Nuclear Science and Techniques (2023) 34:117
https://doi.org/10.1007/541365-023-01276-2

=

Check for
updates

Twin model-based fault detection and tolerance approach for in-core
self-powered neutron detectors

Jing Chen'® . Yan-Zhen Lu' - Hao Jiang' - Wei-Qing Lin' - Yong Xu®3

Received: 30 January 2023 / Revised: 26 April 2023 / Accepted: 2 May 2023
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese
Academy of Sciences, Chinese Nuclear Society 2023

Abstract

The in-core self-powered neutron detector (SPND) acts as a key measuring device for the monitoring of parameters and
evaluation of the operating conditions of nuclear reactors. Prompt detection and tolerance of faulty SPNDs are indispensable
for reliable reactor management. To completely extract the correlated state information of SPNDs, we constructed a twin
model based on a generalized regression neural network (GRNN) that represents the common relationships among overall
signals. Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-
tems, which calculated the error probability distribution between the model outputs and real values. Fault detection follows
a tolerance phase to reinforce the stability of the twin model in the case of massive failures. A weighted K-nearest neighbor
model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity. The experimental
evaluation of the proposed method showed promising results, with excellent output consistency and high detection accuracy
for both single- and multiple-point faulty SPNDs. For unexpected excessive failures, the proposed tolerance approach can
efficiently repair fault behaviors and enhance the prediction performance of the twin model.

Keywords Self-powered neutron detector - Twin model - Fault detection - Fault tolerance - Generalized regression neural
network - Nuclear power plant

1 Introduction

Neutron flux is an important variable in nuclear reactors.
Monitoring the variation and distribution of the neutron
flux is essential to maintain the power stability of nuclear
reactors [1]. At present, self-powered neutron detectors
(SPNDs) are widely employed in-core neutron flux measure-
ment systems (CNFMS) of nuclear power plants (NPPs) to
accurately measure neutron flux and provide highly reliable
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three-dimensional (3D) power distribution information.
However, the risk of failure has increased with the increas-
ing scale and complexity of the control of modern nuclear
reactors [2].

Faulty SPNDs that either completely or partially fail
provide incorrect monitoring information, which may nega-
tively affect both the simple and more advanced functionali-
ties of the system, resulting in degradation of the overall sys-
tem performance and an increased risk level [3]. Techniques
to address these problems can be classified as hardware
redundancy methods, model-based methods, and data-driven
methods [4, 5]. Generally, hardware redundancy measures
in which more than three SPNDs are installed to observe
the neutron flux within a range of space are employed for
NPPs to improve the reliability of CNFMS. Assuming that
any one SPND in a neutron measurement channel fails, the
additional SPNDs still function and maintain high-accuracy
measurements. Although this measure can prevent occa-
sional intermittent failures from negatively affecting the
system, the inability to implement fault tolerance can lead
to false perceptions of the performance of the CNFMS when
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redundant SPND:s fail simultaneously. Moreover, redundant
SPNDs continue to incur high installation and maintenance
costs, which adversely affect the economics of NPPs [6].
Popular model-based methods (such as Kalman filtering
[7], mixed Kullback-Leibler divergence and exponential
weighted moving average [8], high-gain observer [9], the
Monte Carlo method [10], and extended state observer
[11]) handle fault detection using simple mathematical
models that formulate fault signatures. The results of these
methods for specific nonlinear systems have been devel-
oped under various restrictive assumptions. Recently, data-
driven methods [12—-14] have been used to perform fault
detection for kernel equipment in NPPs; the main princi-
ple is to establish an object model based on data analyses
and realize accurate detection using model outputs with
constraints of the evaluation criteria [15]. Peng et al. [3]
constructed mathematical models for various detectors
using principal component analysis (PCA) and achieved
fault detection and isolation for SPNDs through the square
prediction error of linear models and the detector valid-
ity index based on the reconstruction. Yellapu et al. [16]
developed a method based on multiscale PCA with wave-
let transform to reduce the modeling cost and improve
the sensor fault diagnosis results by calculating the wave-
let approximation coefficient. An online multiscale data
reconciliation scheme for detecting and isolating sensor
faults in advanced heavy-water reactors was proposed in
[17]; the scheme achieved high accuracy under different
scenarios. Li et al. [18] employed two different fault iden-
tification methods to locate faults more accurately. One
was an improved weighted contribution analysis method
based on the traditional contribution analysis of sensors
to Q statistics. The second method was based on the sen-
sor validity index obtained using the iterative reconstruc-
tion method. However, static linear models are typically
unable to detect long-term SPND faults. To improve the
detection efficiency of practical time-varying faults, Chat-
terjee et al. [19] proposed the use of instantaneous cluster
statistics to normalize the measurements of each SPND
in clusters and update the PCA model using normalized
values. This approach resulted in lower false alarm rates
and higher detection rates for real-time fault changes than
traditional static models. Experimental results show that
these approaches are useful in identifying faulty instru-
ments. Yu et al. [20] proposed improvements to the tradi-
tional PCA model through a new corrected reconstruction
algorithm to reconstruct the principal component and the
residual space. A cyclic PCA monitoring model was estab-
lished to accurately detect different types of faults and
reconstruct fault data. Nageswara et al. [21] performed
information fusion by combining the ensemble of trees and
the support vector machine (SVM) algorithm to evaluate
the calculation error of multiple sensors and the influence

@ Springer

of complementary and redundant sensors. Most studies
have failed to focus on the inherent correlation among all
SPND signals in the overall detector assemblies. For the
dozens of SPNDs existing in neutron flux measurement
channels, challenges in information integration and cor-
relation analysis remain because of difficulties in handling
large amounts of data simultaneously.

As a new enabling technology, digital twin (DT) can act
as a mirror of the real world by providing an integrated envi-
ronment for simulating, decision-making, and optimizing
physical system operations [22, 23]. Because of the pow-
erful computing capabilities and cognitive intelligence of
DT, developing more refined and scalable models for fault
detection has become possible. Lin et al. [24] developed a
nearly autonomous management and control (NAMAC) sys-
tem for advanced nuclear reactors with DT technology. Cai
et al. [25] proposed analytical techniques based on data and
information fusion for modeling and developing DT virtual
machine tools. DT applications in the context of NPPs have
proliferated recently [26-28]. The development of DT com-
bined with advanced technologies for detection, control, and
optimization can significantly improve system performance,
reliability, availability, maintainability, and operational flex-
ibility. Therefore, efficient in-core SPND fault detection and
the maintenance of monitoring systems using twin technolo-
gies are our major objectives. To continue such interesting
exploration of research on SPND signals, a twin model using
DT technology was constructed for the parameter analysis
of an in-core nuclear reactor with large monitoring data and
complex and changeable operating conditions. In this case,
the established twin model can extract rich values from iso-
lated time-varying data without disturbing the equipment on
the real physical layer and can simulate the real-time state
and dynamic characteristics of SPND entities through inter-
active data, overcoming the problem that traditional mathe-
matical models [29] cannot effectively deduce the fault state
of multidimensional signals in real time. In addition, several
researchers have devoted their attention to state analysis and
to the design of DT models of key nuclear reactor compo-
nents. Hu et al. [30] comprehensively described the research
status and development directions of DT technology in the
field of advanced nuclear energy, proposed a multidimen-
sional evaluation digital model suitable for application in
nuclear reactors, and preliminarily established the fault diag-
nosis process. Wang et al. [31] proposed a DT system of
the out-of-core detector assisted with an installation robot
to perform real-time visualization monitoring of the detec-
tor installation and replacement process. Gong et al. [32]
combined reduced-order models with machine learning to
create physics-based DTs using parameters input in real time
to rapidly reconstruct the neutron field in the core. Cancemi
et al. [33] generated primary nuclear components through
numerical simulation of different plant conditions, which
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may support the predictive maintenance optimization based
on plant condition and the development of a DT model for
improving plant safety and availability.

Because the implementation of the twin model signifi-
cantly depends on the information transferred from valid
data [34], the frequent and unexpected fault behaviors of
SPNDs only provide unrepresentative data, leading to seri-
ous distortions in the outcomes and even the unprecedented
collapse of the twin model. The decision made after calcula-
tions based on a large amount of incorrect information fails
to realize the entire purpose of maintaining normal system
function. Most recent research methods have focused on
fault detection, and only a limited amount of research has
been conducted to simultaneously achieve fault tolerance
in critical detectors at NPPs. This is one of the principal
motivations for this work. Designing a reasonable fault-
tolerance strategy that would work uninterruptedly with
sufficient information-processing capabilities is practically
challenging. Li et al. [35] suggested an active fault-tolerance
control method based on the improved BP neural network,
which controls fault sensors by reconstruction. Kim et al.
[36] developed a method of evaluating the fault detection
coverage of a fault-tolerant technique using a fault injection
experiment in a safety-critical digital I &C system for NPPs.
They also proposed a probabilistic safety assessment model
to observe the effect of the fault detection coverage of fault-
tolerant techniques. To enhance the stability of a modular
high-temperature gas-cooled reactor system and the control
rod drive mechanism, Hui et al. [37] proposed an adaptive
fault-tolerant control scheme based on a radial basis function
neural network, which has a higher load tracking accuracy
and better fault tolerance to systems. Li et al. [38] proposed
an active fault-tolerant control scheme based on the deep
Q-network algorithm of reinforcement learning to maintain
the stability of the once-through steam generator control
system. Rangegowda et al. [39] introduced a fault-tolerance
control framework to arrest the performance degradation
of conventional controllers in the presence of sensor bias.
Clearly, appropriate fault-tolerance operations are required
to handle the incorrect information provided by failed equip-
ment, which can ensure data purity and no interference for
the normal performance of the twin model. Therefore, intro-
ducing an appropriate fault-tolerance strategy to SPND fault
detection is advantageous to maintain a healthy interaction
of data information and pave the way for reliable outputs of
the twin model in the long term.

In this study, we propose an effective fault detection
and tolerance approach for in-core SPNDs based on a twin
model. The SPNDs are uniformly distributed in the reactor
core; a generalized regression neural network (GRNN) [40]
is employed to construct the twin model, which is consist-
ent with the real system and represents the common rela-
tionship between the overall signals. In this manner, the

state correlation between the SPND signals is completely
considered, and the output characteristics of specific SPND
individuals can be described using the joint feature infor-
mation of the surrounding SPNDs. Then, state analysis and
fault detection of the SPNDs were realized by analyzing the
probability distribution of errors between the outputs of the
twin model and the real value. To achieve fault tolerance
for unexpected faulty SPNDs, we used a weighted k-nearest
neighbor (WKNN) [41] to recover and reconstruct faulty
signals. Through troubleshooting, data substitution, and data
verification of faulty SPNDs, the accuracy and rationality
of the detection results can be significantly improved. Com-
pared with the traditional single-signal analysis model, the
proposed approach can detect multi-point faults more simply
and efficiently.

The remainder of this paper is organized as follows:
Sect. 2 provides a brief description of the measurement
channel distribution of the neutron flux and the composition
of the SPND. Section 3 describes the construction scheme of
the twin model and the specific framework for fault detection
and tolerance. The experimental results and discussion are
presented in Sect. 4. Finally, the conclusions of the proposed
framework are provided in Sect. 5.

2 Brief description of SPND

An in-core neutron instrument is one of the most important
types of nuclear power equipment. SPNDs provide a cru-
cial basis for neutron flux measurement for safe operation,
treatment of abnormal working conditions, and post-accident
monitoring of NPPs. In this study, an integrated core instru-
ment casing assembly was used in a pressurized water reac-
tor for third-generation NPPs. As shown in Fig. 1, the core
contains 44 radially distributed measurement channels. In
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Fig. 1 Distribution of the neutron flux measurement channels
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each channel, a core detector assembly that is installed in the
instrument tube of the fuel assembly contains seven axially
distributed SPNDs in equidistant layers.

SPNDs have been developed to meet the requirements
of small size, long life, and high tolerance to harsh envi-
ronments. The composition of SPNDs is shown in Fig. 2,
which mainly consists of an emitter, an insulator, and a col-
lector. The communication line is constructed using a two-
core cable in the form of armor and measures the currents
generated by the emitter and noise currents caused by the
background core. The currents are then transmitted to the
processing cabinets through the connector and transmission
cable. Because the noise currents are very small, they can
be ignored. Generally, rhodium SPNDs are used in pres-
surized water reactor NPPs. The main generation process
of SPND currents is determined by the radiation capture
reaction, which proceeds in the emitter material ;,sRh'*® with
the generation and subsequent disintegration of the induced
beta-active isotope ,sRh'*. Then, the beta particles induced
by disintegration escape from the emitter with a certain
probability and are collected by the collector, leading to the
emitter becoming positively charged. Thus, the currents are
proportional to the neutron flux absorbed at the location of
the SPND emitter in the reactor.

3 Methodology

The purpose of this study is to use the twin model to enhance
SPND detection performance. The main goal of the DT
model is to create a mirror image of the physical entities in
the digital realm by observing the data features and intrinsic
correlation information among real SPND signals. In this
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Fig.2 Composition of SPND
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study, we conducted a further state analysis of the current
signals generated by radially distributed SPNDs on the plane
of the reactor core of a specific NPP. As shown in Fig. 3, n
SPNDs are uniformly arranged on the cross section of the
in-core vessel. Each SPND is responsible for the neutron
radiation capture reaction in the relevant space range, which
results in n groups of recorded current signals. Each data-
twinning procedure for an SPND requires signal analysis
of a particular SPND by observing the signal values of the
other n-1 SPNDs. Therefore, the remaining n-1 SPND sig-
nals are used as model input characteristic variables, includ-
ing a particular SPND label variable, prior to model training.
We can obtain n sets of data patterns with related feature
and label variables for each SPND. Subsequently, a GRNN
is employed to train and learn the input variables in the data
patterns, and the internal correlation among the SPNDs can
be explained through the adaptivity of the neural network.
We can obtain 7 sets of submodels, where the features of
the label SPND variable are related to the features of the
neighboring SPNDs. By integrating n submodels, we obtain
an organic whole, which is an SPND twin model. Using the
twin model, the errors between the model outputs and actual
signals are calculated to achieve SPND fault detection. The
model identifies outliers in the error sequence in combina-
tion with the generalized extreme studentized deviate (ESD)
statistical test [42], which provides rapid SPND fault detec-
tion results. A fault-tolerance strategy should be introduced,
the foundation of which is data recovery for fault variables in
response to excessive fault variables that result in the failure
of fault detection. Fault signals are replaced with normal
values through constant troubleshooting, data substitution,
and data validation, and the performance of the twin model
is recovered. When all faulty SPNDs are successfully identi-
fied, the detection results can assist in diagnostic decisions
that can be made to maintain real detector assemblies.

3.1 Generalized regression neural network

To deal with sample data comprising complicated multidi-
mensional variables, prior research concentrated on PCA,
clustering, and Kalman filter methods to perform signal
analysis of the SPND unit. These techniques can be used
to rapidly establish models for axial SPNDs in the same
detector assembly. In this study, we aimed to analyze the
spatial correlation between the radially distributed SPND
variables simultaneously in the plane of the reactor core.
The aforementioned technique is not appropriate for large-
scale and nonlinear data feature mining; however, the latest
neural network algorithms that an distribute information
among neurons have significant robustness and can quickly
analyze complex nonlinear relationships. As a typical radial
basis neural network model based on nonlinear regression
theory, GRNN can process high-dimensional data and mine
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Fig.3 (Color online) The framework of the proposed SPND fault detection and tolerance method

the mutual effects among multiple SPND current features
because of its capabilities of nonlinear mapping and high
learning speed. Unlike other types of artificial neural net-
works, GRNN has straightforward structures and training
processes. Therefore, we used GRNN as the constituent
architecture of the SPND twin model. As shown in Fig. 4,
the GRNN is composed of the input, pattern, summa-
tion, and output layers. The input and output vectors of
the corresponding network are X = [x,,x,,...,x,_,]T and
Y = [y, Y5, ---» ¥ T, n — 1and k are the dimensions of X and
Y, respectively. The number of neurons in the input layer is
equal to the dimensions of the input vector, and each neuron
is a simple distribution unit that directly transmits the input
to the pattern layer. The pattern layer is a radial base layer,

whose number of neurons is equal to the number of learning
samples, n — 1. The neuron transfer function P; is typically a
Gaussian function and can be written as follows:

P; = exp[—(X — X,)'(X — X,)/267],

1
i=12,.. %

,n—1
where X; is the training sample corresponding to the i-th
neuron, 7T is the transpose of the matrix, and o is a smoothing
factor. The smaller o is, the stronger is the approximation
ability of P, for the samples.

There are two types of neuronal calculation formulas in
the summation layer. One is to sum the outputs of all the
neurons in the pattern layer. The connection weight between
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each neuron and the pattern layer is set to one. The transfer
function can be expressed as follows:

Sk =, Pi @

The other type of calculation formula is to sum the outputs
of all neurons in the pattern layer by weight. The transfer
function can be described as

m
SMj:ZWijPl.’j=1’2"“’k (3)
t=1

where w;; represents the weight of the i-th neuron in the
pattern layer connected to the j-th neuron element in the
summation layer, and Sy,; represents the summation value
of the j-th neuron in the summation layer.

The output layer is calculated by dividing the values
obtained using the two formulas in the summation layer
based on the following equation:

_ 5wy
V= S 4

where y; is the output of the j-th output-layer neuron.

GRNN can be applied to construct different SPND regres-
sion submodels that are integrated to form a twin model that
outputs twin data.

3.2 Construction of the twin model

The state analysis of SPND signals with the application
of DT can provide a more efficient and intelligent service
for monitoring the neutron flux distribution and its rate.
The premise of constructing a twin model is to extract
sufficient and effective feature information from physical
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entities. The reactor core contains n sets of symmetrically
distributed neutron flux measurement detector assemblies.
Although SPNDs operate independently of each other, the
multidimensional currents they produce reveal a strong
cooperative link in a shared environment. The features of
the nearby signals reflect the characteristics of a specific
SPND signal. The relationship between SPND signals can
be explained by the following equations:

S={s1.5,....,5,}
D={d,,d,,...,d,} , (®)]
U = {Uy(9). Uy(S). ... Uy())

where S is the set of all SPND individuals at the same height
in the reactor core, D is the set of sample values for each
variable in S, and U is the set used to denote the correlations
between the variables. U;(S) describes how the signal char-
acteristics of any variable in S are collectively represented
by the remanent surrounding variables. As seen in Fig. 5,
the reference network U,(S) is expressed as the connectivity
between the label variable and other variables. The data of
the label variable can be twinned by analyzing the network
of relationships among the variables. By studying the char-
acteristics of the associated {s;, s,, ...,s,_; }, the inherent
information of the label variables can be obtained. Thus,
each variable in S can also be collectively described by the
others. The twin model is built based on relationship net-
works, and GRNN is used to construct specific submodels
to form a twin body. By dividing the set D, the n — 1-dimen-
sional variables are the features /; and the remaining single
variable is the training label 7;. After an alternate division
of n groups, the data patterns between I; and T; are expressed
as follows.
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The division result contains n rows of data patterns, and
each dimensional variable of SPND signals in set D is des-
ignated as a label for its corresponding data pattern. For
instance, SPND s, is identified as the label of the first data
pattern. Similarly, SPND s, is considered as the label of the
(n+1-i)-th data pattern. To thoroughly explore the correla-
tion between any target variable and the remaining variables
in each pattern, GRNN was utilized to train the submodels
to learn the state relationships between SPND features and
labels. Subsequently, n groups of submodels were built after
repeated training. An integrated organism M is combined
as follows:

M= {M.M,,....M,} )

where M, represents the trained GRNN submodels for differ-
ent data patterns. After learning the algorithm, each GRNN
submodel outputs the predicted value of the target SPND
when its inputs are (n — 1)-dimensional feature vectors. All
submodels are combined into M, which produces n groups
of estimated data and explains the commonality of signal
changes in all SPND components. The real SPND signals
can be twinned using these virtual values. The residual
between the output results of the twin model and the real
values can be calculated in the given operating scenario to
determine the faulty SPNDs, and the following status assess-
ment and potential fault tolerance can then be performed.

3.3 Fault detection and tolerance

Measuring the residual between the outputs of the twin
model and the actual values allows us to ascertain whether
faults exist in the detector assemblies. Statistical tests can
generally be used to determine the deviation points in a
residual sequence. Traditional statistical techniques are
sensitive to the presence of outliers because inaccurate data
points can distort the mean and standard deviation of a data
sequence. In this section, ESD was employed to detect pos-
sible outliers in the residual sequence and discriminate the
fault from the original signals. ESD can maintain a good
elimination effect when several anomalies exist concurrently
in the data. We assumed that outliers exist in the residual
sequence. The maximum number of outliers was predeter-
mined as r, and r rounds of separate tests were performed
by calculating the variable of the statistical test, the formula
of which is as follows:

R; = max ———, 1))
Z
where E; is an observed point, and E and z denote the sam-
ple mean and standard deviation, respectively. The observed
point that maximizes |E; — E| and deviates the most from the
mean should be located and eliminated during the calcula-
tion. The aforementioned statistic is then recalculated using
the remaining n-1 observed points. The process is repeated
until 7 observed points have been removed, resulting in the
obtained r test statistics R, R,, ... , R,. Corresponding to
the r test statistics, r critical values are calculated as follows:

1= (l’l - i)tp,n—i—l
i = ’ 9
\/(n—i+1+t§n_i)(n—i+l) ©)
where 7, , represents the 100p percentage points from the

(]

a denotes the test confidence level. The number of outliers
is determined by finding the largest i such that R; > A,, and
thus, the initial hypothesis can be true.

As mentioned above, the simultaneous failures of exces-
sive SPNDs in detector assemblies can lead to anomalously
measured data, which cannot accurately represent the actual
operational status of the system. A judgment based on fault
signals will cause the system to fail to reach its normal oper-
ating condition and even cause personnel to misoperate. The
capacity of the twin model to perform an effective analysis
suffers because of the disordered input, and the reliability
and validity of the detection results cannot be demonstrated
by the residual information calculated from a broken model.
For the CNFMS to be dependable and secure, the fault detec-
tion function must be rehabilitated. In this case, we introduce
an efficient fault-tolerant strategy, which is implemented
before multi-fault detection. The most important factor to
consider when designing a fault-tolerance solution is that
the information that should be available to the entire system
after an unexpected failure must be identical to the infor-
mation that would have been obtained if the SPNDs were
not faulty. The main objective was to achieve data recov-
ery, including troubleshooting, data substitution, and data
verification.

In the presence of multiple unknown fault sources, fault
troubleshooting must be performed using multidimensional
data. A possible selection approach involves selecting the
vector with the largest calculated residual and performing
data recovery first. When executing data substitution, the
values of the faulty variables should be replaced with normal
signals. To improve the accuracy of the replaced data, the
KNN classifier was first used to select K instance points from
the historical database in the nearest neighbor of the feature
variable of the fault points to form a new signal sample. The

distribution with v degrees of freedom and p = 1 —
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Fig.6 (Color online) SPND signals during shutdown

operating condition of K nearest neighbor points was the
closest to that of the fault signals, and their variable char-
acteristics were in a division range similar to the original
signal characteristics. The weighted average operation was
utilized for the values of these K points, which produced the
corrected signal values. Finally, the fault signal values were
entirely replaced by the revised values.

After data substitution, the Jensen—Shannon (JS) diver-
gence [43] was employed to confirm the modified data and
guarantee the consistency of the replacement. It can describe
the differences between the probability distributions of vari-
ables, which perform well in the similarity measurement.
For the two probability distributions, the interval value of
the JS divergence is [0, 1]. The two distributions are more
similar and vice versa as the value decreases. The degree of
JS divergence can be used to fully evaluate the suitability of
the modified data. Repeating the preceding steps for a multi-
fault sample can reduce the number of faulty SPNDs after
recovery until the detection results are satisfactory. When
the satisfied sample is input into the twin model, the output
is stable and controlled within a small error. In this case,
the previous fault detection approach is adequate and fault
tolerance is no longer required.

4 Results and Discussion

In this section, the proposed method was evaluated using
historical monitoring data collected from in-core detector
assemblies in a third-generation pressurized water reactor.
To build a reliable SPND twin model, a sufficient number
of measurement datasets must be known in advance. The
variables of the 44-dimensional SPND signals, which were
distributed radially in a certain layer, were considered as
experimental objects in this study. To improve the generali-
zation of the twin model, training data for the twin model
were derived from the reactor shutdown stage. As shown in
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Fig. 6, with the insertion of control rods, the power of the
reactor core gradually decreased from 100% FP to 0% FP,
and all the currents of SPNDs decreased. The data for the
test set were derived from SPNDs during steady operation.

4.1 Performance of the twin model

With the continuous reduction in neutron flux during shut-
down, the number of neutrons captured by the emitter
decreased, resulting in a proportional decrease in the cur-
rents generated by the 44 SPNDs. To extract valuable infor-
mation from physical SPNDs under different power levels
and build a twin model based on it, submodels for 44-dimen-
sional signal variables were executed. First, the training set
was segmented round after round, and 44 groups of data
patterns with several feature variables /; and label variable
T, were obtained as follows:

[d dy dy -+ dyy dy|dyy ]
dy dy dy -+ dyy dyy|dys
dy dy dy - dys dy|d
@GTy=5 LY (10)
dy dy dy - dy dy|d,
| dy dy dy - dyy dyy|d; |

Each data pattern in (;|7;) was input into GRNN for the
model to learn the correlation between signal variables,
and the 44 submodels were well-trained. The superiority
of GRNN over the other models is ascribed to the conveni-
ence of its parameter setting. The performance of GRNN
can only be changed by setting the smoothness factor ¢ in
the kernel function. To improve the accuracy of the model,
the root mean square error (RMSE) was employed as the
loss function to optimize the value of o for the submodels.
Twenty percent of the training set was selected as the veri-
fication set, and a cross-verification approach was used to
obtain accurate parameter optimization results. As shown
in Table 1, each submodel obtained the minimum RMSE
with the corresponding setting of the optimal . The opti-
mized parameters helped improve the performance of the
twin model in the verification set.

To demonstrate the superiority of GRNN in modeling more
clearly, we compared the proposed method with several typical
approaches, including convolutional neural networks (CNN),
multilayer perceptron (MLP), extreme gradient boosting
(XGB), decision tree (DT), SVM, and Bayesian ridge (BR).
All methods were implemented using the same data samples
from the test set to compare the output accuracies. As shown in
Fig. 7, the twin model formed by GRNN had the lowest RMSE
between the model outputs and actual signal values. DT and
XGBoost-based models, as common tree regression algo-
rithms, had slightly larger errors than the GRNN-based model,
which can easily overfit SPND signals and reduce precision.
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Table 1 Parameter optimization results of the 44 submodels

Submodel o value RMSE (uA) Submodel o value RMSE (pA) Submodel o value RMSE (uA) Submodel o value RMSE (pA)

M, 0.3 0.0100 M, 0.13 0.0024 My, 0.32 0.0110 M, 0.05 0.0023
M, 0.09 0.0020 M, 0.07 0.0022 M,, 0.49 0.0244 M 0.02 0.0023
M, 0.23 0.0069 M, 0.14 0.0029 M, 0.14 0.0029 M 0.17 0.0043
M, 0.22 0.0065 Ms 0.33 0.0115 M, 0.44 0.0193 My, 0.07 0.0022
M 0.34 0.0121 M 0.02 0.0023 M, 0.36 0.0133 Mg 0.13 0.0024
M 0.16 0.0038 M, 0.42 0.0176 Mg 0.35 0.0127 M, 0.05 0.0023
M, 0.06 0.0023 Mg 0.48 0.0233 My, 0.48 0.0233 My, 0.03 0.0100
Mg 0.12 0.0021 M, 0.05 0.0023 M, 0.25 0.0078 My, 0.32 0.0110
M, 0.02 0.0023 M, 0.21 0.0061 M, 0.2 0.0057 My, 0.22 0.0065
My, 0.44 0.0193 M,, 0.38 0.0146 M, 0.22 0.0065 My, 0.11 0.0019
M, 0.45 0.0202 M,, 0.06 0.0023 My, 0.31 0.0105 My, 0.14 0.0029
Fig.7 (Color online) Prediction
errors of different algorithm- 6,08
based models

< on

2

E 0.06

Algorithms

The learning abilities of the CNN and MLP models for SPND
signal features were poorer than that of the GRNN model.
These models are suitable for dominant feature extraction but
tend to ignore the correlation between the part and whole.
SVR- and BR-based models are appropriate for handling small
samples instead of analyzing larger multidimensional signals.
Compared to typical machine learning algorithms, the twin
model established based on GRNN can extract rich feature
information from isolated time-varying data with lower errors
and higher prediction ability. In the subsequent fault detection
phase, the errors between the model outputs and actual sig-
nals can be used to determine the fault location. The estimated
values of the twin model can help improve the in-core power
measurement by avoiding interference from fault information.

4.2 Fault detection results under different
conditions

The novel contribution of this study is the accurate iden-
tification of faulty SPNDs in numerous assemblies using

15 Submodels

a twin model. The signal characteristics analyzed by the
twin model can help examine the fault characteristics. In
this section, single- and multi-point SPND fault signals
were simulated through experiments to determine the
effectiveness of fault detection under different conditions.
The faulty SPND signals of diverse measurement chan-
nels were simulated by adding different percentages of
bias to the normal signals based on the original operating
conditions.

For single-point fault detection, as shown in Fig. 8, the
deviation between the output of the twin model and the
actual normal value is very small before introducing faults
into the test set, and the data fit well. In the simulation, a
bias of 50% of the normal signal value was introduced into
SPND#12 at a time point after the normal signal. In this
case, the twin model could maintain a normal output, but the
failure of SPND#12 caused the calculated RMSE to fluctuate
significantly at this point. The results of the ESD test show
that the RMSE of the 12 point deviates the most, which
confirms the existence of a faulty SPND#12.
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Fig. 8 Comparison of the output values of the twin model with the actual values and the RMSE of the models in the two cases
Table 2 Fault detection accuracy in various fault conditions
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In reality, complex and changeable interference factors LT L
usually cause fault signals to vary. Different types of com-
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mon fault behaviors mainly include bias, precision degrada-
tion, and complete failure, the states of which are abnormal
owing to the influence of external environmental factors.
The deviation in the signals also varies at the same power
level that is used to measure the extent of the magnitude of
failures. Experiments (15 groups X 130 rounds) were con-
ducted to compare the fault detection efficiency under dif-
ferent fault types and deviation rates. The mean accuracy,
an evaluation index, is the proportion of the number of suc-
cessful detections in each group of experiments to the total
number of experiments. Table 2 provides the calculation
results for fault detection accuracy. Except for the detection
accuracy of 99.23% in "5% drifting", the mean accuracies
of other cases were 100%, indicating that the fault variables
identified by the ESD test from errors are consistent with the
actual faulty SPNDs. Therefore, the proposed method can
maintain an extremely high correct detection rate for single-
point SPND faults under various conditions.

Similarly, it is possible for multiple SPNDs to fail simul-
taneously. The method for detecting multi-point faults is
the same as that for detecting single-point faults. However,
this is still a challenge because multiple faulty signals can
contaminate the input of the twin model, leading to rising
nondeterminacy of the outputs. In this study, we analyzed
the impact of the number of faulty SPNDs on the output of

@ Springer
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Fig.9 (Color online) Influence of the number of faults on the detec-
tion accuracy of different algorithm-based models

a twin model and the fault detection accuracy. Because the
type and deviation rate of the failure size had little influence
on the detection accuracy, the added simulated fault signals
were random in the multi-point fault experiment (44 groups
X 150 rounds). The experimental results and comparisons
are shown in Fig. 9.

It was observed that the accuracy of multi-point fault
detection remained at 100% when the number of faulty
SPNDs was less than 26. In other words, the proposed
method can perform a relatively efficient detection when
approximately half of the 44 SPNDs fail. As the number of
failures continues to increase, the accuracy begins to gradu-
ally decrease and approaches 50%, which means that approx-
imately half of the faulty SPNDs detected by ESD are true.
Unacceptable data deviating from the normal range are the
reason for the occurrence of a sharp fall. Excessive abnor-
mal inputs strongly affect the original function of the twin
model and cause it to collapse, hindering the realization of
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Fig. 10 (Color online) Optimization of K in KNN and WKNN

subsequent detection. With ESD test calculation, the multi-
point fault detection accuracy of the models based on other
algorithms declined earlier than that of GRNN-based models
under identical conditions. Their accuracies decreased and
slowed to different degrees with the further expansion of
failure. Finally, they became more reposeful along their tails.
The method proposed in this study performs well for both
single- and multi-point SPND fault detection.

4.3 Evaluation of fault tolerance

The previous analysis proved the superiority of using the
twin model to detect multiple faults. However, there is still
a deficiency in dealing with excessive failures, that is, the
detection accuracy decreases significantly when the number
of faulty signals exceeds the upper limit. Therefore, efficient
fault-tolerant solution is required to restore abnormal data.
For multidimensional fault data points, the KNN algorithm
can help search for K operating points that are closest to the
faulty signal features in the historical database. On this basis,
WKNN regression was employed to obtain more accurate
values by assigning a greater weight to the nearest neigh-
bors. The selection of the value of K has a significant impact
on the results of the regression analysis. This is because an
approximation error with a smaller K can make the model
more complicated and can likely lead to overfitting, resulting
in a larger estimation error. According to Fig. 10, WKNN
has a lower error than KNN without weighting. When K=8,
WKNN has the smallest RMSE (2.2217 pA). Hence, the
hyperparameter K in WKNN used in this study was set to
eight.

To verify the feasibility of the fault-tolerance scheme
mentioned above, we selected 100 points of a continuous
time sequence under the full-power platform from the test
set, and random faults were introduced into SPNDs from the
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—— Twinmodel ! :
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<
3
=
5 1.610
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Fig. 11 (Color online) Signal value of SPND#27 after data recovery

25 point to the 100 point in the example. In fault-tolerant
processing, data recovery is first performed for the SPND
variable whose RMSE is the largest. Taking SPND#27 as an
example, Fig. 11 shows that the deviation between the fault
and original values is distinct (RMSE = 0.0387 pA), which
significantly affects normal system monitoring. From the
perspective of the twin model, the deviation between the pre-
dicted and original values was high (RMSE = 0.0488 pA),
making it incapable of meeting the requirements of high-pre-
cision control. In the implementation of WKNN, the devia-
tion distance between the regression value and the original
values was the shortest (RMSE = 0.0044 pA), and the data
recovery accuracy was enhanced compared with that of the
twin model. Through data recovery, WKNN can perform
more reliable correction and can maintain stable operation
of the system.

For data verification, the JS divergence was employed
to prove the similarity of the probability distribution of the
values. After the calculation, the divergence values of the
fault values, predicted values of the twin model, and regres-
sion values of WKNN with the original values were 4.3409
% 107°,7.5058 x 1077, and 5.6829 x 10, respectively. The
regression values of WKNN have advantages in terms of
similarity measurement which verifies the remarkably simi-
lar probability distribution and high recovery performance.

We further evaluated the performance of the fault-tol-
erant method on a sample filled with faulty signals. The
impact of the number of recovered variables on the aver-
age RMSE of the model outputs and fault detection accu-
racy is illustrated in Fig. 12. In multi-point fault detec-
tion, the obtained detection accuracy with no measures for
recovering data was 52.18%, which is the same as before.
This is mainly attributed to the fact that the output error
of the twin model is much larger than the normal range,
which provides completely false knowledge and leads to
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Fig. 12 Performance of fault tolerance

Table 3 Improvement of the fault detection accuracy with fault toler-
ance

Number of failure Mean accuracy (%)

Before fault tolerance After
fault
tolerance

<25 100 100
25~30 72.23 100
30~35 53.29 100
35~40 5291 100
> 40 53.88 100

the inability of the ESD test to determine that all SPND
variables have failed. As the data recovery progresses, the
faulty variables are substituted by the recovered data. Sub-
sequently, the average RMSE decreases, and the detection
accuracy increases gradually. When the number of recov-
ered variables reaches approximately 18, the accuracy
increases to approximately 100%. In addition, there is no
additional need to recover from other failures in this case.

Finally, the effects of the fault-tolerance strategy on
the improvement of twin model-based fault detection for
SPNDs are discussed. As shown in Table 3, the number
of faulty SPNDs was divided into five intervals in the
multi-point fault detection experiment (150 groups): less
than 25, 25-30, 30-35, 35-40, and more than 40. Without
the introduction of fault tolerance, the mean fault detec-
tion accuracies in the five intervals were 100%, 72.23%,
53.29%, 52.91% and 53.88%. After recovering the faulty
data, the number of successfully detected faulty SPNDs
increased, resulting in accuracies of 100%. This change
confirms that the provision of subsequent fault-tolerant
measures to the twin model can efficiently enhance the
detection accuracy and improve the capacity to parse the

@ Springer

signal correlation for the model, which is sufficient for
maintaining healthy monitoring of the system.

5 Conclusion

In this study, we proposed a twin model-based fault detec-
tion method along with a tolerance strategy for in-core
SPNDs. The twin model consists of a combination of sub-
models built by GRNN, which can extract the inner correla-
tion of multidimensional data through deep learning from
historical SPND signals. Compared with other methods,
the twin model can obtain a higher prediction precision and
help improve CNFMS measurements. The fault detection
phase is based on calculating the error probability distribu-
tion of the model outputs that can determine the existence
of single-and multi-point faults. This technique can maintain
a detection accuracy of nearly 100%. To address the prob-
lem of decreased efficiency caused by excessive failures,
a fault-tolerant phase was developed with WKNN, which
could search for normal signal values with the same oper-
ating conditions to replace faulty signals. Comprehensive
steps, including troubleshooting, data substitution, and data
verification, were conducted to achieve superior the fault-
tolerance performance. The experimental results show that
the tolerance strategy is promising for delivering high detec-
tion quality with an accuracy of more than 99%, suggest-
ing that the proposed method can be considered adoptable.
Furthermore, our work can be extended to other layers of
in-core detector assemblies to achieve holistic condition-
based maintenance of the monitoring system.
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