmoose 1.066 x 10*
row se listings of Member users here at-Fl irt that are associated with 1.064 x 10*
Cherry , BLM”’ s- regional manager, said the agencywas pleased 1.057 x 10*
. The paint appeared to still bewet . The package includes -Yuk on 1.045 x 10!

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32153. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 100 tokens, and has a mean of 6.202 x 10~2 (rank 13 for the output
SAE latent) and a standard deviation of 5.347 x 10~% over its non-zero values.

Example tokens Max. activation

Hanover , Wake , and-y th have more than half of their 1.788 x 10!
he told SMSFAd vis er . \nMr-y th explained this 1.643 x 10!
arrion"’ . Thanks to Anthony-of Absolute Clean for volunte ering 1.616 x 10!
Oread more into AT OIDs than they should ," Mr-y th 1.531 x 10!
son Super Consulting director Stuart -y th said shortly after the release of 1.517 x 10!
webhomes|fors ale . comhelpyou find the Jacksonville , FLLhomes 1.051 x 10!
uit your id ols ; fors akeyour fonddo ings ; and the promised 7.176
you , nor fors akeyou" (Heb.13:5); 6.366
for comfortinmy difficult situation . Donot fors akeme , Good Jesus 6.248
ume already led many to fors ake the temple , and hold her ordin ances 5.815
which needs to be confessed and fors aken . \n2 . We profit from 5.704
be submitted by e— mail ( sc anned to fors ik ring @ lease 5.697

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 56394. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 8 tokens, and has a mean of 5.939 x 1072 (rank 14 for the output SAE
latent) and a standard deviation of 3.459 x 102 over its non-zero values.
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Example tokens Max. activation
Norwegian f I ords around Stord , Norway . \nRead more about our 1.093 x 10!
250m crossing undera flord between Krist ians undand A ver 1.089 x 10!
coast in Turkey , cru ising the Flords of Norway , etc , 1.033 x 10!
zones and sc ramble up to the top of the f Iord . There 1.001 x 10!
60m1610mS ognogFlordane , Norway . 9.988
lands and islands and through the Norwegian f I ords and will continue to operate 9.885
You will also experience a f Iord cruise on the mighty Sogne 9.601
fISO stud is just slightly larger , so all I hadtodo 9.451
steering boxanyways , so I decided to convert to f' I80 tie 9.137
is 57 .5kg, Sagne florden , Norway , in 9.027
\n426Alkst0rdj A~kelen1204m113 8.791
klv Noah : November29 , Ethical dile mmasoccurwhena situation 8.114

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 36481. Paired with the output
SAE latent with index 64386, the Jacobian element is non-zero for 36 tokens, and has a mean of 5.820 x 102 (rank 15 for the output
SAE latent) and a standard deviation of 4.891 x 10~2 over its non-zero values.

Figure 19. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 64386, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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Example tokens

Max. activation

surge into the cathode , producinga current that -the all — important work 6.720
so that he avoids distribution of designated product that apparently -not meet legal requirements 6.606
, but also expansive alien environments that . their part to make the audience feel 6.584
of 2016 ( 88 percent ) were opportun istic attacks that.not target a 6.467
tomake therapeutic claims , were found to.so . \n Unfortunately the proposed 6.406
. Children are the most severely affected by poverty because they.not have the 6.331
hospital admissions ; emergencyroom visits that.not result in admission are excluded . 6.282
acourt order . Propos als relating to children often.notneed to 6.264
.S uitable exercises for pregnant women are those that .not strain the lower 6.255
?7\n Unfortunately , the traditional Chineseapproachto training in the modernworld- 6.240
also request fat shaming to bemade illegal because it -not haveany 6.232
select the 1 dB degradation to noise as the interference standard , since it - 6.221

(a) The top 12 examples that produce the maximum latent activations for the output SAE latent with index 60542. Output latent 60542
responds to a very specific use of the word “do’: its use as a pro-verb. In a pro-verb a simple verb stands in for another more complex one
and here “do” is a shorthand for an action that can only be understood from the context, for example, in “were found to do so” the “to do
$0” stands in for “to make therapeutic claims”. Some of the inputs include very different uses of “do”, one for example deals with the
“Done” in “Donegal”, an Irish county. However, another input includes a subtly different use of “do”: cases where “do” is used as an
auxiliary, modifying another verb, as in “[t]his does not meet the requirements”. Clearly this circuit is creating a very fine distinction
between different ways the word “do” can be used, a distinction we make in language comprehension, but one we would have trouble

identifying or describing.

Example tokens

Max. activation

Your information will notbe stored onHSBC’ ssystems if you. 2.098 x 101
. Children are the most severely affected by poverty because they.not have the 2.077 x 101
surge into the cathode , producinga current that-the all — important work 2.056 x 101
.001 ) andfewerover tri aged children who.not require inpatient management 2.043 x 10!
, but also expansive alien environments that . their part to make the audience feel 2.032 x 10!
us at your own cost within daysof delivery . If you.not 2.027 x 101
them post menopausal . They were compared with more than 600 women who.not 2.014 x 101
despite the risk . When persecution came , they.not scatter . They remained 2.001 x 101
levels protect public health and welfare if they.not exceed45dB . \n 1.997 x 10!
so that he avoids distribution of designated product that apparently -not meet legal requirements 1.996 x 10!
hospital admissions ; emergencyroom visits that.not result in admission are excluded . 1.984 x 10!
.S uitable exercises for pregnant women are those that.not strain the lower 1.976 x 10*

(b) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 21465. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 13107 tokens, and has a mean of 2.529 x 10! (rank O for the output

SAE latent) and a standard deviation of 5.392 x 10~2 over its non-zero values.
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Example tokens Max. activation
. We expect the market to do. opposite of what the indicators are saying 1.438 x 10!
with the 2018 elections looming . \nThey believe that Trump has donelgood 1.313 x 10!
only thing that shewanted in the world , but she didlbad thing 1.292 x 10!
led by its President Jim Cor coran , have done_ job of 1.292 x 10!
MBTA doessoas well . And many state laws do.same . 1.264 x 10!
a"tote ;"I just buythe boxes .) These dol 1.261 x 10!
can’ twingames, you’re in trouble . \n Saint sdidl 1.258 x 10!
beex orbit ant . You needdo- research to find out the 1.257 x 10!
up for grabs , it * salwaysJews doing.grabbing !'\nHere 1.251 x 10!
your muscles do.work ,going atasn ail *spacedoesn’t 1.246 x 10!
to worry aboutwhether the Blackhaw ks are doing. right thing with defense 1.244 x 10!
You '’ re doing.same thing on Amazon through sponsored ads and proving yourself 1.239 x 10!

(c) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 61756. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2683 tokens, and has a mean of 1.076 x 10~ * (rank 1 for the output
SAE latent) and a standard deviation of 2.253 x 10~2 over its non-zero values.

Example tokens Max. activation
Adugrandluxe, il -cequ >on lui dit , 1.044 x 10!
. ParamAsinformaciA3n, h- clicenel lazoab 9.095
clasedeing 1 Asy por- la present aciA3n.AE 8.587
quA h-? \n if youwant to goback to a previous 6.694
si vous fa ite descodes ! \n | NGNh12 1 NI1 5.713
co, donde se real iza la segundaescenay final mente, 5.181
into the software . The K art ra interface is faire ly well designed for 4.361
which they draw drinking water . \nLeg isl ators must find the faire st 4.314
endoen. \n’ Living withFran ’, van afzond ag 4.312
. Dekache Is makenve el lawa ai . We ver 4.253
organis ieren of tm als ih re eigen en Games . Es tut uns le 4.225
eenponer loshuevosenel interior delhuA sp 4.202

(d) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 51331. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 90 tokens, and has a mean of 8.908 x 102 (rank 2 for the output SAE
latent) and a standard deviation of 9.883 x 102 over its non-zero values.
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Example tokens Max. activation
the middle of war again . \nThe Seventh- gal took part in the 1.341 x 10!
all hurting tonight . I’ 11 share details later this week . \n-! 1.216 x 10!
fit or there * s somethingwrong please contact us . \n-with Multi 1.211 x 10!
this point . \n-. Willbe interested to learn moreabout this myself 1.192 x 10!
the goal of Universal Male— Female Liter acy a- deal . \nNo 1.191 x 10!
feeling of being let down , overwhelmed and- in . Dis appoint ment is 1.191 x 10!
there * s somethingwrong please contact us ! \n-withEgg— shaped 1.188 x 10!
first gin distilled inCo .-gal .DAolamAn is the 1.179 x 10}
Closure and re clamation of amining property is acomplex process . - 1.168 x 10!
they could take . \nThe- gal Guards, like no other arm of 1.155 x 10!
were able to finish rebuilding efforts , and the- gal Guards found themselves in 1.150 x 10}
out his heart to the-ky . Oneday , Keshavawas 1.146 x 10!

(e) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 11694. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 540 tokens, and has a mean of 7.039 x 10~ 2 (rank 3 for the output
SAE latent) and a standard deviation of 1.967 x 10~2 over its non-zero values.

Example tokens Max. activation
relax mechanisms . \nOn. other hand , between the classic models, it 1.057 x 10!
protein . For zinc prot oporphyrin, on. other hand, 1.020 x 10!
compared to Cauc as ians . On. other hand , the latter havea 9.974
all change associated withun ification . \nOn. first point, seeJ 9.717
) the effect of class size varies across students . \n On. first form 9.667
disease . \nOn.secondday of hospitalization ,Bitsy’s 9.630
much scope for development . On. other hand , there is muchscope for 9.605
for whom it is of minimaluse . On. other hand , when hazards 9.602
regulates its collective temperature at different ambient air temperatures ;on. left side it 9.537
is .On. inside there are also lent icular films that diffuse the view 9.520
associated with these ex libr ises . On.onehand , one part of 9.519
states . On. other hand , we need to define our destinations ina 9.441

(f) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 48418. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 91 tokens, and has a mean of 5.105 x 1072 (rank 4 for the output SAE
latent) and a standard deviation of 9.043 x 10~ over its non-zero values.
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Example tokens

Max. activation

of the date of filing of the petition . \nlchange of name or 5.590
the jury . \n. interruption of the opposing counsel withaspeech rather than 5.370
of these statutory changes . \nlnewform , called a" Dis closure 5.359
. The Court will examine only marginally whether the principle is fulfilled l detailed 5.215
filing of the petition . \nlmerger is recorded by means of a petition 5.214
had committed acrime while outon release : obstruction of justice . \nl 4.802
doesnot accept liability for failure to deliver within the stated time . \nl 4.802
igated sentencing ..experienced Mar ic opaCounty D UI Attorney will know what 4.660
169 of the Revised Statutes . \n. te cedent : Ref erring toa 4.463
trial ;judge’s availability limited . \nlsecond discrimination trial against the University 4.404
agrounds for dealing with the issue .lpharmacy is also nearby which sells 4.393
to comply with its requirements . The court noted that "[I] dvance 4.323

(g) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 32517. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 1 tokens, and has a mean of 5.015 x 10~2 (rank 5 for the output SAE

latent) and a standard deviation of 0.000 over its non-zero values.

Example tokens

Max. activation

photos . Import ant : This product does.include the techniques used in the 1.195 x 10!
pumpyou are looking for . \nThis product does. contain1 , 1.182 x 10t
Furthermore , expor ail . organdweb sites associated does. sell user 1.146 x 10*
.\nThenameT ee berg does.appear onany of the top 1.130 x 10*
suggestion for ASC Uttimate . \nDoyou do.need to worry about 1.123 x 10!
ube . comLimited does.endorse any user submission , and expressly disclaim s 1.119 x 10!
ube . comLimiteddoes.permit copyright infring ing activities or infringement of intellectual 1.119 x 10t
> s family , it doesn’ Ifor Mark he told Ostrov 1.095 x 10!
ig ences . com website or webpage , Dil ig ences does. represent or 1.087 x 10*
market , it does.help anyonenomaterhow great the thought is . 1.085 x 10!
marketing , Blogging , internet marketing \t . \nThe world doesn ’I 1.075 x 10!
a daily basis . \nHey, Idon.know if I’ m posting 1.075 x 10t

(h) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 23968. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2561 tokens, and has a mean of 4.760 x 1072 (rank 6 for the output

SAE latent) and a standard deviation of 1.204 x 10~2 over its non-zero values.
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Example tokens Max. activation
youcanloweryour standard of living . And alower standard of living - 9.428
?0f course not . A post humous diagnosis -not changewhohe 9.376
holds equity in a private business orhasa large portfolio this -not 9.172
that this is a negative review , the above observations . constitute quib bles 9.046
Tax ote re and permanent hair loss , those Warnings.not appearonany 8.894
haveno responsibility or control overthem . The existence of these links -not 8.834
and ambitious . \nM ission success -not require these complex maneu vers , 8.667
. Please note these restrictions .not apply to exhib itors . \nTo help 8.648
Yellow stone if there are only that many sub species . That-not include 8.556
But the Tribunal explained , " Training alone-not meet the requirements of due 8.529
\nSome schools prefer to be data controllers . This-make it easier for 8.483
extreme heat . It * s naturally darker colour doesn’ t. itself any 8.473

(i) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 19973. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2691 tokens, and has a mean of 4.681 x 10~ 2 (rank 7 for the output
SAE latent) and a standard deviation of 9.146 x 10~2 over its non-zero values.

Example tokens Max. activation
play andrevenue . Well , that no longer-to-case . 8.329
than he believes or cares to say . Poll snow demonstrate this to. 8.314
systems are often thought to be muchmore securely protected than is _case 7.874
relations with residents . Unfortunately , withsomeboards this _case 7.272
some cases the spam detection stoppedworking . This is no-case . 7.104
’t)and if there are no clear winners betweenthem (Which- 7.036
found the same to. true for them !). Churro Fried Ice Cream 6.854
.\nHoweyver, even if that - correct , the Court erroneously uses 6.826
final . However, that’ s_case . There are plenty 6.787
if that -bad enough for Thor pe ’ s membership , in the same 6.773
the lease period has expired andno oil hasbeenproduced . If this . 6.688
or missing from the root of the domainyouadded . If this - 6.680

(j) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 13058. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 431 tokens, and has a mean of 4.528 x 1072 (rank 8 for the output
SAE latent) and a standard deviation of 1.961 x 10~2 over its non-zero values.
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Example tokens

Max. activation

Compan ies must give workers the information they need to- their jobs safely , 1.448 x 10!
too short to drink bad coffee that makes you-poorly and feel awful . 1.448 x 10!
of your reserve fund . By_a reserve study , you can determine how 1.426 x 10!
gmail account ,-my edit , andthenun install in a matter 1.410 x 10!
worn fill at the tail pipe as permitted to -every engine and every rate 1.409 x 10!
s car just got awayfromhimandhe-alazy spin into the 1.400 x 10!
from , modify , publish , edit , translate , distribute , BEHOMM . display 1.400 x 10
The firm did not-impurity testing during stability ontwo products since 2016 . 1.397 x 10!
stop thinking aboutmessingup . You-so tent atively that youhoped 1.389 x 10!
like how black hat hackers are incent iv ized by money to-malicious activities 1.388 x 10!
and paymentsencourage PBM s to actually -to their contractual guarantees instead of 1.367 x 10!
individual educational plans ; assists in inventory control ;and- other duties related to 1.364 x 10!

(k) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 56700. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 574 tokens, and has a mean of 4.375 x 10~ 2 (rank 9 for the output
SAE latent) and a standard deviation of 1.275 x 10~2 over its non-zero values.

Example tokens Max. activation

share the posts as if your life dependedon it .Which.doesn. 8.326
encounters an impossible reality that shouldn’ t exist , but-. \nA 8.273
ask ! Who knew las agnawas for dessert ?We sure didn ’I 7.129
to make sure that it works correctly and it-. \nWhat’ 6.960
, status and aside . Notevery WordPress theme supports post formats and those- 6.757
you ever thankedme ? \nnoyou actually . , but I cancount 6.578
if this would kick in , but it didn ’I. \n After installing 6.342
don’ tneed convincing . Butdoyou know who-? \nAnd 6.318
bigone . It seems to work . Ordoes.?Then three fish 6.302
. It seems towork . Ordoes.?Then three fish get the 6.277
Spin ! You dont switch but your opponent- soyou can stack damageon 6.275
Somehow I envisioned our family as a family of four . I still . 6.228

(1) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 46097. Paired with the output

SAE latent with index 60542, the Jacobian element is non-zero for 3589 tokens, and has a mean of 3.995 x 1072 (rank 10 for the output

SAE latent) and a standard deviation of 2.127 x 10~2 over its non-zero values.
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Example tokens Max. activation
its spark . Employees are not inspired , stakeholders .becoming color less andyou 5.325
are talking about are humans , and not robots ,-soa greater amount 4.681
nice "not too fast Inot too slow "rhythmand settled in to 4.430
end up being aboutcommunication notbetween professions Ibut with clients and families 4.387
pre—s lic ed is easiest nottoo thin -nothingwet 4.313
, Idid notknow how the French health care worked and I.not 4.230
move frequently , notbeonschool district census rolls Iand are less likely 4.183
Total PM . Away of life .Notajobl\n It was 4.141
the fire which doesnotburn, the Waterwhich-not wet the hands 4.113
Idonotmove, I.not breath . I close my eyes and 4.075
It was not for ameeting withan international leader . \nAnd it - 4.069
such thing as safe plastic aG not for youandyour family , -not 4.018

(m) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 4510. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 133 tokens, and has a mean of 3.978 x 10~2 (rank 11 for the output
SAE latent) and a standard deviation of 1.006 x 10~2 over its non-zero values.

Example tokens Max. activation
witnessing before movingontomore difficult or resistant areas . Rather the-was 1.143 x 10!
decision making authority . Actually , the-is implied . Letme put it 1.059 x 10!
should come before focusing onone’ sown, and I feel the- 1.048 x 10!
t faith . It ° s actually the-ofhope . Our other options 1.017 x 10!
tourist — rich locale , but rather , the-is true . Elis 1.004 x 10!
good guy ; if anything the -Was said when saying Zimmerman’ s 9.978
out of fear mode , you return to love mode . The-of love 9.799
inanyway—— just the- . The fine balance betweensupp len ess 9.498
. process as perform argues the-: that learn onmethod must take heavily 9.484
says the right words tous, buthe acts just the-. He 9.464
’ sabad thing , in this case , it means the-. 9.423
— EGR- val ve Without voltage applied , it ’s just the- 9.166

(n) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 28695. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 53 tokens, and has a mean of 3.952 x 102 (rank 12 for the output
SAE latent) and a standard deviation of 7.511 x 10~2 over its non-zero values.
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Example tokens Max. activation
\nI’ve got to admit, I ’veheard some " do. ie 8.284
silent film . Google’ s ever changing " google do.le "logo 7.809
ourannual celebrations canbe . Do. el k lic keden Number SI 7.234
3.\nHere’ s another do.ie : BothAv ig dor 7.154
doingafew do. les of people in suits with their arms crossed . 6.835
the institutions tend first information in using the has hers , print able do. 6.828
eeF aret . Thiswas long before the Do.ie Brothers ever thought 6.275
keepingwere a part of our life and I wanted to know aboutDo. 6.262
an object [ doremember is Do.eeF aret . Itwasa 6.177
adoptme . Nameon birth c irt ificate wasbaby dol john 6.137
found that do. lers performed29% better than non— dood lers 5.989
adolish Fedand institutional instability inthe US," said KyleRod 5.951

(o) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 26469. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 29 tokens, and has a mean of 3.831 x 10~ 2 (rank 13 for the output
SAE latent) and a standard deviation of 1.040 x 10~2 over its non-zero values.

Example tokens Max. activation
Spanienkaufen, kAnnen. eine span ische Auf enthal ts 8.197
dabe iauchauf Sportw et ten , die-auch bequ 8.086
acht eineAbzocke,daherwA14rde.rA14ck 8.018
kaufen will , kann. tro tzdemdas GoldV isa be 7.818
ft wer de.A fter imDr A14ck Gl A 14ck Online CasinoanTurn 7.550
andundmehr ! \nFrage : Kann. ein span is ches 7.512
sind . \nFrage : Kann. eine Finanz ierung er hal 7.413
, dass.ges etz lich anerkannte AngehArige 7.390
Kann.nurwe ite rempfehlen ." \n" This 7.366
we isen , dass. dire kt oderind ire kt Inhab er der 7.351
we isen , dass. nicht mehr als 11 Mon ate auss er hal 7.351
age: W enn. die Immob il ie durch eine Ges ells chaft 7.225

(p) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 14813. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 2 tokens, and has a mean of 3.811 x 1072 (rank 14 for the output SAE
latent) and a standard deviation of 8.688 x 102 over its non-zero values.
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Example tokens Max. activation
. \n4- the Pale o Diet Elim inate Healthy Foods Like Brown 3.101
for all for profit show tickets as required by Louisianalaw . \n-not 3.047
0334 . \n-my infant / child needa ticket for the show 2.843
000. \n-CODE undertake its owndue diligence ?\nYes , should 2.575
duties . \nDoes this meanwe are moving to asystemwhere the Pope 1.695
amore ; RonaldBrautigam, pf; LeovanDoes 1.543
.\nDoesn’ t clog pores nordoes cause any acne break out 1.511
.\nDoeshehavea lot of toys ?Yeah , canwe bring 1.511
.DoesBenBishop fix their go alt ending ?Where do Alexander Rad ul 1.479
. Does this mean that the leaders who engage in the methods are bad people 1.479
.Doesyourslook as pretty asmine?\nI’ mgoing to 1.479
day . \nDoes your marketing team regularly grapp le with problems ? If so 1.306

(q) The top 12 examples that produce the maximum latent activations for the input SAE latent with index 41425. Paired with the output
SAE latent with index 60542, the Jacobian element is non-zero for 17 tokens, and has a mean of 3.734 x 102 (rank 15 for the output
SAE latent) and a standard deviation of 8.725 x 10™2 over its non-zero values.

Figure 20. The top 12 examples that produce the maximum latent activations for the output SAE latent with index 60542, and the input
SAE latents with which the mean values of the corresponding Jacobian elements are greatest. The Jacobian SAE pair was trained on layer
15 of Pythia-410m with an expansion factor of R = 64 and sparsity k = 32. The examples were collected over the first 10K records of
the English subset of the C4 text dataset with a context length of 16 tokens.
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D. Training

Our training implementation is based on the open-source SAELens library (Bloom et al., 2024). We train each pair of SAEs
on 300 million tokens from the Pile (Gao et al., 2020), excluding the copyrighted Books3 dataset, for a single epoch. Except
where noted, we use a batch size of 4096 sequences, each with a context size of 2048. At a given time, we maintain 32 such
batches of activation vectors in a buffer that is shuffled before training, which reduces variance in the training signal.

We use the Adam optimizer (Kingma & Ba, 2017) with the default beta parameters and a constant learning-rate schedule
with 1% warm-up steps, 20% decay steps, and a maximum value of 5 x 10~* Additionally, we use 5% warm-up steps for
the coefficient of the Jacobian term in the training loss. We initialize the decoder weight matrix to the transpose of the
encoder, and we scale the decoder weight vectors to unit norm at initialization and after each training step (Gao et al., 2024).

Except where noted, we choose an expansion factor R = 32, keep the £ = 32 largest latents in the TopK activation function
of each of the input and output SAEs, and choose a coefficient of A = 1 for the Jacobian term in the training loss.

D.1. Training signal stability

We initially considered the following setup:

Sy = ex(x) 5 X = dx(sx) , Y= f()’\() ) Sy = ey(y) ) y = d}’(s)’) (32)

The problem with this arrangement is that the second SAE depends on an output from the first SAE. Since both SAEs are
trained simultaneously, we found that this compromised training signal stability — whenever the first SAE changed, the
training distribution of the second SAE changed with it. Additionally, at the start of training, when the first SAE was not yet
capable of outputting anything meaningful, the second SAE had no meaningful training data at all, which not only made it
impossible for the second SAE to learn but also made the first SAE less stable via the Jacobian sparsity loss term.

To address this problem, we instead used this setup:
Sx = 6X(X) , X= dx(sx) y Y= f(x) y Sy = ey(x) , V= dy(sy) (33)

Importantly, we pass the actual pre-MLP activations x rather than the reconstructed activations X into the MLP f. In addition
to improving training stability, we believe this setup to be more faithful to the underlying model because both SAEs are
trained on the unmodified activations that pass through the MLP.

E. Evaluation

We evaluated each of the input and output SAEs during training on ten batches of eight sequences, where each sequence has
a context size of 2048, i.e., approximately 160K tokens. We computed the sparsity of the Jacobian, measured by the mean
number of absolute values above 0.01 for a single token, separately after training. In this case, we collected statistics over
10 million tokens from the validation subset of the C4 text dataset.

For reconstruction quality, we report the mean cosine similarity between input activation vectors and their autoencoder
reconstructions, the explained variance (MSE reconstruction error divided by the variance of the input activation vectors),
and the MSE reconstruction error.

For model performance preservation, we report the cross-entropy loss score, which is the increase in the cross-entropy loss
when the input activations are replaced by their autoencoder reconstruction divided by the increase in the loss when the
input activations are ablated (set to zero).

For sparsity, we report the number of ‘dead’ latents that have not been activated (i.e., appeared in the k largest latents of
the TopK activation function) within the preceding 10 million tokens during training and the number of latents that have
activated fewer than once per 1 million tokens during training on average.

Given an expansion factor of 64, k = 32, and a Jacobian loss coefficient of 1, i.e., fixed hyperparameters, we find that the
reconstruction error and cross-entropy loss score are consistently better for the input SAE than the output SAE. Additionally,
we find that the performance is generally poorer for the intermediate layers than early and later layers.
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Figure 21. Reconstruction quality metrics for Jacobian SAEs trained on the feed-forward networks at every layer (residual block) of
Pythia transformers. The cosine similarity is taken between the input and reconstructed activation vectors, and the explained variance is
the MSE reconstruction error divided by the variance of the input activations. For each SAE, the expansion factor is R = 64 and k = 32;
the Jacobian loss coefficient is 1.
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Figure 22. Model performance preservation metrics for Jacobian SAEs trained on the feed-forward networks at every layer (residual block)
of Pythia transformers. The cross-entropy loss score is the increase in the cross-entropy loss when the input activations are replaced by
their autoencoder reconstruction divided by the increase when the input activations are ablated (set to zero). For each SAE, the expansion
factor is R = 64 and k = 32; the Jacobian loss coefficient is 1.
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Figure 23. Sparsity metrics per layer for Jacobian SAEs trained on the feed-forward networks at every layer (residual block) of Pythia
transformers. Recall that the L° norm per token for each of the input and output SAEs is fixed at k by the TopK activation function. For

each SAE, the expansion factor is R = 64 and & = 32; the Jacobian loss coefficient is 1.
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Figure 24. Reconstruction quality, model performance preservation, and sparsity metrics against the number of latents. Here, we consider
Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m (model dimension 512) with kK = 32. Recall that the
maximum number of non-zero Jacobian values is k> = 1024. The reconstruction quality and cross-entropy loss score improve as the
number of latents increases, and the number of dead features grows more quickly for the output SAE than the input SAE. See Appendix E
for details of the evaluation metrics.
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Figure 25. Reconstruction quality, model performance preservation, and sparsity metrics against the & largest latents to keep in the TopK
activation function. Here, we consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion factor
R = 64. Recall that the maximum number of non-zero Jacobian values is k2. The reconstruction quality and cross-entropy loss score
improve as k increases, and the number of dead features decreases. See Appendix E for details of the evaluation metrics.
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Figure 26. Reconstruction quality, model performance preservation, and sparsity metrics against the Jacobian loss coefficient. Here, we
consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion factor R = 64 and k£ = 32. Recall
that the maximum number of non-zero Jacobian values is k* = 1024. In accordance with Figure 5, all evaluation metrics degrade for
values of the coefficient above 1. See Appendix E for details of the evaluation metrics.
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Figure 27. Pareto frontiers of the explained variance and cross-entropy loss score against different sparsity measures when varying the
Jacobian loss coefficient. Here, we consider Jacobian SAEs trained on the feed-forward network at layer 3 of Pythia-70m with expansion
factor R = 64 and k = 32. Recall that the maximum number of (dead) latents is 32768 (64 times the model dimension 512), and the
maximum number of non-zero Jacobian values is k> = 1024. See Appendix E for details of the evaluation metrics.
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Figure 28. Pareto frontiers of the explained variance and cross-entropy loss score against different sparsity measures when varying the
Jacobian loss coefficient. The coefficient has a relatively small impact on the reconstruction quality and sparsity of the input SAE, whereas
it has a large effect on the sparsity of the output SAE and elements of the Jacobian matrix. Here, we consider Jacobian SAEs trained on
the feed-forward network at layer 7 of Pythia-160m with expansion factor R = 64 and k = 32. Recall that the maximum number of
(dead) latents is 49152 (64 times the model dimension 768), and the maximum number of non-zero Jacobian values is k% = 1024. See

Appendix E for details of the evaluation metrics.
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Figure 29. The trade-off between reconstruction quality and Jacobian sparsity as we vary the Jacobian loss coefficient. Each dot represents
a pair of JSAEs trained with a specific Jacobian coefficient. Measured on layer 3 of Pythia-70m with k = 32.

We speculate that it is necessary to tune our hyperparameters for each layer individually to achieve improved performance;
see, for example, Figures 26 and 4 for the variation of our evaluation metrics against the coefficient of the Jacobian loss term
for individual layers of Pythia-70m and 160m.

F. More data on Jacobian sparsity

In Figure 23 we showed that Jacobians are much more sparse with JSAEs than traditional SAEs. To this end, we provided
a representative example of what the Jacobians look like with JSAEs vs traditional SAEs. Some readers may object that
this is not an apples-to-apples comparison since JSAEs are optimizing for lower L1 on the Jacobian, so it may be the case
that JSAEs merely induce Jacobians with smaller elements, but their distribution may still be the same. To address this
criticism, the examples are L2 normalized; we provide un-normalized versions as well as L.1 normalized versions of the
example Jacobians in Figure 30. We also provide a histogram and a CDF of the distribution of absolute values of Jacobian
elements in Figure 32, which is taken across 10 million tokens.

F.1. Jacobian norms

In this section, we address an objection we expect some readers will have to our measures of sparsity. Our main metric for
sparsity is the percentage of elements with absolute values above certain small thresholds (e.g. Figure 2). However, one
can imagine two distributions with the same degree of sparsity, but vastly different results on this metric due to a different
standard deviation. For instance, imagine two Gaussian distributions, both with ;© = 0 but with significantly different
standard deviations, o1 >> o09. They would score very differently on our metric, but their degrees of sparsity would not be
meaningfully different (since sparsity requires there to be a small handful of relatively large elements). Since our L; penalty
encourages the Jacobians to be smaller, it could be that they simply become more tightly clustered around 0. However,
this is not the case. We can measure this by looking at the "norms" of the Jacobian, i.e. we flatten the Jacobian, treat it
as a vector, and compute its L, norms. If the Jacobian is merely becoming smaller, we would expect all of its L, norms
to decrease at roughly the same rate. On the other hand, if the Jacobian is becoming sparser, we would expect its L1, Lo
norms to decrease while its Ly, . .., Lo, norms, which depend more strongly on the presence or absence of a few large
elements, should stay roughly the same. We present these results in Figure 35, as we can see, the Jacobian does become
slightly smaller, but most of the effect we see is indeed the Jacobian becoming significantly more sparse.
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Figure 30. Comparison of Jacobians from traditional SAEs vs JSAEs, same as Figure 2 but with different normalization. (a) Not
normalized. (b) L2 normalized. Measured on layer 15 of Pythia-410m.
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Figure 31. Comparison of Jacobians from traditional SAEs vs JSAEs, same as Figure 2 but with different normalization. (a) L1 normalized.
(b) L2 normalized. Measured on layer 3 of Pythia-70m.
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Figure 32. Further data showing that JSAEs induce much greater Jacobian sparsity than traditional SAEs. (a) A histogram of the absolute
values of Jacobian elements in JSAEs versus traditional SAEs. JSAEs induce significantly more sparse Jacobians than standard SAEs.
This means that there is a relatively small number of input-output feature pairs which explain a very large fraction of the computation
being performed. Note that only the £ X k elements corresponding to active latents are included in the histogram — the remaining
(ny — k) X (nx — k) elements are zero by definition both for JSAEs and standard TopK SAEs. The histogram was collected over 10
million tokens from the validation subset of the C4 text dataset, which produced 10.24 billion feature pairs. (b) The cumulative distribution
function of the absolute values of Jacobian elements, again demonstrating that JSAEs induce significantly more computational sparsity
than traditional SAEs. Measured on layer 15 of Pythia-410m.
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Figure 33. JSAEs induce a much greater degree of sparsity in the elements of the Jacobian than traditional SAEs. Identical to Figure 2 but
measured on layer 3 of Pythia-70m.
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Figure 34. Histograms that show the frequency of absolute values of non-zero Jacobian elements for different values of the coefficient of
the Jacobian loss term. As the coefficient increases, the frequency of larger values decreases, i.e., the Jacobian becomes sparser. We
provide further details in Figure 32.
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Figure 35. L, norms of the Jacobians. We measure these by flattening the Jacobians and treating them as a vector. These results imply
that the Jacobians are in fact becoming more sparse, as opposed to merely becoming smaller (see Section F.1). Averaged across 1 million
tokens, measured on layer 3 of Pythia-70m.
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Figure 36. The Jacobians aren’t only sparse locally (i.e. on each token in each prompt), but also globally (i.e. when averaged across many
tokens), much more so than with traditional SAEs. In particular, here we consider the full ny X ny Jacobian (i.e. not slicing based on the
TopK), which we average across 10 million tokens (% memm’mken J) before considering its summary statistics. This is an important
measure as it confirms that the connections found by JSAEs are indeed sparse in a global sense, not just when conditioning on a specific
model input. Measured on layer 15 of Pythia-410m. Note that the small numbers on the y-axis are due to the fact that, unlike in e.g.
Figure 2, here we set 100% to be ny X ny rather than k£ x k. We also note that for each element in the Jacobian, we are only taking the
average over the tokens on which the corresponding output SAE latent is selected by the TopK activation function (i.e. when at least one
element in the row of the Jacobian is nonzero); this is important because otherwise this measure would significantly conflate the sparsity
of the Jacobian itself with the sparsity of the activations of each individual latent.
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Figure 37. Automatic interpretability scores of JSAEs are very similar to traditional SAEs. Measured on all layers of Pythia-70m using
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Figure 38. Jacobians are substantially more sparse in pre-trained LLMs than in randomly initialized transformers. This holds both when
you actively optimize for Jacobian sparsity with JSAEs, and when you don’t optimize for it and use traditional SAEs. The proportion of
Jacobian elements with absolute values above certain thresholds. The figure shows the proportion of Jacobian elements with absolute
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values above certain thresholds. Identical to Figure 7 but measured on layer 3 of Pythia-70m.
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Figure 39. The function f,, which combines the decoder of the first SAE, the MLP, and the encoder of the second SAE, is mostly linear.
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