
Automated Knowledge Base Construction (2021) Conference paper

Manifold Alignment across Geometric Spaces for
Knowledge Base Representation Learning

Huiru Xiao hxiaoaf@cse.ust.hk

Yangqiu Song yqsong@cse.ust.hk

Hong Kong University of Science and Technology

Abstract

Knowledge bases have multi-relations with distinctive properties. Most properties such
as symmetry, inversion, and composition can be handled by the Euclidean embedding
models. Nevertheless, transitivity is a special property that cannot be modeled efficiently in
the Euclidean space. Instead, the hyperbolic space characterizes the transitivity naturally
because of its tree-like properties. However, the hyperbolic space reveals its weakness for
other relations. Therefore, building a representation learning framework for all relation
properties is highly difficult. In this paper, we propose to learn the knowledge base
embeddings in different geometric spaces and apply manifold alignment to align the shared
entities. The aligned embeddings are evaluated on the out-of-taxonomy entity typing task,
where we aim to predict the types of the entities from the knowledge graph. Experimental
results on two datasets based on YAGO3 demonstrate that our approach has significantly
good performances, especially in low dimensions and on small training rates.

1. Introduction

Representation learning plays an important role in the knowledge base (or in general multi-
relational database) inference as well as its downstream tasks [Nickel et al., 2016]. Relations
in knowledge bases have distinctive properties, such as symmetry, inversion, and composition.
Transitivity is a typical property in knowledge bases. Transitive relations such as IsA are
commonly used in many popular knowledge bases with taxonomies, such as YAGO [Suchanek
et al., 2007] and WordNet [Miller, 1995].

Transitive relation has been shown quite different from other relations. While symmetry,
inversion, and composition can be easily handled by the Euclidean space [Sun et al., 2019],
the Euclidean embedding methods suffer from severe limitations for transitive relations
and tree-like structures [Linial et al., 1995]. In contrast, the hyperbolic space is capable of
embedding any finite tree while preserving the distances approximately [Gromov, 1987], so
the transitivity is naturally characterized by the hyperbolic space [Nickel and Kiela, 2017].

However, the hyperbolic space cannot achieve promising results on capturing various
relation patterns [Kolyvakis et al., 2019, Balazevic et al., 2019, Chami et al., 2020] due to the
incompatibility between the geometry and general graph structures. To learn the embeddings
of a wide variety of structures, [Gu et al., 2019] proposed to learn graph embeddings in
a product manifold combining several spaces. Nevertheless, the model also focuses on
single-relation graphs, making it inapplicable to knowledge bases.

Therefore, it is difficult to find a unified space to characterize all relation properties
because both the Euclidean and the hyperbolic embeddings tackle some relation properties
while having weaknesses on others. Hence, it is natural to think about an alternative

1



Thing

artist

personorganization

scientist

John 
Lennon

George 
Harrison

Liverpool

Guildford

Grammy 
Award

T
<latexit sha1_base64="C9GlttJGukZ6KFAql98D/7tz7I8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10G3Xvqt54vK4174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AjnuRbg==</latexit>

IT
<latexit sha1_base64="8mJnnWQqDsdSjv4o8Mcgx8BRwIo=">AAAB9HicbVDLSgMxFL3xWeur6tJNsAiuykwVdFl0o7sKfUE7lEyaaUMzmTHJFMrQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+T4seDaOM43Wlvf2NzaLuwUd/f2Dw5LR8ctHSWKsiaNRKQ6PtFMcMmahhvBOrFiJPQFa/vju8xvT5jSPJINM42ZF5Kh5AGnxFjJe+j3QmJGlIi0MeuXyk7FmQOvEjcnZchR75e+eoOIJiGThgqiddd1YuOlRBlOBZsVe4lmMaFjMmRdSyUJmfbSeegZPrfKAAeRsk8aPFd/b6Qk1Hoa+nYyi6iXvUz8z+smJrjxUi7jxDBJF4eCRGAT4awBPOCKUSOmlhCquM2K6YgoQo3tqWhLcJe/vEpa1Yp7Wak+XpVrt3kdBTiFM7gAF66hBvdQhyZQeIJneIU3NEEv6B19LEbXUL5zAn+APn8A3p2SKg==</latexit>

SubclassOf
InstanceOf

Eric 
Clapton

George 
Harrison

ha
sW

on
Pr
ize

ha
sW

on
Pr
iz
e

w
as

Bo
rn
In

ha
sM

us
ica
lRo

le

ha
sM

us
ic
al
Ro

le

wa
sB
or
nIn

IG
<latexit sha1_base64="26CpLxcNroT9wxIN9s24fd9SQNM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoQt1VsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+Oyura+sbm4Wt4vbO7t5+6eCwqWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMbjK/NaZKMykezSSmfoQHgoWMYGMl/77XjbAZEszT22mvVHYr7gxomXg5KUOOeq/01e1LkkRUGMKx1h3PjY2fYmUY4XRa7CaaxpiM8IB2LBU4otpPZ6Gn6NQqfRRKZZ8waKb+3khxpPUkCuxkFlEvepn4n9dJTHjlp0zEiaGCzA+FCUdGoqwB1GeKEsMnlmCimM2KyBArTIztqWhL8Ba/vEya1Yp3Xqk+XJRr13kdBTiGEzgDDy6hBndQhwYQeIJneIU3Z+y8OO/Ox3x0xcl3juAPnM8fytySHQ==</latexit>

G
<latexit sha1_base64="zmlUFjy/pjcMEy8/BySkN8b+Wow=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFF7qsYB8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtObnO/+0SVZlI8mmlCgxiPBIsYwcZKfj/GZkwwz+5mg2rNrbtzoFXiFaQGBVqD6ld/KEkaU2EIx1r7npuYIMPKMMLprNJPNU0wmeAR9S0VOKY6yOaRZ+jMKkMUSWWfMGiu/t7IcKz1NA7tZB5RL3u5+J/npya6DjImktRQQRYfRSlHRqL8fjRkihLDp5ZgopjNisgYK0yMbaliS/CWT14lnUbdu6g3Hi5rzZuijjKcwCmcgwdX0IR7aEEbCEh4hld4c4zz4rw7H4vRklPsHMMfOJ8/erqRYQ==</latexit>

guitar

The same instance

C
<latexit sha1_base64="suMAjzvrV6PKJ8xgZIZaIZ+9Q9g=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GWxG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuG0lfu9J6YNV/IRZgkLYjKWPOKUgJX8QUxgQonIWvNhtebW3QXwOvEKUkMF2sPq12CkaBozCVQQY3zPTSDIiAZOBZtXBqlhCaFTMma+pZLEzATZIvIcX1hlhCOl7ZOAF+rvjYzExszi0E7mEc2ql4v/eX4K0W2QcZmkwCRdfhSlAoPC+f14xDWjIGaWEKq5zYrphGhCwbZUsSV4qyevk26j7l3VGw/XteZdUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHdKaRXQ==</latexit> ?

Figure 1: A simplified example of the knowledge base, which can be divided into the taxonomy T
and the knowledge graph G. The taxonomy has two transitive relations (SubClassOf and InstanceOf )
while the knowledge graph has multi-relations without transitivity. George Harrison is an intersection
entity between T and G. Our task is to predict the type for the out-of-taxonomy entity Eric Clapton.

approach that uses different geometric spaces to best characterize various relation properties,
while aligning the shared entities.

In this paper, we make use of manifold learning to address the issue. We propose to
embed the knowledge base in different spaces according to the relation properties and then
align the embeddings based on the local structures as well as the correspondences by manifold
alignment [Ma and Fu, 2011], where the intersection entities act as the correspondences
across spaces. Manifold is a topological space that is locally Euclidean, i.e., around every
point, there is a neighborhood that is topologically the same as the open unit ball in
Euclidean space. Although the hyperbolic geometry differs a lot from Euclidean geometry,
the hyperbolic manifold is locally Euclidean. We use the projections between the hyperbolic
and the Euclidean embeddings to align the underlying local structures of the knowledge base.
Through manifold alignment, we can recover the correspondences across the sub-graphs as
well as preserving their local structures.

We evaluate the aligned embeddings through an out-of-taxonomy entity typing task: given
a knowledge base containing the taxonomy and the knowledge graph with their intersection
entities, as Figure 1 shows, the goal is to predict the types of the out-of-taxonomy entities
from the knowledge graph. The task is important in practice since some entities are missing
in real-world taxonomies but occur in the knowledge graphs. Manual labeling is unpractical
because of the large number of new entities and the high labeling cost. In the empirical
evaluation, our approach achieves significant improvements. Notably, our approach has
superior performances even when the training taxonomy is very small.

The code and data of our work are available at https://github.com/HKUST-KnowComp/
GeoAlign.

2. Related Work

Knowledge graph embeddings. Traditional knowledge graph embedding models can be
translation-based [Bordes et al., 2013] or bilinear models [Nickel et al., 2011, Yang et al.,
2015]. Several extensions have been made in the real Euclidean space [Lin et al., 2015, Ji
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et al., 2015, Sun et al., 2019] and the complex Euclidean space [Trouillon et al., 2016, Zhang
et al., 2019]. It is shown that several properties of relations such as symmetry, inversion,
and composition can be well handled by the Euclidean space [Sun et al., 2019].

Hierarchy-aware knowledge graph embeddings. Some works made special efforts
for transitive relations in the Euclidean space. TransC [Lv et al., 2018] encoded types as
spheres and entities as vectors for modeling the hypernymy relation HAKE [Zhang et al.,
2020] proposed to map entities into the Euclidean polar coordinate system. JOIE [Hao et al.,
2019] separated the knowledge base into the taxonomy and the remaining knowledge graph,
which had the same setting as our work. It then leveraged a non-linear transformation
between two Euclidean embedding models. However, the non-linear affine transformation is
not powerful enough to build correlations between two underlying structures.

Hyperbolic embeddings. Hyperbolic embeddings have gained much attention in recent
years. [Nickel and Kiela, 2017] proposed to use the Poncaré ball model of the hyperbolic
space to learn the graph embeddings. [Ganea et al., 2018, Nickel and Kiela, 2018, Bécigneul
and Ganea, 2019, Sala et al., 2018, Gu et al., 2019, Sonthalia and Gilbert, 2020] then further
improved hyperbolic embeddings. These methods perform well on data with hierarchical
structures and single transitive relation, but they cannot predict the out-of-taxonomy entities,
thus are not directly applicable to our entity typing task. Motivated by the above works,
MurP [Balazevic et al., 2019], AttH [Chami et al., 2020], and HyperKA [Sun et al., 2020]
explored the multi-relational knowledge graph embeddings in the hyperbolic space. However,
most relations in knowledge graphs do not have transitivity, thus do not fit the hyperbolic
space. Their experimental results only significantly improved on transitive relations or the
datasets with natural hierarchical structures.

Manifold alignment. Manifold alignment [Ham et al., 2003, Ma and Fu, 2011] is a class
of algorithms aligning the local structures and transferring knowledge across data sets. In
this work, we use two-step alignment [Lafon et al., 2006, Wang and Mahadevan, 2008], which
utilizes the Laplacian eigenmaps [Belkin and Niyogi, 2003].

Note that our work focuses on a different research topic with the knowledge graph entity
alignment [Hao et al., 2016, Sun et al., 2020] and the ontology matching [Alvarez-Melis et al.,
2020] since entity alignment/matching aligns the entities that referring to the same thing
but having different names, while in our work, the correspondences between the knowledge
graph and the taxonomy are already known and we make use of the correspondences to
apply manifold alignment and then predict the new out-of-taxonomy entities’ types.

3. Problem Formulation

Given a knowledge base B containing the taxonomy T and the knowledge graph G, we aim to
learn the alignment between the embeddings of T and G. An example of B is shown in Figure
1. The taxonomy T contains the type set C = {Thing, organization, person, scientist, artist},
the entity set IT = {John Lennon,George Harrison}, and the directed edge set ET = {ei,j :
i, j ∈ C ∪ IT }, where ei,j represents that i and j have the transitive relation, e.g., (John
Lennon, InstanceOf, artist) and (artist, SubClassOf, person).
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Denote the entity set and the relation set of the knowledge graph G as IG and RG
respectively,1 then G is composed of the triplets F = {(h, r, t) : h, t ∈ IG , r ∈ RG}, e.g., (Eric
Clapton, wasBornIn, Guildford). There are some intersection entities between T and G,
which we denote as Icor: Icor = IT ∩ IG . In Figure 1, Icor ={George Harrison}.

To apply manifold alignment, first, we need to obtain the pretrained embeddings of IT
and IG , denoted as IT and IG . IT ∈ Hn, IG ∈ Rm, where Hn is the n-dimensional hyperbolic
space, and Rm is the m-dimensional Euclidean space. Then manifold alignment is applied
to project IT and IG into a shared manifold. After that, we have the embeddings of all
entities of B in the same manifold. Note that here all entities do not include types in C in
the taxonomy. In the out-of-taxonomy entity typing task, the goal is to predict the types of
the new entities from In = IG − IT . It can also be regarded as a taxonomy completion task.

4. Approach

The main framework of our approach involves three parts: pretraining, manifold alignment,
and retraining the taxonomy with new entities. We give the details in the following.

4.1 Pretraining of Taxonomy and Knowledge Graph Embeddings

In our work, we use the hyperboloid model of hyperbolic embeddings [Nickel and Kiela,
2018] to learn the taxonomy embeddings. The background of the hyperbolic space and
the hyperboloid model are in Appendix A. For the knowledge graph, we employ TransE
proposed by [Bordes et al., 2013], which is a classical and effective embedding algorithm.

4.1.1 Hyperbolic Embeddings in the Hyperboloid Model

Given the taxonomy T with type set C, entity set IT , and edge set ET , the objective is
to find the embeddings of the types and entities T = {Ti},Ti ∈ Hn, where Hn is the
n-dimensional hyperboloid model (Hn is one model of Hn). The soft ranking loss is

LT =
∑

(xi,xj)∈ET

log
e−dh(Ti,Tj)∑

xk∈N (xi)
e−dh(Ti,Tk)

, (1)

where N (xi) = {xk : (xi, xk) /∈ ET } ∪ {xi} is the set of negative examples for xi together
with xi. The hyperboloid model Hn and its distance function dh are defined in Appendix A.

The minimization of LT makes the connected entities and types closer than those with
no observed edges. Riemannian SGD (RSGD) [Bonnabel, 2013] is applied to train the
hyperbolic embeddings.

4.1.2 TransE for Knowledge Graph Embeddings

Given a triplet (h, r, t), by regarding d(h + r, t) as the energy of (h, r, t), where h, r, t are
the corresponding embeddings and d is some dissimilarity measure (usually the L1 or L2

1. We suppose the knowledge graph G does not have transitive relations since all edges with transitive
relations are in the taxonomy.
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norm), the margin-based ranking loss over the knowledge graph G with the triplet set F is

LG =
∑

(h,r,t)∈F

∑
(h′,r,t′)∈N (h,r,t)

[γ + d(h + r, t)− d(h′ + r, t′)]+, (2)

for some margin γ > 0. [x]+ = max(0, x) and N (h, r, t) = {(h′, r, t)|h′ ∈ IG} ∪ {(h, r, t′)|t′ ∈
IG} is the negative sample set. The optimization of LG encourages positive triplets to satisfy
h + r ≈ t and negative ones to satisfy that h + r is far away from t.

4.2 Manifold Alignment

After pretraining, we conduct manifold alignment to learn the aligned embeddings of the
taxonomy entities IT and knowledge graph entities IG in a shared manifold. The goal
of manifold alignment is to find the projection functions such that the projections not
only minimize the distance between the corresponding points but also preserve the local
manifold structures of the original data. In our framework, given two entity sets IT , IG , and
their embeddings IT ∈ Hn, IG ∈ Rm, we aim to learn the projections φIT : Hn → Rd and
φIG : Rm → Rd. The algorithm works as follows:

First, we construct the binary correspondence matrix W using the intersection set Icor:

Wij =

{
1 if (IT )i ↔ (IG)j ,
0 otherwise.

(3)

Next, we construct the adjacency graphs from IT and IG . Specifically, we compute the
pointwise distances within the two sets and select the k nearest neighbors (k-nn) to construct
the adjacency matrices AT and AG , i.e., ATij = 1 if and only if entity i (or j) is among the k

nearest neighbors of entity j (or i), and the same with AG . Then we construct the similarity
matrices ST and SG using heat kernel:

STij = exp(−
dh(ITi , I

T
j )

t
) ·ATij , SGij = exp(−

d(IGi , I
G
j )

t
) ·AGij , (4)

where t > 0 is the parameter of heat kernel. dh refers to the hyperboloid distance in
Appendix A, and d is the L2 norm in the Euclidean space. The manifold alignment loss is
defined as:

LM =µ

[∑
i,j

‖φIT (ITi )− φIT (ITj )‖2STij +
∑
i,j

‖φIG (IGi )− φIG (IGj )‖2SGij
]

+ (1− µ)
∑
i,j

‖φIT (ITi )− φIG (IGj )‖2Wij , (5)

where 0 ≤ µ ≤ 1 is the weight to balance between preserving the original manifold structures
and minimizing the corresponding entity distances. The first term multiplied by µ infer that
if two entities both from IT or both from IG are similar, their projections in the latent space
should be close with each other. If two entities from IT and IG are the same entity, the last
term minimizes the distance between their projections in the shared manifold.
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In practice, an additional constraint needs to be added in Eq. (5) to avoid the all-zero
solution. More details are given in Appendix B.1. Then minimizing LM is equivalent to
solving a generalized eigenvalue problem of the joint graph Laplacian L: Lv = λDv.

Denote the joint matrix J =

[
µST (1− µ)W

(1− µ)W T µSG

]
, D is a diagonal matrix and

Dii =
∑

j Jji =
∑

j Jij (the proof of J ’s symmetry can be referred to Appendix B.2), then
the Laplacian L = D − J is a symmetric and positive semidefinite matrix (see Appendix
B.3 for proof). Let v0, . . . ,vd be the solutions ordered according to their eigenvalues, i.e.,
Lvi = λiDvi for 0 ≤ i ≤ d, and 0 = λ0 ≤ λ1 ≤ · · · ≤ λd. Then the trivial eigenvector v0

is discarded and the next d eigenvectors are used for the aligned embeddings (proved in
Appendix B.4). That means the embedding vectors for IT and IG in the shared manifold are

φIT (ITi ) = (v1(i), . . . ,vd(i)), 1 ≤ i ≤ |IT |, (6)

φIG (IGj ) = (v1(|IT |+ j), . . . ,vd(|IT |+ j)), 1 ≤ j ≤ |IG |. (7)

Following the above procedure, we project both entity sets into a shared manifold. The
aligned embeddings are learned by preserving the original manifold structure and recovering
the correspondences. They provide correlations between IT and IG .

4.3 Linking New Entities and Retraining

Once we obtain the aligned embeddings φIT (IT ), φIG (IG) ∈ Rd, we can compute the pairwise
distances of the entities in the shared manifold. From the pairwise distances, we further
connect IT and In = IG − IT by k-nn and thus have the new edges En = {(xi, xj) : xi ∈
IT , xj ∈ In}.

Next, we retrain the hyperbolic embeddings of the completed taxonomy with ET ∪ En.
Note that En is different with ET since ET is the set of original taxonomy edges representing
the transitive relation among types and entities while edges in En reveal the similarities
between entities. To differentiate them, we regard the edges in En as weighted undirected
edges during training. That is to say, we append (xi, xj) and (xj , xi) to the training set if
(xi, xj) ∈ En. Moreover, we let the terms associating with En in the loss (Eq. (1)) multiply
by a weight, which adjusts the weight of the newly-added undirected edges.

Again we use RSGD to update the hyperbolic embeddings. Then we can predict the
links between the new entities In and the types C according to the hyperboloid distance.

5. Experiments

In this section, we evaluate the performance of our approach on the out-of-taxonomy entity
typing task. We report the main results here. For more experiments, please see Appendix D.

5.1 Experimental Settings

5.1.1 Data

We construct our knowledge bases from YAGO3 [Mahdisoltani et al., 2015], a huge semantic
knowledge base derived from Wikipedia, WordNet, and GeoNames. Consistent with our
framework, YAGO3 is divided into the taxonomy and the knowledge graph. We provide the
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Taxonomy KG
YAGOwordnet wikiObjects YAGOfacts

Depth/# Relations 13 16 37
# Types 233 3,369 0
# Entities 8,927 14,006 50,566
# Intersection 8,608 13,880 -
# Edges/Triplets 92,479 153,643 392,335
Training/Test Entities 4,464/4,463 7,003/7,003 50,566/-
Training/Test Edges 47,038/45,441 91,496/62,147 392,335/-
δ-hyperbolicity 0.5 0.5 1.5

Table 1: Taxonomy/Knowledge graph statistics. Depth is for taxonomy while # Relations is for KG.
# Intersection refers to the number of intersection entities between the taxonomy and YAGOfacts.
We ignore the edge attributes (i.e. multi-relations) when computing δ-hyperbolicity for YAGOfacts.

statistics of our datasets in Table 1. We also give their Gromov’s δ-hyperbolicity [Gromov,
1987], which measures the tree-likeness of graphs (refer to Appendix C for definition). The
lower δ corresponds to the more tree-like graph. We sample our datasets as follows:

YAGOwordnet. In YAGO3, the taxonomy is formed with yago-types and yago-taxonomy.
They include relations SubClassOf and type. The types are from Wikipedia and WordNet.
We extract all WordNet types and sample around 9K entities from yago-types and yago-
taxonomy, then trace back from the sampled entities until the root to construct a hierarchy.
As in previous works [Nickel and Kiela, 2017, 2018], we compute the transitive closure of
the hierarchy to construct the YAGOwordnet taxonomy.

wikiObjects. From yago-types and yago-taxonomy, we extract all Wikipedia types and
their descendants (including types and entities) to obtain a forest, where each tree has a
root in Wikipedia types. We then sample a subtree from the root 〈wikicat Objects〉 and
compute its transitive closure to construct the wikiObjects taxonomy.

YAGOfacts. In YAGO3, yago-facts is the core knowledge graph which contains all facts
(triplets) of YAGO3 that hold among entities. Different with yago-types and yago-taxonomy,
yago-facts does not contain the transitive relations or any type. We select around 50K most
frequent entities from yago-facts and extract all triplets whose head entity and tail entity
both belong to the selected entities to form YAGOfacts.

For each taxonomy (YAGOwordnet/wikiObjects), we randomly split the entities into
training entities (50%) and test entities (50%) with the constraint that the test entities must
occur in YAGOfacts, otherwise, YAGOfacts cannot provide any reference about the test
entities. Then we discard all edges containing any test entity to obtain the training taxonomy.
The training taxonomy and YAGOfacts are used for pretraining and the embeddings of the
training entities are used for manifold alignment with embeddings of YAGOfacts’ entities.
The evaluation task is to predict the types of the out-of-taxonomy test entities. The training
taxonomy corresponds to T in Section 3 while YAGOfacts corresponds to G.

5.1.2 Baselines

The following baselines are compared with our approach (GeoAlign): KG embedding models,
including TransE [Bordes et al., 2013], ComplEx [Trouillon et al., 2016], RotatE [Sun
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et al., 2019]; hierarchy-aware Euclidean methods, including TransC [Lv et al., 2018],
HAKE [Zhang et al., 2020], JOIE [Hao et al., 2019]; multi-relational hyperbolic models:
MurP [Balazevic et al., 2019], AttH [Chami et al., 2020], HyperKA [Sun et al., 2020].

5.1.3 Training and Evaluation

To apply the baselines to our task, they are trained on all triplets of YAGOfacts combined
with the training taxonomy, where the taxonomy edges are labeled as 〈isA〉. Then the test
triplets are {(xi, 〈isA〉, Cj)} where xi is a test entity and Cj is xi’s ground-truth type.

For knowledge graph embedding models, we use the OpenKE repository [Han et al.,
2018] to train them while for other baselines, we use their public codes. For all methods, we
tune the hyperparameters on the knowledge base combining YAGOwordnet and YAGOfacts
by grid search according to MAP score. The hyperparameters are given in Appendix D.1.

We use the mean average precision (MAP), mean reciprocal rank (MRR), and the
proportion of correct types that rank no larger than N (Hits@N) as our evaluation metrics,
which are widely used for evaluating ranking and link prediction. The details of prediction
steps and the evaluation metrics are given in Appendix D.2. In our experiments, each
running is executed 5 times and the mean values of results are reported.

5.2 Overall Results

Table 2 presents the results in 50-dimensional embedding spaces. The results show that
GeoAlign has the best performance on wikiObjects while having a very close performance
with MurP on YAGOwordnet. In fact, wikiObjects is more challenging since its taxonomy
is more massive (see Appendix D.3 for the case study), making it more difficult to find all
correct types for the out-of-taxonomy entity.

From Table 2, we see that the traditional Euclidean models (TransE, ComplEx, and
RotatE) are not capable of inferring the transitive relation, which is consistent with previous
works on hyperbolic embeddings [Nickel and Kiela, 2017, 2018]. The hierarchy-aware methods
(TransC, HAKE, and JOIE) have better results than the traditional Euclidean embeddings,
but overall they cannot achieve comparative performances with the hyperbolic models.

For the multi-relational hyperbolic models, MurP and AttH, which use different relation
parameterizations on the base of Poincaré embeddings, reveal their strengths. MurP, AttH,
and GeoAlign all take advantage of the hyperbolic geometry for the taxonomy embeddings,
thus having close results on the entity typing task. However, in Section 5.4, we will show that
GeoAlign has significant improvements over MurP and AttH when the training taxonomy is
very small. Furthermore, MurP and AttH can only do the inference for all relation properties
in the hyperbolic space, which is not suitable for the non-transitive relation properties,
while GeoAlign can take advantage of any base embedding models rather than TransE for
pretraining the knowledge graph. As for HyperKA, which leverages hyperbolic GNN for
embeddings, we tried our best to tune the model, but it still cannot achieve promising
results. We think the neural models may not fit this task setting and our datasets. That
also accounts for why AttH is not as good as MurP. Compared with MurP, AttH adds the
attention mechanism and has more complicated parameterizations. It may hurt the model’s
feasibility sometimes.
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YAGOwordnet wikiObjects
MAP MRR Hits@1 Hits@3 MAP MRR Hits@1 Hits@3

TransE ‡21.36 ‡6.91 ‡19.67 ‡27.95 ‡13.68 ‡6.51 ‡14.52 ‡24.10
ComplEx ‡50.77 ‡13.63 ‡20.09 ‡48.82 ‡28.10 ‡15.13 ‡24.30 ‡33.89
RotatE ‡70.72 ‡21.63 ‡64.63 ‡88.28 ‡62.42 ‡32.38 ‡66.85 ‡81.78

TransC ‡84.25 ‡26.35 ‡93.72 †99.29 ‡67.87 ‡34.24 ‡81.87 ‡93.26
HAKE ‡74.52 ‡18.77 ‡51.22 ‡58.86 †66.50 †30.53 ‡52.93 ‡61.02
JOIE 94.92 28.15 ‡97.20 99.60 ‡86.67 ‡41.87 ‡93.00 ‡98.94

MurP †94.41 28.20 99.57 †99.84 ‡88.48 ‡42.77 ‡99.80 100.00
AttH 94.80 28.19 ‡97.76 99.88 88.40 ‡42.65 ‡98.34 †99.90
HyperKA ‡55.83 ‡19.15 ‡64.84 ‡83.84 ‡48.02 ‡27.42 ‡59.80 ‡74.73

GeoAlign ‡94.04 28.19 †99.13 99.92 88.67 42.82 99.89 100.00

Table 2: Results of MAP(%), MRR(%), and Hits@N(%) in 50-dimensional embedding spaces. The
best results are shown in boldface and the second-best results are underlined. The statistically
significance metrics are marked with either † if p-values < 0.05 or ‡ if p-values < 0.001.

Dimension 5 10 20 100
MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

TransE ‡2.42 ‡3.91 ‡5.41 ‡9.91 ‡6.80 ‡14.14 ‡8.77 ‡19.21
ComplEx ‡0.09 ‡0.00 ‡11.97 ‡22.59 ‡14.32 ‡24.20 ‡20.21 ‡34.39
RotatE ‡1.76 ‡1.39 ‡3.50 ‡2.94 ‡4.23 ‡3.37 ‡37.68 ‡79.95

TransC ‡32.62 ‡66.69 ‡36.15 ‡78.55 ‡36.67 ‡84.03 ‡34.28 ‡81.32
HAKE ‡7.85 ‡12.62 ‡15.58 ‡22.70 ‡10.16 ‡17.29 †37.90 ‡70.88
JOIE ‡27.76 ‡48.01 ‡39.93 ‡84.68 ‡41.64 ‡92.62 ‡42.12 ‡94.61

MurP ‡42.18 ‡98.19 ‡42.61 ‡98.59 ‡42.72 ‡99.60 42.91 ‡99.90
AttH - - †40.60 †92.47 ‡42.10 ‡97.05 ‡42.78 ‡98.76
HyperKA ‡16.93 ‡34.51 ‡21.65 ‡41.30 ‡19.00 ‡42.98 ‡24.51 ‡61.92

GeoAlign 42.74 99.64 42.83 99.84 42.81 99.92 ‡42.82 99.93

Table 3: Results of MRR(%) and Hits@1(%) in different embedding dimensions on wikiObjects. AttH
requires the dimension to be even because of the diagonal Givens transformations in its model, thus
not applicable to 5-dimensional space. The best results are shown in boldface and the second-best
results are underlined. The statistically significance metrics are marked with either † if p-values
< 0.05 or ‡ if p-values < 0.001.

5.3 Exploring the Embedding Dimensions

In this section, we explore the performances in different embedding dimensions. The results
are presented in Table 3. For GeoAlign, JOIE, and HyperKA, the embedding dimensions
for the knowledge graph and the taxonomy are both set as n for n ∈ {5, 10, 20, 100}. From
Table 3, we see that with the increase of the embedding dimension, most methods get better
results. The Euclidean models can have big improvements in higher dimensions, such as
RotatE from 20-d to 100-d, but their 100-d performances cannot surpass GeoAlign in 5-d.
We also notice that some methods suffer from overfitting in high dimensions, e.g., TransC,
HAKE, and HyperKA drop down when the dimension increases. In contrast, GeoAlign,
MurP, and AttH achieve great results steadily. On the one hand, the hyperbolic models
require much lower dimensions. On the other hand, 5-dimensional embeddings are already

9



Training rate 0.1 0.2 0.3 0.4
Training/Test entities 1,401/12,605 2,802/11,204 4,202/9,804 5,603/8,403
Training/Test edges 42,764/110,879 54,637/99,006 67,788/85,855 80,190/73,453

MurP ‡82.83 ‡86.56 ‡88.16 ‡88.45
AttH †84.32 ‡86.62 ‡87.80 88.40
GeoAlign 88.50 88.78 89.09 88.90

Table 4: Results of MAP(%) under different training rates on wikiObjects in 50-dimension. The
training rate is used to randomly split the taxonomy entities. Training edges represents the number of
training edges in the training taxonomy wikiObjects (the training edges of YAGOfacts is 392,335 all
the time). The best results are shown in boldface. The statistically significance metrics are marked
with either † if p-values < 0.05 or ‡ if p-values < 0.001.

enough for GeoAlign to learn the manifold alignment between the local structures of the
knowledge base.

5.4 Results on Small Training Rates

In Section 5.2, we see that the performances of MurP, AttH, and GeoAlign are very close
under the training rate=0.5. Here we explore their performances on smaller training rates.
For the training rate r ∈ {0.1, 0.2, 0.3, 0.4}, we randomly split the entities into training
entities (r) and test entities (1 − r). The splitting and training taxonomy construction
procedure are the same as described in Section 5.1.1. Note that the small training rate
means that the pretrained taxonomy and the number of taxonomy entities used for manifold
alignment are both small. We report the MAP(%) scores in Table 4. We find that when
the training rate is small, GeoAlign outperforms MurP and AttH significantly. With the
increase of the training rates, their performances get more and more similar and converge to
stable. The results demonstrate the effectiveness of our approach on small training rates.

5.5 Ablation Study

5.5.1 On the Retraining Step

To analyze the benefits and the potential defects of the retraining step after manifold
alignment, we compare the performances of GeoAlign with and without retraining on two
tasks. The first task is the out-of-taxonomy entity typing task, which is the same as the above
experiments. The -w/o retraining method works in the way that after manifold alignment,
we directly predict the types of the test entities as the types of its nearest neighbor according
to the aligned embeddings. If its nearest neighbor is not in the taxonomy’s training entities,
we find the next nearest one until it does. The second task is graph reconstruction of
the training taxonomy. We intend to see whether the retrained model with new entities
compromises the representation of the original taxonomy. We report the results in Table 5.

The entity typing results demonstrate that after manifold alignment, the retraining
of the embeddings with the added edges incorporates more structural information of the
taxonomy with new entities and improves the performances significantly. The reconstruction
results show that the retraining has little impact on the original training taxonomy. The
compromise is acceptable, especially when considering the remarkable improvements on the
entity typing task (more than 10% MAP improvements in Table 5).

10
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YAGOwordnet wikiObjects
MAP MRR MAP MRR

Entity typing
GeoAlign 94.04 28.19 88.67 42.82
-w/o retraining 84.98 - 71.75 -

Reconstruction
GeoAlign 95.40 28.70 89.69 39.17
-w/o retraining 97.06 29.02 90.99 39.56

Table 5: Ablation study for GeoAlign in 50-dimension. Entity typing is the out-of-taxonomy entity
typing task and Reconstruction is the training taxonomy reconstruction task. Since -w/o retraining
does not obtain a rank for all types on entity typing task, MRR is not applicable.

MAP MRR

Entity typing
GeoAlign-hyperboloid 94.04 28.19
GeoAlign-Poincaré 84.30 26.56

Reconstruction
GeoAlign-hyperboloid 95.40 28.70
GeoAlign-Poincaré 91.68 28.11

Table 6: Ablation study of the hyperbolic models on YAGOwordnet in 50-dimension. Entity typing
is the out-of-taxonomy entity typing and Reconstruction is the training taxonomy reconstruction.

5.5.2 On the Hyperbolic Models

To compare the different hyperbolic models, we evaluate the performances of GeoAlign with
the hyperboloid model and the Poincaré ball model on two tasks. Again, the first task is
the out-of-taxonomy entity typing task and the second task is graph reconstruction of the
training taxonomy. The MAP(%) and MRR(%) scores are reported in Table 6. GeoAlign-
hyperboloid (Poincaré) means we pretrain and retrain the taxonomy by the hyperboloid
embeddings (Poincaré ball embeddings). From Table 6, we see that GeoAlign-hyperboloid
surpasses GeoAlign-Poincaré a lot, especially on the out-of-taxonomy entity typing task.

6. Conclusion and Future Work

We propose to learn the embeddings of knowledge bases in different spaces and apply manifold
alignment across the geometric spaces to build the projection. The main motivation is to
allow different geometric spaces to model the various properties of relations as well as the
various local structures of the knowledge base, while manifold alignment provides a way to
incorporate the local manifold structure of two entity sets. We propose a solid framework
and evaluate our approach on an out-of-taxonomy entity typing task. The empirical results
demonstrate the superiority of our approach, especially in low dimensions and on small
training rates. Future works include the exploration of broader types of geometries for
learning embeddings and more effective approaches for aligning multiple manifolds.
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Complex embeddings for simple link prediction. In ICML, volume 48 of JMLR, pages
2071–2080. JMLR.org, 2016.

Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes analysis. In
ICML, volume 307, pages 1120–1127, 2008.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In ICLR, 2015.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In
NeurIPS, pages 2731–2741, 2019.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware
knowledge graph embeddings for link prediction. In AAAI, 2020.

14



Manifold Alignment across Geometric Spaces for Knowledge Base Representation Learning

A. Hyperbolic Space Background

Hyperbolic space is a homogeneous space with constant negative curvature. To describe
hyperbolic space in mathematical language, there are five common-used models of hyperbolic
space [Cannon et al., 1997], whose notations and definitions are as follows.

• The Half-space model An = {(1, x2, . . . , xn+1) : xn+1 > 0}.

• The Poincaré ball model Pn = {(x1, . . . , xn, 0) : x2
1 + · · ·+ x2

n < 1}.

• The Jemisphere model (or the Hemisphere model) J n = {(x1, . . . , xn+1) : x2
1 + · · ·+

x2
n+1 = 1, xn+1 > 0}.

• The Klein model Kn = {(x1, . . . , xn, 1) : x2
1 + · · ·+ x2

n < 1}.

• The hyperboloid model (or the Lorentz model) Hn = {(x1, . . . , xn, xn+1) : x2
1 + · · ·+

x2
n − x2

n+1 = −1, xn+1 > 0}.

The five models of n-dimensional hyperbolic space Hn are located in the ambient Euclidean
space Rn+1 and are isometric, i.e., for any two models (X , d) and (X ′, d′), there exists a one-to-
one mapping f from X on to X ′ preserving all distances: ∀x, y ∈ X , d(x, y) = d′(f(x), f(y)),
and f is called isometry.

For representation learning in the hyperbolic space, the Poincaré ball model [Nickel and
Kiela, 2017] and the hyperboloid model [Nickel and Kiela, 2018] are the two most popular
models due to their intuitive formulas and nice properties.
Poincaré ball model [Nickel and Kiela, 2017]. Denote the Riemannian manifold of
Poincaré ball model as (Pn, ρp), where Pn = {x ∈ Rn : ‖x‖ < 1}, which represents the open
n-dimensional unit ball in Euclidean space (‖ · ‖ is the Euclidean norm). ρp is the metric
tensor, given in Table 7.
Hyperboloid model [Nickel and Kiela, 2018]. For the hyperboloid model (Hn, ρh),
write Hn using Lorentzian inner product: Hn = {x ∈ Rn+1 : 〈x,x〉L = −1, x0 > 0}, where
〈x,y〉L = −x0y0 +

∑n
i=1 xiyi is the Lorentzian inner product. The manifold is composed of

points on the forward sheet of a two-sheeted hyperboloid. As mentioned before, Poincaré
ball model and the hyperboloid model are isometric. The one-to-one mapping f : Hn → Pn
is the central projection from the point (0, . . . , 0,−1):

f(x0, x1, . . . , xn) =
x1, . . . , xn
x0 + 1

, (8)

f−1(x1, . . . , xn) =
(1 + ‖x‖2, 2x1, . . . , 2xn)

1− ‖x‖2 . (9)

Both Poincaré ball model and the hyperboloid model are conformal models, i.e., they
preserve angles of Euclidean space. Their metric tensors and distance functions are given
in Table 7. The Poincaré distance has the property that when closer to the origin, it
approximates to the Euclidean distance. Additionally, closer a point to the origin, the
relatively smaller distances to other points it has. Correspondingly, the points near the
boundary have very large distances with each other. Consider the tree structure, where
the root node has relatively small distance with other nodes while leaf nodes are usually
far away from each other. Moreover, the volume of a ball in the Poincaré model grows
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Model Metric tensor Distance function

Poincaré ρp(x) = ( 2
1−‖x‖2 )2ρE(x) dp(x,y) = arcosh

(
1 + 2 ‖x−y‖2

(1−‖x‖2)(1−‖y‖2)

)

Hyperboloid ρh(x) =


−1

1
. . .

1

 dh(x,y) = arcosh(−〈x,y〉L)

Table 7: Metric tensors and distance functions of Poincaré ball model and the hyperboloid model.
ρE(x) is the Euclidean metric. 〈x,y〉L is the Lorentzian inner product, 〈x,y〉L = −x0y0 +

∑n
i=1 xiyi.

exponentially with its radius, resembling the tree-like property that the number of nodes
grows exponentially with depth in a tree. [Krioukov et al., 2010] built the approximate
equivalence between hierarchical networks and the hyperbolic space. Nevertheless, when
using the Poincaré ball model for hierarchical structures [Nickel and Kiela, 2017], numerical
instabilities arise, which motivates the use of the hyperboloid model [Nickel and Kiela, 2018],
since it can avoid the numerical instabilities from the fraction in distance function, hence
allows for more efficient computation on the manifold. We provide the empirical evaluation
of the two hyperbolic models in Section 5.5.2.

B. Proofs of Section 4.2 about Manifold Alignment

B.1 The Loss Function of Manifold Alignment

As presented in Section 4.2, the loss function includes two parts, one for preserving the local
manifold within each dataset, another for recovering the correspondence information.

We can rewrite LM using the joint adjacency matrix:

LM =
∑
i,j

‖Φi − Φj‖2Jij , (10)

where Φ is the unified representation of the taxonomy entities and the knowledge graph

entities, Φ =

[
φIT (IT )
φIG (IG)

]
. J is the joint adjacency matrix, J =

[
µST (1− µ)W

(1− µ)W T µSG

]
.

Eq. (10) is the loss function for Laplacian eigenmaps [Belkin and Niyogi, 2003], which
can be further derived into:

LM =
∑
i,j

∑
k

(Φi,k − Φj,k)
2Jij =

∑
k

∑
i,j

(Φi,k − Φj,k)
2Jij =

∑
k

tr(ΦT
·,kLΦ·,k) = tr(ΦTLΦ),

(11)
where the Laplacian L = D − J and D is a diagonal matrix with Dii =

∑
j Jji.

It is easily seen that mapping all entities to zero (Φ = 0) minimizes the loss function LM ,
so an additional constraint ΦTDΦ = I needs to be added, where I is the identity matrix.

Theorem 1. Minimizing LM with the constraint ΦTDΦ = I to get the d-dimensional aligned
embeddings (a (|IT |+ |IG |)× d matrix Φ) is equivalent to solving a generalized eigenvalue
problem of the joint graph Laplacian: Lv = λDv.
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Proof. When d = 1, Φ is a (|IT |+ |IG |)-vector, denoted as v1, then we have

arg min
v1:vT

1 Dv1=1
LM = arg min

v1,λ:λ>0
vT1 Lv1 + λ(1− vT1 Dv1). (12)

Differentiating Eq. (12) with respect to v1 and λ, we have

Lv1 = λDv1, (13)

vT1 Dv1 = 1. (14)

So the optimal v1 is a solution of the generalized eigenvalue problem: Lv1 = λDv1.
Multiplying both sides of Eq. (13) by vT1 and applying Eq. (14), we have vT1 Lv1 = λ.
To minimize LM = vT1 Lv1, we need to get the smallest nonzero eigenvalue λ1, then its
corresponding eigenvector v1 is the optimal solution.

When d > 1, Φ can be written as Φ = [v1,v2, . . . ,vd]. The optimization problem is

arg min
Φ:ΦTDΦ=I

LM = arg min
v1,...,vd,λ1,...,λd:λi>0

∑
i

vTi Lvi + λi(1− vTi Dvi). (15)

Applying the same technique above, we have the minimal LM =
∑

i λi, where λi, for i =
1, . . . , d, are the d smallest nonzero eigenvalues sorted in ascending order: 0 < λ1 ≤ · · · ≤ λd,
while their corresponding eigenvectors v1, . . . ,vd are the optimal solutions.

B.2 The Symmetry of J

Theorem 2. The joint adjacency matrix J =

[
µST (1− µ)W

(1− µ)W T µSG

]
is symmetric.

Proof. Recall the construction of the adjacency matrices AT and AG . ATij = 1 if and only if
entity i is among the k nearest neighbors of entity j or j is among the k nearest neighbors
of i according to IT , and the same with AG . Thus AT and AG are symmetric.

Then the similarity matrices are constructed through Eq. (4). We have STij =

exp(−dh(ITi ,I
T
j )

t ) · ATij = exp(−dh(ITi ,I
T
j )

t ) · ATji = STji , similarly SGij = SGji, so ST and SG

are symmetric. Then J is also symmetric.

B.3 The Symmetry and Positive Semi-Definiteness of L

Theorem 3. The Laplacian L = D − J is symmetric and positive semidefinite.

Proof. First, L is symmetric because D and J are both symmetric (D is a diagonal matrix
and J is proved in Appendix B.2).

Next, from Eqs. (10) and (11), we have
∑

i,j ‖Φi − Φj‖2Ji,j = tr(ΦTLΦ), which shows
that L is positive semi-definite.

B.4 The Solutions of Manifold Alignment

Theorem 4. The generalized eigenvalue problem Lv = λDv has a zero eigenvalue λ0 = 0.
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Proof. Since L = D − J , Dii =
∑

j Jji =
∑

j Jij ,

then (L · [1, 1, . . . , 1]T )i =
∑

j Lij = Dii −
∑

j(Jij) = 0,

that is, L · [1, 1, . . . , 1]T = 0, so λ0 = 0.

Remark. Combining Appendix B.1 and the fact that L is positive semi-definite (Appendix
B.3), the solutions of manifold alignment using Laplacian eigenmaps are v1, . . . ,vd, which are
the corresponding eigenvectors of the d smallest nonzero eigenvalues: 0 = λ0 < λ1 ≤ . . . λd.

Recall that Φ =

[
φIT (IT )
φIG (IG)

]
= [v1,v2, . . . ,vd], so the aligned embedding vectors for IT

and IG in the shared manifold are

φIT (ITi ) = (v1(i), . . . ,vd(i)), 1 ≤ i ≤ |IT |,
φIG (IGj ) = (v1(|IT |+ j), . . . ,vd(|IT |+ j)), 1 ≤ j ≤ |IG |.

C. δ-Hyperbolicity

The δ-hyperbolicity of a graph G [Gromov, 1987] is defined as follows.

Definition 1. Let a, b, c, d be vertices of the graph G. Let S1, S2 and S3 be

S1 = dist(a, b) + dist(d, c),

S2 = dist(a, c) + dist(b, d),

S3 = dist(a, d) + dist(b, c).

Suppose M1 and M2 are the two largest values among S1, S2, S3 and M1 ≥ M2. Define
hyp(a, b, c, d) = M1 −M2. Then the δ-hyperbolicity of G is defined as

δ(G) =
1

2
max

a,b,c,d∈V (G)
hyp(a, b, c, d).

That is, δ(G) is the maximum of hyp over all possible 4-tuples (a, b, c, d) divided by 2.

D. More Experiments

D.1 Hyperparameters

For pretraining of our approach, we learn the n-dimensional hyperbolic embeddings of
the training taxonomy and the n-dimensional TransE embeddings of YAGOfacts, for n =
{5, 10, 20, 50, 100}. In manifold alignment, we project the embeddings of the two entity sets
into 10-dimensional Euclidean space. We use 5 nearest neighbors to construct AT and AG .
We assume the heat kernel parameter in Eq. (4) to be +∞, i.e., ST = AT , SG = AG . The
coefficient µ in LM Eq. (5) is set as 0.25. The number of neighbors in k-nn when connecting
the taxonomy entities IT and knowledge graph entities In is 5. The weights of edges in
En for training the new taxonomy are 0.05. For pretraining and retraining, the epochs of
hyperbolic embeddings and TransE are 500.

The hyperparameters of baselines are also tuned on the knowledge base combining
YAGOwordnet and YAGOfacts in 50-dimension by grid search, which are given in Table
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Model Hyperparameters

TransE
sampling: normal ; bern: False; regularize rate: 1; learning rate: 1; method: sgd ;
loss: margin loss; margin in loss: 5; # negative entity: 25; epochs: 500.

ComplEx
sampling: normal ; bern: True; regularize rate: 1; learning rate: 0.5;
method: adagrad ; loss: softplus loss; # negative entity: 25; epochs: 1000.

RotatE
sampling: cross; bern: False; regularize rate: 0; learning rate: 2e−5;
method: adam; loss: sigmoid loss; adv temp: 2;
# negative entity: 25; margin: 6; epsilon: 2; epochs: 1000.

TransC
bern: False; learning rate: 0.01; margin: 1; instance margin: 0.4;
concept margin: 0.3; epochs: 500.

HAKE
learning rate: 0.01; gamma: 24; alpha: 2; modulus weight: 3.5; phase weight: 1.0;
#negative entity: 25; epochs: 180000.

JOIE
base model: TransE ; bridge: CMP-linear ; instance learning ratio: 2.5; fold: 3;
concept learning ratio: 1.0; KG learning rate: 0.5; tax learning rate: 1.0;
epochs: 500.

MurP learning rate:50; #negative entity: 50; model: poincare; epochs: 500.

AttH
learning rate: 0.0005; regularizer: N3 ; regularization weight: 0; optimizer: Adam;
# negative entity: 50; dropout: 0; gamma: 0; bias: learn; multi curvature: True;
epochs: 500.

HyperKA
learning rate: 0.001; instance layer num: 3; ontology layer num: 3;
negtive typing margin: 0.1; epsilon: 1.0; negtive triple margin: 0.2;
# negative entity: 20; mapping: True; combine: True; epochs: 500.

Table 8: Hyperparameters of the baselines. Tuned on the knowledge base combining YAGOwordnet
and YAGOfacts in 50-dimension.

8. We use the OpenKE repository2 to train TransE, ComplEx, and RotatE. For TransC,3

HAKE,4 JOIE,5 MurP6, AttH7 and HyperKA8, we use their public codes.

D.2 Evaluation

Our evaluation closely follows the setting of [Nickel and Kiela, 2017, 2018], which infers the
hierarchies from distances in the embedding space. Specifically, for each test entity u and
the ground truth edge (u, v), we compute the distance between the embeddings dh(u,v) and
rank it among the distances of all unobserved edges for u: {dh(u,v′) : (u, v′) /∈ Training}.
We then report the following evaluation metrics of the rankings. Denote Itest as the test
entity set. Let NEu = {v1, v2, . . . , v|NEu|} be the set of the ground truth types of entity u.

2. https://github.com/thunlp/OpenKE
3. https://github.com/davidlvxin/TransC
4. https://github.com/MIRALab-USTC/KGE-HAKE
5. https://github.com/JunhengH/joie-kdd19
6. https://github.com/ibalazevic/multirelational-poincare
7. https://github.com/HazyResearch/KGEmb
8. https://github.com/nju-websoft/HyperKA
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Test entity Neighbors Prediction

TransE Eric Clapton
Brian Eno (artist) organism
Smokey Robinson (artist) causal agent
Chet Atkins (artist) living thing

GeoAlign Eric Clapton
James Brown (artist) artist*
Chet Atkins (artist) creator
Willie Nelson (artist) person

TransE Neil Young
Tony Banks (artist) organism
Robbie Williams (artist) causal agent
Glen Campbell (artist) property

GeoAlign Neil Young
Moby (artist) creator
Elton John (artist) artist*
Björn Ulvaeus (artist) person

TransE Neil Gaiman
Stephen King (21st-century American novelists) American male writers
Gene Wolfe (fantasy writers) American novelists
Jonathan Lethem (American male essayists) 20th-century American novelists

GeoAlign Neil Gaiman
Nikolai Gogoln (mythopoetic writers) North American writers*
Drago Jančar (Slovenian novelists) non-fiction writers*
Charles Stross (Scottish science fiction writers) English screenwriters*

TransE Hannah Arendt
Judith Butler (20th-century women writers) Translators
Walter Benjamin (Franz Kafka scholars) American novelists
Karl Jaspers (Philosophers of technology) American fiction writers

GeoAlign Hannah Arendt
Milan Kundera (21st-century French novelists) People in literature
Horace (Golden Age Latin writers) Writers
Imre Lakatos (20th-century Hungarian writers) European writers*

Table 9: Examples of nearest neighbors and top 3 predictions for the test entity. The labels of the
neighbors are provided in parentheses. The correct predictions are bold-faced. The fine-grained
correct predictions are marked with *.

Mean average precision (MAP). The average precision (AP) is a way to summarize
the precision-recall curve into a single value representing the average of all precisions and
the MAP score is calculated by taking the mean AP over all classes. For an entity u, from
the learned embeddings, we can obtain the types closest to its embedding u. Let Ru,vi be
the smallest set of such types that contains vi (the i-th ground truth type of u). Then the
MAP is defined as:

MAP =
1

|Itest|
∑

u∈Itest

1

|NEu|
∑

vi∈NEu

Precision(Ru,vi).

Mean reciprocal rank (MRR). The MRR is a statistic measure for evaluating a list of
possible responses to a sample of queries, ordered by the probability of correctness. For an
entity u, from the learned embeddings, we can rank its distances with the types from the
smallest to the largest. Let rankvi be the rank of vi (the i-th ground truth type of u). Then
the MRR is defined as:

MRR =
1

|Itest|
∑

u∈Itest

1

|NEu|
∑

vi∈NEu

1

rankvi
.

The proportion of correct types that rank no larger than N (Hits@N). Hits@N
measures whether the top N predictions contain the ground truth labels. For an entity u,
from the learned embeddings, we can obtain the set of N types closest to its embedding u,
denoted as RNu . Then the Hits@N is defined as:

Hits@N =
1

|Itest|
∑

u∈Itest

I(|RNu ∩NEu| ≥ 1),
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where I(|RNu ∩NEu| ≥ 1) is the indicator function.

D.3 Case Study

Our manifold alignment is on top of the pretrained TransE model and the hyperboloid
embeddings. To have a more intuitive sense about the manifold alignment, in Table 9, we
give some examples of the nearest neighbors of the test entity in the aligned manifold as
well as the top 3 types predicted by GeoAlign. We also present the corresponding items of
TransE as a comparison. For TransE, the nearest neighbors are from its embedding space.
The examples Eric Clapton and Neil Young are from YAGOwordnet while Neil Gaiman
and Hannah Arendt are from wikiObjects. As we expect, TransE and manifold alignment
which leverages TransE both find the reasonable nearest neighbors. When looking into the
top 3 predictions of Eric Clapton and Neil Young , we see that although TransE predicts
correctly, it cannot get the fine-grained types. The most confident predictions of TransE
are usually the general and rough types such as organism, living thing, while GeoAlign
successfully predict them as artist. For the test entities Neil Gaiman and Hannah Arendt ,
which come from the more fine-grained and massive taxonomy wikiObjects, TransE cannot
predict correctly at the top 3 predictions, but GeoAlign successfully obtains the correct
fine-grained types. The results show that GeoAlign not only outputs accurate predictions
but also captures the hierarchy structure to some extent.
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