
In-Context Freeze-Thaw Bayesian Optimization
for Hyperparameter Optimization

Herilalaina Rakotoarison1,∗ Steven Adriaensen1,∗ Neeratyoy Mallik1,∗ Samir Garibov1

Edward Bergman1 Frank Hutter2,1

1
Machine Learning Lab, University of Freiburg, Germany

2
ELLIS Institute Tübingen

∗
Equal contribution

Correspondence: {rakotoah,adriaens,mallik}@cs.uni-freiburg.de

Abstract With the growing computational costs in deep learning, traditional black-box Bayesian

optimization (BO) methods for hyperparameter optimization face significant challenges. We

introduce a novel surrogate leveraging transformers’ in-context learning for freeze-thaw BO,

which strategically allocates resources incrementally and performs Bayesian learning curve

extrapolation efficiently in a single forward pass. Our method shows superior accuracy and

speed compared to existing surrogates and achieves state-of-the-art performance on three

deep learning benchmark suites.

1 Introduction

Hyperparameter optimization (HPO) is crucial for enhancing the performance of deep learning

models. Traditional black-box methods like Bayesian Optimization (BO) have been extensively

used, but their computational cost is high as they treat the model training as a black-box process,

requiring complete training for each evaluation (Feurer and Hutter, 2019; Bischl et al., 2023). Recent

advancements in HPO have introduced multi-fidelity approaches that use lower fidelity proxies

to reduce computational resources, but these methods often suffer from inefficiencies in resource

allocation and do not always fully exploit the potential of techniques such as checkpointing and

continuation (Li et al., 2017, 2020a; Falkner et al., 2018; Klein et al., 2020; Li et al., 2020b; Awad et al.,

2021). The freeze-thaw BO method proposed by Swersky et al. (2014) provides an alternative by

dynamically allocating resources to hyperparameter configurations through pausing and resuming

evaluations, but it has limitations including high computational overhead due to frequent surrogate

model updates and instability issues (Wistuba et al., 2022; Kadra et al., 2023). In this work, we propose

a novel surrogate model for freeze-thaw BO that leverages the in-context learning capabilities

of transformers to perform efficient Bayesian learning curve extrapolation in a single forward

pass. We also introduce a novel dynamic multi-fidelity acquisition function (AF) designed for the

freeze-thaw setup which together with the surrogate realizes a new HPO algorithm, ifBO. Figure 1
compares learning curves extrapolation, including uncertainty, by our surrogate model and two

baselines. Beyond demonstrating superior extrapolation quality, our approach (ifBO), significantly
reduces the computational overhead and instability associated with previous methods, offering

more accurate and faster predictions across various benchmark suites, thereby establishing new

state-of-the-art performance in HPO for deep learning under constrained computational budgets

(strong anytime performance given less than 20 full model training budget).

2 Background: In-context learning and PFNs

In-Context Learning (ICL) leverages Transformer-based models to make predictions without re-

training or fine-tuning on new data, using the data as contextual prompts (Radford et al., 2019).

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:rakotoah@cs.uni-freiburg.de
mailto:adriaens@cs.uni-freiburg.de
mailto:mallik@cs.uni-freiburg.de
mailto:garibovs@cs.uni-freiburg.de
mailto:bergmane@cs.uni-freiburg.de
mailto:fh@cs.uni-freiburg.de
https://creativecommons.org/licenses/by/4.0/

0 20 40

training budget (b)

0.00

0.25

0.50

0.75

1.00

pe
rf

or
m

an
ce

Ground truth curves

0 20 40

training budget (b)

0.00

0.25

0.50

0.75

1.00

pe
rf

or
m

an
ce

FT-PFN

0 20 40

training budget (b)

0.00

0.25

0.50

0.75

1.00

pe
rf

or
m

an
ce

Deep Power Laws Ensembles

0 20 40

training budget (b)

0.00

0.25

0.50

0.75

1.00

pe
rf

or
m

an
ce

Deep Kernel Gaussian Process

0.00 0.25 0.50 0.75 1.00

model performance at b=50

0.00

0.01

0.02

pr
ed

ic
te

d
di

st
ri

bu
tio

n
0.00 0.25 0.50 0.75 1.00

model performance at b=50

0

25

50

75

pr
ed

ic
te

d
di

st
ri

bu
tio

n

0.00 0.25 0.50 0.75 1.00

model performance at b=50

0

2

pr
ed

ic
te

d
di

st
ri

bu
tio

n

Figure 1: Comparison of freeze-thaw surrogate model predictions, given the same set of hyperpa-

rameters (HPs) and their partial learning curves. The Ground truth curves show the real

learning curves with dots (·) indicating the points observed as training set or context for all

the surrogates. ifBO uses FT-PFN as its surrogate, which requires no refitting but instead uses

the training dots as context for inferring the posterior predictive distribution of the model

performance obtained at step 𝑏 using any set of given HPs. Surrogates used in prior art, using

Deep Power Laws Ensembles (DPL) and Deep Kernel Gaussian Process (DyHPO) respectively,
are trained on the training set till convergence and then used to extrapolate the given partial

curves. The bottom row shows for each surrogate, the probabilistic performance predictions

made at step 50 (last step in top row), with the stars(★) indicating the true value of the curve.

Prior data fitted networks (PFNs) are transformer-based models trained for in-context Bayesian

prediction (Müller et al., 2022), successfully used for tasks like in-context classification (Hollmann

et al., 2023), black-box HPO surrogates (Müller et al., 2023), Bayesian learning curve extrapolation

(Adriaensen et al., 2023), and time-series forecasting (Dooley et al., 2023). Building on these prior

works, our approach creates an efficient in-context surrogate model for freeze-thaw BO.

3 Method: In-Context Freeze-Thaw Bayesian Optimization (ifBO)

In this section, we describe ifBO, our in-context learning variant of the freeze-thaw framework that

we propose as an alternative for the existing online learning implementations (Wistuba et al., 2022;

Kadra et al., 2023). We first describe the general freeze-thaw setup, provide the algorithm, explain

the core surrogate and acquisition function design. For more details, please refer Appendix B.

3.1 The Freeze-thaw setup

Algorithm 1 describes a general BO loop that given a search space, budget, returns the best

hyperparameter observed. The freeze-thaw aspect comes crucially from the unit budget allocation

in L7 for continued training of a configuration. The critical difference of ifBO from other freeze-

thaw BO methods lies in the fact that we do not need to refit our surrogate model after every

allocation step (line 4). Instead we provide the full history of performance observations 𝐻 as input

for in-context prediction. By skipping the online refitting stage, we reduce computational overhead,

code complexity, and hyper-hyperparameters.

3.2 Surrogate Model: Freeze-thaw PFN

We propose Freeze-thaw PFN (FT-PFN) a prior-data fitted network (Müller et al., 2022, PFNs) trained

to be used as an in-context dynamic surrogate model in the freeze-thaw framework. For details on

PFNs we refer to Appendix A. Following previous works using PFNs (Müller et al., 2022; Hollmann

et al., 2023; Müller et al., 2023; Adriaensen et al., 2023; Dooley et al., 2023), we train the PFN only

2

Algorithm 1 Freeze-thaw Bayesian Optimization (FTBO). Blue comments detail ifBO specifics.

Input: Λ: configuration space,

f : measure of model performance to be maximized,

bmax: maximal steps for any configuration 𝜆 ∈ Λ,
𝐵: total HPO budget in steps.

Components:
M: the surrogate model (FT-PFN, Section 3.2),

A: the acquisition function (MFPI-random, Section 3.3)

Output: 𝜆∗∈ Λ, obtaining the best observed performance

Procedure: HPO(Λ, f , bmax, 𝐵):

1: 𝜆 ∼ U (Λ) initial random sample

2: 𝐻 ← {((𝜆, 1), f (𝜆,𝑏𝜆)} evaluate f (train 𝜆 for first step)

3: while |𝐻 | < 𝐵 do
4: TrainM on 𝐻 FT-PFN requires no model fitting

5: 𝜆 ←− A(Λ,M, 𝐻, bmax) select 𝜆 to thaw

6: 𝑏𝜆 ← |{ℎ ∈ 𝐻 : ℎ = ((𝜆, ·), ·)}| 𝑏𝜆 , the number of steps allocated to 𝜆 thus far

7: 𝐻 ← 𝐻 ∪ {(𝜆,𝑏𝜆 + 1, f (𝜆,𝑏𝜆))} evaluate 𝑓 (thaw 𝜆 for 1 step)

8: end while
9: return 𝜆∗: (𝜆∗, ·) ∈ argmax𝜆∈Λ, 1≤𝑏≤𝑏𝜆 f (𝜆,𝑏)

on synthetically generated data, allowing us to generate virtually unlimited data and giving us full

control over any biases therein.

Our synthetic data mimics collections of learning curves on the same task, alongside their

hyperparameter settings. Following Adriaensen et al. (2023), we model individual learning curves

(𝜋curve) as linear combinations of parametric basis curves. We extend this model to also model

breaks (e.g., divergence) following Caballero et al. (2023). To model the correlations between

collections of learning curves on the same task (and due to hyperparameter similarities), we adopt

the BNN prior from Müller et al. (2023), i.e., use a randomly initialized neural network (𝜋config) to

map hyperparameter settings to its learning curve as shown in Figure 2. To generate a training

data sample for FT-PFN, we (i) randomly initialize 𝜋config, (ii) sample a collection of curves by

applying 𝜋config followed by 𝜋curve (as in Equation 4) to hyperparameter settings sampled uniformly

at random from the unit hypercube, (iii) randomly sample a train and test split, where the training

data corresponds to partially learning curves and test points to extrapolation targets.

Further details about meta-training FT-PFN can be found in Appendix B, including the basis

curves, their parameters, and illustrations of samples from our learning curve prior (Appendix B.1);

a detailed description of the procedure we use for generating our meta-training data (Appendix B.2);

and the architecture and hyperparameters used (Appendix B.3).

3.3 Dynamic Acquisition Function: MFPI-random

Line 5 in Algorithm 1 represents the maximization of some acquisition function (AF), i.e.,

argmax𝜆∈Λ AF(𝜆). In this work, we adopt the following AF:

MFPI(𝜆;ℎ,𝑇) = P(M(𝜆, min(𝑏𝜆 + ℎ, bmax)) > 𝑇) (1)

which evaluates to the predicted likelihood that a candidate configuration 𝜆 ∈ Λ after ℎ more steps
of training (currently trained till 𝑏𝜆 ≥ 0) obtains a model exceeding the 𝑇 performance threshold.

Here, M is the trained surrogated model, 𝑏max is the maximum allowed training iterations per

configuration, and 𝑓best will be the best observed performance. Note that for ℎ = bmax and 𝑇 = 𝑓best,

we recover the Probability of Improvement (PI) acquisition function (Mockus et al., 1978). The

values we choose for these hyper-hyperparameters (ℎ, 𝑇) will affect which configuration gets

3

Figure 2: Diagram for the prior data model (see, Equation 4) used to generate data for meta-training

FT-PFN. On the left, we have the randomly initialized neural network 𝜋config that models

the relationship between a hyperparameter setting 𝜆 and its learning curve (shown in pink),

whose output parameterizes a curve model 𝜋curve that is a linear combination of 𝐾 (=2 in this

illustration) basis functions (shown in red and blue) with added 𝜆-specific Gaussian noise

with variance 𝜎2.

continued (see Figure 5, Appendix C). Their optimal settings depend on the desired freeze-thaw

behavior and are not straightforward to determine. Instead of using a fixed ℎ or 𝑇 (Wistuba et al.,

2022; Kadra et al., 2023), we explore a range of possible thresholds and horizons by randomizing

these. Such random sampling procedure is undertaken every freeze-thaw BO iteration and is akin

to an AF selection from a portfolio of different MFPIs. The result is a simple, parameter-free AF

with a balanced exploration-exploitation trade-off,

MFPI-random(𝜆) = MFPI(𝜆;ℎrand, 𝑇 rand)
with ℎrand ∼ U (1, bmax) and 𝑇 rand = 𝑓best + 𝜏 rand · (1 − 𝑓best) and 𝑙𝑜𝑔10(𝜏 rand) ∼ U (−4,−1)

(2)

Further details, as well as pseudo code (Algorithm 2) can be found in Appendix C.

4 Empirical Evaluation

In this section, we compare ifBO to state-of-the-art multi-fidelity freeze-thaw Bayesian optimization

methods. We conduct our experiments on three benchmarks: LCBench (Zimmer et al., 2021),

PD1 (Wang et al., 2021), and Taskset (Metz et al., 2020). These benchmarks, covering different

architectures (Transformers, CNNs, MLPs) and tasks (NLP, vision, tabular data), are commonly used

in the HPO literature. A detailed overview of the benchmarks tasks is presented in Appendix D.

Our main baselines include other recent freeze-thaw approaches: DyHPO (Wistuba et al., 2022)

and DPL (Kadra et al., 2023). We reimplement the above two baselines in order to allow ablation of

the online learning surrogates with different acquisition functions. Additionally to DPL and DyHPO,
we include Hyperband (Li et al., 2018), ASHA (Li et al., 2020b), Gaussian process-based FT-BO

(using DyHPO’s acquisition function) and uniform random search, as baselines (see Appendix E).

Experimental Setup: Each algorithm is allocated a total budget of 1000 steps (𝐵) for every task for

each benchmark family. We report two complementary metrics: the normalized regret, capturing

performance differences, and the average rank of eachmethod, capturing the relative order. Formally,

the normalized regret corresponds to a [0, 1] normalization of the observed error w.r.t to the best

(lowest) and worst (highest) errors recorded by all algorithms on the task.

Results discussion: Figure 3 presents the comparative results per benchmark family. The results

validate the superiority of freeze-thaw approaches (ifBO, DyHPO, and DPL) compared to standard

approaches (Hyperband, ASHA, and random search) for low-budget settings. Most notably, these

results establish the promise of ifBO, which either outperforms (on LCBench and Taskset) or

4

0 200 400 600 800 1000

Total epochs spent

10−2

10−1

N
or

m
al

iz
ed

re
gr

et
LCBench

0 200 400 600 800 1000

Total epochs spent

10−2

10−1

N
or

m
al

iz
ed

re
gr

et

PD1

0 200 400 600 800 1000

Total epochs spent

10−1

100

N
or

m
al

iz
ed

re
gr

et

Taskset

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

LCBench

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

PD1

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

Taskset

Random Search Hyperband Freeze-Thaw with GPs DPL ASHA DyHPO ifBO

Figure 3: Comparison of our method against state-of-the-art baselines on all 3 benchmarks. First row

shows normalized regret aggregated across multiple tasks in each benchmark (See Appendix

D for benchmark details, and the results per task can be found in Appendix H.3). Second

row shows the average ranks of each method.

competes closely (on PD1) with DPL and DyHPO. ifBO is also consistently the best on average rank

across all benchmarks (see Appendix H.1, Figure 10). In Appendix H.2, we show ranks over

cumulative wallclock time. Appendix H.3 (Figures 12-17) offers a closer look at the raw error

metrics for each algorithm per task. These detailed results collectively confirm the robustness

of ifBO for HPO tasks, showing its ability to compete if not outperform the most competitive

baselines.

Further Analysis: We assess the performance of our novel surrogate FT-PFN outside of an HPO

context (see, Appendix F), and find it to be superior to online learning alternatives, both in terms of

cost and quality of its predictions. We further perform ablation for the freeze-thaw approaches

comparing the surrogate and acquisition function interaction for DPL, DyHPO, ifBO. We find that

randomization of the acquisition function parameters works better in the freeze-thaw setting

than fixed settings (see, Appendix G.1, G.2). We also see that our PFN-based surrogate is superior

to the surrogates of DyHPO and DPL when using our randomized acquisition function (see, Ap-

pendix G.3). Additionally, we establish that our choice of including diverging curves in the prior

model constributes substantially to ifBO’s HPO performance (see, Appendix G.4).

5 Conclusion

In this paper, we proposed FT-PFN, a novel surrogate for freeze-thaw Bayesian optimization, and

showed that its in-context learning approach produces superior point and uncertainty estimates

compared to recently proposed deep Gaussian process (Wistuba et al., 2022) and deep power law

ensemble (Kadra et al., 2023) models, while being over an order of magnitude faster. We presented

the first empirical comparison of freeze-thaw implementations, confirming their superiority in

the low-budget regime, and demonstrating our method’s competitiveness with state-of-the-art

performance. Despite promising results, scaling up to modern deep learning (e.g., LLM pretraining)

remains challenging due to sample efficiency constraints. Future work should explore leveraging

additional prior information sources (e.g., in-context meta-learning, user priors (Müller et al., 2023;

5

Mallik et al., 2023a), training process information), parallel scaling, pushing current limitations

(normalization requirement, 10 hyperparameter limit), and larger models/data.

Impact Statement: This paper presents work whose goal is to advance the field of hyperparameter

optimization (HPO) in machine learning. There are many potential societal consequences of

machine learning, none which we feel must be specifically highlighted here. We would, however,

like to highlight that our work makes HPO more robust and efficient, and will thus help make

machine learning more reliable and sustainable.

Acknowledgements Frank Hutter acknowledges the financial support of the Hector Foundation.

All authors acknowledge funding by the state of Baden-Württemberg through bwHPC, the German

Research Foundation (DFG) through grant numbers INST 39/963-1 FUGG and 417962828, and the

European Union (via ERC Consolidator Grant Deep Learning 2.0, grant no. 101045765), TAILOR,

a project funded by EU Horizon 2020 research and innovation programme under GA No 952215.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect

those of the European Union or the European Research Council. Neither the European Union nor

the granting authority can be held responsible for them.

6

References
Adriaensen, S., Rakotoarison, H., Müller, S., and Hutter, F. (2023). Efficient bayesian learning curve

extrapolation using prior-data fitted networks. In Proceedings of the 37th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’23).

Awad, N., Mallik, N., and Hutter, F. (2021). DEHB: Evolutionary hyberband for scalable, robust and

efficient Hyperparameter Optimization. In Zhou, Z., editor, Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI’21), pages 2147–2153.

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,

Boulesteix, A., Deng, D., and Lindauer, M. (2023). Hyperparameter optimization: Foundations,

algorithms, best practices, and open challenges. page e1484.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, C., Koehn, P., Logacheva,

V., Monz, C., Negri, M., Post, M., Scarton, C., Specia, L., and Turchi, M. (2015). Findings of the 2015

workshop on statistical machine translation. In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46, Lisbon, Portugal. Association for Computational Linguistics.

Caballero, E., Gupta, K., Rish, I., and Krueger, D. (2023). Broken neural scaling laws. In International
Conference on Learning Representations (ICLR’23). Published online: iclr.cc.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., and Koehn, P. (2013). One billion word bench-

mark for measuring progress in statistical language modeling. arXiv preprint arXiv:1312.3005.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6):141–142.

Domhan, T., Springenberg, J., and Hutter, F. (2015). Speeding up automatic Hyperparameter

Optimization of deep neural networks by extrapolation of learning curves. In Yang, Q. and

Wooldridge, M., editors, Proceedings of the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI’15), pages 3460–3468.

Dooley, S., Khurana, G. S., Mohapatra, C., Naidu, S., andWhite, C. (2023). ForecastPFN: Synthetically-

trained zero-shot forecasting. In Proceedings of the 37th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’23).

Falkner, S., Klein, A., andHutter, F. (2018). BOHB: Robust and efficient Hyperparameter Optimization

at scale. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning

Research.

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. In Hutter, F., Kotthoff, L., and

Vanschoren, J., editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1,
pages 3 – 38. Springer. Available for free at http://automl.org/book.

Gijsbers, P., LeDell, E., Poirier, S., Thomas, J., Bischl, B., and Vanschoren, J. (2019). An open source

automl benchmark. In Eggensperger, K., Feurer, M., Hutter, F., and Vanschoren, J., editors, ICML
workshop on Automated Machine Learning (AutoML workshop 2019).

Gilmer, J. M., Dahl, G. E., and Nado, Z. (2021). init2winit: a jax codebase for initialization, optimiza-

tion, and tuning research.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR’16),
pages 770–778.

7

iclr.cc
http://automl.org/book

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. (2023). TabPFN: A transformer that

solves small tabular classification problems in a second. In International Conference on Learning
Representations (ICLR’23). Published online: iclr.cc.

Kadra, A., Janowski, M., Wistuba, M., and Grabocka, J. (2023). Deep power laws for hyperparameter

optimization. In Proceedings of the 37th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’23).

Kingma, D., Salimans, T., and Welling, M. (2015). Variational dropout and the local reparame-

terization trick. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors,

Proceedings of the 29th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’15).

Klein, A., Falkner, S., Springenberg, J., and Hutter, F. (2017). Learning curve prediction with Bayesian

neural networks. In Proceedings of the International Conference on Learning Representations
(ICLR’17). Published online: iclr.cc.

Klein, A., Tiao, L., Lienart, T., Archambeau, C., and Seeger, M. (2020). Model-based Asynchronous

Hyperparameter and Neural Architecture Search. arXiv:2003.10865 [cs.LG].

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report,

University of Toronto.

Lefaudeux, B., Massa, B., Liskovich, D., Xiong, W., Caggiano, W., Naren, S., Xu, M., Hu, J., Tintore,

M., Zhang, S., Labatut, P., and Haziza, D. (2022). xformers: A modular and hackable transformer

modelling library.

Li, J., Liu, Y., Liu, J., and Wang, W. (2020a). Neural architecture optimization with graph VAE.

arXiv:2006.10310 [cs.LG].

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: Bandit-

based configuration evaluation for Hyperparameter Optimization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR’17). Published online: iclr.cc.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel

bandit-based approach to Hyperparameter Optimization. 18(185):1–52.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-tzur, J., Hardt, M., Recht, B., and Talwalkar,

A. (2020b). A system for massively parallel hyperparameter tuning. In Dhillon, I., Papailiopoulos,

D., and Sze, V., editors, Proceedings of Machine Learning and Systems 2, volume 2.

Liao, Z. and Carneiro, G. (2022). Competitive multi-scale convolution. arXiv preprint
arXiv:1511.05635.

Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. In

Proceedings of the International Conference on Learning Representations (ICLR’17). Published

online: iclr.cc.

Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., and Hutter,

F. (2023a). Priorband: Practical hyperparameter optimization in the age of deep learning. In

Thirty-seventh Conference on Neural Information Processing Systems.

Mallik, N., Hvarfner, C., Bergman, E., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., and Hutter,

F. (2023b). PriorBand: Practical hyperparameter optimization in the age of deep learning. In

Proceedings of the 37th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’23).

8

iclr.cc
iclr.cc
iclr.cc
iclr.cc

Metz, L., Maheswaranathan, N., Sun, R., Freeman, C. D., Poole, B., and Sohl-Dickstein, J. (2020).

Using a thousand optimization tasks to learn hyperparameter search strategies. arXiv:2002.11887
[cs.LG], abs/.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of Bayesian methods for seeking the

extremum. Towards Global Optimization, 2(117-129).

Müller, S., Feurer, M., Hollmann, N., and Hutter, F. (2023). Pfns4bo: In-context learning for bayesian

optimization. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,

editors, Proceedings of the 40th International Conference on Machine Learning (ICML’23), volume

202 of Proceedings of Machine Learning Research. PMLR.

Müller, S., Hollmann, N., Arango, S., Grabocka, J., and Hutter, F. (2022). Transformers can do

Bayesian inference. In Proceedings of the International Conference on Learning Representations
(ICLR’22). Published online: iclr.cc.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,

Bernstein, M., Berg, A., and Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge.

115(3):211–252.

Swersky, K., Snoek, J., and Adams, R. (2014). Freeze-thaw Bayesian optimization. arXiv:1406.3896
[stats.ML].

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., and Polosukhin, I.

(2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., and Garnett, R., editors, Proceedings of the 31st International Conference on
Advances in Neural Information Processing Systems (NeurIPS’17). Curran Associates, Inc.

Wang, Z., Dahl, G., Swersky, K., Lee, C., Mariet, Z., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani,

Z. (2021). Pre-trained Gaussian processes for Bayesian optimization. arXiv:2207.03084v4 [cs.LG].

Wistuba, M., Kadra, A., and Grabocka, J. (2022). Dynamic and efficient gray-box hyperparameter

optimization for deep learning. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho,

K., and Oh, A., editors, Proceedings of the 36th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’22).

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking

Machine Learning algorithms. arXiv:1708.07747v2 [cs.LG].

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Richard C. Wilson, E. R. H.

and Smith, W. A. P., editors, Proceedings of the 27th British Machine Vision Conference (BMVC),
pages 87.1–87.12. BMVA Press.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-Pytorch: Multi-fidelity metalearning for

efficient and robust AutoDL. 43:3079–3090.

9

iclr.cc

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

[Yes],

(b) Did you describe the limitations of your work? [Yes] (e.g., in Section 5)

(c) Did you discuss any potential negative societal impacts of your work? [Yes] (in Section 5)

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] Explained in Appendices D and E.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] Explained in Appendices D and E.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [No] Not explicitly as we are

interested in anytime performance over continuous time and not only at the final budget.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] see Appendix G

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] https://github.com/automl/ifBO

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

10

https://2022.automl.cc/ethics-accessibility/
https://github.com/automl/ifBO

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A].

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A].

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A].

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A].

(b) Did you include complete proofs of all theoretical results? [N/A].

11

A Primer to Prior-data Fitted Networks (PFNs)

As briefly discussed in Section 2, PFNs (Müller et al., 2022) are neural networks 𝑞𝜃 that are trained

to do Bayesian prediction for supervised learning in a single forward pass. More specifically, let

𝐷 = 𝐷train ∪ {(𝑥test, 𝑦test)} be a dataset used for training; the PFN’s parameters 𝜃 are optimized

to take 𝐷train and 𝑥test as inputs and make predictions that approximate the posterior predictive

distribution (PPD) of the output label 𝑦test:

𝑞𝜃 (𝑥test, 𝐷train) ≈ P(𝑦test | 𝑥test, 𝐷train),

in expectation over datasets 𝐷 sampled from a prior 𝑝 (D) over datasets. At test time, the PFN does

not update its parameters given a training dataset 𝐷train, but rather takes 𝐷train as a contextual

input, predicting the labels of unseen examples through in-context learning. The PFN is pretrained

once for a specific prior 𝑝 (D) and used in downstream Bayesian prediction tasks without further

fine-tuning. More specifically, it is trained to minimize the cross-entropy for predicting the hold-out

example's label 𝑦test, given 𝑥test and 𝐷train:

ℓ𝜃 = E[9log 𝑞𝜃 (𝑦test |𝑥test, 𝐷train)]
with {(𝑥test, 𝑦test)} ∪ 𝐷train ∼ 𝑝 (D)

(3)

Müller et al. (2022) proved that this training procedure coincides with minimizing the KL divergence

between the PFN's predictions and the true PPD.

B Further Details about our Surrogate Model (FT-PFN)

In this section, we discuss in more detail FT-PFN, the prior-data fitted network (Müller et al.,

2022, PFNs) we trained to be used as an in-context dynamic surrogate model in the freeze-thaw

framework. As described in Section A, PFNs represent a general meta-learned approach to Bayesian

prediction, characterized by the data used for meta-training.

From a Bayesian perspective, we want to generate data from a prior data model that captures our

beliefs on the relationship between hyperparameters 𝜆, training budget 𝑏, and model performance

f (𝜆,𝑏). While one could design such prior for a specific HPO scenario, our goal here is to construct

a generic prior, resulting in an FT-PFN surrogate for general HPO. We leverage general beliefs about

learning curves: noisy but improving, convex, converging; similar start, saturation, and convergence

points for curves on the same task; and similar learning curves for similar hyperparameter settings.

B.1 The Learning Curve Prior

Following Klein et al. (2017) and Kadra et al. (2023), we model the performance curve of a hyperpa-

rameter 𝜆 using a parametric curve model 𝜋 curve, whose parameters are sampled from an another

prior model 𝜋 config taking the hyperparameter 𝜆 as input (see Figure 2). Following Domhan et al.

(2015) and Adriaensen et al. (2023), we define 𝜋curve as a weighted combination of 𝐾 basis functions

𝑓𝑘 , with additive Gaussian noise. Thus, the parameters of 𝜋curve include E (the set of parameters and

weight of all basis functions), along with 𝜎2 (noise). As for 𝜋config, we adopt a neural network with

weights 𝜃 . Unlike previous works, we do not train the weights 𝜃 of this neural network. Instead, we

randomly initialize the network, to represent a task-specific relationship between hyperparameters

and their learning curves, which we then use to generate data for training FT-PFN. This can be

viewed as generating samples from a Bayesian Neural Network (BNN) prior, meta-training FT-PFN
to emulate LCNet-like (Klein et al., 2017) BNN inference through in-context learning. Formally, we

12

define the performance of a hyperparameter 𝜆 at a training time 𝑡 as follows:

𝜋curve(𝜆, 𝑡) ∼ N
(
𝑓comb(𝑡 ; E), 𝜎2

)
with 𝑓comb(𝑡 ; E) = 𝑦0 + (𝑦∞ − 𝑦0) ·

𝐾∑︁
𝑘=1

𝑤𝑘 𝑓𝑘 (𝑡 ;Ψ𝑘)

and (𝜎2, (𝑦∞,𝑤1, . . . ,𝑤𝐾 ,Ψ1, . . . ,Ψ𝐾)︸ ︷︷ ︸
E

) ∼ 𝜋config(𝜆;𝜃) (4)

where 𝑦0 is the initial model performance
1
, and 𝑦∞ that at convergence. 𝑤𝑘 is the weight of basis

curve 𝑓𝑘 , and Ψ𝑘 its basis function specific parameters. In this work, we adopt four different basis

functions (𝐾 = 4), each having four parameters, resulting in a total of 22 (= |E | + 1) parameters

depending on 𝜆 through 𝜋config. Our four basis functions subsume the power law model used

by Kadra et al. (2023), all three basis functions used by Adriaensen et al. (2023), and 9 of the 11

basis functions originally proposed by Domhan et al. (2015).
2
Furthermore, unlike those considered

in previous works, our basis functions can have a breaking point (Caballero et al., 2023) at which

convergence stagnates or performance diverges, resulting in a more heterogeneous and realistic

model.

Note that 𝜎2 and E are all outputs of the same neural network 𝜋config. Due to the symmetry

of this network, when marginalizing over 𝜆 and 𝜃 , all these parameters would have the same

distribution. This is undesirable. To impose parameter-specific marginal distributions, we (i)

estimate the empirical CDF of marginal output distribution; (ii) apply it to each output to obtain a

new output with U (0, 1) marginal distribution; (iii) apply the icdf of the parameter-specific target

marginal distribution. Specifically, let 𝑢1, 𝑢2, 𝑢3 ∼ U (0, 1) be three i.i.d. uniform random variables

that are hyperparameter independent and like 𝜃 are sampled once per task, then the non-basis

curve specific parameters of our curve model are (marginally) distributed as follows:

𝑦∞ ∼ U (𝑦0, 𝑦𝑚𝑎𝑥) with 𝑦0 = min(𝑢1, 𝑢2) and 𝑦𝑚𝑎𝑥 =

{
max(𝑢1, 𝑢2) if 𝑢3 ≤ 0.25

1.0 if 𝑢3 > 0.25

log(𝜎) ∼ N (−5, 1) 𝑤𝑘 =
𝑊𝑘

𝑊
with 𝑊𝑘 ∼ Gamma(1, 1) and 𝑊 =

𝐾∑︁
𝑘=1

𝑊𝑘

Each of the basis curves takes the form

𝑓𝑘 (𝑡 ;Ψ𝑘) = 𝑓 ′𝑘 (𝑥𝑡 ;Ψ𝑘) with 𝑥𝑡 =

{
𝑡 if 𝑡 ≤ 𝑥𝜆

sat,𝑘

𝑟𝜆
sat,𝑘
(𝑡 − 𝑥sat,𝑘) + 𝑥sat,𝑘 if 𝑡 > 𝑥𝜆

sat,𝑘

where each 𝑓𝑘 has the following four parameters Ψ𝑘 :

𝛼𝑘 The skew of the curve, determining the convergence rate change over time.

𝑥sat,𝑘 , 𝑦sat,𝑘 The point at which model performance saturates and the convergence rate is sud-

denly reduced.

𝑟sat,𝑘 The reduced convergence rate after saturation, which can be negative, modeling diver-

gence.

and 𝑓 ′
𝑘
(𝑥𝑡 , 𝜃𝑘) is a [0,1] bounded monotonic growth function. The formulas for these growth

functions, alongside the target distributions of their parameters, are listed in Table 1.

1
Note that 𝑦0 ∉ E as we assume it to be independent of 𝜆.

2
Our model excludes the two unbounded basis curves.

13

Finally, note that given these choices, we have 𝑓comb(𝑡, E) ∈ [0, 1] and we clip the Gaussian

noise in 𝜋curve(𝜆, 𝑡) in the same range. As a consequence, if performance does not naturally fall in

this range, it must be normalized before passing it to FT-PFN. Examples of collections of curves

generated using this prior can be found in Figure 4.

Name Formula 𝑓 ′
𝑘
(𝑥𝑡 ;Ψ𝑘) Prior 𝑝 (Ψ𝑘)

pow4 1 − ((𝜖
−1
𝛼
1

1
− 1) ∗ 𝑥𝑡

𝑥sat,1
+ 1)−𝛼1 ln(𝛼1) ∼ N (1, 1) log

10
(𝑥sat,𝑘) ∼ N (0, 1), ∀𝑘

exp4 1 − (𝜖2)
(𝑥𝑡
𝑋
sat,2
)𝛼2

ln(𝛼2) ∼ N (0, 1) log
1
0(𝜖) ∼ U (−3, 0), ∀𝑘

ilog4 1 − ln(𝛼3)

ln((𝛼
1

𝜖
3

3
−𝛼3) 𝑥𝑡

𝑋
sat,3
+𝛼3)

ln(𝛼3 − 1) ∼ N (−4, 1) 𝑦sat,𝑘 = 𝑦∞ − 𝜖 · (𝑦∞ − 𝑦0), ∀𝑘

hill4 1 − 1

(𝑥𝑡
𝑋
sat,4
)𝛼4 (1

𝜖
4

−1)+1 ln(𝛼4) ∼ N (0.5, 0.25) 1 − 𝑟sat,𝑘 ∼ 𝐸𝑥𝑝 (1), ∀𝑘

Table 1: The formulas for each of the four basis functions in our curve prior. Note that each of them

are normalized to start at 0, converge to 1, and pass through the saturation point.

B.2 Meta-training Data Generating Procedure

A single meta-training example in our setting corresponds to a training set 𝐷train and

test set 𝐷test, where 𝐷train =
⋃
𝜆∈Λ

{(
(𝜆, 𝑏

bmax

), 𝜋curve(𝜆, 𝑏
bmax

)
)}𝑏𝜆
𝑏=1

corresponds to the (syn-

thetic) partial learning curves observed thus far (i.e., the analog of 𝐻 at test time) and

𝐷test ⊆
⋃
𝜆∈Λ{((𝜆, 𝑏

bmax

), 𝜋curve(𝜆, 𝑏
bmax

))}bmax

𝑏=𝑏𝜆
the extrapolation targets we want FT-PFN to predict.

To keep the input size of FT-PFN fixed we choose |𝐷train | + |𝐷test | = 𝑁 = 1, 000 and vary the size of

|𝐷train | ∼ U (0, 𝑁 − 1). As bmax varies in practice, we sample it log-uniformly in [1, 𝑁]. Note that in
the special case 𝑏max = 1, we train FT-PFN for black box BO. Λ = {𝜆𝑖}𝑁𝑖=1 is our synthetic configura-
tion space with 𝜆𝑖 ∼ U (0, 1)𝑚 , with |𝜆𝑖 | = 𝑚 ∼ U (0, 𝑀) the dimensionality of our configuration

space. We determine 𝑏𝜆 by sampling a bag of |𝐷train | elements from Λ proportionally to weights

{𝑤𝜆}𝜆∈Λ that follow a Dirichlet distribution with log
10
(𝛼) ∼ U (−4,−1) resulting in heterogeneous

budget allocations that vary from breadth-first to depth-first.
3
We use the same weights to sample

another bag of |𝐷test | determining the number of extrapolation targets for each 𝜆, where each target

𝑏 is chosen U (𝑏𝜆, 𝑏max). Finally, to generate the corresponding performance observation/target, we

first instantiate the random variables that are task-specific but do not depend on 𝜆, i.e., 𝑦0, 𝑦max and

the architecture and weights 𝜃 of the neural network 𝜋config; and subsequently obtain 𝜋curve(𝜆, 𝑏
bmax

)
using Equation 4.

Limitations: With these modeling choices come some limitations. First, FT-PFN is trained for HPO

budgets 𝐵 ≤ 𝑁 = 1, 000; requires the performance metric 𝑓 and each hyperparameter value to be

normalized in [0,1]; and supports up to𝑀 = 10 hyperparameters.

B.3 Architecture and Hyperparameters

Following Müller et al. (2022), we use a sequence Transformer (Vaswani et al., 2017) for FT-PFN
and treat each tuple (𝜆, 𝑡 , 𝜋curve(𝜆, 𝑡)) (for train) and (𝜆, 𝑡) (for test) as a separate position/token.

We do not use positional encoding such that we are permutation invariant. FT-PFN outputs a

discretized approximation of the PPD, each output corresponding to the probability density of

one of the equal-sized bins. We set the number of bins/outputs to 1,000. For the transformer,

we use 6 layers, an embedding size of 512, four heads, and a hidden size of 1,024, resulting in a

total of 14.69M parameters. We use a standard training procedure for all experiments, minimizing

the cross-entropy loss from Equation 3 on 2.0M synthethic datasets generated as described in

3
We adopt the same strategy to generate benchmark tasks for our evaluation of prediction quality described in

Section F.

14

Figure 4: Twenty-one i.i.d. samples of the FT-PFN prior, i.e., synthetically generated collections of

learning curves for the same task using different hyperparameter configurations. In these

examples, we consider 3 hyperparameters that are mapped onto the color of the curves,

such that runs using similar hyperparameters, have similarly colored curves. We observe

correlations, in varying degrees, between curves on the same task, especially with similar

hyperparameter configurations.

15

Section B.2, using the Adam optimizer (Kingma et al., 2015) (learning rate 0.0001, batch size 25)

with cosine annealing (Loshchilov and Hutter, 2017) with a linear warmup over the first 25% epochs

of the training. Training took roughly 8 GPU hours on an RTX2080 GPU and the same FT-PFN is
used in all experiments, without any retraining/fine-tuning.

C Further details about our Acquisition Function (MFPI-random)

Algorithm 2 describes the acquisition procedure MFPI-random, used in ifBO. In each iteration

of ifBO (L3-L8 in Algorithm 1), Algorithm 2 is invoked once taking as input the configuration

space Λ, the surrogate modelM, the observed history 𝐻 , and the maximal training steps bmax of

a configuration. First, the random horizon ℎrand and the scaled factor of improvement 𝜏 rand (and

thereby 𝑇 rand
) are sampled once in every execution of the algorithm (L2-L3). This process can be

seen as instantiating an acquisition function from a portfolio of multi-fidelity PIs. The choice of PI,

the multi-fidelity component of extrapolating hyperparameters, and the random selection of an

acquisition behaviour lends the naming of this acquisition function, MFPI-random. Then, for each
candidate hyperparameter 𝜆 ∈ Λ, the performance of the hyperparameter at a total step of 𝑏𝜆 +ℎrand
is inferred, using the surrogate M. Finally, the candidate with the highest obtained PI score is

returned as the candidate solution to query next in the main Algorithm 1 loop. Figure 5 illustrates

the behavior of MFPI-random w.r.t some values of ℎrand and 𝑇 rand
, with FT-PFN as a surrogate.

Algorithm 2 MFPI-random

Input: configuration space Λ,
probabilistic surrogate M,

history of observations 𝐻 ,

maximal steps bmax

Output: 𝜆 ∈ Λ, hyperparameter to evaluate next

Procedure MFPI-random(Λ, M, 𝐻 , 𝑏max):

1: 𝑓best ← max {𝑦} (·,·,𝑦) ∈𝐻 best score seen in 𝐻

2: ℎrand ∼ U (1, bmax) random horizon

3: 𝑇 rand = 𝑓best + 10𝜏
rand · (1 − 𝑓best) with 𝜏 rand ∼ U (−4,−1) random threshold scaling

4: return argmax

𝜆∈Λ
P(M(𝜆, min(𝑏𝜆 + ℎrand, bmax);𝐻) > 𝑇 rand) we pass 𝐻 as input to FT-PFN for ICL

D Benchmarks

Below, we enumerate the set of benchmarks we have considered. These benchmark cover a variety

of optimization scenarios, including the model being optimized, the task for which it’s being trained

on, and the training metric with which to optimize hyperparameters with respect to. Notably, each

of these benchmarks are tabular, meaning that the set of possible configurations to sample from is

finite.

This choice of benchmarks is largely dictated by following the existing benchmarks used in

prior work, especially the two primary baselines with which we compare to, DyHPO and DPL. These
benchmarks were provided using mf-prior-bench4.

• LCBench Zimmer et al. (2021) [DyHPO, DPL] - We use all 35 tasks available which represent the

7 integer and float hyperparameters of deep learning models from AutoPyTorch. Each task

4
https://github.com/automl/mf-prior-bench

16

Figure 5: Illustration of the MFPI acquisition (Equation 1). (Left) The figure shows a collection of partial

learning curves and their corresponding continuations predicted by our FT-PFN model. Here

again, we consider 3 hyperparameters whose values are mapped onto the color of the curves.

(Right)The figure shows the color of the curve continued (i.e., maximizing MFPI) for different
values of the horizon and threshold parameters. Note that the ranges shown (and scale

used), match those sampled uniformly by MFPI-random (Equation 2) and consequently, the

likelihood of continuing a specific curve is proportional to the surface area covered in this

image by its corresponding color. Finally, note that the bright red color corresponds to

starting a new curve.

represents the 1000 possible configurations, trained for 52 epochs on a dataset taken from the

AutoML Benchmark Gijsbers et al. (2019). We drop the first epoch as suggested by the original

authors.

Table 2: The 7 hyperparameters for all LCBenchtasks.

name type values info

batch_size integer [16, 512] log

learning_rate continuous [0.0001, 0.1] log

max_dropout continuous [0.0, 1.0]
max_units integer [64, 1024] log

momentum continuous [0.1, 0.99]
num_layers integer [1, 5]
weight_decay continuous [1𝑒-05, 0.1]

• TasksetMetz et al. (2020) [DyHPO, DPL] This set benchmark provides 1000 diverse task on a variety

of deep learning models on a variety of datasets and tasks. We choose the same 12 tasks as used in

the DyHPO experimentation which consists of NLP tasks with purely numerical hyperparameters,

mostly existing on a log scale. We additionally choose a 4 hyperparameter variant and an 8

hyperparameter variant, where the 4 hyperparameter variant is a super set of the former. This

results in 24 total tasks that we use for the Taskset benchmark.

One exception that needs to be considred with this set of benchmarks is that the optimizers

must optimize for is the model’s log-loss. This metric has no upper bound, which contrasts

to all other benchmarks, where the bounds of the metric are known a-priori. We note that in

the DyHPO evaluation setup, they removed diverging curves as a benchmark preprocessing step,

17

essentially side-stepping the issue that the response function for a given configuration mays

return nans or out-of-distribution values. As our method requires bounded metrics, we make the

assumption that a practitioner can provide a reasonable upper bound for the log loss that will be

observed. By clampling to this upper bound, this effectively shrinks the range of values that our

method will observe. As we are in a simulated benchmark setup, we must simulate this a-priori

knowledge. We take the median value of at epoch 0, corresponding to the median log loss of

randomly initialized configurations that have not yet taken a gradient step. Any observed value

that is nan or greater will then be clamped to this upper bound before being fed to the optimizer.

Table 3: The 4 hyperparameter search space for Taskset.

name type values info

beta1 continuous [0.0001, 1.0] log

beta2 continuous [0.001, 1.0] log

epsilon continuous [1𝑒-12, 1000.0] log

learning_rate continuous [1𝑒-09, 10.0] log

Table 4: The 8 hyperparameter search space for Taskset.

name type values info

beta1 continuous [0.0001, 1.0] log

beta2 continuous [0.001, 1.0] log

epsilon continuous [1𝑒-12, 1000.0] log

learning_rate continuous [1𝑒-09, 10.0] log

exponential_decay continuous [9𝑒-07, 0.0001] log

l1 continuous [1𝑒-09, 10.0] log

l2 continuous [1𝑒-09, 10.0] log

linear_decay continuous [1𝑒-08, 0.0001] log

• PD1 Wang et al. (2021) [DPL] These benchmarks were obtained from the output generated by

HyperBO (Wang et al., 2021) using the dataset and training setup of Gilmer et al. (2021). We

choose a variety of tasks including the tuning of large vision ResNet (Zagoruyko and Komodakis,

2016) models on datasets such as CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and SVHN (Liao

and Carneiro, 2022) image classification datasets, along with training a ResNet (He et al., 2016)

on the ImageNet (Russakovsky et al., 2015) image classification dataset. We also include some

natural language processing tasks, notable transformers train on the LM1B (Chelba et al., 2013)

statistical language modelling dataset, the XFormer (Lefaudeux et al., 2022) trained on theWMT15

German-English (Bojar et al., 2015) translation dataset and also a transformer trained to sequence

prediction for protein modelling on the uniref50 dataset. Lastly, we also include a simple CNN

trained on the MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al., 2017) datasets.

Notably, all of these benchmarks share the same 4 deep learning hyperparameters given in table 5.

Each benchmark ranges in the size of their learning curves, depending on the task, ranging from

5 to 1414. For each task, there are different variant based on a pair of dataset and batchsize. In

total we evaluate our method on the 16 PD1 tasks below.

18

Table 5: The 4 hyperparameters for all PD1tasks.

name type values info

lr_decay_factor continuous [0.01, 0.99]
lr_initial continuous [1𝑒-05, 10.0] log

lr_power continuous [0.1, 2.0]
opt_momentum continuous [1𝑒-05, 1.0] log

– WideResnet - Tuned on the CIFAR10, CIFAR100 datasets, each with a constant batch size of

256 and 2048. Also included is the SVHN dataset with a constant batch size 256 and 1024.

– Resnet - Tuned on ImageNet with three constant batch sizes, 256, 512, and 1024.

– XFormer - Tuned with a batch size of 2048 on the LM1B statistical language modelling dataset.

– Transfomer Language Modelling - Tuned on the WMT15 German-English dataset with a

batch size of 64.

– Transformer Protein Modelling - Tuned on the uniref50 dataset with a batch size of 128.

– Simple CNN - Tuned on MNIST and Fashion-MNIST with constant batch sizes of 256 and 2048

for each of them.

E Baselines

To use ifBO in practice for an HPO task, please refer to NePS
5
. All our baselines were developed

into the NePS framework that we forked and copied into our setup. Below, we describe the basic

configuration of these baselines that were included in our experiments.

All baseline implementations can be found under neps in our experiment code available at:

To be released in the non-anonymized version.

E.1 General baselines

We chose random search based algorithms as baselines for the different benchmarks. This addition-

ally also shows the utility of the different fidelity scheduling algorithms in HyperBand and ASHA

which traverses the fidelity space in progressive geometric intervals, relying on strong performance

correlation at these fidelity checkpoints. For these baselines, we chose the existing implementations

in NePS, benchmarked in previously published work (Mallik et al., 2023b).

Random Search Simply searches uniformly random in the hyperparameter space. The fidelity is set

to the 𝑏max as specified by each benchmark instance (see, Appendix D). Therefore, as an example,

a budget of 1000 freeze-thaw steps, will be equivalent to 20 full random search evaluations for

LCBench and Taskset tasks.

HyperBand The NePS implementation follows the algorithm described in Li et al. (2018) and uses

the early stopping hyper-hyperparameter, as 𝜂 = 3. The 𝑏min is either 1 or as specified by the

benchmark instances. Similarly for 𝑏max.

ASHA The NePS implementation follows the algorithm described in Li et al. (2020b) and uses

the early stopping hyper-hyperparameter, as 𝜂 = 3. The 𝑏min is either 1 or as specified by the

benchmark instances. Similarly for 𝑏max.

5https://automl.github.io/neps/latest/

19

https://automl.github.io/neps/latest/

E.2 Freeze-thaw baselines

Here we describe the set of freeze-thaw BO algorithms. We note that due to experimental framework

(optimizer-benchmark interfacing and analysis) related differences, performing ablation studies

on the original implementations of DyHPO and DPL were not straightforward. For consistency

and reducing confounding factors, all experiments were performed with implementations in the

same experimental framework. Each of the algorithms were implemented in our custom NePS

framework.

Freeze-Thaw with GPs This algorithm is designed to take one unit step per configuration in

the fidelity space. The first 3 samples are selected uniformly random, as influenced by the seed.

Subsequently, a Gaussian Process (GP) is fit on the joint hyperparameter and fidelity space to

predict the loss, as a surrogate model. This baseline uses the greedy MF-EI acquisition function

from Wistuba et al. (2022). The GP here uses a standard 5/2-Matérn kernel with a lengthscale of 1.0.

DyHPO This implementation follows the exact details given in Wistuba et al. (2022) and their

publicly available code
6
.

DPL This implementation follows the exact details given in Kadra et al. (2023) and their publicly

available code
7
.

F Cost and Quality of Surrogate Predictions

In this section, we compare the predictive capabilities of FT-PFN to that of existing surrogate models,

including the deep Gaussian process of DyHPOWistuba et al. (2022) and the deep ensemble of power

laws model of DPL Kadra et al. (2023). We also consider a variant of FT-PFN trained on the same

prior, but not taking the hyperparameters as input (referred to as “no HPs"). This variant bases its

predictions solely on a set of partially observed learning curves.

Evaluation procedure: From a given benchmark, we sample both a set of partial curves, where

each curve has its own set of target epochs. The selection process is strategically designed to

encompass a wide range of scenarios, varying from depth-first approaches, which involve a smaller

number of long curves, to breadth-first approaches, where multiple shorter curves are explored.

Additional details on the sampling strategy can be found in Appendix B.2. To assess the quality of

the predictions, we utilize two metrics: log-likelihood (log-score, the higher the better), measuring

the approximation of the posterior distribution (∼ uncertainty calibration), and mean squared error

(the lower the better), measuring the accuracy of point predictions. We also report the runtime,

accounting for fitting and inference of each surrogate. The evaluation was run on a single Intel
Xeon 6242 CPU.

Results discussion: Table 6 presents the log-likelihood and MSE (Mean Squared Error) for each

approach relative to the context sample size. As expected, we observe an increase in log-likelihood

and a decrease in MSE as the context size get larger. Notably, FT-PFN and its No HPs variant

significantly outperform DPL and DyHPO in terms of log-likelihood. DPL in particular has low log-

likelihood values, corresponding to a poor uncertainty estimate such as being overly confident in

incorrect predictions. This may be due to the very low ensemble size (= 5) adopted by Kadra et al.

(2023) compounded by their strong power law assumption. On the other hand, DyHPO struggles
with low log-likelihood due to its inability to extrapolate beyond a single step effectively. Regarding

MSE, FT-PFN generally surpasses the baselines in LCBench and PD1, performing comparably to DPL
on Taskset.

6https://github.com/releaunifreiburg/DyHPO/tree/main
7https://github.com/releaunifreiburg/DPL/tree/main

20

https://github.com/releaunifreiburg/DyHPO/tree/main
https://github.com/releaunifreiburg/DPL/tree/main

Table 6: Comparison of FT-PFN, a variant of FT-PFN that excludes hyperparameters, DyHPO and DPL
across three benchmarks. Values represent the median over tasks of the log-likelihood and

mean squared error (MSE) as well as the runtime of predictions.

LCBench PD1 Taskset Runtime (s)

samples Method Log-likelihood MSE Log-likelihood MSE Log-likelihood MSE

DPL −14.577 0.007 −13.384 0.043 −26.011 0.005 17.686

400 DyHPO −0.481 0.042 −0.573 0.104 −0.465 0.009 16.860

FT-PFN (no HPs) 1.649 0.008 0.983 0.028 2.860 0.005 0.215

FT-PFN 1.876 0.005 0.925 0.030 2.934 0.004 0.225

DPL −13.291 0.007 −11.721 0.037 −21.779 0.005 33.480

800 DyHPO −0.426 0.031 −0.510 0.088 −0.419 0.008 64.809

FT-PFN (no HPs) 1.701 0.007 1.103 0.024 2.835 0.005 0.527

FT-PFN 2.044 0.004 1.072 0.025 2.975 0.004 0.541

DPL −11.983 0.007 −11.017 0.035 −20.350 0.004 41.956

1000 DyHPO −0.368 0.012 −0.457 0.071 −0.381 0.008 59.949

FT-PFN (no HPs) 1.763 0.007 1.120 0.024 2.877 0.005 0.687

FT-PFN 2.118 0.004 1.133 0.024 3.016 0.004 0.719

DPL −11.333 0.007 −10.353 0.033 −17.760 0.004 56.576

1400 DyHPO −0.361 0.011 −0.438 0.061 −0.374 0.008 112.168

FT-PFN (no HPs) 1.733 0.007 1.225 0.021 2.874 0.005 1.084

FT-PFN 2.137 0.003 1.201 0.022 3.042 0.004 1.130

DPL −9.182 0.007 −9.263 0.035 −13.712 0.004 73.435

1800 DyHPO −0.365 0.009 −0.437 0.058 −0.381 0.008 166.491

FT-PFN (no HPs) 1.753 0.006 1.251 0.019 2.858 0.005 1.635

FT-PFN 2.199 0.003 1.192 0.022 3.057 0.004 1.715

Beyond the impressive log-likelihood and MSE results, our approach also yield significant speed

advantages over the baseline methods. Importantly, FT-PFN maintains superiority in quality and

speed for inferences with more than 1000 samples as a context without not being trained in this

regime. Depending on the context sample size, our method achieves speedups ranging from 10× to

100× faster than DPL and DyHPO.

G Ablation Experiments

G.1 Acquisition function ablation of ifBO

In this section, we evaluate how ifBO performs in combination with other acquisition functions and

aim to assess to what extent our novel acquisition function described in Section 3.2 contributes to its

HPO success. To this end, we compare against ifBO variants combining FT-PFN with the EI-based

acquisitions used in prior-art (Wistuba et al., 2022; Kadra et al., 2023), i.e., EI (one step) predicting
one step in the future (DyHPO), and EI (max) predicting at the highest budget 𝑏max (DPL). We also

include their PI counterparts PI (one step) and PI (max), as well as variants of MFPI-random that
only vary the prediction horizon, PI (random horizon) with 𝑇 = 0, or only vary the threshold,

PI (max, random-T) with ℎ = 𝑏max. Apart from the methods compared, the experimental setup is

identical to that in Section 4.

Results discussion: Figure 6 shows the comprehensive results for our ifBO variants for each of

the benchmarks, in terms of average ranks and average normalized regrets, aggregated across all

tasks. Generally, we find that performance varies strongly between acquisitions, suggesting this

choice is at least as important for HPO success as our surrogate’s superior predictive quality. In

particular, we find that combinations with the EI-based acquisitions EI (one step) and EI (max)
proposed in prior-art, are amongst the worst-performing variants, both in terms of rank and regret.

For example, EI (max) fails on LCBench and PD1, while EI (one step) fails on PD1 and Taskset.
Curiously, these trends do not seem to extend to our baselines, e.g., DPL using EI (max) performs

21

0 200 400 600 800 1000

Total epochs spent

10−2

10−1

N
or

m
al

iz
ed

re
gr

et
LCBench

0 200 400 600 800 1000

Total epochs spent

10−2

10−1

N
or

m
al

iz
ed

re
gr

et

PD1

0 200 400 600 800 1000

Total epochs spent

10−1

100

N
or

m
al

iz
ed

re
gr

et

Taskset

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

LCBench

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

PD1

0 200 400 600 800 1000

Total epochs spent

0

2

4

6

R
an

k

Taskset

EI (one step) PI (max) EI (max) PI (one step) PI (random horizon) PI (max, random-T) PI-random (ours)

Figure 6: Results of an ablation study of the acquisition function in ifBO on each benchmark family.

First row shows normalized regret aggregated across multiple tasks in each benchmark

(Appendix D). Second row shows the average ranks of each method.

strongly on LCBench and DyHPO using EI (one step) performs strongly on PD1. We conjecture

that this failure is related to the (justified) lack of confidence FT-PFN has about its predictions,

as is evident by the superior log-scores in Table 6. As a result, the predicted posterior will be

heavy-tailed, resulting in the high EI values for those configurations our predictions are least

confident for. While this drives exploration, in the very low budget regime, it can easily lead to a

catastrophic failure to exploit. Overall, we find that while some variants are successful at specific

tasks in early stages of the optimization, none exhibit the same robustness in performance across

benchmarks, making MFPI-random the clear winner.
We perform comparable ablation studies for DPL and DyHPO, as detailed in Appendix G.2, to

demonstrate the benefits of randomizing the horizon and the threshold.

G.2 Acquisition function ablation of the baselines

In this section, our objective is to explore the impact of incorporating randomization into the

acquisition function on the baseline methods (DPL and DyHPO). For this purpose, we assess each
baseline across four distinct acquisition functions (Figure 7). The variants include: (ours), where
both the horizon and the threshold for improvement are randomly selected, similar to the approach

in ifBO; (one-step), where the horizon and threshold for improvement are chosen as in DyHPO; (at
max), where the selection criteria for the horizon and threshold follow the methodology in DPL;
and (random horizon), where the horizon is randomly determined, and the threshold is set to the

best value observed.

The results presented in Figure 7 confirm that the randomization technique markedly enhances

the performance of methods capable of extending learning curves over many steps, such as ifBO
and DPL. Furthermore, please note that only the greedy one-step acquisition function is effective for

DyHPO, given that it is specifically designed for one-step ahead predictions.

G.3 Comparison of freeze-thaw approaches with MFPI-random

In Figure 8, we present a comparison of freeze-thaw approaches—including ours, DPL, and
DyHPO—when employing our acquisition function (MFPI-random). Despite all models utilizing

22

Figure 7: Relative ablation over the horizon and threshold parameters of a multi-fidelity AF. For each
algorithm, we take the AF designed into the original algorithm and ablate over the two

variables: extrapolation horizon and the best performance threshold.

the same acquisition function, our model significantly outperforms those of DPL and DyHPO. This
clearly indicates the crucial role our prior in achieving the final performance.

Figure 8: Comparison of freeze-thaw approaches (ifBO, DPL, and DyHPO) when using our acquisition

(MFPI-random) with their specific surrogate models. The plots represent the average ranks

over all benchmarks (LCBench, PD1, and Taskset). This ablation confirms that our novel

surrogate (and not only our novel acquisition function) contributes significantly to the HPO

performance of ifBO.

G.4 Effectiveness of modeling curve divergence
As detailed in Section B.1, our curve prior is capable to model learning curve with diverging

behavior. This capability is novel compared to the related works Adriaensen et al. (2023); Klein

et al. (2017); Kadra et al. (2023); Domhan et al. (2015), which are restricted to monotonic curves

only. In Figure 9, we empirically show that modeling diverging curves yields a better surrogate

model in terms of both extrapolation and HPO.

H Further Figures and Analysis

H.1 Pairwise comparison of freeze-thaw approaches
For a fine-grained assessment of the performance of ifBO, we present a pairwise comparison with

the main freeze-thaw approaches including DPL and DyHPO. This is to visualize the relative gain of

performance compared to each baseline, which may have been hidden from Figure 3. As shown in

Figure 10, our approach dominates consistently DPL and DyHPO after ≈ 150 steps of HPO run.

H.2 Aggregate plots over time
Figure 11 plots Figure 3(bottom) but with the 𝑥-axis as cumulative wallclock time from the evalua-

tion costs returned by the benchmark for each hyperparameter for every unit step. The overall

conclusions remain over our HPO budget of 1000 steps. ifBO is on average anytime better ranked

than the freeze-thaw HPO baselines.

23

100 200 300 400 500 600 700 800

context size

1.3

1.4

1.5

1.6

1.7

R
an

k
(l

og
-l

ik
el

ih
oo

d)

200 400 600 800 1000

Steps

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

R
an

k
(H

PO
re

gr
et

)

Modeling diverging curves
True False

Figure 9: Comparison of the relative ranks of the performance gained by modeling divergences in

ICL-FT-PFN. The plots, showing the average ranks across all the benchmarks (LCBench, PD1,

and TaskSet), confirm the merits of capturing diverging curves both in terms of the quality

of the predictions (log-likelihood, left) and HPO performances (regret, right).

Figure 10: Comparison of relative ranks when aggregated over all benchmark families, showing strong
anytime performance in both pairwise comparisons and also overall among freeze-thaw

algorithms.

H.3 Per-task HPO Plots

In Section 4, we presented HPO results on each of these three benchmarks in a comprehensive

form, averaging rank and normalized regrets across every task in the suite. These averages may

hide / be susceptible to outliers. For completeness, Figures 12-17 provide regret plots for every task

in the benchmark, averaged across the 10 seeds. We find that our method consistently performs

on par, or better than the best previous best HPO method, especially in later stages of the search,

without notable outliers.

0 100000 200000 300000

Wallclock time (in s)

1

2

3

R
an

k

LCBench

0 100000 200000 300000

Wallclock time (in s)

1

2

3

R
an

k

PD1

0 100000 200000 300000

Wallclock time (in s)

1

2

3

R
an

k

Taskset

0 100000 200000 300000

Wallclock time (in s)

1

2

3

R
an

k

All

DyHPO DPL ifBO

Figure 11: Comparing relative rank over wallclock time (in 𝑠) over different benchmark families and

the aggregated result overall. ifBO is on average better than the baselines, DyHPO and DPL,
except for the TaskSet benchmark family where DPL starts the best but ifBO improves with

more budget.

24

Figure 12: Per-task HPO results on LCBench

25

Figure 13: Per-task HPO results on LCBench (cont.)

26

Figure 14: Per-task HPO results on LCBench (cont.)

27

Figure 15: Per-task HPO results on PD1

28

Figure 16: Per-task HPO results on Taskset

29

Figure 17: Per-task HPO results on Taskset (cont.)

30

	Introduction
	Background: In-context learning and PFNs
	Method: In-Context Freeze-Thaw Bayesian Optimization (ifBO)
	The Freeze-thaw setup
	Surrogate Model: Freeze-thaw PFN
	Dynamic Acquisition Function: MFPI-random

	Empirical Evaluation
	Conclusion
	Primer to Prior-data Fitted Networks (PFNs)
	Further Details about our Surrogate Model (FT-PFN)
	The Learning Curve Prior
	Meta-training Data Generating Procedure
	Architecture and Hyperparameters

	Further details about our Acquisition Function (MFPI-random)
	Benchmarks
	Baselines
	General baselines
	Freeze-thaw baselines

	Cost and Quality of Surrogate Predictions
	Ablation Experiments
	Acquisition function ablation of ifBO
	Acquisition function ablation of the baselines
	Comparison of freeze-thaw approaches with MFPI-random
	Effectiveness of modeling curve divergence

	Further Figures and Analysis
	Pairwise comparison of freeze-thaw approaches
	Aggregate plots over time
	Per-task HPO Plots

