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ABSTRACT

Topological flux prediction (TFP) aiming to model spatiotemporal fluid trans-
port over networked systems, has inspired and lent itself to various predictive
methods. Whereas Graph Neural Networks (GNNs) demonstrate successes in
related prediction tasks, recent studies suggest that they can underperform even
simple baselines in TFP, concluding that GNNs may be ill-suited for such prob-
lems. In this paper, we re-examine this claim by dissecting the learning be-
havior of GNNs on fluid networks, decoupling the roles of boundary nodes,
which regulate total influx, from interior nodes. We find that the dominant pre-
diction errors arise at boundary nodes, which do not necessarily imply a fun-
damental limitation in the expressive power of GNNs. We interpret this phe-
nomenon from a dynamical-systems perspective, arguing that GNNs incur sub-
stantial boundary losses mainly due to the lack of explicit modeling of bound-
ary conditions. To compensate this information deficit, we propose a novel
ghost-TFP framework, which learns ghost node proxies with an implicit solver
to capture boundary-aware representations. Experimental results on two real
datasets show that our method ghost-TFP improves standard GNNs by re-
ducing the average MSE by 8.35% and 5.0%, and the boundary node MSE by
11.2% and 7.1%, respectively. For efficiency, we further devise an explicit solver
that learns inverse operators which, depending on the underlying GNN back-
bone, can accelerate inference by 2× on both datasets. Codes are available at
https://anonymous.4open.science/r/Ghost-Node-GNN-FB1E.

1 INTRODUCTION

Flux prediction enjoys broad use in fluid systems (Kratzert et al., 2021; Jin et al., 2023), e.g., flood
forecasting (Jiang et al., 2025; Bentivoglio et al., 2025b), hydrochemical modeling (Mangold &
Tsang, 1991), estuarine circulation (Geyer & MacCready, 2014), among others. Since such systems
unfold in both space and time, Graph Neural Network (GNN) (Zhou et al., 2020; Wu et al., 2020)
emerges as a seemingly plausible modeling choice, given its demonstrated success in related tasks
such as traffic forecasting (Jin et al., 2023) and energy transmission (Varbella et al., 2024).

Yet, recent studies reveal that GNNs often ignore the underlying fluid dynamics and learn absurd
patterns from data, e.g., predicting fluxes moving from downstream to upstream, which violate grav-
ity and conservation laws (Kirschstein & Sun, 2024). As a result, some conclude that incorporating
fluid system topology offers little benefit, as GNNs underperform even simple baselines like multi-
layer perceptrons (MLPs), which do not model graph structure at all (Kirschstein & Sun, 2024).

In this paper, we argue that such conclusions are premature. We revisit the prediction loss pat-
terns from GNN-based flux models and find that the dominant errors lie at the boundary nodes.
As Figure 1 illustrates, whereas boundary nodes account for more than half of the total nodes in a
fluid network, existing models consistently yield much higher prediction errors on them compared
to interior nodes. In fact, if we restrict evaluation to interior nodes alone, GNN predictors signifi-
cantly outperform baseline MLPs. This discrepancy suggests that treating all nodes equally without
distinguishing boundary from interior may underlie the perceived failure of GNNs in fluid systems.

To scrutinize this observation further, we analyze the GNN learning behavior from a dynamical-
system perspective (Poli et al., 2019), where message-passing simulates the update of node states
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 %

Interior

Total node #358

Boundary
Nodes Nodes

Avg. MSE per node

Model Boundary Interior Diff. (%)

ResGCN 0.1408 0.0985 30.04%
ResGAT 0.1401 0.0836 40.33%
GCNII 0.1511 0.0891 41.03%

GNN error (avg.) 0.1217 –

MLP 0.1210 0.1030 14.89%
MLP error (avg.) 0.1135 –

Figure 1: A fluid network from the LamaH-CE2 dataset, where boundary nodes account for more than half
of the graph topology. Although standard GNNs outperform a simple baseline (e.g., MLP) on interior nodes,
a misleading conclusion may arise due to their larger loss on boundary nodes, resulting in a higher overall
average MSE. We hypothesize that this is because GNNs lacking explicit modeling of boundary condition,
which is essential in classic PDE-based flux prediction models for networked fluid systems.

under local interaction rules (e.g., a differential equation), while each such layer proceeds a dis-
crete time step (e.g., an Euler step). Boundary conditions in such systems constrain their solution
space (LeVeque, 2007). In GNN-based flux models, boundary nodes are discrete counterparts of
these conditions, as they regulate influx into the entire network. We hypothesize that such regulation
power of boundary conditions acts as strong inductive bias, and incorporating it into the learning
process is critical to unleashing the full potential of GNNs in flux prediction tasks.

To instantiate and validate our hypothesis, we propose a novel computing paradigm, termed
ghost-TFP, where we borrow the ghost node technique (Tseng & Ferziger, 2003) from finite-
difference methods (FDM) to estimate boundary conditions. Specifically, we approximate ghost
nodes by extrapolating from boundary nodes and their immediate (downstream) neighbors. This im-
poses recursive coupling on message-passing, where each boundary node depends on ghost nodes,
whose embeddings are in turn defined by interior and boundary nodes themselves. Unknown node
representations thus appear on both sides of the update equations, making standard layer-wise GNN
training inapplicable. To solve this, we adopt implicit GNN (Gu et al., 2020), which recasts message-
passing as a fixed-point problem and seeks an equilibrium that aligns node representations with the
structural relationships determined by boundary conditions.

Note, imposing different boundary conditions on fluid system may derive disparate structural cou-
plings among ghost, boundary, and interior nodes. Each such coupling defines a unique augmen-
tation of graph adjacency, which entails extensive craftsmanship to adapt the implicit GNN solver
to every possible augmentation. To counter this, we further unify our framework by treating the
inverse of the augmented adjacency as a learnable operator, lending a closed-form approximation to
the implicit solution. Specific contributions in this paper are summarized as follows.

(1) We decouple error sources in GNN-based flux models and find the dominant loss stems from missing ex-
plicit boundary-node modeling.

(2) We propose ghost-TFP to learn boundary conditions via ghost-node proxies; it outperforms GNN base-
lines by 6.68% on average and mitigates the boundary–interior loss gap by 11.03% on two real datasets.

(3) We devise a unified operator-learning view within ghost-TFP that avoids hand-crafted adjacency in im-
plicit solvers, yielding up to 2× training speedup (backbone-dependent) without sacrificing accuracy.

2 PRELIMINARIES

Notation and Problem Statement. Let G = (V,E) denote a directed fluid network, where nodes
V represent local observation points and edges E indicate the direction of flow. We define the
adjacency A ∈ {0, 1}|V |×|V |, such that Ai,j = 1 if there exists a directed edge from node vi to vj ,
and Ai,j = 0 otherwise. Note that A ̸= A⊤. A node vj is said to be a neighbor of vi, denoted
vj ∈ N (i), if Aj,i = 1.

At time t, each node vi ∈ V is associated with a feature matrix hi ∈ RW×d, which stores d physical
measurements (e.g., velocity, pressure, slope) over a historical window of W time steps. Stacking
features across all nodes yields a tensor H = [h1, . . .h|V |]

⊤ ∈ R|V |×W×d. The goal of flux
prediction is to learn a predictive model f that forecasts a target physical quantity (e.g., flux volume)
at a future step t+ n, with n the prediction horizon. Let y ∈ R|V | denote the ground-truth values of
this target quantity. Our learning objective is to minimize the empirical loss ℓ

(
y, f(H,A)

)
.

We define the boundary nodes VBN, as those with zero in-degree, i.e., deg−(vb) = 0, ∀vb ∈ VBN.
Intuitively, these nodes lie at the most upstream points of G and regulate the influx into the whole
system. The remaining nodes are referred to as interior nodes, defined as VIN = V \ VBN.
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3 PROBLEM ANALYSIS
A paradoxical observation is that if the predictive model f is instantiated as GNN, it often under-
performs simple baselines (e.g., MLP) and shows little difference between predictions computed
from f(H,A) and f(H,A⊤). Here, as A encodes the ground-truth forward fluid flow, A⊤ repre-
sents a physically-implausible, reversed flow. Kirschstein & Sun (2024) concludes that GNNs may
not work in flux prediction tasks, as they fail to distinguish directional flow consistency, which is
fundamental in physical systems.
3.1 GNNS AS NEURAL DIFFERENTIAL EQUATIONS.
We argue that such a conclusion is premature and advocate an alternative interpretation through the
lens of numerical solvers (Liu et al., 2025). Write a standard message-passing update as

h
(l+1)
i = h

(l)
i +

∑
vj∈N (i) ψ

(l)(h
(l)
i ,h

(l)
j ), h

(0)
i = hi, (1)

where h(l)
i denotes the representation of node vi at layer l, and ψ(l) is the message function aggregat-

ing information from its upstream neighbors vj ∈ N (i). We view Eq. (1) as an explicit integration
scheme, that mimics a partial differential equations (PDEs) solver (LeVeque, 2007), such as

ut+1(xi) = ut(xi) + ∆t · F (ut(xi), ut(xi+1)), (2)

s.t. ut(xi+1) ≈ B(ut(xi)), ∀vi ∈ VBN (3)

where ut(xi) is the state of a physical quantity (e.g., flux volume) at location xi and time t, and
F represents the spatial derivative or transport dynamics. Consider, for example, a discretized ad-
vection equation (Chock, 1991) that implements F (ut(xi), ut(xi+1)) = ∂

∂x (u
t(xi+1) − ut(xi)),

which models the propagation of the quantity through its upstream neighbor xi+1. We can observe
an algebraic similarity between Eq. (1) and Eq. (2), where the GNN layer index l parallels the time
step t, and the message function ψ acts as the discrete derivative F across the graph topology.

A natural question arises: if PDE solvers operate robustly and in a topology-aware manner for fluid
systems, and message-passing mimics their computational structure, then why do GNNs empirically
fail on the same tasks?
Boundary Information Deficit. We hypothesize that a critical missing component in message-
passing is the lack of boundary information. PDE solvers explicitly enforce such conditions, as seen
in Eq. (3), which defines the derivative term F at the boundary location xb. Intuitively, when xb lies
at the spatial boundary, its upstream neighbor xb+1 is undefined, invalidating the computation of the
flux term F in Eq. (2). The boundary condition in Eq. (3) complements this by prescribing how F
should be computed solely from the local state ut(xb). To wit, a Robin-type (Busse et al., 2017)
boundary condition specifies Eq. (3) as

ut(xb+1) = ω1 · ut(xb) + ω2 · ∂ut(xb)/∂x, (4)

with ω1, ω2 ∈ R, which closes the dynamical system by postulating an interpolation between xb and
its spatial derivative to approximate the undefined, out-of-boundary xb+1.

In contrast, GNNs lack mechanism to compensate for this information deficit at graph boundaries.
For a boundary node vb which, by definition, has no incoming edge and thus no upstream neighbor,
namely N (b) = ∅. As a result, Eq. (1) collapses to h

(l+1)
b = h

(l)
b + ψ(l)(h

(l)
b ,0), meaning that the

update of vb depends solely on its own features and receives no information from the graph topology.
This isolation over successive layers leads to degraded boundary node embeddings and, eventually,
to substantial prediction errors.
3.2 EMPIRICAL VALIDATION.
To validate our hypothesis, we analyze and compare the prediction losses of ResGAT (Residual
Graph Attention Networks) and MLP by separating the errors incurred at boundary versus interior
nodes. The results are summarized in Table 1. Table 1: Node-wise MSE Comparison

Node Type MSE For. (A) MSE Rev. (A⊤)

Boundary (VBN) .1401 .1350
Interior (VIN) .0836 .0939
All nodes (V ) .1166 .1179

MLP .1135

We make two observations from these results. First,
the overall mean squared error (MSE) mislead-
ingly suggests that the GNN underperforms an MLP
(.1166 > .1135), when in fact the GNN performs
substantially better in regions where it can leverage
graph topology. The failure of GNN is mainly attributed to the boundary nodes, incurring a .1401
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MLPMean

Ghost Node

Implicit Solver

Implicit GNN

Input: Output:

Inverse Operator Learner

Densify

stop at
subject to

Figure 2: Overview of the proposed ghost-TFP framework. Left: Ghost-node construction (Section 4.1).
For each boundary node vb, we introduce a corresponding ghost node vg . Its embedding hg is learned from
the boundary embedding hb and the aggregated embeddings of its downstream interior neighbors hnbr. Middle:
Implicit solver (Section 4.2). We perform implicit message passing on the augmented graph with ghost nodes
using a fixed-point solver, converging to H′⋆. Shared parameters Θ are applied consistently across updates.
Right: Explicit inverse-operator learning (Section 4.3). We learn an explicit inverse operator on the densified
adjacency A′

Θ
†, enabling layer-wise updates through a learnable inverse mapping.

MSE. This large boundary loss obscures the otherwise strong performance of GNN-based flux pre-
diction on interior nodes, where MSE drops to .0836. Second, the seemingly similar overall losses
using the ground-truth forward flow A (.1166) and the reverse flow A⊤ (.1179) are deceptive. The
forward model is disproportionately penalized by boundary node errors, which suppress its aver-
age performance and mask its superiority over the reversed model. When focusing on interior nodes
only, the forward model achieves an MSE of .0836, outperforming the reversed model at .0939. This
aligns with physical intuition and demonstrates the positive impact of graph topology on learning
meaningful representations in regions where directional flow information is available.

Note, these MSE results are normalized, where .001 change means 1% flux volume change. For
a mid-size river network (Discharge: 100m3/s), a .01 MSE error in discharge prediction equals a
daily volume discrepancy of 86,400m3, which equals to ∼35 Olympic pools. This may cause critical
failure with cascading consequences, e.g., threaten the survival of aquatic species (Poff et al., 1997),
lead to dangerous underestimations of pollution risk (Whitehead et al., 2009), and be amplified into
financial losses for hydropower and navigation (Lehner et al., 2005; Jonkeren et al., 2007).

4 THE GHOST-TFP APPROACH
This section presents our ghost-TFP computing paradigm. Traditional GNNs lack the mecha-
nism to model upstream boundary influence, which leads to degraded performance near the sys-
tem boundaries. To address this, we introduce ghost nodes as boundary-aware proxies that restore
physical consistency in both implicit and explicit settings. In Section 4.1, we describe how to con-
struct and learn ghost node embeddings based on surrounding interior and boundary information.
Section 4.2 formulates an implicit solver that integrates ghost nodes into a fixed-point framework
inspired by numerical PDE methods. Section 4.3 further provides a computationally efficient, ex-
plicit counterpart by learning a dense inverse operator, allowing layer-wise updates that preserve
boundary-awareness while avoiding the cost of fixed-point iteration.
4.1 LEARN GHOST NODE PROXIES
To remedy the boundary information deficit in GNNs, we propose to learn the boundary proxy from
data through the ghost node method (Tseng & Ferziger, 2003). Let vg denote a virtual ghost node
corresponding to a boundary node vb, and vnbr denote the interior (downstream) neighbor of vb, such
that vnbr ∈ {vj | vb ∈ N (j)}. We draw insights from PDE solvers to learn the embedding of vg
from the structural coupling among vg , vb, and vnbr. Specifically, we can discretize a Robin-type
boundary condition in Eq. (3) and Eq. (4) to derive h

(l)
g = ω1 · h(l)

b + ω2 · (h(l)
b − h

(l)
nbr)/∆x, where

h
(l)
nbr is the embedding of vnbr at the l-th layer. We parameterize ω1 and ω2 via an MLP, defined as

h
(l)
g = MLP(Concat(h(l)

b ,h
(l)
nbr); θgh). (5)

The total number of such ghost nodes equates to boundary nodes. Defining the set of ghost nodes
VGH = {vg}, we have |VGH| = |VBN|. To proceed message-passing, we define a graph augmentation
operator A, which takes the original graph as inputs and augments it with ghost nodes as follows.

(A′,H′) = A(A,H), (6)

where H′ = [H, {hg}|VBN|]
⊤ ∈ R(|V |+|VGH|)×W×d denotes the augmented node feature matrix,

and A′ ∈ {0, 1}(|V |+|VGH|)×(|V |+|VGH|) is the augmented adjacency, such that A′
i,j = 1 if vi is an

(upstream) neighbor of vj , namely vi ∈ N (j), and A′
i,j = 0 otherwise.
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The augmentation in Eq. (6) connects each ghost node to a downstream boundary neighbor in a
deterministic way, which challenges layer-by-layer message passing. Specifically, the update of
ghost nodes in numerical methods (Tseng & Ferziger, 2003) takes the following form

(1− δ21∆t
δ2

)ut+1(xb) + ( δ1∆t
δ2

)ut+1(xg) = ut(xb), (7)

where δ1, δ2 ∈ R are two physical coefficients. The derivation from Eq. (2) and Eq. (3) to Eq. (7)
are deferred to Appendix 8.5 due to the space limit. Drawing analogy to Eq. (7), learning the ghost
node embeddings is constrained by α1 · h(l+1)

b + α2 · h(l+1)
g = h

(l)
b , ∃α1, α2 ∈ R, resulting in the

message-passing on boundary node as:

h
(l+1)
b = h

(l)
b +

∑
vg∈N (b) ψ

(l)(h
(l)
b ,h

(l)
g ), s.t. α1 · h(l+1)

b + α2 · h(l+1)
g − h

(l)
b ≈ 0. (8)

Main steps for ghost-node learning are presented in Algorithm 8.7.1 in Appendix 8.7. Note that
computing h

(l+1)
g again requires information from h

(l+1)
b and its downstream neighbor, as indicated

by Eq. (5). This forms a coupled system (LeVeque, 2007), where unknown variables appear on both
sides of the update equation, necessitating implicit solver via fixed-point iteration.

4.2 IMPLICIT GHOST-BOUNDARY MESSAGE-PASSING

To learn Eq. (8), we propose an implicit GNN solver, aiming to find an equilibrium that satisfies

min
f,θgh,Θ

ℓ
(
y, f

(
H′(L)))

, l = [0, . . . , L− 1], (9)

s.t. ΠA

(
I
(
A′H′(l+1)

Θ
))

= H(l), ∥Θ∥∞ ≤ 1/λpf(A
′),

where I(·) represents the implicit solver. ΠA(·) projects node embeddings from the augmented
graph (including ghost nodes learned by θgh) back to the original node indices in G. Unlike tradi-
tional layer-wise message-passing, where each layer l is associated with its own learnable weight
matrix, our design shares one single parameter matrix Θ across all implicit update steps (i.e., be-
tween l and l + 1). We adopt the fixed-point update scheme (Gu et al., 2020) to solve Eq. (9).

The gradient of prediction loss ℓ with respect to the parameter W ∈ θgh ∪ Θ can be derived as
∇W ℓ = ⟨∂(A′H′(l+1)

Θ)/∂W,∇Zℓ⟩, where ∇Zℓ is the derivative through a fixed point X that
satisfies the implicit relation Z = σ(A′XΘ), with the non-linear activation σ embedded in I(·)
for improved representational expressivity (Chen et al., 2023). This fixed point induces an implicit
gradient ∇Zℓ = D⊙ (A′⊤∇ZℓΘ

⊤+∇Xℓ), whereD = σ′(A′XΘ) is the Jacobian of the activated
output, computed element-wise as σ′(z) = dσ(z)/dz, and ⊙ denotes an element-wise multiplica-
tion. The equilibrium for ∇Zℓ enjoys a unique solution under well-posedness conditions by iterating
it to convergence. In practice, we adapt the Picard iteration (Berinde, 2007) to jointly compute ∇Zℓ
and X at each iteration. Once we have ∇Zℓ, the gradient ∇W ℓ immediately follows by using chain
rule via auto-differentiation (Ren et al., 2023).

To ensure the unique solution of Θ, we follow (Gu et al., 2020) to impose a spectral constraint via
Perron-Frobenius norm. Intuitively, if the spectral strength A′⊤Θ is too large, the fixed-point it-
eration may diverge. To analyze and control its magnitude, we vectorize the implicit mapping as
vec(A′H′(l+1)

Θ) = (Θ
⊤ ⊗A′) vec(H′(l+1)

), so that we can single out the impact of A′⊤Θ during
optimization. The Kronecker product ⊗ multiplies each element of A′ onto the matrix Θ (Schacke,
2004), which expands the bilinear operator into a matrix acting on the vectorized node embed-
dings. The Perron-Frobenius eigenvalue λpf(A

′) computes the largest eigenvalue of the augmented
adjacency A′, which measures the maximal amplification factor of the augmented graph topol-
ogy (Berman & Plemmons, 1994). ∥Θ∥∞ takes the maximum absolute row sum, which provides
a convex upper bound on its spectral norm (Zheng & Wang, 2008). To stabilize implicit updates
and expedite convergence, we have λpf(A

′⊤Θ) ≤ λpf(A
′)∥Θ∥∞ ≤ 1 to bound the spectral strength

A′⊤Θ which gives the constraint term in Eq. (9). Algorithm 8.7.2 in Appendix 8.7 summarizes the
main steps for the implicit fixed-point solver.

4.3 EXPLICIT ADJACENCY-INVERSE SOLVER

While the ghost nodes compensate for the boundary information deficit, and Eq. (9) provides an im-
plicit yet effective solution for them, this solution suffer from two key efficiency limitations. First,
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as shown in Figure 4a, although the ghost node-enhanced implicit GNN reduces the prediction loss
on boundary nodes by 7.2 %, it suffers from high computational cost, running approximately 13×
slower than standard layer-wise message-passing GNNs. Second, the structure of the augmented
adjacency A′ can vary w.r.t. the modeling choice of boundary condition. In practice, different nu-
merical schemes, e.g., Robin-type as we used in Eq. (4), can be used to impose boundary constraint
on the same physical system. As such, our implicit solver that assumes a fixed A′ loses flexibility
in adapting to such variations to learn ghost node proxies.

These limitations motivate us to tailor a layer-by-layer counterpart to the implicit solver in Eq. (9),
which can encode boundary conditions by learning ghost nodes, while preserving the computational
efficiency of a standard GNN.

41.0 %
40.3 %

29.9 %

Figure 3: Boundary vs. interior MSE (two left axes)
and wall-clock runtime (right axis) for two backbone
GNNs and our proposed implicit solver with ghost
nodes. Observe that while the implicit solver reduces
prediction error at boundary nodes and mitigates the
boundary-interior loss gap, it incurs a runtime overhead
of over 14× compared to standard GNNs.

Observing Eqs. (5), (6), and (8), we note that
although A′ connects each ghost node vg only
to its downstream boundary node vb, the com-
putation of hg in fact depends on both hb and
the interior neighbor embeddings hnbr. This
reveals an implicit computational graph that
spans hg , hb, and hnbr, lending to consider
whether we can construct a weighted adja-
cency matrix A′

Θ ∈ R(|V |+|VGH|)×(|V |+|VGH|)

that captures these interactions in a layer-wise
message-passing regime.

To this end, we decompose the augmented ad-
jacency A′ into two subgraphs. The first is a
standard GNN over the augmented node set V ∪ VGH, where each node (whether interior, boundary,
or ghost) participates in message passing. We let wi,j denote the message-passing weight from node
vj to vi, with vi, vj ∈ V ∪ VGH. The second is a bipartite subgraph linking ghost nodes VGH to
original nodes V , which reflects how ghost nodes are constructed from the boundary condition. Let
pi,j denote the interpolation weight from an original node vi ∈ V to a ghost node vj ∈ VGH, of
which the edges are restricted to connect nodes across the bipartition. This allows us to encode var-
ious boundary condition types in a unified message-passing framework. For example, write hg and
hb the ghost and boundary node embeddings, respectively, and let hnbr1 , hnbr2 denote the embed-
dings of the immediate and second-order interior (downstream) neighbors of boundary, respectively.
Under a first-order condition, the ghost node proxy is defined as hg = pb,ghb + pn1,ghnbr1 . For
second-order, it becomes hg = pb,ghb + pn1,ghnbr1 + pn2,ghnbr2 . Each such augmentation changes
the structure of the rows in A′ corresponding to vg , introducing new learnable parameters in A′

Θ.
Upon these intuitions, we define (i, j)-th entry of A′

Θ as follows.

A′
Θ[i, j] =


1 if i = j

pi,j if vi ∈ V and vj ∈ VGH

wi,j if vi ∈ V and vj ∈ N (i)

0 otherwise

.

This A′
Θ reduces the implicit solver in Eq. (9) to an explicit solution linear system

ΠA

(
A′

ΘH′(l+1))
= H(l), which enjoys a closed-form solution H′(l+1)

= A′
Θ

†
H′. Here, † de-

notes the Moore-Penrose inverse (Prasad & Bapat, 1992), and the ghost node-padded tensor H′ is
defined in Eq. (6). We present a concrete examples in Appendix 8.6. One key property of the in-
verse is producing dense matrices (Chamberlain et al., 2021), which reflects the global coupling of
the system and allows to bypass the limitation of using a sparse, hand-crafted A′. To operationalize
this idea, we learn A′

Θ
† by approximating the inverse operator through a trainable GNN as

min
f,θgh,Ψ

ℓ
(
y, f

(
A′

Θ
†
H′(L)))

, l = [0, . . . , L− 1], (10)

s.t. H′(l+1)
= A′

Θ
†
H′(l),A′

Θ
†
= Ψ(A′

Θ),A′
Θ

†
A′

Θ ≈ I,

where the goal is to learn an inverse operator Ψ that approximates A′
Θ

†, and the regularization term
A′

Θ
†
A′

Θ ≈ I enforces an inverse constraint. We learn this operator because analytical inversion can
be computationally expensive and unstable, especially as A′

Θ may vary across samples and training
iterations. A learned Ψ provides an approximation that generalizes across boundary structures. In
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implementation, we can parameterize Ψ using a differentiable architecture such as a GNN or low-
rank factorization. For the explicit inverse-operator learner, see Algorithm 8.7.3 in Appendix 8.7.

5 EXPERIMENTS

Datasets. We evaluate on two directed-network datasets. (i) River A real-world river network
preprocessed from LamaH-CE2 (Klingler et al., 2021) over the Danube basin, providing hourly dis-
charge and meteorological records. The graph has 358 nodes and 357 directed edges, partitioned
into 209 boundary and 149 interior nodes. Each node has five features: discharge, surface air pres-
sure, precipitation, temperature, and soil moisture. (ii) Blood flow A simulated arterial-network
dataset generated with openBF (Benemerito et al., 2024), on a Circle of Willis model (Vrselja et al.,
2014); we use a connected subnetwork with 14 nodes and 14 directed edges. Each node carries
four features: flux, pressure, velocity, and cross-sectional area. For both datasets, model inputs are
formed by concatenating the past W hours of features along the channel dimension; the prediction
target is flux y ∈ R|V | at horizon t+n. All variables are independently normalized via z-score to
ensure consistent scaling across nodes and variables.

Metrics. We evaluate models under a supervised node regression setup, following (Kirschstein &
Sun, 2024; Jiang et al., 2025). Given W hours of historical flux data for all nodes, the goal is to
predict the flux volume n hours ahead. In our setting, we use W = 24 and a forecast horizon of
n = 6 hours. We compute the mean-squared error (MSE) on three node sets: all nodes ℓ(ŷ,y) =
1

|V |
∑

vi∈V (ŷi − yi)
2, boundary nodes ℓBN (ŷ,y) = 1

|VBN|
∑

vi∈VBN
(ŷi − yi)

2, and interior nodes
ℓIN (ŷ,y) = 1

|VIN|
∑

vi∈VIN
(ŷi − yi)

2.

Competitors. We compare with several GNN baselines, including residual variants of graph con-
volutional networks (ResGCN) (Wu et al., 2019), graph attention networks (ResGAT) (Veličković
et al., 2017) and GCNII (Chen et al., 2020). They also serve as backbone for ghost-TFP. We
further compare against a dense graph transformation as ablation study (Wang et al., 2025).

Implementation. We implement the Robin-type boundary condition to model the structural cou-
pling among vg , vb, and vnbr, as defined in Eq. (5). The message-passing layers are implemented
using ResGCN, ResGAT and GCNII, with 128 dimensional node embedding, applying ReLU ac-
tivation to every non-linear layer. We adapt the Picard search method (Paniconi & Putti, 1994) to
accelerate the implicit GNN training, following Gu et al. (2020). We use a fully connected and train-
able adjacency matrix to learn the inverse operator. For ablation study, we learn it over symmetric
(i.e., A′

Θ
† in Eq. (10)) and asymmetric (i.e., A′†Θ, A′ in Eq. (6) and Θ in Eq. (9)) versions, follow-

ing Wang et al. (2025), with detailed results and analysis deferred to RQ5. For the compared models,
we implement their GNN architectures following Kirschstein & Sun (2024) and evaluate their results
on both ground-truth, forward flow (i.e., A) and the physically-implausible, reverse flow (i.e., A⊤),
which enables to verify whether adding boundary condition will improve their topology-awareness
during training, with results deferred to RQ2.

RESULTS AND ANALYSIS

Based on the results in Table 2, 3 and 4, we answer the following research questions (RQ1–5):

RQ1. To what extent can ghost nodes compensate boundary information deficit in GNN training?

We answer this question by analyzing the improvement of adding ghost nodes in existing GNN
backbones even in naive ways. Specifically, we implement Eq. (5) to use an MLP to learn and
add ghost nodes, link them to their corresponding boundary nodes, and then run standard message
passing. For River, before adding ghost nodes, standard GNNs often underperform the topology-
agnostic MLP due to high errors on boundary nodes. Adding ghost nodes directly reduces boundary
MSE across all backbones by 10.7% for ResGAT, 6.7% for ResGCN, and 15.7% for GCNII, and cuts
overall Test MSE by 8.83% for ResGAT, 5.68% for ResGCN, and 10.53% for GCNII, bringing them
below the MLP baseline (0.1135). For Blood, adding ghost nodes reduces Boundary MSE by 7.01%
/ 5.96% / 7.99% for ResGAT / ResGCN / GCNII and reduces Avg MSE by 5.19% / 4.57% / 5.34%.
All ghost-enhanced backbones are below the MLP baseline (0.0670). These results confirm that
by correctly modeling boundaries, ghost nodes consistently compensate for boundary-information
deficits and allow GNNs to outperform topology-agnostic models across both datasets.

RQ2. Will adding ghost nodes improve the topology-awareness of standard GNNs?

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: MSE comparison for River (left) and Blood (right), with Boundary/Interior breakdown. Shaded rows
show group means: Avg (Base) averages the three baselines (GCNII, ResGCN, ResGAT), and ghost-TFPAvg

averages their ghost counterparts. Diff (%) is the relative difference between boundary and interior.

Flux Predictors River Blood
Avg. Boundary Interior Diff. (%) Avg. Boundary Interior Diff. (%)

GCNII 0.1253 0.1511 0.0891 41.03 0.0674 0.1451 0.0363 74.98
ResGCN 0.1232 0.1408 0.0985 30.04 0.0569 0.1140 0.0341 70.09
ResGAT 0.1166 0.1401 0.0836 40.33 0.0482 0.1056 0.0252 76.14
Avg (Base) 0.1217 0.1440 0.0904 37.13 0.0575 0.1216 0.0319 73.74
ghost-TFPGCNII 0.1121 0.1274 0.0906 28.89 0.0638 0.1335 0.0359 73.11
ghost-TFPResGCN 0.1162 0.1313 0.0950 27.65 0.0543 0.1072 0.0331 69.12
ghost-TFPResGAT 0.1063 0.1251 0.0800 36.05 0.0457 0.0982 0.0247 74.85
ghost-TFPAvg 0.1115 0.1279 0.0885 30.86 0.0546 0.1130 0.0312 72.36

Table 3: Topological comparison of Fwd, Rev, and ghost-TFP on River and Blood. In each cell, the first line
shows Avg with its change relative to Rev; the second line (with results parenthesized) shows Boundary with
its change relative to Rev. ↑ indicates better (lower MSE), and ↓ indicates worse (higher MSE).

River Blood
Backbone Fwd Rev ghost-TFP Fwd Rev ghost-TFP

GCNII 0.1253 (↑ 2.8%)
(0.1511 (↓ 1.5%))

0.1289
(0.1488)

0.1121 (↑ 13.0%)
(0.1274 (↑ 14.4%))

0.0674 (↓ 3.7%)
(0.1451 (↓ 9.1%))

0.0650
(0.1330)

0.0638 (↑ 1.8%)
(0.1335 (↓ 0.4%))

ResGCN 0.1232 (↑ 1.0%)
(0.1408 (↓ 2.8%))

0.1245
(0.1369)

0.1162 (↑ 6.7%)
(0.1313 (↑ 4.1%))

0.0569 (↓ 3.1%)
(0.1140 (↓ 9.4%))

0.0552
(0.1042)

0.0543 (↑ 1.6%)
(0.1072 (↓ 2.9%))

ResGAT 0.1166 (↑ 1.1%)
(0.1401 (↓ 3.8%))

0.1179
(0.1350)

0.1063 (↑ 9.8%)
(0.1251 (↑ 7.3%))

0.0482 (↓ 4.6%)
(0.1056 (↓ 9.9%))

0.0461
(0.0961)

0.0457 (↑ 0.9%)
(0.0982 (↓ 2.2%))

Yes. From Table 3, the ResGAT scores 0.1166 (Fwd) vs. 0.1179 (Rev), a tiny 0.0013 gap (≈ 1.1%);
after adding ghost nodes the forward MSE drops to 0.1063 while the reverse stays at 0.1179, widen-
ing the gap to 0.0116 (10.9%), i.e. 8.9×. ResGCN’s gap grows from 0.0013 (1.1%) to 0.0083
(6.7%), a 6.3× boost, and GCNII’s from 0.0036 (2.9%) to 0.0168 (15.0%), a 4.7× boost. On
Blood, the baseline shows a mild reverse-over-forward advantage: Fwd vs. Rev = +4.56% / +3.08%
/ +3.69% for ResGAT / ResGCN / GCNII (“+” means forward is worse). After adding ghost nodes,
the forward models outperform the baseline reverse: Fwd vs. Rev = −0.87% / −1.63% / −1.85%,
respectively. This indicates that ghost nodes remove boundary-induced confounding and restore
direction-consistent behavior across datasets.

RQ3. How effective can the implicit GNN training as defined in Eq. (9) learn ghost nodes over
naı̈ve layer-wise message-passing? Table 4: Ablation results on Boundary Nodes (BN) in MSE. White

and gray rows indicate results from using the directional (A′†) or
bidirectional (A′

Θ
†) inverse operators, respectively.

Inv. Op. River Blood

w/o Ghost w/ Ghost w/o Ghost w/ Ghost

Implicit GNN 0.1119 (0.1273) 0.1082 (0.1236) 0.0586 (0.0743) 0.0557 (0.0708)

ResGAT + A′† 0.1122 (0.1333) 0.1057 (0.1233) 0.0450 (0.0632) 0.0440 (0.0615)
ResGAT + A′

Θ
† 0.1160 (0.1358) 0.1033 (0.1171) 0.0451 (0.0627) 0.0434 (0.0608)

ResGCN + A′† 0.1194 (0.1339) 0.1151 (0.1310) 0.0533 (0.0732) 0.0524 (0.0716)
ResGCN + A′

Θ
† 0.1195 (0.1378) 0.1127 (0.1275) 0.0531 (0.0728) 0.0516 (0.0708)

GCNII + A′† 0.1225 (0.1482) 0.1109 (0.1279) 0.0638 (0.0869) 0.0619 (0.0838)
GCNII + A′

Θ
† 0.1237 (0.1503) 0.1040 (0.1203) 0.0630 (0.0851) 0.0612 (0.0825)

Table 4 shows that the fixed-point
training in Eq. (9) already improves
over naı̈ve propagation: on River,
relative to the naı̈ve baselines, it
reduces the average error by 0.0080
and 0.0039 (−6.9% and −3.5%)
compared with ghost-TFPResGCN
and ghost-TFPGCNII, while
ghost-TFPResGAT remains roughly
unchanged; on Blood, the im-
plicit variant (w/ Ghost) achieves
0.0557, outperforming the naı̈ve
ghost-TFPGCNII (0.0638, −12.7%). Moving to the stronger inverse-operator learner with
richer connectivity A′

Θ
† (Table 4) further reduces errors on both datasets: for River, the results

are 0.1033 (ghost-TFPResGAT, −2.8%), 0.1127 (ghost-TFPResGCN, −3.0%), and 0.1040
(ghost-TFPGCNII, −7.2%); for Blood, the results are 0.0434 (ghost-TFPResGAT, −5.0%),
0.0516 (ghost-TFPResGCN, −5.0%), and 0.0612 (ghost-TFPGCNII, −4.1%). The two tables
demonstrate that implicit fixed-point solvers exploit ghost-node information more effectively than
naı̈ve layer-wise propagation and keep improving with richer connectivity patterns A′

Θ.

RQ4. Can the explicit inverse operator learning reduce the runtime overhead of implicit computa-
tion without compromising prediction accuracy?
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Yes. From Table 4, the explicit inverse-operator learner (A′
Θ) reduces ResGAT’s MSE from 0.1082

(Implicit GNN w/ Ghost) to 0.1033 (4.5%) while shrinking the runtime ratio from 13.8 to 6.0, i.e.,
about 2.3× faster; on the GCNII backbone it lowers the error from 0.1082 to 0.1040 (3.9%) with
a similar speed-up. On Blood, explicit inverse-operator learner maintains or improves accuracy,
achieving relative improvements of 22.0% and 7.4% on ResGAT and ResGCN, respectively, over
the Implicit GNN w/ Ghost reference (0.0557). The runtime acceleration is similar to that observed
on River. These results indicate that directly learning the inverse operator achieves higher accuracy
with significantly lighter computation than iteratively solving fixed-point equations (Gu et al., 2020).

RQ5. Is it better to learn inverse over the parametric adjacency A′
Θ or its non-parametric coun-

terpart A′, why?

Table 4 shows that, with Ghost nodes enabled, replacing the symmetric adjacency A′
Θ with its

directed counterpart A′ consistently reduces the MSE: ResGAT drops from 0.1057 to 0.1033 (2.3%),
ResGCN from 0.1151 to 0.1127 (2.1%), and GCNII from 0.1109 to 0.1040 (6.2%). On Blood,
the same preference holds with smaller margins: ResGAT drops from 0.0440 to 0.0434 (1.36%),
ResGCN from 0.0524 to 0.0516 (1.53%), and GCNII from 0.0619 to 0.0612 (1.13%).

Although the physical flow graph is strictly downstream-oriented, our bidirectional dense formula-
tion better matches the global fixed-point operator implicit GNNs approximate, enabling long-range
couplings beyond the observed sparse topology. This agrees with the benefits of dense graph trans-
formations reported by Wang et al. (2025). Physically, both domains are open systems with unob-
served exchanges (e.g., rainfall/groundwater/withdrawals in rivers; collateral and micro-circulatory
paths in vasculature). Allowing bidirectional edges in the learned adjacency helps absorb these la-
tent inflow–outflow processes, relaxes overly strict conservation biases in the observed graphs, and
improves predictive accuracy across datasets.

6 RELATED WORK

Graph Augmentation with Virtual Nodes. Adding a global virtual node to a graph is a known
technique to improve expressivity (Xu et al., 2019; Ying et al., 2021). This approach has been used
to enhance graph-level prediction (Baek et al., 2021), reduce oversquashing (Hwang et al., 2022),
and assist in physical simulations (Bentivoglio et al., 2025a; Mayr et al., 2023). However, a single
global node does not address the localized boundary information deficit critical to our problem.

Implicit Graph Neural Networks (IGNNs). IGNNs compute node embeddings as a fixed point of a
nonlinear system (Gu et al., 2020), a concept extended by deep equilibrium models (Bai et al., 2021;
2020). The IGNN paradigm has been analyzed through the lens of numerical diffusion (Chamberlain
et al., 2021) and monotone operator theory (Baker et al., 2023), with various strategies proposed to
mitigate issues like oversmoothing (Rusch et al., 2023). A key limitation remains their reliance on
expensive, iterative solvers.

Boundary conditions in PIML. BCs are central in PIML: prior work balances PDE and BC losses
via adaptive weights or architectural constraints and analyzes failure modes (Raissi et al., 2019;
McClenny & Braga-Neto, 2020; Wang et al., 2023; Krishnapriyan et al., 2021). Operator-learning
methods such as FNO often assume periodic BCs, whereas graph-based models better accommodate
complex BCs (Li et al., 2021; Horie & Mitsume, 2022; Li et al., 2024). Other studies infer unknown
BCs directly from data (Horuz et al., 2022; Zhao et al., 2022; Frerix et al., 2021). In contrast
to approaches that fix BCs, our ghost-node formulation jointly learns boundary terms and interior
dynamics in a data-driven manner (Liu et al., 2025).

7 CONCLUSION

This paper revisits the empirical shortcomings of GNNs in topological flux prediction and challenges
the prevailing conclusion that GNNs are fundamentally unsuitable for such tasks. Through a surgery
of the prediction loss behavior on fluid network, we demonstrate that the dominant source of error
lies at boundary nodes. To compensate the boundary information deficit in GNN-based flux predic-
tion, we propose a novel ghost-TFP framework, which augments GNNs with ghost nodes and an
implicit solver to incorporate physically consistent boundary conditions during training. To improve
scalability, we devise an explicit solver that learns inverse operators, enabling efficient layer-wise
computation. Experiment demonstrates that ghost-TFP improves predictive accuracy and reduces
the boundary-interior loss gap across multiple standard GNN backbones.
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8 APPENDIX

8.1 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study uses only publicly available datasets or software,
and involves no human subjects or sensitive attributes beyond what is already released. We audited
potential risks (misuse, bias, privacy) and found no foreseeable harms specific to our methods;
dataset licenses and legal compliance were respected. There are no conflicts of interest or external
sponsorship that influenced this work.

8.2 REPRODUCIBILITY STATEMENT

We aim for full reproducibility. The paper specifies model architectures and evaluation protocols;
ablation settings are detailed in Section 5. All datasets and preprocessing steps are documented in
Section 5. We provide anonymized code with fixed random seeds in the supplementary materials to
enable exact replication of results.

8.3 SUPPLEMENTARY FOR EXPERIMENTS

These figures complement the main results by contrasting the message flow topology and effi-
ciency. The bar chart compares Forward and Reverse variants across backbones, showing small
gaps between the two, while ghost-TFP and the inverse learner consistently reduce test MSE.
The scatter plot relates test MSE to runtime, where points closer to the lower-left indicate better
accuracy–efficiency trade-offs; ghost-TFP occupies this region.

(a) Forward vs. Reverse GNNs (left two bars) high-
light the similarity from different message flow di-
rection, while ghost-TFP and our inverse learner
(right two bars) drive errors lower and widen the gap
with reverse flow.

2.6 X

8.83 %

2.82 %

2.3 X

4.53 %

2.3 X

(b) Each point shows model’s test MSE against its
runtime ratio relative to the ResGAT Forward base-
line (1×). Points that fall lower and further left deliver
both lower error and faster inference, highlighting su-
perior accuracy–efficiency trade-offs.
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8.4 FROM CLOSED SUBGRAPHS TO OPEN SUBSYSTEMS

Problem overview. The 14 evaluation nodes originate from a larger, 30-node system. Training
and evaluating them as an isolated subgraph implicitly imposes a closed-system inductive bias: only
intra-graph interactions are modeled, while upstream/downstream exchanges and external forcings
are omitted. This bias disproportionately affects Boundary nodes, where missing cross-boundary
inputs manifest as inflated errors. To mitigate this, we introduce ghost nodes that learn a data-driven
proxy for the absent external coupling at the boundary, effectively “half-opening” the subgraph.

Table 5: Results for the same 14 nodes under
three settings (Subgraph / FullGraph / Ghost-
Subgraph). %∆Boundary denotes the boundary in-
crease relative to Avg, with smaller values indicat-
ing a weaker boundary penalty.

Setting Avg Interior Boundary %∆Boundary

Subgraph 0.0530 0.0355 0.0968 +82.6%
Fullgraph 0.0930 0.0891 0.1029 +10.6%
Ghost-Subgraph 0.0476 0.0342 0.0811 +70.4%

Discussion. Table 5 shows that when the
same 14 nodes are trained and evaluated as
a closed subgraph, the boundary penalty rel-
ative to the overall average is very high
(+82.6%), indicating that the omission of ex-
ternal interactions disproportionately affects
boundary behavior. Evaluating the identical
nodes inside the full graph substantially reduces
this penalty to +10.6%, reflecting the richer
upstream/downstream context and constraints
available in the larger system. When only the
subgraph is available, adding ghost nodes still narrows the gap by learning a data-driven boundary
proxy: the penalty drops from +82.6% to +70.4%, while the overall Avg also improves. Altogether,
these results support the view that closed subgraphs amplify boundary difficulty, embedding the
subsystem in the larger graph naturally balances errors, and ghost nodes provide a lightweight way
to approximate external interactions when access to external nodes is not feasible.

8.5 DERIVATION FOR A′
Θ

Notation (Symbol Table). To keep the appendix consistent with the main text, we list the symbols
used below. Only the Robin coefficients have been renamed from (α, β) to (w1, w2); the advection
speed a is unchanged, and the spatial step is uniformly denoted by ∆x.

• u(x, t): scalar state; uni is the discrete state at grid index i and time level n.
• a > 0: advection speed in the governing PDE (kept as is).
• ∆x: spatial grid spacing; ∆t: time step.

• σ :=
a∆t

∆x
: Courant number for advection.

• w1, w2: Robin boundary coefficients (replacing α, β) used only in the boundary condition.
• uL: prescribed boundary trace entering the Robin condition; when needed we use un+1

L to
indicate the time level.

• A′
Θ: implicit system matrix assembled from interior and boundary discrete equations at

time level n+ 1.

This section provides a detailed derivation for the components of the implicit system matrix A′
Θ,

establishing the theoretical foundation for the ghost-TFP framework discussed in the main paper.
By using the 1D advection equation as a canonical example, this derivation serves to:

• Justify the interpretation of GNN message-passing as a numerical discretization of a phys-
ical system’s spatial dynamics.

• Demonstrate how boundary conditions introduce specific mathematical constraints that are
absent in standard GNN formulations.

• Show how these discrete equations naturally form the A′
Θ, which is the core problem our

implicit solver addresses.

The derivations are based on two fundamental principles:

• The Governing PDE: The 1D advection equation, ∂u
∂t + a∂u

∂x = 0, where a > 0.
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• The Boundary Condition: The Robin-type condition at the boundary x = 0, given by
w1u+ w2

∂u
∂x = uL.

8.5.1 DERIVATION OF THE INTERIOR EQUATIONS

Here is the derivation of the interior equations:

Target Equation:
(1 + σ)un+1

i − σun+1
i−1 = uni for i = 1, . . . , N

Method: Apply the standard implicit first-order upwind scheme to the governing PDE at an interior
node i.

1. Discretize the Time Derivative: We approximate the partial derivative with respect to
time, ∂u

∂t , using a first-order forward difference:

∂u

∂t
≈ un+1

i − uni
∆t

2. Discretize the Spatial Derivative (Implicitly): The term ”implicit” signifies that the spa-
tial derivative is evaluated at the future time step, n + 1. The term ”upwind” (for a > 0)
means we use a backward difference, looking at the node from which the flow originates
(i− 1).

∂u

∂x
≈
un+1
i − un+1

i−1

∆x

3. Combine and Simplify: Substitute these approximations back into the governing PDE,
∂u
∂t + a∂u

∂x = 0:

un+1
i − uni

∆t
+ a

(
un+1
i − un+1

i−1

∆x

)
= 0

Multiply the entire equation by ∆t to clear the denominator:

(un+1
i − uni ) +

a∆t

∆x
(un+1

i − un+1
i−1 ) = 0

Let σ = a∆t
∆x be the Courant number. Substituting σ gives:

un+1
i − uni + σ(un+1

i − un+1
i−1 ) = 0

4. Rearrange: Group all the unknown terms (at time n + 1) on the left side and the known
terms (at time n) on the right side.

un+1
i + σun+1

i − σun+1
i−1 = uni

Factoring out un+1
i yields the final target equation:

(1 + σ)un+1
i − σun+1

i−1 = uni

8.5.2 DERIVATION OF THE BOUNDARY CONDITION EQUATION

Here is the Derivation of the Boundary Condition Equation:

Target Equation: (
w1 −

w2

∆x

)
un+1
0 +

( w2

∆x

)
un+1
1 − un+1

L = 0

Method: This equation arises directly from discretizing the Robin boundary condition itself, without
involving the PDE.

1. State the Boundary Condition: The Robin condition at node i = 0 and at the future time
step n+ 1 is:

w1 u
n+1
0 + w2

(
∂u

∂x

) ∣∣∣∣n+1

i=0

= un+1
L
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2. Discretize the Spatial Derivative: At the boundary i = 0, we cannot use a backward
difference. The natural choice is a first-order forward difference, using nodes 0 and 1:(

∂u

∂x

) ∣∣∣∣n+1

i=0

≈ un+1
1 − un+1

0

∆x

(Here, we use ∆x for the spatial step, consistent with the paper’s notation).
3. Combine and Rearrange: Substitute the discretized derivative back into the boundary

condition equation:

w1 u
n+1
0 + w2

(
un+1
1 − un+1

0

∆x

)
= un+1

L

Distribute the term w2/∆x:

w1 u
n+1
0 +

w2

∆x
un+1
1 − w2

∆x
un+1
0 = un+1

L

Group the coefficients for un+1
0 and move all terms to the left side to obtain the final form:(

w1 −
w2

∆x

)
un+1
0 +

( w2

∆x

)
un+1
1 − un+1

L = 0

8.5.3 DERIVATION OF THE PDE AT THE BOUNDARY

Here is the Derivation of the PDE at the Boundary:

Target Equation: (
1− a∆t w1

w2

)
un+1
0 +

(a∆t
w2

)
un+1
L = un0

Method: This derivation cleverly combines the PDE and the BC. The key is to use the boundary
condition to eliminate the spatial derivative term from the discretized PDE.

1. Discretize the PDE at the Boundary (i = 0): First, write the implicit discretization of the
PDE at node i = 0:

un+1
0 − un0

∆t
+ a

(
∂u

∂x

) ∣∣∣∣n+1

i=0

= 0

This equation contains the spatial derivative term, which we need to handle.
2. Isolate the Derivative from the Boundary Condition: Return to the Robin condition

from the previous section:

w1 u
n+1
0 + w2

(
∂u

∂x

) ∣∣∣∣n+1

i=0

= un+1
L .

We can rearrange this to solve for the derivative term:

w2

(
∂u

∂x

) ∣∣∣∣n+1

i=0

= un+1
L − w1 u

n+1
0(

∂u

∂x

) ∣∣∣∣n+1

i=0

=
un+1
L − w1 u

n+1
0

w2

3. Substitute and Simplify: Now, substitute the expression for the derivative from Step 2
into the discretized PDE from Step 1:

un+1
0 − un0

∆t
+ a

(
un+1
L − w1 u

n+1
0

w2

)
= 0

Multiply the entire equation by ∆t:

(un+1
0 − un0 ) +

a∆t

w2
(un+1

L − w1 u
n+1
0 ) = 0

Distribute the term a∆t
w2

:

un+1
0 − un0 +

a∆t

w2
un+1
L − a∆t w1

w2
un+1
0 = 0
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4. Rearrange: Finally, group the unknown terms (n+ 1) on the left side and the known term
(n) on the right side. (

1− a∆t w1

w2

)
un+1
0 +

(a∆t
w2

)
un+1
L = un0

In summary, the equations derived for the interior nodes (from the PDE) and the boundary nodes
(from the boundary condition) collectively define the rows of the augmented system matrix A′

Θ.
The core contribution of the ghost-TFP framework lies in its ability to learn an efficient, implicit
operator.

8.6 ILLUSTRATING THE AUGMENTED MATRIX

The core of our implicit solver revolves around constructing the system A′
Θ. The structure of the

system matrix A′
Θ is a direct reflection of the underlying physical topology. This section provides

concrete examples to illustrate this crucial connection. We will demonstrate the structure of A′
Θ in

complex, coupled ones.

8.6.1 MERGING THE SYSTEMS (7X7 COUPLED MATRIX)

Now, we alter the topology by introducing a new, seventh node, vm, into which both systems merge.
The flow paths become:

• vb1 → vd1 → vm

• vb2 → vd2 → vm

This introduces physical coupling, as the state of the merge point vm now depends on inputs from
both upstream branches. We augment our state vector with the new node:

H′(t+1) =

[
h
(t+1)
g1 , h

(t+1)
b1 , h

(t+1)
d1 ,

h
(t+1)
g2 , h

(t+1)
b2 , h

(t+1)
d2 , h

(t+1)
m

]T
The new 7 × 7 matrix, A′

Θ, is no longer block-diagonal. The coupling appears precisely in the
equation governing the new node vm.

A
′
Θ =


1 −p1b −p1d 0 0 0 0

−wb1,g1 1 0 0 0 0 0
0 −wd1,b1 1 0 0 0 0
0 0 0 1 −p2b −p2d 0
0 0 0 −wb2,g2 1 0 0
0 0 0 0 −wd2,b2 1 0
0 0 −wm,d1 0 0 −wm,d2 1


Analysis of the Coupling: The first six rows and columns largely retain the decoupled structure.
The critical change is in the last row, which defines the update for vm. The non-zero elements
in columns 3 and 6, −wm,d1 and −wm,d2, are the mathematical signature of the physical merge.
These elements, which reside in the previously zero off-diagonal block area, now link the two sub-
systems together through the dynamics of vm. This clearly demonstrates how a local change in
graph topology induces a specific, predictable change in the global system matrix.

8.7 ALGORITHMS
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Algorithm 8.7.1: Ghost-TFP with Standard GNN Backbone

Initialize : Graph G = (V,E) and its node features H , Set of boundary nodes VBN ,
Number of GNN layers L, Upstream neighbor set of node vj isN (j),
Graph augmentation operator A, Ground-truth labels y,
Model components: GNN backbone fGNN, Predictor MLP fpred, Ghost MLP,
Loss function L and Projection operator ΠA.

Parameters: Learnable parameters θgb for the Ghost MLP,
θGNN for the GNN backbone, and θpred for the predictor.

VGH , HGH , EGH ← ∅, ∅, ∅;
for each boundary node vb ∈ VBN do

vnbr ← vnbr ∈ {vj | vb ∈ N (j)} ; // Get interior neighbor
hb, hnbr ← H[vb, :], H[vnbr, :] ;
hg ← MLP(Concat(hb, hnbr); θgb) ; // Learn ghost embedding
Create vg and add to VGH ; Append hg to HGH ;
Add edge (vg, vb) to EGH

H ′ ← Concat(H,HGH) ; // Augmented features
A′ ← A(V ∪ VGH , E ∪ EGH) ; // Augmented adjacency

H ′(L) ← fGNN(A
′, H ′; θGNN)

H(L) ← ΠA(H
′(L)

) ; // Project back to original nodes

ŷ ← fpred(H
(L); θpred)

Lloss ← L(y, ŷ);
Update θgb, θGNN, θpred using gradients of Lloss;
return Prediction ŷ

Algorithm 8.7.2: Implicit Ghost-Boundary Message-Passing

Initialize : Augmented graph G′ = (A′, H ′), Ground truth y,
Predictor model fpred, Loss function L.

Parameters: Shared weight matrix Θ with constraint ||Θ||∞ ≤ 1/λpf (A
′),

Learnable parameters θpred for the predictor.
Max iterations K, Convergence tolerance ϵ > 0.

H ′(0) ← H ′;
for k = 1 to K do

H ′(k) ← σ(A′H ′(k−1)Θ);
if ||H ′(k) −H ′(k−1)|| < ϵ then

break;

H ′∗ ← H ′(k) ; // Equilibrium embeddings satisfying Eq. (9)

H∗ ← ΠA(H
′∗) ; // Project back to original node set

ŷ ← fpred(H
∗; θpred);

Lloss ← L(y, ŷ);
∇H′∗Lloss ← Compute gradient from loss up to the equilibrium point;

g(0) ← 0 ; // Initialize implicit gradient
D ← σ′(A′H ′∗Θ) ; // Jacobian of activation at equilibrium
for k = 1 to K do

g(k) ← D ⊙ ((A′)T g(k−1)ΘT +∇H′∗Lloss);
if ||g(k) − g(k−1)|| < ϵ then

break;

g∗ ← g(k) ; // Converged implicit gradient ∇Z l

Compute∇ΘLloss and∇θghLloss using g∗ via auto-differentiation;
Update parameters Θ, θgh, θpred;
return Prediction ŷ
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Algorithm 8.7.3: Explicit Adjacency-Inverse Solver

Initialize : Augmented graph G′ = (V ′, E′), Initial augmented features H ′,
Ground truth y, Loss function L, Projection operator ΠA.

Parameters: Number of layers L, Regularization strength λ,
Learnable parameters θΨ for Inverse operator Ψ ,
Parametric adjacency θA for A′

Θ , Predictor θpred for fpred .

Construct learnable parametric adjacency ; // upstream ↔ all downstream
A′

Θ using parameters θA;
(A′

Θ)
† ← Ψ(A′

Θ; θΨ) ; // Approximate inverse with learned operator

H ′(0) ← H ′;
for l = 0 to L− 1 do

H ′(l+1) ← σ((A′
Θ)

†H ′(l)) ; // Apply GNN layer with non-linearity

H(L) ← ΠA(H
′(L)) ; // Project back to original node set

ŷ ← fpred(H
(L); θpred);

Lnode ← L(y, ŷ) ; // Node prediction loss

Lreg ← λ||(A′
Θ)

†A′
Θ − I||2F ; // Inverse constraint regularization

Ltotal ← Lnode + Lreg;

Update θΨ, θA, θpred using gradients of Ltotal;
return Prediction ŷ
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