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Abstract
The in-core self-powered neutron detector (SPND) acts as a key measuring device for the monitoring of parameters and 
evaluation of the operating conditions of nuclear reactors. Prompt detection and tolerance of faulty SPNDs are indispensable 
for reliable reactor management. To completely extract the correlated state information of SPNDs, we constructed a twin 
model based on a generalized regression neural network (GRNN) that represents the common relationships among overall 
signals. Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-
tems, which calculated the error probability distribution between the model outputs and real values. Fault detection follows 
a tolerance phase to reinforce the stability of the twin model in the case of massive failures. A weighted K-nearest neighbor 
model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity. The experimental 
evaluation of the proposed method showed promising results, with excellent output consistency and high detection accuracy 
for both single- and multiple-point faulty SPNDs. For unexpected excessive failures, the proposed tolerance approach can 
efficiently repair fault behaviors and enhance the prediction performance of the twin model.

Keywords Self-powered neutron detector · Twin model · Fault detection · Fault tolerance · Generalized regression neural 
network · Nuclear power plant

1 Introduction

Neutron flux is an important variable in nuclear reactors. 
Monitoring the variation and distribution of the neutron 
flux is essential to maintain the power stability of nuclear 
reactors [1]. At present, self-powered neutron detectors 
(SPNDs) are widely employed in-core neutron flux measure-
ment systems (CNFMS) of nuclear power plants (NPPs) to 
accurately measure neutron flux and provide highly reliable 

three-dimensional (3D) power distribution information. 
However, the risk of failure has increased with the increas-
ing scale and complexity of the control of modern nuclear 
reactors [2].

Faulty SPNDs that either completely or partially fail 
provide incorrect monitoring information, which may nega-
tively affect both the simple and more advanced functionali-
ties of the system, resulting in degradation of the overall sys-
tem performance and an increased risk level [3]. Techniques 
to address these problems can be classified as hardware 
redundancy methods, model-based methods, and data-driven 
methods [4, 5]. Generally, hardware redundancy measures 
in which more than three SPNDs are installed to observe 
the neutron flux within a range of space are employed for 
NPPs to improve the reliability of CNFMS. Assuming that 
any one SPND in a neutron measurement channel fails, the 
additional SPNDs still function and maintain high-accuracy 
measurements. Although this measure can prevent occa-
sional intermittent failures from negatively affecting the 
system, the inability to implement fault tolerance can lead 
to false perceptions of the performance of the CNFMS when 
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redundant SPNDs fail simultaneously. Moreover, redundant 
SPNDs continue to incur high installation and maintenance 
costs, which adversely affect the economics of NPPs [6].

Popular model-based methods (such as Kalman filtering 
[7], mixed Kullback–Leibler divergence and exponential 
weighted moving average [8], high-gain observer [9], the 
Monte Carlo method [10], and extended state observer 
[11]) handle fault detection using simple mathematical 
models that formulate fault signatures. The results of these 
methods for specific nonlinear systems have been devel-
oped under various restrictive assumptions. Recently, data-
driven methods [12–14] have been used to perform fault 
detection for kernel equipment in NPPs; the main princi-
ple is to establish an object model based on data analyses 
and realize accurate detection using model outputs with 
constraints of the evaluation criteria [15]. Peng et al. [3] 
constructed mathematical models for various detectors 
using principal component analysis (PCA) and achieved 
fault detection and isolation for SPNDs through the square 
prediction error of linear models and the detector valid-
ity index based on the reconstruction. Yellapu et al. [16] 
developed a method based on multiscale PCA with wave-
let transform to reduce the modeling cost and improve 
the sensor fault diagnosis results by calculating the wave-
let approximation coefficient. An online multiscale data 
reconciliation scheme for detecting and isolating sensor 
faults in advanced heavy-water reactors was proposed in 
[17]; the scheme achieved high accuracy under different 
scenarios. Li et al. [18] employed two different fault iden-
tification methods to locate faults more accurately. One 
was an improved weighted contribution analysis method 
based on the traditional contribution analysis of sensors 
to Q statistics. The second method was based on the sen-
sor validity index obtained using the iterative reconstruc-
tion method. However, static linear models are typically 
unable to detect long-term SPND faults. To improve the 
detection efficiency of practical time-varying faults, Chat-
terjee et al. [19] proposed the use of instantaneous cluster 
statistics to normalize the measurements of each SPND 
in clusters and update the PCA model using normalized 
values. This approach resulted in lower false alarm rates 
and higher detection rates for real-time fault changes than 
traditional static models. Experimental results show that 
these approaches are useful in identifying faulty instru-
ments. Yu et al. [20] proposed improvements to the tradi-
tional PCA model through a new corrected reconstruction 
algorithm to reconstruct the principal component and the 
residual space. A cyclic PCA monitoring model was estab-
lished to accurately detect different types of faults and 
reconstruct fault data. Nageswara et al. [21] performed 
information fusion by combining the ensemble of trees and 
the support vector machine (SVM) algorithm to evaluate 
the calculation error of multiple sensors and the influence 

of complementary and redundant sensors. Most studies 
have failed to focus on the inherent correlation among all 
SPND signals in the overall detector assemblies. For the 
dozens of SPNDs existing in neutron flux measurement 
channels, challenges in information integration and cor-
relation analysis remain because of difficulties in handling 
large amounts of data simultaneously.

As a new enabling technology, digital twin (DT) can act 
as a mirror of the real world by providing an integrated envi-
ronment for simulating, decision-making, and optimizing 
physical system operations [22, 23]. Because of the pow-
erful computing capabilities and cognitive intelligence of 
DT, developing more refined and scalable models for fault 
detection has become possible. Lin et al. [24] developed a 
nearly autonomous management and control (NAMAC) sys-
tem for advanced nuclear reactors with DT technology. Cai 
et al. [25] proposed analytical techniques based on data and 
information fusion for modeling and developing DT virtual 
machine tools. DT applications in the context of NPPs have 
proliferated recently [26–28]. The development of DT com-
bined with advanced technologies for detection, control, and 
optimization can significantly improve system performance, 
reliability, availability, maintainability, and operational flex-
ibility. Therefore, efficient in-core SPND fault detection and 
the maintenance of monitoring systems using twin technolo-
gies are our major objectives. To continue such interesting 
exploration of research on SPND signals, a twin model using 
DT technology was constructed for the parameter analysis 
of an in-core nuclear reactor with large monitoring data and 
complex and changeable operating conditions. In this case, 
the established twin model can extract rich values from iso-
lated time-varying data without disturbing the equipment on 
the real physical layer and can simulate the real-time state 
and dynamic characteristics of SPND entities through inter-
active data, overcoming the problem that traditional mathe-
matical models [29] cannot effectively deduce the fault state 
of multidimensional signals in real time. In addition, several 
researchers have devoted their attention to state analysis and 
to the design of DT models of key nuclear reactor compo-
nents. Hu et al. [30] comprehensively described the research 
status and development directions of DT technology in the 
field of advanced nuclear energy, proposed a multidimen-
sional evaluation digital model suitable for application in 
nuclear reactors, and preliminarily established the fault diag-
nosis process. Wang et al. [31] proposed a DT system of 
the out-of-core detector assisted with an installation robot 
to perform real-time visualization monitoring of the detec-
tor installation and replacement process. Gong et al. [32] 
combined reduced-order models with machine learning to 
create physics-based DTs using parameters input in real time 
to rapidly reconstruct the neutron field in the core. Cancemi 
et al. [33] generated primary nuclear components through 
numerical simulation of different plant conditions, which 
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may support the predictive maintenance optimization based 
on plant condition and the development of a DT model for 
improving plant safety and availability.

Because the implementation of the twin model signifi-
cantly depends on the information transferred from valid 
data [34], the frequent and unexpected fault behaviors of 
SPNDs only provide unrepresentative data, leading to seri-
ous distortions in the outcomes and even the unprecedented 
collapse of the twin model. The decision made after calcula-
tions based on a large amount of incorrect information fails 
to realize the entire purpose of maintaining normal system 
function. Most recent research methods have focused on 
fault detection, and only a limited amount of research has 
been conducted to simultaneously achieve fault tolerance 
in critical detectors at NPPs. This is one of the principal 
motivations for this work. Designing a reasonable fault-
tolerance strategy that would work uninterruptedly with 
sufficient information-processing capabilities is practically 
challenging. Li et al. [35] suggested an active fault-tolerance 
control method based on the improved BP neural network, 
which controls fault sensors by reconstruction. Kim et al. 
[36] developed a method of evaluating the fault detection 
coverage of a fault-tolerant technique using a fault injection 
experiment in a safety-critical digital I &C system for NPPs. 
They also proposed a probabilistic safety assessment model 
to observe the effect of the fault detection coverage of fault-
tolerant techniques. To enhance the stability of a modular 
high-temperature gas-cooled reactor system and the control 
rod drive mechanism, Hui et al. [37] proposed an adaptive 
fault-tolerant control scheme based on a radial basis function 
neural network, which has a higher load tracking accuracy 
and better fault tolerance to systems. Li et al. [38] proposed 
an active fault-tolerant control scheme based on the deep 
Q-network algorithm of reinforcement learning to maintain 
the stability of the once-through steam generator control 
system. Rangegowda et al. [39] introduced a fault-tolerance 
control framework to arrest the performance degradation 
of conventional controllers in the presence of sensor bias. 
Clearly, appropriate fault-tolerance operations are required 
to handle the incorrect information provided by failed equip-
ment, which can ensure data purity and no interference for 
the normal performance of the twin model. Therefore, intro-
ducing an appropriate fault-tolerance strategy to SPND fault 
detection is advantageous to maintain a healthy interaction 
of data information and pave the way for reliable outputs of 
the twin model in the long term.

In this study, we propose an effective fault detection 
and tolerance approach for in-core SPNDs based on a twin 
model. The SPNDs are uniformly distributed in the reactor 
core; a generalized regression neural network (GRNN) [40] 
is employed to construct the twin model, which is consist-
ent with the real system and represents the common rela-
tionship between the overall signals. In this manner, the 

state correlation between the SPND signals is completely 
considered, and the output characteristics of specific SPND 
individuals can be described using the joint feature infor-
mation of the surrounding SPNDs. Then, state analysis and 
fault detection of the SPNDs were realized by analyzing the 
probability distribution of errors between the outputs of the 
twin model and the real value. To achieve fault tolerance 
for unexpected faulty SPNDs, we used a weighted k-nearest 
neighbor (WKNN) [41] to recover and reconstruct faulty 
signals. Through troubleshooting, data substitution, and data 
verification of faulty SPNDs, the accuracy and rationality 
of the detection results can be significantly improved. Com-
pared with the traditional single-signal analysis model, the 
proposed approach can detect multi-point faults more simply 
and efficiently.

The remainder of this paper is organized as follows: 
Sect. 2 provides a brief description of the measurement 
channel distribution of the neutron flux and the composition 
of the SPND. Section 3 describes the construction scheme of 
the twin model and the specific framework for fault detection 
and tolerance. The experimental results and discussion are 
presented in Sect. 4. Finally, the conclusions of the proposed 
framework are provided in Sect. 5.

2  Brief description of SPND

An in-core neutron instrument is one of the most important 
types of nuclear power equipment. SPNDs provide a cru-
cial basis for neutron flux measurement for safe operation, 
treatment of abnormal working conditions, and post-accident 
monitoring of NPPs. In this study, an integrated core instru-
ment casing assembly was used in a pressurized water reac-
tor for third-generation NPPs. As shown in Fig. 1, the core 
contains 44 radially distributed measurement channels. In 

Fig. 1  Distribution of the neutron flux measurement channels
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each channel, a core detector assembly that is installed in the 
instrument tube of the fuel assembly contains seven axially 
distributed SPNDs in equidistant layers.

SPNDs have been developed to meet the requirements 
of small size, long life, and high tolerance to harsh envi-
ronments. The composition of SPNDs is shown in Fig. 2, 
which mainly consists of an emitter, an insulator, and a col-
lector. The communication line is constructed using a two-
core cable in the form of armor and measures the currents 
generated by the emitter and noise currents caused by the 
background core. The currents are then transmitted to the 
processing cabinets through the connector and transmission 
cable. Because the noise currents are very small, they can 
be ignored. Generally, rhodium SPNDs are used in pres-
surized water reactor NPPs. The main generation process 
of SPND currents is determined by the radiation capture 
reaction, which proceeds in the emitter material 45Rh

103 with 
the generation and subsequent disintegration of the induced 
beta-active isotope 45Rh

104 . Then, the beta particles induced 
by disintegration escape from the emitter with a certain 
probability and are collected by the collector, leading to the 
emitter becoming positively charged. Thus, the currents are 
proportional to the neutron flux absorbed at the location of 
the SPND emitter in the reactor.

3  Methodology

The purpose of this study is to use the twin model to enhance 
SPND detection performance. The main goal of the DT 
model is to create a mirror image of the physical entities in 
the digital realm by observing the data features and intrinsic 
correlation information among real SPND signals. In this 

study, we conducted a further state analysis of the current 
signals generated by radially distributed SPNDs on the plane 
of the reactor core of a specific NPP. As shown in Fig. 3, n 
SPNDs are uniformly arranged on the cross section of the 
in-core vessel. Each SPND is responsible for the neutron 
radiation capture reaction in the relevant space range, which 
results in n groups of recorded current signals. Each data-
twinning procedure for an SPND requires signal analysis 
of a particular SPND by observing the signal values of the 
other n-1 SPNDs. Therefore, the remaining n-1 SPND sig-
nals are used as model input characteristic variables, includ-
ing a particular SPND label variable, prior to model training. 
We can obtain n sets of data patterns with related feature 
and label variables for each SPND. Subsequently, a GRNN 
is employed to train and learn the input variables in the data 
patterns, and the internal correlation among the SPNDs can 
be explained through the adaptivity of the neural network. 
We can obtain n sets of submodels, where the features of 
the label SPND variable are related to the features of the 
neighboring SPNDs. By integrating n submodels, we obtain 
an organic whole, which is an SPND twin model. Using the 
twin model, the errors between the model outputs and actual 
signals are calculated to achieve SPND fault detection. The 
model identifies outliers in the error sequence in combina-
tion with the generalized extreme studentized deviate (ESD) 
statistical test [42], which provides rapid SPND fault detec-
tion results. A fault-tolerance strategy should be introduced, 
the foundation of which is data recovery for fault variables in 
response to excessive fault variables that result in the failure 
of fault detection. Fault signals are replaced with normal 
values through constant troubleshooting, data substitution, 
and data validation, and the performance of the twin model 
is recovered. When all faulty SPNDs are successfully identi-
fied, the detection results can assist in diagnostic decisions 
that can be made to maintain real detector assemblies.

3.1  Generalized regression neural network

To deal with sample data comprising complicated multidi-
mensional variables, prior research concentrated on PCA, 
clustering, and Kalman filter methods to perform signal 
analysis of the SPND unit. These techniques can be used 
to rapidly establish models for axial SPNDs in the same 
detector assembly. In this study, we aimed to analyze the 
spatial correlation between the radially distributed SPND 
variables simultaneously in the plane of the reactor core. 
The aforementioned technique is not appropriate for large-
scale and nonlinear data feature mining; however, the latest 
neural network algorithms that an distribute information 
among neurons have significant robustness and can quickly 
analyze complex nonlinear relationships. As a typical radial 
basis neural network model based on nonlinear regression 
theory, GRNN can process high-dimensional data and mine Fig. 2  Composition of SPND
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the mutual effects among multiple SPND current features 
because of its capabilities of nonlinear mapping and high 
learning speed. Unlike other types of artificial neural net-
works, GRNN has straightforward structures and training 
processes. Therefore, we used GRNN as the constituent 
architecture of the SPND twin model. As shown in Fig. 4, 
the GRNN is composed of the input, pattern, summa-
tion, and output layers. The input and output vectors of 
the corresponding network are X = [x1, x2,… , xn−1]

T and 
Y = [y1, y2,… , yk]

T , n − 1 and k are the dimensions of X and 
Y, respectively. The number of neurons in the input layer is 
equal to the dimensions of the input vector, and each neuron 
is a simple distribution unit that directly transmits the input 
to the pattern layer. The pattern layer is a radial base layer, 

whose number of neurons is equal to the number of learning 
samples, n − 1 . The neuron transfer function Pi is typically a 
Gaussian function and can be written as follows:

where Xi is the training sample corresponding to the i-th 
neuron, T is the transpose of the matrix, and � is a smoothing 
factor. The smaller � is, the stronger is the approximation 
ability of Pi for the samples.

There are two types of neuronal calculation formulas in 
the summation layer. One is to sum the outputs of all the 
neurons in the pattern layer. The connection weight between 

(1)
Pi = exp[−(X − Xi)

T(X − Xi)∕2�
2],

i = 1, 2,… , n − 1

Fig. 3  (Color online) The framework of the proposed SPND fault detection and tolerance method
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each neuron and the pattern layer is set to one. The transfer 
function can be expressed as follows:

The other type of calculation formula is to sum the outputs 
of all neurons in the pattern layer by weight. The transfer 
function can be described as

where wij represents the weight of the i-th neuron in the 
pattern layer connected to the j-th neuron element in the 
summation layer, and SMj represents the summation value 
of the j-th neuron in the summation layer.

The output layer is calculated by dividing the values 
obtained using the two formulas in the summation layer 
based on the following equation:

where yj is the output of the j-th output-layer neuron.
GRNN can be applied to construct different SPND regres-

sion submodels that are integrated to form a twin model that 
outputs twin data.

3.2  Construction of the twin model

The state analysis of SPND signals with the application 
of DT can provide a more efficient and intelligent service 
for monitoring the neutron flux distribution and its rate. 
The premise of constructing a twin model is to extract 
sufficient and effective feature information from physical 

(2)SR =

m∑
i=1

Pi.

(3)SMj =

m∑
t=1

wijPi, j = 1, 2,… , k

(4)yj =
SMj

SR
,

entities. The reactor core contains n sets of symmetrically 
distributed neutron flux measurement detector assemblies. 
Although SPNDs operate independently of each other, the 
multidimensional currents they produce reveal a strong 
cooperative link in a shared environment. The features of 
the nearby signals reflect the characteristics of a specific 
SPND signal. The relationship between SPND signals can 
be explained by the following equations:

where S is the set of all SPND individuals at the same height 
in the reactor core, D is the set of sample values for each 
variable in S, and U is the set used to denote the correlations 
between the variables. Ui(S) describes how the signal char-
acteristics of any variable in S are collectively represented 
by the remanent surrounding variables. As seen in Fig. 5, 
the reference network Ui(S) is expressed as the connectivity 
between the label variable and other variables. The data of 
the label variable can be twinned by analyzing the network 
of relationships among the variables. By studying the char-
acteristics of the associated {s1, s2,… , sn−1} , the inherent 
information of the label variables can be obtained. Thus, 
each variable in S can also be collectively described by the 
others. The twin model is built based on relationship net-
works, and GRNN is used to construct specific submodels 
to form a twin body. By dividing the set D, the n − 1-dimen-
sional variables are the features Ii and the remaining single 
variable is the training label Ti . After an alternate division 
of n groups, the data patterns between Ii and Ti are expressed 
as follows.

(5)

⎧⎪⎨⎪⎩

S = {s1, s2,… , sn}

D = {d1, d2,… , dn}

U = {U1(S),U2(S),… ,Un(S)}

,

Fig. 4  Structure of the GRNN

Fig. 5  Network of relationship U
i
(S)
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The division result contains n rows of data patterns, and 
each dimensional variable of SPND signals in set D is des-
ignated as a label for its corresponding data pattern. For 
instance, SPND sn is identified as the label of the first data 
pattern. Similarly, SPND si is considered as the label of the 
(n+1-i)-th data pattern. To thoroughly explore the correla-
tion between any target variable and the remaining variables 
in each pattern, GRNN was utilized to train the submodels 
to learn the state relationships between SPND features and 
labels. Subsequently, n groups of submodels were built after 
repeated training. An integrated organism M is combined 
as follows:

where Mi represents the trained GRNN submodels for differ-
ent data patterns. After learning the algorithm, each GRNN 
submodel outputs the predicted value of the target SPND 
when its inputs are (n − 1)-dimensional feature vectors. All 
submodels are combined into M, which produces n groups 
of estimated data and explains the commonality of signal 
changes in all SPND components. The real SPND signals 
can be twinned using these virtual values. The residual 
between the output results of the twin model and the real 
values can be calculated in the given operating scenario to 
determine the faulty SPNDs, and the following status assess-
ment and potential fault tolerance can then be performed.

3.3  Fault detection and tolerance

Measuring the residual between the outputs of the twin 
model and the actual values allows us to ascertain whether 
faults exist in the detector assemblies. Statistical tests can 
generally be used to determine the deviation points in a 
residual sequence. Traditional statistical techniques are 
sensitive to the presence of outliers because inaccurate data 
points can distort the mean and standard deviation of a data 
sequence. In this section, ESD was employed to detect pos-
sible outliers in the residual sequence and discriminate the 
fault from the original signals. ESD can maintain a good 
elimination effect when several anomalies exist concurrently 
in the data. We assumed that outliers exist in the residual 
sequence. The maximum number of outliers was predeter-
mined as r, and r rounds of separate tests were performed 
by calculating the variable of the statistical test, the formula 
of which is as follows:

(6)(Ii�Ti) =

⎡⎢⎢⎢⎢⎢⎢⎣

d1 d2 d3 ⋯ dn−2 dn−1 dn
d1 d2 d3 ⋯ dn−2 dn dn−1
d1 d2 d3 ⋯ dn−1 dn dn−2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

d1 d3 d4 ⋯ dn−1 dn d2
d2 d3 d4 ⋯ dn−1 dn d1

⎤⎥⎥⎥⎥⎥⎥⎦

(7)M = {M1,M2,… ,Mn},

where Ei is an observed point, and Ê and z denote the sam-
ple mean and standard deviation, respectively. The observed 
point that maximizes |Ei − Ê| and deviates the most from the 
mean should be located and eliminated during the calcula-
tion. The aforementioned statistic is then recalculated using 
the remaining n-1 observed points. The process is repeated 
until r observed points have been removed, resulting in the 
obtained r test statistics R1 , R2 , … , Rr . Corresponding to 
the r test statistics, r critical values are calculated as follows:

where tp,v represents the 100p percentage points from the t 
distribution with v degrees of freedom and p = 1 −

�

2(n−i+1)
 . 

� denotes the test confidence level. The number of outliers 
is determined by finding the largest i such that Ri > �i , and 
thus, the initial hypothesis can be true.

As mentioned above, the simultaneous failures of exces-
sive SPNDs in detector assemblies can lead to anomalously 
measured data, which cannot accurately represent the actual 
operational status of the system. A judgment based on fault 
signals will cause the system to fail to reach its normal oper-
ating condition and even cause personnel to misoperate. The 
capacity of the twin model to perform an effective analysis 
suffers because of the disordered input, and the reliability 
and validity of the detection results cannot be demonstrated 
by the residual information calculated from a broken model. 
For the CNFMS to be dependable and secure, the fault detec-
tion function must be rehabilitated. In this case, we introduce 
an efficient fault-tolerant strategy, which is implemented 
before multi-fault detection. The most important factor to 
consider when designing a fault-tolerance solution is that 
the information that should be available to the entire system 
after an unexpected failure must be identical to the infor-
mation that would have been obtained if the SPNDs were 
not faulty. The main objective was to achieve data recov-
ery, including troubleshooting, data substitution, and data 
verification.

In the presence of multiple unknown fault sources, fault 
troubleshooting must be performed using multidimensional 
data. A possible selection approach involves selecting the 
vector with the largest calculated residual and performing 
data recovery first. When executing data substitution, the 
values of the faulty variables should be replaced with normal 
signals. To improve the accuracy of the replaced data, the 
KNN classifier was first used to select K instance points from 
the historical database in the nearest neighbor of the feature 
variable of the fault points to form a new signal sample. The 

(8)Ri = max
|Ei − Ê|

z
,

(9)�i =
(n − i)tp,n−i−1√

(n − i + 1 + t2
p,n−i

)(n − i + 1)

,
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operating condition of K nearest neighbor points was the 
closest to that of the fault signals, and their variable char-
acteristics were in a division range similar to the original 
signal characteristics. The weighted average operation was 
utilized for the values of these K points, which produced the 
corrected signal values. Finally, the fault signal values were 
entirely replaced by the revised values.

After data substitution, the Jensen–Shannon (JS) diver-
gence [43] was employed to confirm the modified data and 
guarantee the consistency of the replacement. It can describe 
the differences between the probability distributions of vari-
ables, which perform well in the similarity measurement. 
For the two probability distributions, the interval value of 
the JS divergence is [0, 1] . The two distributions are more 
similar and vice versa as the value decreases. The degree of 
JS divergence can be used to fully evaluate the suitability of 
the modified data. Repeating the preceding steps for a multi-
fault sample can reduce the number of faulty SPNDs after 
recovery until the detection results are satisfactory. When 
the satisfied sample is input into the twin model, the output 
is stable and controlled within a small error. In this case, 
the previous fault detection approach is adequate and fault 
tolerance is no longer required.

4  Results and Discussion

In this section, the proposed method was evaluated using 
historical monitoring data collected from in-core detector 
assemblies in a third-generation pressurized water reactor. 
To build a reliable SPND twin model, a sufficient number 
of measurement datasets must be known in advance. The 
variables of the 44-dimensional SPND signals, which were 
distributed radially in a certain layer, were considered as 
experimental objects in this study. To improve the generali-
zation of the twin model, training data for the twin model 
were derived from the reactor shutdown stage. As shown in 

Fig. 6, with the insertion of control rods, the power of the 
reactor core gradually decreased from 100% FP to 0% FP, 
and all the currents of SPNDs decreased. The data for the 
test set were derived from SPNDs during steady operation.

4.1  Performance of the twin model

With the continuous reduction in neutron flux during shut-
down, the number of neutrons captured by the emitter 
decreased, resulting in a proportional decrease in the cur-
rents generated by the 44 SPNDs. To extract valuable infor-
mation from physical SPNDs under different power levels 
and build a twin model based on it, submodels for 44-dimen-
sional signal variables were executed. First, the training set 
was segmented round after round, and 44 groups of data 
patterns with several feature variables Ii and label variable 
Ti were obtained as follows:

Each data pattern in (Ii|Ti) was input into GRNN for the 
model to learn the correlation between signal variables, 
and the 44 submodels were well-trained. The superiority 
of GRNN over the other models is ascribed to the conveni-
ence of its parameter setting. The performance of GRNN 
can only be changed by setting the smoothness factor � in 
the kernel function. To improve the accuracy of the model, 
the root mean square error (RMSE) was employed as the 
loss function to optimize the value of � for the submodels. 
Twenty percent of the training set was selected as the veri-
fication set, and a cross-verification approach was used to 
obtain accurate parameter optimization results. As shown 
in Table 1, each submodel obtained the minimum RMSE 
with the corresponding setting of the optimal � . The opti-
mized parameters helped improve the performance of the 
twin model in the verification set.

To demonstrate the superiority of GRNN in modeling more 
clearly, we compared the proposed method with several typical 
approaches, including convolutional neural networks (CNN), 
multilayer perceptron (MLP), extreme gradient boosting 
(XGB), decision tree (DT), SVM, and Bayesian ridge (BR). 
All methods were implemented using the same data samples 
from the test set to compare the output accuracies. As shown in 
Fig. 7, the twin model formed by GRNN had the lowest RMSE 
between the model outputs and actual signal values. DT and 
XGBoost-based models, as common tree regression algo-
rithms, had slightly larger errors than the GRNN-based model, 
which can easily overfit SPND signals and reduce precision. 

(10)(Ii�Ti) =

⎡⎢⎢⎢⎢⎢⎢⎣

d1 d2 d3 ⋯ d42 d43 d44
d1 d2 d3 ⋯ d42 d44 d43
d1 d2 d3 ⋯ d43 d44 d42
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

d1 d3 d4 ⋯ d43 d44 d2
d2 d3 d4 ⋯ d43 d44 d1

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 6  (Color online) SPND signals during shutdown
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The learning abilities of the CNN and MLP models for SPND 
signal features were poorer than that of the GRNN model. 
These models are suitable for dominant feature extraction but 
tend to ignore the correlation between the part and whole. 
SVR- and BR-based models are appropriate for handling small 
samples instead of analyzing larger multidimensional signals. 
Compared to typical machine learning algorithms, the twin 
model established based on GRNN can extract rich feature 
information from isolated time-varying data with lower errors 
and higher prediction ability. In the subsequent fault detection 
phase, the errors between the model outputs and actual sig-
nals can be used to determine the fault location. The estimated 
values of the twin model can help improve the in-core power 
measurement by avoiding interference from fault information.

4.2  Fault detection results under different 
conditions

The novel contribution of this study is the accurate iden-
tification of faulty SPNDs in numerous assemblies using 

a twin model. The signal characteristics analyzed by the 
twin model can help examine the fault characteristics. In 
this section, single- and multi-point SPND fault signals 
were simulated through experiments to determine the 
effectiveness of fault detection under different conditions. 
The faulty SPND signals of diverse measurement chan-
nels were simulated by adding different percentages of 
bias to the normal signals based on the original operating 
conditions.

For single-point fault detection, as shown in Fig. 8, the 
deviation between the output of the twin model and the 
actual normal value is very small before introducing faults 
into the test set, and the data fit well. In the simulation, a 
bias of 50% of the normal signal value was introduced into 
SPND#12 at a time point after the normal signal. In this 
case, the twin model could maintain a normal output, but the 
failure of SPND#12 caused the calculated RMSE to fluctuate 
significantly at this point. The results of the ESD test show 
that the RMSE of the 12 point deviates the most, which 
confirms the existence of a faulty SPND#12.

Fig. 7  (Color online) Prediction 
errors of different algorithm-
based models

Table 1  Parameter optimization results of the 44 submodels

Submodel � value RMSE ( μA) Submodel � value RMSE ( μA) Submodel � value RMSE ( μA) Submodel � value RMSE ( μA)

M
1

0.3 0.0100 M
12

0.13 0.0024 M
23

0.32 0.0110 M
34

0.05 0.0023
M

2
0.09 0.0020 M

13
0.07 0.0022 M

24
0.49 0.0244 M

35
0.02 0.0023

M
3

0.23 0.0069 M
14

0.14 0.0029 M
25

0.14 0.0029 M
36

0.17 0.0043
M

4
0.22 0.0065 M

15
0.33 0.0115 M

26
0.44 0.0193 M

37
0.07 0.0022

M
5

0.34 0.0121 M
16

0.02 0.0023 M
27

0.36 0.0133 M
38

0.13 0.0024
M

6
0.16 0.0038 M

17
0.42 0.0176 M

28
0.35 0.0127 M

39
0.05 0.0023

M
7

0.06 0.0023 M
18

0.48 0.0233 M
29

0.48 0.0233 M
40

0.03 0.0100
M

8
0.12 0.0021 M

19
0.05 0.0023 M

30
0.25 0.0078 M

41
0.32 0.0110

M
9

0.02 0.0023 M
20

0.21 0.0061 M
31

0.2 0.0057 M
42

0.22 0.0065
M

10
0.44 0.0193 M

21
0.38 0.0146 M

32
0.22 0.0065 M

43
0.11 0.0019

M
11

0.45 0.0202 M
22

0.06 0.0023 M
33

0.31 0.0105 M
44

0.14 0.0029
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In reality, complex and changeable interference factors 
usually cause fault signals to vary. Different types of com-
mon fault behaviors mainly include bias, precision degrada-
tion, and complete failure, the states of which are abnormal 
owing to the influence of external environmental factors. 
The deviation in the signals also varies at the same power 
level that is used to measure the extent of the magnitude of 
failures. Experiments (15 groups × 130 rounds) were con-
ducted to compare the fault detection efficiency under dif-
ferent fault types and deviation rates. The mean accuracy, 
an evaluation index, is the proportion of the number of suc-
cessful detections in each group of experiments to the total 
number of experiments. Table 2 provides the calculation 
results for fault detection accuracy. Except for the detection 
accuracy of 99.23% in "5% drifting", the mean accuracies 
of other cases were 100%, indicating that the fault variables 
identified by the ESD test from errors are consistent with the 
actual faulty SPNDs. Therefore, the proposed method can 
maintain an extremely high correct detection rate for single-
point SPND faults under various conditions.

Similarly, it is possible for multiple SPNDs to fail simul-
taneously. The method for detecting multi-point faults is 
the same as that for detecting single-point faults. However, 
this is still a challenge because multiple faulty signals can 
contaminate the input of the twin model, leading to rising 
nondeterminacy of the outputs. In this study, we analyzed 
the impact of the number of faulty SPNDs on the output of 

a twin model and the fault detection accuracy. Because the 
type and deviation rate of the failure size had little influence 
on the detection accuracy, the added simulated fault signals 
were random in the multi-point fault experiment (44 groups 
× 150 rounds). The experimental results and comparisons 
are shown in Fig.  9.

It was observed that the accuracy of multi-point fault 
detection remained at 100% when the number of faulty 
SPNDs was less than 26. In other words, the proposed 
method can perform a relatively efficient detection when 
approximately half of the 44 SPNDs fail. As the number of 
failures continues to increase, the accuracy begins to gradu-
ally decrease and approaches 50%, which means that approx-
imately half of the faulty SPNDs detected by ESD are true. 
Unacceptable data deviating from the normal range are the 
reason for the occurrence of a sharp fall. Excessive abnor-
mal inputs strongly affect the original function of the twin 
model and cause it to collapse, hindering the realization of 

Fig. 8  Comparison of the output values of the twin model with the actual values and the RMSE of the models in the two cases

Table 2  Fault detection accuracy in various fault conditions

Fault types Mean accuracy with different deviation 
rates

5% 20% 40% 60% 80%

 Bias 100 100 100 100 100
 Drifting 99.23 100 100 100 100
 Precision degradation 100 100 100 100 100

Fig. 9  (Color online) Influence of the number of faults on the detec-
tion accuracy of different algorithm-based models
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subsequent detection. With ESD test calculation, the multi-
point fault detection accuracy of the models based on other 
algorithms declined earlier than that of GRNN-based models 
under identical conditions. Their accuracies decreased and 
slowed to different degrees with the further expansion of 
failure. Finally, they became more reposeful along their tails. 
The method proposed in this study performs well for both 
single- and multi-point SPND fault detection.

4.3  Evaluation of fault tolerance

The previous analysis proved the superiority of using the 
twin model to detect multiple faults. However, there is still 
a deficiency in dealing with excessive failures, that is, the 
detection accuracy decreases significantly when the number 
of faulty signals exceeds the upper limit. Therefore, efficient 
fault-tolerant solution is required to restore abnormal data. 
For multidimensional fault data points, the KNN algorithm 
can help search for K operating points that are closest to the 
faulty signal features in the historical database. On this basis, 
WKNN regression was employed to obtain more accurate 
values by assigning a greater weight to the nearest neigh-
bors. The selection of the value of K has a significant impact 
on the results of the regression analysis. This is because an 
approximation error with a smaller K can make the model 
more complicated and can likely lead to overfitting, resulting 
in a larger estimation error. According to Fig. 10, WKNN 
has a lower error than KNN without weighting. When K=8, 
WKNN has the smallest RMSE (2.2217 μA). Hence, the 
hyperparameter K in WKNN used in this study was set to 
eight.

To verify the feasibility of the fault-tolerance scheme 
mentioned above, we selected 100 points of a continuous 
time sequence under the full-power platform from the test 
set, and random faults were introduced into SPNDs from the 

25 point to the 100 point in the example. In fault-tolerant 
processing, data recovery is first performed for the SPND 
variable whose RMSE is the largest. Taking SPND#27 as an 
example, Fig. 11 shows that the deviation between the fault 
and original values is distinct ( RMSE = 0.0387 μA ), which 
significantly affects normal system monitoring. From the 
perspective of the twin model, the deviation between the pre-
dicted and original values was high ( RMSE = 0.0488 μA ), 
making it incapable of meeting the requirements of high-pre-
cision control. In the implementation of WKNN, the devia-
tion distance between the regression value and the original 
values was the shortest ( RMSE = 0.0044 μA ), and the data 
recovery accuracy was enhanced compared with that of the 
twin model. Through data recovery, WKNN can perform 
more reliable correction and can maintain stable operation 
of the system.

For data verification, the JS divergence was employed 
to prove the similarity of the probability distribution of the 
values. After the calculation, the divergence values of the 
fault values, predicted values of the twin model, and regres-
sion values of WKNN with the original values were 4.3409 
×  10−5, 7.5058 ×  10−7, and 5.6829 ×  10−7, respectively. The 
regression values of WKNN have advantages in terms of 
similarity measurement which verifies the remarkably simi-
lar probability distribution and high recovery performance.

We further evaluated the performance of the fault-tol-
erant method on a sample filled with faulty signals. The 
impact of the number of recovered variables on the aver-
age RMSE of the model outputs and fault detection accu-
racy is illustrated in Fig. 12. In multi-point fault detec-
tion, the obtained detection accuracy with no measures for 
recovering data was 52.18%, which is the same as before. 
This is mainly attributed to the fact that the output error 
of the twin model is much larger than the normal range, 
which provides completely false knowledge and leads to 

Fig. 10  (Color online) Optimization of K in KNN and WKNN Fig. 11  (Color online) Signal value of SPND#27 after data recovery
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the inability of the ESD test to determine that all SPND 
variables have failed. As the data recovery progresses, the 
faulty variables are substituted by the recovered data. Sub-
sequently, the average RMSE decreases, and the detection 
accuracy increases gradually. When the number of recov-
ered variables reaches approximately 18, the accuracy 
increases to approximately 100%. In addition, there is no 
additional need to recover from other failures in this case.

Finally, the effects of the fault-tolerance strategy on 
the improvement of twin model-based fault detection for 
SPNDs are discussed. As shown in Table 3, the number 
of faulty SPNDs was divided into five intervals in the 
multi-point fault detection experiment (150 groups): less 
than 25, 25-30, 30-35, 35-40, and more than 40. Without 
the introduction of fault tolerance, the mean fault detec-
tion accuracies in the five intervals were 100%, 72.23%, 
53.29%, 52.91% and 53.88%. After recovering the faulty 
data, the number of successfully detected faulty SPNDs 
increased, resulting in accuracies of 100%. This change 
confirms that the provision of subsequent fault-tolerant 
measures to the twin model can efficiently enhance the 
detection accuracy and improve the capacity to parse the 

signal correlation for the model, which is sufficient for 
maintaining healthy monitoring of the system.

5  Conclusion

In this study, we proposed a twin model-based fault detec-
tion method along with a tolerance strategy for in-core 
SPNDs. The twin model consists of a combination of sub-
models built by GRNN, which can extract the inner correla-
tion of multidimensional data through deep learning from 
historical SPND signals. Compared with other methods, 
the twin model can obtain a higher prediction precision and 
help improve CNFMS measurements. The fault detection 
phase is based on calculating the error probability distribu-
tion of the model outputs that can determine the existence 
of single-and multi-point faults. This technique can maintain 
a detection accuracy of nearly 100%. To address the prob-
lem of decreased efficiency caused by excessive failures, 
a fault-tolerant phase was developed with WKNN, which 
could search for normal signal values with the same oper-
ating conditions to replace faulty signals. Comprehensive 
steps, including troubleshooting, data substitution, and data 
verification, were conducted to achieve superior the fault-
tolerance performance. The experimental results show that 
the tolerance strategy is promising for delivering high detec-
tion quality with an accuracy of more than 99%, suggest-
ing that the proposed method can be considered adoptable. 
Furthermore, our work can be extended to other layers of 
in-core detector assemblies to achieve holistic condition-
based maintenance of the monitoring system.
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