
Published as a conference paper at ICLR 2023

ON AMORTIZING CONVEX CONJUGATES
FOR OPTIMAL TRANSPORT

Brandon Amos
Meta AI

ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are lim-
ited by not being able to exactly conjugate the dual potentials in continuous
space. To overcome this, the computation of the conjugate can be approximated
with amortized optimization, which learns a model to predict the conjugate. I
show that combining amortized approximations to the conjugate with a solver for
fine-tuning significantly improves the quality of transport maps learned for the
Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many
2-dimensional couplings and flows considered in the literature. All of the base-
lines, methods, and solvers in this paper are available at http://github.
com/facebookresearch/w2ot.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures α and β in
Euclidean space, i.e. supp(α) = supp(β) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn → Rn, is the solution to Monge’s primal formulation:

T̆ ∈ arg inf
T∈T (α,β)

E
x∼α
‖x− T (x)‖22, (1)

where T (α, β) := {T : T#α = β} is the set of admissible couplings and the push-forward operator
is defined by T#α(B) := α(T−1(B)) for a measure α, measurable map T , and all measurable
setsB. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational
method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn → R and solves:

“f ∈ arg sup
f∈L1(α)

− E
x∼α

[f(x)]− E
y∼β

[f?(y)] (2)

where L1(α) is the space of measurable functions that are Lebesgue-integrable over α and f? is the
convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f?(y) := − inf
x∈X

Jf (x; y) with objective Jf (x; y) := f(x)− 〈x, y〉. (3)

1

http://github.com/facebookresearch/w2ot
http://github.com/facebookresearch/w2ot

Published as a conference paper at ICLR 2023

x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L1(α), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the
measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = ∇x “f(x), and the inverse to the
transport map is given by T̆−1(y) = ∇y “f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f
with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to
solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,
I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art
performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.
(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials fθ with parameter θ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with

max
θ
V(θ) where V(θ) := − E

x∼α
[fθ(x)]− E

y∼β
[f?θ (y)] = − E

x∼α
[fθ(x)]+ E

y∼β
[Jfθ (x̆(y))] , (4)

where J is the objective to the conjugate optimization problem in eq. (3), x̆(y) is the solution to the
convex conjugate, and eq. (4) assumes a finite solution to eq. (2) exists and replaces the sup with a
max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the optimal parameters
can be found, by taking gradient steps of the dual with respect to the parameters of the potential,
i.e. using∇θV . This derivative going through the loss and conjugation operation can be obtained by
applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and results in only needing
derivatives of the potential:

∇θV(θ) = ∇θ
[
− E
x∼α

[fθ(x)] + E
y∼β

[Jfθ (x̆(y))]

]
= − E

x∼α
[∇θfθ(x)] + E

y∼β
[∇θfθ(x̆(y))]

(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined arg min.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).

2

Published as a conference paper at ICLR 2023

In practice, assumption 1 in not guaranteed, e.g. non-convex potentials may have a parameterization
that results in the conjugate taking infinite values in regions. The dual objective in eq. (2) and eq. (4)
discourage the conjugate from diverging as the supremum involves the negation of the conjugate.

Remark 1 In eq. (4), the dual potential f associated with the α measure’s constraints is the central
object that is parameterized and learned, and the dual potential associated with the β measure is
given by the conjugate f? and does not require separately learning. Because of the symmetry of
eq. (1), the order can also be reversed as in Korotin et al. (2021b) so that the duals associated with
the β measure are the ones directly parameterized, but we will not consider doing this. Potentials
associated with both measures can also be parameterized and we will next see that it is the most
natural to think about the model associated with the conjugate as an amortization model.

Remark 2 The dual objective V can be upper-bounded by replacing x̆ with any approximation
because any sub-optimal solution to the conjugation objective provides an upper-bound to the true
objective, i.e. J(x̆(y); y) ≤ J(x; y) for all x. In practice, maximizing a loose upper-bound can
cause significant divergence issues as the potential can start over-optimizing the objective.

Computing the updates to the dual potential’s parameters in eq. (5) is a well-defined machine learn-
ing setup given a parameterization of the potential fθ, but is often computationally bottlenecked
by the conjugate operation. Because of this bottleneck, many existing work resorts to amortizing
the conjugate by predicting the solution with a model x̃φ(y). I overview the design choices behind
amortizing the conjugate in sect. 3, and then go on in sect. 4 to show that it is reasonable to fine-tune
the amortized predictions with an explicit solver CONJUGATE(f, y, xinit = x̃φ(y)). Algorithm 1
summarizes how to learn a dual potential with an amortized and fine-tuned conjugate.

3 AMORTIZING CONVEX CONJUGATES: MODELING AND LOSSES

This section scopes to predicting an approximate solution to the conjugate optimization problem in
eq. (3). This is an instance of amortized optimization methods which predict the solution to a family
of optimization problems that are repeatedly solved (Shu, 2017; Chen et al., 2021; Amos, 2022).
Amortization is sensible here because the conjugate is repeatedly solved for y ∼ β every time the
dual V from eq. (4) is evaluated across a batch. Using the basic setup from Amos (2022), I call a
prediction to the solution of eq. (3) the amortization model x̃ϕ(y), which is parameterized by some
ϕ. The goal is to make the amortization model’s prediction match the true conjugate solution, i.e.
x̃φ(y) ≈ x̆(y), for samples y ∼ β. In other words, amortization uses a model to simultaneously
solve all of the conjugate optimization problems. There are two main design choices: sect. 3.1
discusses parameterizing the amortization model and sect. 3.2 overviews amortization losses.

3.1 PARAMETERIZING A CONJUGATE AMORTIZATION MODEL

The amortization model x̃ϕ(y) maps a point y ∼ β to a solution to the conjugate in eq. (3), i.e.
x̃ϕ : Rn → Rn and the goal is for x̃ϕ(y) ≈ x̆(y). In this paper, I take standard potential models
further described in app. B and keep them fixed to ablate across the amortization loss and fine-tuning
choices. The main categories are:

1. x̃ϕ : Rn → Rn directly maps to the solution of eq. (3) with a multilayer perceptron (MLP)
as in Nhan Dam et al. (2019), or a U-Net (Ronneberger et al., 2015) for image-based trans-
port. These are also used in parts of Korotin et al. (2021a).

2. x̃ϕ = ∇ygϕ is the gradient of a function gϕ : Rn → R. Korotin et al. (2019); Makkuva
et al. (2020) parameterize gϕ as an input-convex neural network, and some methods of
Korotin et al. (2021a) parametrize gϕ as a ResNet (He et al., 2016). This is well-motivated
because the arg min of a convex conjugate is the derivative, i.e. x̆(y) = ∇yf?(y).

3

Published as a conference paper at ICLR 2023

Algorithm 1 Learning Wasserstein-2 dual potentials with amortized and fine-tuned conjugation

Inputs: Measures α and β to couple, initial dual potential fθ, and initial amortization model x̃ϕ
while unconverged do

Sample batches {xj} ∼ α and {yj} ∼ β indexed by j ∈ [N]
Obtain the amortized prediction of the conjugate x̃ϕ(yj)
Fine-tune the prediction by numerically solving x̆(yj) = CONJUGATE(f, yj , xinit = x̃ϕ(yj))
Update the potential with a gradient estimate of the dual in eq. (5), i.e. ∇θV
Update the amortization model with a gradient estimate of a loss from sect. 3, i.e. ∇ϕL

end while
return optimal dual potentials fθ and conjugate amortization model x̃ϕ

3.2 CONJUGATE AMORTIZATION LOSS CHOICES

−2 0 2
x

0

4

∝ ‖∇Jf (x)‖22
Cycle

Jf (x; y)
Objective

‖x− x?(y)‖22
Regression

x?(y)

Figure 1: Conjugate amortization losses.

We now turn to the design choice of what loss to optimize
so that the conjugate amortization model x̃ϕ best-predicts
the solution to the conjugate. In all cases, the loss is dif-
ferentiable and ϕ is optimized with a gradient-based op-
timizer. I present an amortization perspective of methods
not previously presented as amortization methods, which
is useful to help think about improving the amortized pre-
dictions with the fine-tuning and exact solvers in sect. 4.
Figure 1 illustrates the main loss choices.

3.2.1 OBJECTIVE-BASED AMORTIZATION

Nhan Dam et al. (2019) propose to make the amortized prediction optimal on the conjugation ob-
jective Jf from eq. (3) across samples from β, i.e.:

min
ϕ
Lobj(ϕ) where Lobj(ϕ) := E

y∼β
Jf (x̃ϕ(y); y). (6)

We refer to Lobj as objective-based amortization and solve eq. (6) by taking gradient steps ∇ϕLobj

using a Monte-Carlo estimate of the expectation.

Remark 3 The maximin method proposed in Makkuva et al. (2020, theorem 3.3) is equivalent to
maximizing an upper-bound to the dual loss V with respect to θ of a potential fθ and minimizing
the objective-based amortization loss Lobj with respect to ϕ of an amortization model x̃ϕ := ∇gϕ.
Their formulation replaces the exact conjugate x̆ in eq. (4) with an approximation x̃ϕ, i.e.:

max
θ

min
ϕ
VMM(θ, ϕ) where VMM(θ, ϕ) := − E

x∼α
[fθ(x)] + E

y∼β
[Jfθ (x̃ϕ(y); y)]. (7)

Makkuva et al. (2020) propose to optimize VMM with gradient ascent-descent steps. For optimizing
θ, VMM(θ, ϕ) is an upper bound on the true dual objective V(θ) as discussed in remark 2 with
equality if and only if x̃ϕ = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e.,∇ϕVMM(θ, ϕ) = ∇ϕLobj(ϕ) = ∇ϕJfθ (x̃ϕ(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(θ).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain a near-exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. ∇xJf (x; y) = ∇xf(x) − y = 0. The
conjugate amortization model can be optimized for the residual norm of this condition with

min
ϕ
Lcycle(ϕ) where Lcycle(ϕ) := E

y∼β
‖∇xJf (x̃ϕ(y); y)‖22 = E

y∼β
‖∇xf(x̃ϕ(y))− y‖22. (8)

4

Published as a conference paper at ICLR 2023

Remark 5 W2GN (Korotin et al., 2019) is equivalent to maximizing an upper-bound to the dual
loss V with respect to θ of a potential fθ and minimizing the first-order amortization loss Lcycle

with respect to ϕ of an conjugate amortization model x̃ϕ := ∇gϕ. Korotin et al. (2019) originally
motivated the cycle consistency term from the use in cross-domain generative modeling Zhu et al.
(2017) and eq. (8) shows an alternative way of deriving the cycle consistency term by amortizing
the first-order optimality conditions of the conjugate.

Remark 6 The formulation in Korotin et al. (2019) does not disconnect fθ when optimizing the
cycle loss in eq. (8). From an amortization perspective, this performs amortization by updating fθ to
have a solution closer to x̃ϕ rather than the usual amortization setting of updating x̃ϕ to make a pre-
diction closer to the solution of fθ. In my experiments, updating fθ with the amortization term seems
to help when not fine-tuning the conjugate to be exact, but not when using the exact conjugates.

Remark 7 Korotin et al. (2019) and followup papers such as Korotin et al. (2021b) state that they
do not perform maximin optimization as in eq. (7) from Makkuva et al. (2020) because they replace
the inner optimization of the conjugate with an approximation. I disagree that the main distinction
between these methods should be based on their formulation as a maximin optimization problem.
I instead propose that the main difference between their losses is how they amortize the convex
conjugate: Makkuva et al. (2020) use the objective-based loss in eq. (6) while Korotin et al. (2019)
use the first-order optimality condition (eq. (8)). Sect. 5 shows that adding fine-tuning and exact
conjugates to both of these methods makes their performance match in most cases.

Remark 8 Optimizing for the first-order optimality conditions may not be ideal for non-convex
conjugate objectives as inflection points with a near-zero derivative may not be a global minimum
of eq. (3). The left and right regions of fig. 1 illustrate this.

3.2.3 REGRESSION-BASED AMORTIZATION

The previous objective and first-order amortization methods locally refine the model’s prediction us-
ing local derivative information. The conjugate amortization model can also be trained by regressing
onto ground-truth solutions when they are available, i.e.

min
ϕ
Lreg(ϕ) where Lreg(ϕ) := E

y∼β
‖x̃ϕ(y)− x̆(y)‖22. (9)

This regression loss is the most useful when approximations to the conjugate are computationally
easy to obtain, e.g. with a method described in sect. 4. Lreg gives the amortization model informa-
tion about where the globally optimal solution is rather than requiring it to only locally search over
the conjugate’s objective J .

4 NUMERICAL SOLVERS FOR EXACT CONJUGATES AND FINE TUNING

Algorithm 2 CONJUGATE(f, y, xinit)

x← xinit
while unconverged do

Update x with∇xJf (x; y)
end while
return optimal x̆(y) = x

In the Euclidean Wasserstein-2 setting, the conjugation oper-
ation in eq. (3) is a continuous and unconstrained optimiza-
tion problem over a possibly non-convex potential f . It is
usually implemented with a method using first-order infor-
mation for the update in algorithm 2, such as:

1. Adam (Kingma and Ba, 2014) is an adaptive first-order optimizer for high-dimensional
optimization problems and is used for the exact conjugations in Korotin et al. (2021a).
Note: Adam here is for algorithm 2 and is not performing parameter optimization.

2. L-BFGS (Liu and Nocedal, 1989) is a quasi-Newton method for optimizing unconstrained
convex functions. App. A discusses more implementation details behind setting up L-
BFGS efficiently to run on the batches of optimization problems considered here. Choos-
ing the line search method is the most crucial part as the conditional nature of some line
searches may be prohibitive over batches. Table 3 shows that an Armijo search often works
well to obtain approximate solutions.

5

Published as a conference paper at ICLR 2023

5 EXPERIMENTAL RESULTS ON THE WASSERSTEIN-2 BENCHMARK

I have focused most of the experimental investigations on the Wasserstein-2 benchmark (Korotin
et al., 2021a) because it provides a concrete evaluation setting with established baselines for learning
potentials for Euclidean Wasserstein-2 optimal transport. The tasks in the benchmark have known
(ground-truth) optimal transport maps and include transporting between: 1) high-dimensional (HD)
mixtures of Gaussians, and 2) samples from generative models trained on CelebA (Liu et al., 2015).
The main evaluation metric is the unexplained variance percentage (L2-UVP) metric from (Korotin
et al., 2019), which compares a candidate map T to the ground truth map T ? with:

L2-UVP(T ;α, β) := 100 · ‖T − T ?‖2L2(α)/Var(β)%. (10)

In all of the experimental results, I report the final L2-UVP evaluated with 16384 samples at the end
of training, and average the results over 10 trials. App. C further details the experimental setup. My
original motivation for running these experiments was to understand how ablating the amortization
losses and fine-tuning options impacts the final L2-UVP performance of the learned potential.

The main experimental takeaway of this paper is that fine-tuning the amortized conjugate
with a solver significantly improves the learned transport maps. Tables 1 and 2 report that
amortizing and fine-tuning the conjugate improves the L2-UVP performance by a factor of 1.8 to
4.4 over the previously best-known results on the benchmark. App. C.3 shows that the conjugate
can often be fine-tuned within 100ms per batch of 1024 examples on an NVIDIA Tesla V100 GPU,
fig. 2 and app. C.2 compare Adam and L-BFGS for solving the conjugation. The following remarks
further summarize the results from these experiments:

Remark 9 With fine-tuning, the choice of regression or objective-based amortization doesn’t sig-
nificantly impact the L2-UVP of the final potential. This is because fine-tuning is usually able to
find the optimal conjugates from the predicted starting points.

Remark 10 My re-implementation of W2GN (Korotin et al., 2019), which uses cycle consistency
amortization with no fine-tuning, often outperforms the results reported in Korotin et al. (2021a).
This is likely due to differences in the base potential and conjugate amortization models.

Remark 11 Cycle consistency sometimes provides difficult starting points for the fine-tuning meth-
ods, especially for L-BFGS. When learning non-convex potentials, this poor performance is likely
related to the fact that Newton methods are known to be difficult for saddle points (Dauphin et al.,
2014). Combining cycle consistency, which tries to find a point where the derivative is zero, with
L-BFGS, which also tries to find a point where the derivative is zero, results in finding suboptimal
inflection points of the potential rather than the true minimizer.

Remark 12 The performance of the methods using objective-based amortization without fine-
tuning, as done in Taghvaei and Jalali (2019), are lower than the performance reported in Korotin
et al. (2021a). This is because I do not run multiple inner updates to update the conjugate amor-
tization model. I instead advocate for fine-tuning the conjugate predictions with a known solver,
eliminating the need for a hyper-parameter of the number of inner iterations that needs to be del-
icately tuned to make sure the amortized prediction alone does not diverge too much from the true
conjugate.

0 10 20 30 40 50

Solver Iteration

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

J
(x

;y
)

D = 64

0 10 20 30 40 50

Solver Iteration

D = 128

0 10 20 30 40 50

Solver Iteration

D = 256

Amortized Initialization + L-BFGS L-BFGS Adam

Figure 2: Conjugate solver convergence on the HD benchmarks with an ICNN potential.

6

Published as a conference paper at ICLR 2023

Table 1: Comparison of L2-UVP on the high-dimensional tasks from the Wasserstein-2 benchmark
by Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and stan-
dard deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam
consistently improves the quality of the learned potential.

Baselines from Korotin et al. (2021a)
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

*[W2] Cycle None 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
*[MMv1] None Adam 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
*[MMv2] Objective None 0.1 0.68 2.2 3.1 5.3 10.1 3.2 2.7

*[MM] Objective None 0.1 0.3 0.9 2.2 4.2 3.2 3.1 4.1

Potential model: the input convex neural network described in app. B.3 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.28 ±0.09 0.90 ±0.11 2.23 ±0.20 3.03 ±0.06 5.32 ±0.14 8.79 ±0.16 5.66 ±0.45 4.34 ±0.14
Objective None 0.27 ±0.09 0.78 ±0.12 1.78 ±0.26 2.00 ±0.11 >100 >100 >100 >100

Cycle L-BFGS 0.26 ±0.09 0.77 ±0.11 1.63 ±0.28 1.15 ±0.14 2.02 ±0.10 4.48 ±0.89 1.65 ±0.10 5.93 ±9.43
Objective L-BFGS 0.26 ±0.09 0.79 ±0.12 1.63 ±0.30 1.12 ±0.11 1.92 ±0.19 4.40 ±0.79 1.64 ±0.11 2.24 ±0.13

Regression L-BFGS 0.26 ±0.09 0.78 ±0.12 1.64 ±0.29 1.14 ±0.12 1.93 ±0.20 4.41 ±0.74 1.69 ±0.11 2.21 ±0.15

Cycle Adam 0.26 ±0.09 0.79 ±0.11 1.62 ±0.29 1.14 ±0.12 1.95 ±0.21 4.55 ±0.62 1.88 ±0.26 >100
Objective Adam 0.26 ±0.09 0.79 ±0.14 1.62 ±0.31 1.08 ±0.14 1.89 ±0.19 4.23 ±0.76 1.59 ±0.12 1.99 ±0.15

Regression Adam 0.35 ±0.07 0.81 ±0.12 1.61 ±0.32 1.09 ±0.11 1.85 ±0.20 4.42 ±0.68 1.63 ±0.08 1.99 ±0.16

Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.05 ±0.00 0.35 ±0.01 1.51 ±0.08 >100 >100 >100 >100 >100
Objective None >100 >100 >100 >100 >100 >100 >100 >100

Cycle L-BFGS >100 >100 >100 >100 >100 >100 >100 >100
Objective L-BFGS 0.03 ±0.00 0.22 ±0.01 0.60 ±0.03 0.80 ±0.11 2.09 ±0.31 2.08 ±0.40 0.67 ±0.05 0.59 ±0.04

Regression L-BFGS 0.03 ±0.00 0.22 ±0.01 0.61 ±0.04 0.77 ±0.10 1.97 ±0.38 2.08 ±0.39 0.67 ±0.05 0.65 ±0.07

Cycle Adam 0.18 ±0.03 0.69 ±0.56 1.62 ±2.82 >100 >100 >100 >100 >100
Objective Adam 0.06 ±0.01 0.26 ±0.02 0.63 ±0.07 0.81 ±0.10 1.99 ±0.32 2.21 ±0.32 0.77 ±0.05 0.66 ±0.07

Regression Adam 0.22 ±0.01 0.28 ±0.02 0.61 ±0.07 0.80 ±0.10 2.07 ±0.38 2.37 ±0.46 0.77 ±0.06 0.75 ±0.09

Improvement factor over prior work 3.3 3.1 3.0 1.8 2.7 1.5 3.0 4.4

Table 2: Comparison of L2-UVP on the CelebA64 tasks from the Wasserstein-2 benchmark by
Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-
sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.

Amortization loss Conjugate solver Potential Model Early Generator Mid Generator Late Generator

*[W2] Cycle None ConvICNN64 1.7 0.5 0.25
*[MM] Objective None ResNet 2.2 0.9 0.53

*[MM-R†] Objective None ResNet 1.4 0.4 0.22

Cycle None ConvNet >100 26.50 ±60.14 0.29 ±0.59
Objective None ConvNet >100 0.29 ±0.15 0.69 ±0.90

Cycle Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.04
Cycle L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.00

Objective Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.05
Objective L-BFGS ConvNet 0.61 ±0.01 0.20 ±0.00 0.09 ±0.00

Regression Adam ConvNet 0.66 ±0.01 0.21 ±0.00 0.12 ±0.00
Regression L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.01

Improvement factor over prior work 2.3 2.0 2.4

†the reversed direction from Korotin et al. (2021a), i.e. the potential model is associated with the β measure

6 DEMONSTRATIONS ON SYNTHETIC DATA

I lastly demonstrate the stability of amortization and fine-tuning as described in algorithm 1 to learn
optimal transport maps between many 2d synthetic settings considered in the literature. In all of
these settings, I instantiate ICNN and MLP architectures and use regression-based amortization
with L-BFGS fine-tuning. Figures 3 to 5 show the settings considered in Makkuva et al. (2020) and
Rout et al. (2021), and fig. 6 shows the conjugate objective landscapes. Figure 7 shows maps learned
on synthetic settings from Huang et al. (2020). App. D contains more experimental details here.

7

Published as a conference paper at ICLR 2023

Samples from β Samples from α Push-forward (∇f?)#β ≈ α Transport paths

Figure 3: Learned transport maps on synthetic settings from Rout et al. (2021).

Remark 13 Optimizing the dual in eq. (4) is an alternative to the maximum likelihood training in
Huang et al. (2020) for potential flows. While maximum likelihood training requires the density of
one of the measures, optimizing the dual only requires samples from the measures. This makes it
easy to compute flows such as the bottom one of fig. 7, even though it is difficult to specify the density.

7 RELATED WORK

Numerical conjugation. Brenier (1989); Lucet (1996; 1997); Gardiner and Lucet (2013); Trienis
(2007); Jacobs and Léger (2020); Vacher and Vialard (2021) also use computational methods for nu-
merical conjugation, which also have applications in solving Hamilton-Jacobi or Burger’s equation
via discretizations. These methods typically consider conjugating univariate and bivariate functions
by discretizing the space, which make them challenging to apply in the settings from Korotin et al.
(2021a) that we report in sect. 5: we are able to conjugate dual potentials in up to 256-dimensional
spaces for the HD tasks and 12228-dimensional spaces for the CelebA64 tasks. Taking a grid-based
discretization of the space with 10 locations in each dimension would result in (12228)10 grid points
in the CelebA64 task. Garcia et al. (2023) amortizes the conjugate operation to predict the natural
gradient update, which is related to the amortized proximal optimization setting in Bae et al. (2022).

Learning solutions to OT problems. Dinitz et al. (2021); Khodak et al. (2022); Amos et al. (2022)
amortize and learn the solutions to OT and matching problems by predicting the optimal duals given
the input measures. These approaches are complimentary to this paper as they amortize the solution
to the dual in eq. (2) while this paper amortizes the conjugate subproblem in eq. (3) that is repeatedly
computed when solving a single OT problem.

8 CONCLUSIONS, FUTURE DIRECTIONS, AND LIMITATIONS

This paper explores the use of amortization and fine-tuning for computing convex conjugates.
The methodological insights and amortization perspective may directly transfer to many other
applications and extensions of Euclidean Wasserstein-2 optimal transport, including for computing
barycenters (Korotin et al., 2021b), Wasserstein gradient flows (Alvarez-Melis et al., 2021; Mokrov
et al., 2021), or cellular trajectories (Bunne et al., 2021). Many of the key amortization and
fine-tuning concepts from here will transfer beyond the Euclidean Wasserstein-2 setting, e.g. the
more general c-transform arising in non-Euclidean optimal transport (Sei, 2013; Cohen et al., 2021;
Rezende and Racanière, 2021) or for the Moreau envelope computation, which can be decomposed
into a term that involve the convex conjugate as described in Rockafellar and Wets (2009, ex. 11.26)
and Lucet (2006, sect. 2).

Limitations. The most significant limitation in the field of estimating Euclidean Wasserstein-2
optimal transport maps is the lack of convergence guarantees. The parameter optimization problem
in eq. (4) is always non-convex, even when using input-convex neural networks. I have shown that
improved conjugate estimations significantly improve the stability when the base potential model is
properly set up, but all methods are sensitive to the potential model’s hyper-parameters. I found
that small changes to the activation type or initial learning rate can cause no method to converge.

8

Published as a conference paper at ICLR 2023

(∇f)#α (∇f ?)#β Potential f Conjugate f ∗

Input samples Ground-truth target samples Push-forward samples Transport paths
Figure 4: Learned potentials on settings considered in Makkuva et al. (2020).

G ← ((1− t)I + t∇f ?)#G → (∇f ?)#G

Figure 5: Mesh grid G warped by the conjugate potential flow∇f? from the top setting of fig. 4.

y x̆(y)

Figure 6: Sample conjugation landscapes J(x; y) of the top setting of fig. 4. The inverse transport
map ∇yf?(y) = x̆(y) is obtained by minimizing J , which is a convex optimization problem. The
contour shows J(x; y) filtered to not display a color for values above J(y; y).

β (∇f?)#β← ((1− t)I + t∇f?)#β →

Figure 7: Single-block potential flows on synthetic settings considered in Huang et al. (2020).
9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

I would like to thank Max Balandat, Ricky Chen, Samuel Cohen, Marco Cuturi, Carles Domingo-
Enrich, Yaron Lipman, Max Nickel, Misha Khodak, Aram-Alexandre Pooladian, Mike Rabbat,
Adriana Romero Soriano, Mark Tygert, and Lin Xiao, for insightful comments and discussions.
The core set of tools in Python (Van Rossum and Drake Jr, 1995; Oliphant, 2007) enabled this work,
including Hydra (Yadan, 2019), JAX (Bradbury et al., 2018), Flax (Heek et al., 2020), Matplotlib
(Hunter, 2007), numpy (Oliphant, 2006; Van Der Walt et al., 2011), and pandas (McKinney, 2012).

REFERENCES

David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities
with input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

Luigi Ambrosio. Lecture notes on optimal transport problems. In Mathematical aspects of evolving interfaces,
pages 1–52. Springer, 2003.

Brandon Amos. Tutorial on amortized optimization for learning to optimize over continuous domains. arXiv
preprint arXiv:2202.00665, 2022.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on
Machine Learning, pages 146–155. PMLR, 2017.

Brandon Amos, Samuel Cohen, Giulia Luise, and Ievgen Redko. Meta optimal transport. arXiv preprint
arXiv:2206.05262, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Inter-
national conference on machine learning, pages 214–223. PMLR, 2017.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal
of mathematics, 16(1):1–3, 1966.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, and Evgeny Burnaev. Neural optimal transport with
general cost functionals. arXiv preprint arXiv:2205.15403, 2022.

Juhan Bae, Paul Vicol, Jeff Z HaoChen, and Roger Grosse. Amortized proximal optimization. arXiv preprint
arXiv:2203.00089, 2022.

Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint arXiv:1704.07483,
2017.

Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for machine learning. Ad-
vances in Neural Information Processing Systems, 29, 2016.

Dimitri P Bertsekas. Control of uncertain systems with a set-membership description of the uncertainty. PhD
thesis, Massachusetts Institute of Technology, 1971.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-
formations of Python+NumPy programs. GitHub, 2018. URL http://github.com/google/jax.

Yann Brenier. Un algorithme rapide pour le calcul de transformées de legendre-fenchel discretes. Comptes
rendus de l’Académie des sciences. Série 1, Mathématique, 308(20):587–589, 1989.

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications
on pure and applied mathematics, 44(4):375–417, 1991.

Charles George Broyden. The convergence of a class of double-rank minimization algorithms 1. general con-
siderations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Kjong-Van Lehmann, Lucas Pelk-
mans, Andreas Krause, and Gunnar Ratsch. Learning single-cell perturbation responses using neural optimal
transport. bioRxiv, 2021.

Charlotte Bunne, Andreas Krause, and Marco Cuturi. Supervised training of conditional monge maps. Ad-
vances in Neural Information Processing Systems, 2022.

10

http://github.com/google/jax

Published as a conference paper at ICLR 2023

Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan. Multi-marginal wasser-
stein gan. Advances in Neural Information Processing Systems, 32, 2019.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and Wotao Yin.
Learning to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828, 2021.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Samuel Cohen, Brandon Amos, and Yaron Lipman. Riemannian convex potential maps. In International
Conference on Machine Learning, pages 2028–2038. PMLR, 2021.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural informa-
tion processing systems, 26:2292–2300, 2013.

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):
641–664, 1966.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Advances
in neural information processing systems, 27, 2014.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster matchings
via learned duals. Advances in neural information processing systems, 34:10393–10406, 2021.

Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of wasserstein barycenter via
input convex neural networks. arXiv preprint arXiv:2007.04462, 2020.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, and Haomin Zhou. Scalable computation of monge maps
with general costs. arXiv preprint arXiv:2106.03812, 2021.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322, 1970.

Sara Fridovich-Keil and Benjamin Recht. Approximately exact line search. arXiv preprint arXiv:2011.04721,
2020.

Jezabel R Garcia, Federica Freddi, Stathi Fotiadis, Maolin Li, Sattar Vakili, Alberto Bernacchia, and Guillaume
Hennequin. Fisher-legendre (fishleg) optimization of deep neural networks. In International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=c9lAOPvQHS.

Bryan Gardiner and Yves Lucet. Computing the conjugate of convex piecewise linear-quadratic bivariate
functions. Mathematical Programming, 139(1):161–184, 2013.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-scale optimal
transport. Advances in neural information processing systems, 29, 2016.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of compu-
tation, 24(109):23–26, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pages 630–645. Springer, 2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner, and
Marc van Zee. Flax: A neural network library and ecosystem for JAX. GitHub, 2020. URL http:
//github.com/google/flax.

Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and Aaron Courville. Convex potential flows: Universal
probability distributions with optimal transport and convex optimization. arXiv preprint arXiv:2012.05942,
2020.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):90, 2007.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

Matt Jacobs and Flavien Léger. A fast approach to optimal transport: The back-and-forth method. Numerische
Mathematik, 146(3):513–544, 2020.

Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On the duality of strong convexity and strong
smoothness: Learning applications and matrix regularization. TTIC, 2009.

11

https://openreview.net/forum?id=c9lAOPvQHS
http://github.com/google/flax
http://github.com/google/flax

Published as a conference paper at ICLR 2023

Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning predictions for
algorithms with predictions. arXiv preprint arXiv:2202.09312, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Advances in
neural information processing systems, 31, 2018.

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev. Wasserstein-2
generative networks. arXiv preprint arXiv:1909.13082, 2019.

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov, and Evgeny Bur-
naev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark. arXiv preprint
arXiv:2106.01954, 2021a.

Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous wasserstein-2 barycenter
estimation without minimax optimization. arXiv preprint arXiv:2102.01752, 2021b.

Jacob Leygonie, Jennifer She, Amjad Almahairi, Sai Rajeswar, and Aaron Courville. Adversarial computation
of optimal transport maps. arXiv preprint arXiv:1906.09691, 2019.

Dong-Hui Li and Masao Fukushima. On the global convergence of the bfgs method for nonconvex uncon-
strained optimization problems. SIAM Journal on Optimization, 11(4):1054–1064, 2001.

Lingxiao Li, Aude Genevay, Mikhail Yurochkin, and Justin Solomon. Continuous regularized wasserstein
barycenters. arXiv preprint arXiv:2008.12534, 2020.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989.

Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein gan with quadratic transport cost. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pages 4832–4841, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceed-
ings of the IEEE international conference on computer vision, pages 3730–3738, 2015.

Frederike Lübeck, Charlotte Bunne, Gabriele Gut, Jacobo Sarabia del Castillo, Lucas Pelkmans, and David
Alvarez-Melis. Neural unbalanced optimal transport via cycle-consistent semi-couplings. arXiv preprint
arXiv:2209.15621, 2022.

Yves Lucet. A fast computational algorithm for the legendre-fenchel transform. Computational Optimization
and Applications, 6(1):27–57, 1996.

Yves Lucet. Faster than the fast legendre transform, the linear-time legendre transform. Numerical Algorithms,
16(2):171–185, 1997.

Yves Lucet. Fast moreau envelope computation i: Numerical algorithms. Numerical Algorithms, 43(3):235–
249, 2006.

Yun Luo, Si-Yang Zhang, Wei-Long Zheng, and Bao-Liang Lu. Wgan domain adaptation for eeg-based emotion
recognition. In International Conference on Neural Information Processing, pages 275–286. Springer, 2018.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping via input
convex neural networks. In International Conference on Machine Learning, pages 6672–6681. PMLR, 2020.

Robert J McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Mathematical
Journal, 80(2):309–323, 1995.

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O’Reilly
Media, Inc.", 2012.

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, and Evgeny Burnaev. Large-
scale wasserstein gradient flows. Advances in Neural Information Processing Systems, 34:15243–15256,
2021.

Quan Hoang Nhan Dam, Trung Le, Tu Dinh Nguyen, Hung Bui, and Dinh Phung. Threeplayer Wasserstein
GAN via amortised duality. In Proc. of the 28th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2019.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

12

Published as a conference paper at ICLR 2023

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–20, 2007.

Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of wasserstein gans. arXiv preprint
arXiv:1709.08894, 2017.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. Foun-
dations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Danilo J Rezende and Sébastien Racanière. Implicit riemannian concave potential maps. arXiv preprint
arXiv:2110.01288, 2021.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science & Business
Media, 2009.

Ralph Tyrell Rockafellar. Convex analysis. In Convex analysis. Princeton university press, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention,
pages 234–241. Springer, 2015.

Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport maps. arXiv
preprint arXiv:2110.02999, 2021.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and Mathieu Blon-
del. Large-scale optimal transport and mapping estimation. arXiv preprint arXiv:1711.02283, 2017.

Tomonari Sei. A jacobian inequality for gradient maps on the sphere and its application to directional statistics.
Communications in Statistics-Theory and Methods, 42(14):2525–2542, 2013.

David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of computa-
tion, 24(111):647–656, 1970.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation learning for
domain adaptation. In Thirty-second AAAI conference on artificial intelligence, 2018.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

Rui Shu. Amortized Optimization. http://ruishu.io/2017/11/07/
amortized-optimization/, 2017. Accessed: 2020-02-02.

Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex potentials with
application to improved training for gans. arXiv preprint arXiv:1902.07197, 2019.

Michael Joseph Trienis. Computational convex analysis: From continuous deformation to finite convex inte-
gration. PhD thesis, University of British Columbia, 2007.

Adrien Vacher and François-Xavier Vialard. Convex transport potential selection with semi-dual criterion.
arXiv preprint arXiv:2112.07275, 2021.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient numerical
computation. Computing in Science & Engineering, 13(2):22, 2011.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Zhong Wan, Shuai Huang, and Xiao Dong Zheng. New cautious bfgs algorithm based on modified armijo-type
line search. Journal of Inequalities and Applications, 2012(1):1–10, 2012.

Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.

Max A Woodbury. Inverting modified matrices. Statistical Research Group, 1950.

Jiqing Wu, Zhiwu Huang, Janine Thoma, Dinesh Acharya, and Luc Van Gool. Wasserstein divergence for gans.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 653–668, 2018.

13

http://ruishu.io/2017/11/07/amortized-optimization/
http://ruishu.io/2017/11/07/amortized-optimization/

Published as a conference paper at ICLR 2023

Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and efficient computa-
tion of large scale optimal transport. In International Conference on Machine Learning, pages 6882–6892.
PMLR, 2019.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2223–2232, 2017.

14

https://github.com/facebookresearch/hydra

Published as a conference paper at ICLR 2023

Algorithm 3 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve eq. (11) as presented
in Nocedal and Wright (1999, alg. 6.1).

Inputs: Function J to optimize, initial iterate x0 and Hessian approximation B0

k ← 0
while unconverged do

Compute the search direction pk = −B−1k ∇xJk(xk)
Set xk+1 = xk + αkpk where αk is computed from a line search from app. A.2
Compute Bk with the update in eq. (12)
k ← k + 1

end while
return optimal solution xk ≈ x̆

0 1

0

Backtracking Armijo search

α

g(α)

Sequentially find g(α) ≥ 0

α?

0 1

Parallel Armijo search

α

Evaluate many g(α) in parallel, pick best

α?

Figure 8: Visualization of backtracking and parallel line searches to solve eq. (17).

A L-BFGS OVERVIEW AND LINE SEARCH DETAILS

The conjugate optimization problem in eq. (3) is an unconstrained convex optimization problem
for convex potentials, which is a setting BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970) and L-BFGS (Liu and Nocedal, 1989) methods thrive in. The default strong Wolfe
line search methods in the Jax and JaxOpt L-BFGS implementations may take a long time to
solve a batch of optimization problems. Without efficiently setting the line search method, some
of the Wasserstein-2 benchmark experiments in app. C that ran in a few hours would have otherwise
taken a month to run. This section provides a brief overview of BFGS methods and shows that an
Armijo line search can be the most efficient at computing the conjugate.

A.1 BACKGROUND ON BFGS METHODS

Nocedal and Wright (1999, alg. 6.1) is a standard reference for BFGS methods and extensions and
the key steps are summarized in algorithm 3 for solving an optimization problem of the form

x̆ ∈ arg min
x

J(x) (11)

where J : Rn → R is possibly non-convex and twice continuously differentiable. The method
iteratively finds a solution x̆ by 1) maintaining an approximate Hessian around the current iterate,
i.e. Bk ≈ ∇2J(xk), 2) computing an approximate Newton step pk = −B−1k ∇xJk(xk) using the
approximate Hessian, 3) updating the iterate with xk+1 = xk +αkpk, where αk is found with a line
search, and 4) updating the Hessian approximation with the Sherman–Morrison–Woodbury formula
(Woodbury, 1950; Sherman and Morrison, 1950)

Bk+1 = Bk −
Bksss

>
k Bk

s>k Bksk
+
yky
>
k

y>k sk
, (12)

where yk = ∇xJ(xk+1)−∇xJ(xk) and sk = xk+1 − xk. Instead of estimating Bk and inverting
it in every iteration, most implementations maintain a direct approximation to the inverse Hessian
Hk := B−1k . The limited-memory version of BFGS (L-BFGS) in Liu and Nocedal (1989) propose
to replace the inverse Hessian approximation as a matrix Hk with the sequence of vectors [yk, sk]
defining the updates to Hk and never requires instantiating the full n× n approximation.

15

https://github.com/google/jaxopt/blob/418bce35ff7410a86dc5edb64ee5d3716b3bc132/jaxopt/_src/lbfgs.py
https://github.com/google/jaxopt/blob/418bce35ff7410a86dc5edb64ee5d3716b3bc132/jaxopt/_src/lbfgs.py

Published as a conference paper at ICLR 2023

Algorithm 4 Backtracking Armijo line search to solve eq. (17)

Inputs: Iterate xk, search direction pk, decay τ , control parameter c1, initial α0

α← αinit

while J(xk + αjpk) > J(xk) + c1αjp
>
k∇xJ(xk) do

α← τα
end while
return α satisfying the Armijo condition in eq. (17).

Algorithm 5 Parallel Armijo line search to solve eq. (17)

Inputs: Iterate xk, search direction pk, decay τ , control parameter c1, initial α0, #evaluations M
Compute candidate step lengths αm = τ−m for m ∈ [M]
Evaluate the line search condition g(αm) from eq. (16) in parallel
if all g(αm) < 0 then

Error: No acceptable step found
else

return largest α satisfying eq. (17), i.e. maxαm subject to g(αm) > 0
end if

A.2 LINE SEARCHES

The line search to find the step size αk for the iterate update xk+1 = xk + αkpk is often done with:

1. a Wolfe line search (Wolfe, 1969) to satisfy the conditions:

J(xk + αkpk) ≤ J(xk) + c1αkp
>
k∇xJ(xk)

−p>x∇xJ(xk + αxpx) ≤ −c2p>x∇xJ(xk) (13)

where 0 < c1 < c2 < 1,
2. a strong Wolfe line search to satisfy the conditions:

J(xk + αkpk) ≤ J(xk) + c1αkp
>
k∇xJ(xk)

|p>x∇xJ(xk + αxpx)| ≤ c2|p>x∇xJ(xk)|
(14)

This is often found via the zoom procedure from Nocedal and Wright (1999, algorithm 3.5).
3. an Armijo line search (Armijo, 1966) to satisfy the first condition:

J(xk + αkpk) ≤ J(xk) + c1αkp
>
k∇xJ(xk). (15)

For notational simplicity, we can also write the Armijo condition as:

g(α) := f(xk) + c1αp
>
k∇f(xk)− f(xk + αpk) ≥ 0 (16)

Remark 14 The strong Wolfe line search is the most commonly used line search for L-BFGS as
it guarantees that the resulting update to the Hessian in eq. (12) stays positive definite, but the
Armijo line search may be more efficient as it does not involve re-evaluating the derivative of the
objective. Unfortunately, an iterate obtained by an Armijo line search may not satisfy the curvature
condition y>k sk > 0 that ensure the Hessian update stays positive definite while a step satisfying
the strong Wolfe conditions provably does (Nocedal and Wright, 1999, page 143). Nonetheless,
Armijo searches are still combined with BFGS and can be guarded by only updating the Hessian
approximation if y>k sk > 0, or a modification thereof, as described in Li and Fukushima (2001);
Wan et al. (2012); Fridovich-Keil and Recht (2020) and Berahas et al. (2016, sect. 3.2).

16

Published as a conference paper at ICLR 2023

Table 3: Runtime and number of L-BFGS iterations for line search methods to converge to a solution
x̆ of eq. (11) for conjugating the trained ICNN potential on the 256-dimensional HD benchmark
from sect. 5 with a batch of 1024 samples and a tolerance of ‖∇J(x̆)‖∞ ≤ 0.1, starting from the
amortized prediction. The Wolfe and Armijo line search methods use standard values of c1 = 10−4

and c2 = 0.9, all backtracking options use a decay factor of τ = 2/3 with M = 15 evaluations, and
the runtimes are averaged over 10 trials on an NVIDIA Tesla V100 GPU. In this setting, Armijo line
searches without many conditionals or gradient evaluations consistently take the shortest time.

Base L-BFGS Line search Runtime (ms) # Iterations

Jax Strong Wolfe Zoom (default) 4803.40 6.21
Backtracking Armijo 156.69 8.56
Parallel Armijo 119.41 8.56

JaxOpt Strong Wolfe Zoom (default) 776.52 7.78
Backtracking Strong Wolfe 233.39 7.97
Backtracking Wolfe 225.30 8.65
Backtracking Armijo 154.90 8.58

A.2.1 THE ARMIJO LINE SEARCH

The Armijo line search can be written as the optimization problem

αk(xk, pk) = maxα subject to J(xk + αpk) ≤ J(xk) + c1αp
>
k∇xJ(xk). (17)

Eq. (17) is typically solved as shown in algorithm 4 and fig. 8 by setting a decay factor τ and
iteratively decreasing a candidate step length α until the condition is satisfied.

When the objective J can be efficiently evaluated in parallel on a GPU, and when solving many
batches of optimization problems concurrently, e.g. with vmap, the backtracking Armijo line search
described in algorithm 4, and the Wolfe line search described in Nocedal and Wright (1999, alg. 7.5),
are computationally slowed down by serial and conditional operations. These issues arise from: 1)
the sequential nature of the line search, and 2) the fact that the line search may run for a different
number of iterations for every optimization problem in the batch. Wolfe line searches such as No-
cedal and Wright (1999, alg. 7.5) have other conditionals scoping the search interval that cause the
line search to perform potentially different operations for every optimization problem in the batch.

I propose a parallel Armijo line search in algorithm 5, which is also visualized in fig. 8, to remove
serial and conditional operations to improve the computation of the line search on the GPU for
solving batches of optimization problems. The key idea is to instantiate many possible step sizes,
evaluate them all at once, and then select the largest αm satisfying the Armijo condition g(αm) ≥ 0.

Remark 15 The parallel line search may unnecessarily evaluate more candidate steps sizes than the
sequential line search, but on GPU architectures this may not be very detrimental to the performance
because additional parallel function evaluations are computationally cheap. Furthermore, when
solving a batch of N optimization problems with M line search evaluations, i.e. when using vmap
on the line search or optimizer, the parallel line search in algorithm 5 can efficiently evaluate NM
candidate step lengths in tandem on a GPU and then select the best for each element in the batch.

Remark 16 A potential concern with this parallel line search is that it may not find a step size
satisfying the Armijo condition ifM is not set to be low enough. While this may be a significant issue
for when high-precision solves are needed, I have found in practice for the Euclidean Wasserstein-2
conjugates that taking M = 10 line search evaluations frequently finds a solution.

A.2.2 COMPARING LINE SEARCH METHODS

Table 3 takes a trained ICNN potential and isolates the comparison between L-BFGS runtimes to
only changing the linesearch methods. This is the same optimization procedure and batch size used
for all of the training runs on the Wasserstein-2 benchmark. Despite the concerns in remark 14 about
the Armijo line search resulting in slower convergence and an indefinite Hessian approximations,
the Armijo line searches are consistently able to solve the batch of optimization problems the fastest.

17

https://github.com/google/jaxopt/blob/418bce35ff7410a86dc5edb64ee5d3716b3bc132/jaxopt/_src/lbfgs.py
https://github.com/google/jaxopt/blob/418bce35ff7410a86dc5edb64ee5d3716b3bc132/jaxopt/_src/lbfgs.py

Published as a conference paper at ICLR 2023

B MODEL DEFINITIONS AND PRETRAINING

All of the potential and conjugate amortization models in this paper can be implemented in≈30–50
lines of readable Jax code with Flax (Heek et al., 2020). They are included in the w2ot/models
directory of the code here, and reproduced here to precisely define them.

B.1 PRETRAINING AND INITIALIZATION

Following Korotin et al. (2021a), every experimental setting has a pre-training phase so that the po-
tentials and amortization maps approximate the identity mapping, i.e. ∇xfθ(x) ≈ x and x̃ϕ(y) ≈ y.

B.2 InitNN: NON-CONVEX NEURAL NETWORK AMORTIZATION MODEL x̃ϕ

Remark 17 The passthrough on line 18 is helpful for learning an identity initialization.

1 class InitNN(nn.Module):
2 dim_hidden: Sequence[int]
3 act: str = ’elu’
4

5 @nn.compact
6 def __call__(self, x):
7 assert x.ndim == 2
8 n_input = x.shape[-1]
9

10 act_fn = layers.get_act(self.act)
11

12 z = x
13 for n_hidden in self.dim_hidden:
14 Wx = nn.Dense(n_hidden, use_bias=True)
15 z = act_fn(Wx(z))
16

17 Wx = nn.Dense(n_input, use_bias=True)
18 z = x + Wx(z) # Encourage identity initialization.
19

20 return z

18

http://github.com/facebookresearch/w2ot

Published as a conference paper at ICLR 2023

B.3 ICNN: INPUT-CONVEX NEURAL NETWORK POTENTIAL fθ

actnorm is the activation normalization layer from Kingma and Dhariwal (2018), which was also
used in the ICNN potentials in Huang et al. (2020) and normalizes the activations at initialization to
follow a normal distribution.

Remark 18 Applying an activation to the output on line 41 is helpful to lower-bound the otherwise
unconstrained potential and adds stability to the training.

Remark 19 The final quadratic on line 46 makes it easy to initialize the potential to the identity.

Remark 20 This ICNN does not use the quadratic activations proposed in Korotin et al. (2019,
Appendix B.1). While I did not heavily experiment with them, table 1 shows that this ICNN architec-
ture without the quadratic activations performs better than the results originally reported in Korotin
et al. (2021a) which use an ICNN architecture with the quadratic activations.

1 class ICNN(nn.Module):
2 dim_hidden: Sequence[int]
3 act: str = ’elu’
4 actnorm: bool = True
5

6 def setup(self):
7 kernel_init = nn.initializers.variance_scaling(
8 1., "fan_in", "truncated_normal")
9 num_hidden = len(self.dim_hidden)

10

11 w_zs = list()
12 for i in range(1, num_hidden):
13 w_zs.append(layers.PositiveDense(
14 self.dim_hidden[i], kernel_init=kernel_init))
15 w_zs.append(layers.PositiveDense(1, kernel_init=kernel_init))
16 self.w_zs = w_zs
17

18 w_xs = list()
19 for i in range(num_hidden):
20 w_xs.append(nn.Dense(
21 self.dim_hidden[i], use_bias=True,
22 kernel_init=kernel_init))
23

24 w_xs.append(nn.Dense(1, use_bias=True, kernel_init=kernel_init))
25 self.w_xs = w_xs
26

27

28 @nn.compact
29 def __call__(self, x):
30 assert x.ndim == 2
31 n_input = x.shape[-1]
32 act_fn = layers.get_act(self.act)
33

34 z = act_fn(self.w_xs[0](x))
35 for Wz, Wx in zip(self.w_zs[:-1], self.w_xs[1:-1]):
36 z = Wz(z) + Wx(x)
37 if self.actnorm:
38 z = layers.ActNorm()(z)
39 z = act_fn(z)
40

41 y = act_fn(self.w_zs[-1](z) + self.w_xs[-1](x))
42 y = jnp.squeeze(y, -1)
43

44 log_alpha = self.param(
45 ’log_alpha’, nn.initializers.constant(0), [])
46 y += jnp.exp(log_alpha)*0.5*utils.batch_dot(x, x)
47

48 return y

19

Published as a conference paper at ICLR 2023

B.4 PotentialNN: NON-CONVEX NEURAL NETWORK (MLP) POTENTIAL fθ

Remark 21 Consistent with remarks 18 and 19, applying an activation to the last layer (line 18)
and adding a final quadratic term (line 24) helps this non-convex potential model too.

1 class PotentialNN(nn.Module):
2 dim_hidden: Sequence[int]
3 act: str = ’elu’
4

5 @nn.compact
6 def __call__(self, x):
7 assert x.ndim == 2
8 n_input = x.shape[-1]
9

10 act_fn = layers.get_act(self.act)
11

12 z = x
13 for n_hidden in self.dim_hidden:
14 Wx = nn.Dense(n_hidden, use_bias=True)
15 z = act_fn(Wx(z))
16

17 Wx = nn.Dense(1, use_bias=True)
18 z = act_fn(Wx(z))
19

20 z = jnp.squeeze(z, -1)
21

22 log_alpha = self.param(
23 ’log_alpha’, nn.initializers.constant(0), [])
24 z += 0.5*jnp.exp(log_alpha)*utils.batch_dot(x, x)
25

26 return z

20

Published as a conference paper at ICLR 2023

B.5 ConvPotential: NON-CONVEX CONVOLUTIONAL POTENTIAL fθ

Remark 22 I was not able to easily add batch normalization (Ioffe and Szegedy, 2015) to this
potential. In contrast to standard use cases of batch normalization that only call into a batch-
normalized model once over samples from a single distribution, the dual objective in eq. (4) calls
into the potential multiple times to estimate Ex∼α fθ(x) and Ey∼β fθ(x̆(y)), which also involve
internally solving the conjugate optimization problem in eq. (3) to obtain x̆. This makes it not clear
what training and evaluation statistics batch normalization should use when computing the dual
objective. One choice could be to only use the statistics induced from the samples x ∼ α.

1 class ConvPotential(nn.Module):
2 act: str = ’elu’
3

4 mean = jnp.array([0.485, 0.456, 0.406])
5 std = jnp.array([0.229, 0.224, 0.225])
6

7 @nn.compact
8 def __call__(self, x):
9 assert x.ndim == 2 # Images should be flattened

10 num_batch = x.shape[0]
11

12 x_flat = x # Save for taking the quadratic at the end.
13

14 # Reshape and renormalize
15 x = x.reshape(-1, 3, 64, 64).transpose(0, 2, 3, 1)
16 x = (x + 1.)/2.
17 x = (x-self.mean) / self.std
18 y = x
19

20 act_fn = layers.get_act(self.act)
21

22 conv = nn.Conv(128, kernel_size=[4,4], strides=2)
23 y = act_fn(conv(y))
24

25 conv = nn.Conv(128, kernel_size=[4,4], strides=2)
26 y = act_fn(conv(y))
27

28 conv = nn.Conv(256, kernel_size=[4,4], strides=2)
29 y = act_fn(conv(y))
30

31 conv = nn.Conv(512, kernel_size=[4,4], strides=2)
32 y = act_fn(conv(y))
33

34 conv = nn.Conv(1024, kernel_size=[4,4], strides=2)
35 y = act_fn(conv(y))
36

37 conv = nn.Conv(
38 1, kernel_size=[2,2], padding=’VALID’, strides=1)
39 y = act_fn(conv(y))
40 y = y.squeeze([1,2,3])
41

42 assert y.shape == (num_batch,)
43

44 log_alpha = self.param(
45 ’log_alpha’, nn.initializers.constant(0), [])
46 y += 0.5*jnp.exp(log_alpha)*utils.batch_dot(x_flat, x_flat)
47

48 return y

21

Published as a conference paper at ICLR 2023

C ADDITIONAL WASSERSTEIN-2 BENCHMARK EXPERIMENT DETAILS

C.1 HYPER-PARAMETERS

Tables 4 and 5 detail the main hyper-parameters for the Wasserstein-2 benchmark experiments. I
tried to keep these consistent with the choices from Korotin et al. (2021a), e.g. using the same batch
sizes, number of training iterations, and hidden layer sizes for the potential.

All experiments use the same settings for the conjugate solvers: The conjugate solvers stop early
if all dimensions of the iterates change by less than 0.1, and otherwise run for a maximum of 100
iterations. The line search parameters for the parallel Armijo search in algorithm 5 for L-BFGS are
to decay the steps with a base of τ = 1.5 and to searchM = 10 step sizes. With the Adam conjugate
solver, I use the default β = [0.9, 0.999] with an initial learning rate of 0.1 with a cosine annealing
schedule to decrease it to 10−5.

Table 4: Hyper-parameters for the D-dimensional Wasserstein-2 benchmark experiments

Name Value

potential model fθ ICNN or PotentialNN
fθ hidden layer sizes [max(2D, 64), max(2D, 64), max(D, 32)]

conjugate amortization model x̃ϕ InitNN(dim_hidden=[512, 512])
activation functions ELU (Clevert et al., 2015)
training iterations 250000

optimizer Adam with cosine annealing (α=1e-4)
initial learning rate 5e-4

Adam β [0.5, 0.5]
batch size 1024

Table 5: Hyper-parameters for the CelebA64 Wasserstein-2 benchmark experiments

Name Value

potential model fθ ConvPotential
conjugate amortization model x̃ϕ = ∇gϕ Gradient of ConvPotential

activation functions ELU (Clevert et al., 2015)
number of training iterations 50000

optimizer Adam with cosine annealing (α=1e-4)
initial learning rate 1e-3

Adam β [0.5, 0.5]
batch size 64

22

https://optax.readthedocs.io/en/latest/api.html#optax.cosine_decay_schedule
https://optax.readthedocs.io/en/latest/api.html#optax.cosine_decay_schedule

Published as a conference paper at ICLR 2023

C.2 CONVERGENCE OF L-BFGS AND ADAM FOR SOLVING THE CONJUGATE

Figure 9 shows that with a non-convex potential, many of the initial amortized predictions are sub-
optimal and difficult for the L-BFGS to improve upon. This indicates that the amortized predictions
may be in parts of the space that are difficult to recover from and suggests a future avenue of work
better characterizing and recovering from this behavior. L-BFGS converges fast to an optimal solu-
tion in fig. 10 while Adam often gets stuck at suboptimal solutions.

0 10 20 30 40 50

Solver Iteration

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

J
(x

;y
)

D = 64

0 10 20 30 40 50

Solver Iteration

D = 128

0 10 20 30 40 50

Solver Iteration

D = 256

L-BFGS Amortization + L-BFGS Adam

Figure 9: Conjugate solver convergence on the HD benchmarks with a NN potential.

0 2 4 6 8 10

Solver Iteration

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

J
(x

;y
)

Early

0 2 4 6 8 10

Solver Iteration

Mid

0 2 4 6 8 10

Solver Iteration

Late

L-BFGS Amortization + L-BFGS Adam

Figure 10: Conjugate solver convergence on the CelebA64 benchmark

C.3 ADDITIONAL RUNTIMES AND CONJUGATION INFORMATION

Tables 6 and 7 contain additional experimental information with the:

1. wall-clock time for the entire training run measured on an NVIDIA Tesla V100 GPU,

2. number of conjugation iterations from algorithm 2 for the conjugate solver to converge
at the end of training after warm-starting it from the conjugate amortization model’s pre-
diction, and

3. runtime for the conjugate solver to converge on a batch of instances, set to the batch size
used during training, i.e. 1024 for the HD benchmark and 64 for the CelebA64 benchmark.

These results give an idea of how much additional time is spent fine-tuning. On the HD benchmark,
fine-tuning takes between ≈10–50ms per batch. The overall wall clock time may take ≈2–3 times
longer than the training runs without fine-tuning, but are able to find significantly better solutions.
On the CelebA64 benchmarks, the conjugation time impacts the overall runtime even less because,
especially in the “Mid” and “Late” settings as the transport maps here are close to being the identity
mapping and are easy to conjugate.

Remark 23 Some settings immediately diverged to an irrecoverable state providing a L2-UVP of
109, including runs using the objective-based and cycle amortization losses without fine-tuning. I
early-stopped those experiments and do not report the runtimes or conjugation times here, as the
few minutes that the objective-based amortization experiments took to diverge is not very interesting
or comparable to the times of the experiments that converged.

23

Published as a conference paper at ICLR 2023

Table 6: Additional runtime and conjugation information for the HD benchmark. These report the
median time from the converged runs.

Runtime (hours) Final conjugation iter Conj runtime (seconds)
Amortization loss Conjugate solver n = 64 n = 128 n = 256 n = 64 n = 128 n = 256 n = 64 n = 128 n = 256

ICNN Cycle None 1.10 1.24 1.58

ICNN Cycle L-BFGS 4.39 7.76 21.14 14.32 19.38 70.23 0.05 0.10 0.29
ICNN Objective L-BFGS 2.69 4.70 13.86 5.43 6.96 8.13 0.02 0.05 0.13
ICNN Regression L-BFGS 2.74 4.30 12.53 5.64 6.34 8.73 0.02 0.04 0.11

ICNN Cycle Adam 2.09 2.80 0.86 37.23 51.34 97.21 0.02 0.03 0.06
ICNN Objective Adam 2.23 2.99 4.94 29.44 38.81 55.05 0.02 0.03 0.05
ICNN Regression Adam 2.09 2.86 4.81 29.51 38.20 54.21 0.02 0.03 0.06

NN Objective L-BFGS 2.31 3.34 6.05 5.05 6.50 5.77 0.02 0.03 0.05
NN Regression L-BFGS 2.28 3.21 5.76 5.21 4.72 5.01 0.02 0.02 0.05

NN Objective Adam 1.61 2.18 3.70 27.84 36.81 45.82 0.01 0.02 0.04
NN Regression Adam 1.77 2.51 3.79 28.28 31.46 40.31 0.01 0.02 0.04

Table 7: Additional runtime and conjugation information for the CelebA64 benchmark

Runtime (hours) Final conj iter Conj runtime (seconds)
Amortization loss Conjugate solver Model Direction Early Mid Late Early Mid Late Early Mid Late

Objective None Conv Forward 3.28 3.41 3.28
Cycle None Conv Forward 0.94 4.17 4.17

Cycle Adam Conv Forward 5.44 4.78 3.57 18.23 2.02 2.80 0.15 0.11 0.04
Cycle L-BFGS Conv Forward 6.38 3.79 3.74 5.18 2.00 2.00 0.22 0.04 0.04

Objective Adam Conv Forward 5.40 4.85 3.47 19.87 1.83 1.79 0.17 0.13 0.03
Objective L-BFGS Conv Forward 6.09 3.86 3.70 4.48 2.01 2.00 0.21 0.06 0.04

Regression Adam Conv Forward 5.44 4.86 3.51 22.12 2.84 1.01 0.19 0.14 0.02
Regression L-BFGS Conv Forward 5.96 3.77 3.66 4.55 2.01 2.02 0.22 0.04 0.04

D ADDITIONAL 2D DEMONSTRATION EXPERIMENT DETAILS

Table 8 details the main hyper-parameters for the synthetic benchmark experiments, and fig. 11
shows additional conjugation landscapes.

Remark 24 I found leaky ReLU activations on the potential model to work better in these low-
dimensional settings than ELU activations, which work better in the HD benchmark settings. I do not
have a strong explanation for this but found the LReLU capable of performing sharper transitions
in the space, e.g. the sharp boundaries shown in fig. 4. One reason that the ELU potentials could
perform better on the benchmark settings is that the ground-truth transport maps in the benchmark,
described in Korotin et al. (2021a, Appendix B.1), use an ICNN with CELU activations (Barron,
2017) which may be easier to recover with potential models that use ELU activations.

I trained convex and non-convex potentials on every synthetic setting and show the results from the
best-performing potential model, which are:

• Makkuva et al. (2020): an ICNN. This setting originally considered convex potentials, and
the non-convex potentials I tried training on these settings diverged,

• Rout et al. (2021): a non-convex potential (an MLP). This setting also originally considered
an MLP and I couldn’t find an ICNN that accurately transports between the highly curved
and concentrated parts of the measures.

• Huang et al. (2020): a non-convex potential (an MLP). In contrast to the ICNNs origi-
nally used, I found that an MLP works better when learned with the OT dual. Almost
every setting in Huang et al. (2020) requires composing multiple blocks of ICNNs, which
means the flow will not necessary be the optimal transport flow, while the non-convex MLP
potential I am using here estimates the optimal transport map between the measures.

All of the synthetic settings use the L-BFGS conjugate solver set to obtain slightly higher precision
solves than in the Wasserstein-2 benchmark. The conjugate solver stops early if all dimensions of
the iterates change by less than 0.001, and otherwise run for a maximum of 100 iterations. The line
search parameters for the parallel Armijo search in algorithm 5 for L-BFGS are to decay the steps
with a base of τ = 1.5 and to search M = 30 step sizes.

24

Published as a conference paper at ICLR 2023

y x̆(y)

Figure 11: Sample conjugation landscapes J(x; y) of the bottom setting of fig. 4. The inverse trans-
port map ∇yf?(y) = x̆(y) is obtained by minimizing J , which is a convex optimization problem.
The contour shows J(x; y) filtered to not display a color for values above J(y; y).

Table 8: Hyper-parameters for the synthetic experiments

Name Value

potential model fθ ICNN or PotentialNN
fθ hidden layer sizes [128, 128]

conjugate amortization model x̃ϕ InitNN(dim_hidden=[512, 512])
activation functions Leaky ReLU with slope 0.2
training iterations 50000

optimizer Adam with cosine annealing (α=1e-4)
initial learning rate 5e-4

Adam β [0.5, 0.5]
batch size 10000

D.1 NON-CONVEX REGIONS IN THE LEARNED POTENTIALS

Brenier’s theorem (Brenier, 1991) shows that the known Wasserstein-2 optimal transport map asso-
ciated with the negative inner product cost is the gradient of a convex function, i.e. T̆ (x) = ∇x “f(x).
Because of this, optimizing over convex potentials is theoretically nice and also results in a convex
and easy conjugate optimization problem in eq. (3) to compute f?. The input-convex property is
usually enforced by constraining all of the weights of the network to be positive in every layer ex-
cept the first. Unfortunately, in practice, the positivity constraints of a convex potential may be
prohibitive and not easy to optimize over and result in sub-optimal transport maps. In other words,
the parameter optimization problem over the input-convex model is still non-convex and may be
exasperated by the input-convex constraints. Due to these limitations, non-convex potentials are ap-
pealing as their parameter space is less constrained and may therefore be easier to search over. And
in practice, this has been shown to be true, e.g. the main results in table 1 show that a non-convex
potential significantly outperforms the convex potential. However, non-convex potentials can re-
sult in non-convex conjugate optimization problems in eq. (3) that can cause significant numerical
instabilities and an exploding upper-bound on the dual objective.

Figure 12 illustrates a small non-convex region arising in a learned non-convex potential. While the
non-convex region mostly does not impact the transport map in this case, they can easily blow up
and make the dual optimization problem challenging. In contrast, the ICNN-based convex potential
provably retains convexity and keeps this region nicely flat, but the constraints on the parameter
space may hinder the performance.

25

https://optax.readthedocs.io/en/latest/api.html#optax.cosine_decay_schedule

Published as a conference paper at ICLR 2023

Interpolation from a non-convex potential (an MLP)

β (∇f?)#β← ((1− t)I + t∇f?)#β →

Interpolation from a convex potential (an ICNN)

β (∇f?)#β← ((1− t)I + t∇f?)#β →

Non-convex potential contours Convex potential contours

Figure 12: Convex and non-convex potentials trained on the same transport task.

D.2 INTERPOLATIONS ON SYNTHETIC SETTINGS FROM ROUT ET AL. (2021)

26

	1 Introduction
	2 Learning dual potentials: a conjugation perspective
	3 Amortizing convex conjugates: modeling and losses
	3.1 Parameterizing a conjugate amortization model
	3.2 Conjugate amortization loss choices
	3.2.1 Objective-based amortization
	3.2.2 First-order optimality amortization: cycle consistency and W2GN
	3.2.3 Regression-based amortization

	4 Numerical solvers for exact conjugates and fine tuning
	5 Experimental results on the Wasserstein-2 benchmark
	6 Demonstrations on synthetic data
	7 Related work
	8 Conclusions, future directions, and limitations
	A L-BFGS overview and line search details
	A.1 Background on BFGS methods
	A.2 Line searches
	A.2.1 The Armijo line search
	A.2.2 Comparing line search methods

	B Model definitions and pretraining
	B.1 Pretraining and initialization
	B.2 InitNN: Non-convex neural network amortization model
	B.3 ICNN: Input-convex neural network potential f
	B.4 PotentialNN: Non-convex neural network (MLP) potential f
	B.5 ConvPotential: Non-convex convolutional potential f

	C Additional Wasserstein-2 benchmark experiment details
	C.1 Hyper-parameters
	C.2 Convergence of L-BFGS and Adam for solving the conjugate
	C.3 Additional runtimes and conjugation information

	D Additional 2d demonstration experiment details
	D.1 Non-convex regions in the learned potentials
	D.2 Interpolations on synthetic settings from rout2021generative

