
Representation-Driven Reinforcement Learning

Ofir Nabati ∗

Department of Electrical-Engineering
Technion Institute of Technology

Israel

Guy Tennenholtz
Department of Electrical-Engineering

Technion Institute of Technology
* currently at Google Research

Shie Mannor
Department of Electrical-Engineering, Technion

Nvidia Research

Abstract

We present a representation-driven framework for reinforcement learning. By repre-
senting policies as estimates of their expected values, we leverage techniques from
contextual bandits to guide exploration and exploitation. Particularly, embedding
a policy network into a linear feature space allows us to reframe the exploration-
exploitation problem as a representation-exploitation problem, where good policy
representations enable optimal exploration. We demonstrate the effectiveness of
this framework through its application to evolutionary and policy gradient-based
approaches, leading to significantly improved performance compared to traditional
methods. Our framework provides a new perspective on reinforcement learn-
ing, highlighting the importance of policy representation in determining optimal
exploration-exploitation strategies.

1 Introduction

Reinforcement learning (RL) is a field in machine learning in which an agent learns to maximize
a reward through interactions with an environment. The agent maps its current state into action
and receives a reward signal. Its goal is to maximize the cumulative sum of rewards over some
predefined (possibly infinite) horizon [37]. This setting fits many real-world applications such as
recommendation systems [20], board games [36], computer games [24], and robotics [29].

A large amount of contemporary research in RL focuses on gradient-based policy search methods
[38, 35, 32, 33, 14]. Nevertheless, these methods optimize the policy locally at specific states and
actions. Salimans et al. [31] have shown that such optimization methods may cause high variance
updates in long horizon problems, while Tessler et al. [42] have shown possible convergence to
suboptimal solutions in continuous regimes. Moreover, policy search methods are commonly sample
inefficient, particularly in hard exploration problems, as policy gradient methods usually converge
to areas of high reward, without sacrificing exploration resources to achieve a far-reaching sparse
reward.

In this work, we present Representation-Driven Reinforcement Learning (RepRL) – a new framework
for policy-search methods, which utilizes theoretically optimal exploration strategies in a learned
latent space. Particularly, we reduce the policy search problem to a contextual bandit problem,
using a mapping from policy space to a linear feature space. Our approach leverages the learned
linear space to optimally tradeoff exploration and exploitation using well-established algorithms
from the contextual bandit literature [1, 4]. By doing so, we reframe the exploration-exploitation

∗ofirnabati@gmail.com

16th European Workshop on Reinforcement Learning (EWRL 2023).

problem to a representation-exploitation problem, for which good policy representations enable
optimal exploration.

We demonstrate the effectiveness of our approach through its application to both evolutionary and
policy gradient-based approaches – demonstrating significantly improved performance compared to
traditional methods. Empirical experiments on the MuJoCo [43] and MinAtar [47] show the benefits
of our approach, particularly in sparse reward settings. While our framework does not make the
exploration problem necessarily easier, it provides a new perspective on reinforcement learning,
shifting the focus to policy representation in the search for optimal exploration-exploitation strategies.

2 Preliminaries

We consider the infinite-horizon discounted Markov Decision Process (MDP). An MDP is defined by
the tupleM = (S,A, r, T, β, γ), where S is the state space,A is the action space, T : S×A → ∆(S)
is the transition kernel, r : S × A → [0, 1] is the reward function, β ∈ ∆(S) is the initial state
distribution, and γ ∈ [0, 1) is the discount factor. A stationary policy π : S → ∆(A), maps states
into a distribution over actions. We denote by Π the set of stationary stochastic policies, and the
history of policies and trajectories up to episode k byHk. Finally, we denote S = |S| and A = |A|.
The return of a policy is a random variable defined as the discounted sum of rewards

G(π) =

∞∑
t=0

γtr(st, at), (1)

where s0 ∼ β, at ∼ π(st), st+1 ∼ T (st, at), and the policy’s value is its mean, i.e., v(π) =
E[

∑∞
t=0 γ

tr(st, at) | β, π, T]. An optimal policy maximizes the value, i.e., π∗ ∈ argmaxπ∈Π v(π).

We similarly define the per-state value function, v(π, s) as v(π, s) =
E[

∑∞
t=0 γ

tr(st, at) | s0 = s, π, T], and note that v(π) = Es∼β [v(π, s)].

Finally, we denote the discounted state-action frequency distribution w.r.t. π by

ρπ(s, a) = (1− γ)

∞∑
t=0

γtPr

(
st = s, at = a|β, π, T

)
,

and let K = {ρπ : π ∈ Π}.

2.1 Linear Bandits

In this work, we consider the linear bandit framework as defined in Abbasi-Yadkori et al. [1]. At each
time t, the learner is given a decision set Dt ⊆ Rd, which can be adversarially and adaptively chosen.
The learner chooses an action xt ∈ Dt and receives a reward rt, whose mean is linear w.r.t xt, i.e.,
E[rt | xt] = ⟨xt, w⟩ for some unknown parameter vector w ∈ Rd.

A general framework for solving the linear bandit problem is the “Optimism in the Face of Uncertainty
Linear bandit algorithm" (OFUL, Abbasi-Yadkori et al. [1]). There, a linear regression estimator is
constructed each round as follows:

ŵt = V −1
t bt,

Vt = Vt−1 + xtx
⊤
t ,

bt = bt−1 + xtyt, (2)

where yt, xt are the noisy reward signal and chosen action at time t, respectively, and V0 = λI for
some positive parameter λ > 0.

It can be shown that, under mild assumptions, and with high probability, the self-normalizing norm
∥ŵt − w∥Vt

can be bounded from above [1]. OFUL then proceeds by taking an optimistic action
(xt, w̄t) ∈ argmaxx∈Dt,w̄∈Ct

⟨x, w̄⟩, where Ct is a confidence set induced by the aforementioned
bound on ∥ŵt − w∥Vt

. In practice, a softer version is used in Chu et al. [9], where an action is
selected optimistically according to

xt ∈ arg max
x∈Dt

⟨x, ŵt⟩+ α

√
xTV −1

t x, (OFUL)

2

Linear Bandits

Policy

Representation

Construct
Decision Set

RepRL

Figure 1: RepRL scheme. Composed of 4 stages: representation of the parameters, constructing a
decision set, choosing the best arm using an off-the-shelf linear bandit algorithm, collect data with
the chosen policy.

where α > 0 controls the level of optimism.

Alternatively, linear Thompson sampling (TS, Abeille & Lazaric [2]) shows it is possible to converge
to an optimal solution with sublinear regret, even with a constant probability of optimism. This is
achieved through the sampling of a parameter vector from a normal distribution, which is determined
by the confidence set Ct. Specifically, linear TS selects an action according to

xt ∈ arg max
x∈Dt

⟨x, w̃t⟩, w̃t ∼ N
(
ŵt, σ

2V −1
t

)
, (TS)

where σ > 0 controls the level of optimism. We note that for tight regret guarantees, both α and σ
need to be chosen to respect the confidence set Ct. Nevertheless, it has been shown that tuning these
parameters can improve performance in real-world applications [9].

3 RL as a Linear Bandit Problem

Classical methods for solving the RL problem attempted to use bandit formulations [13]. There,
the set of policies Π reflects the set of arms, and the value v(π) is the expected bandit reward.
Unfortunately, such a solution is usually intractable due to the exponential number of policies (i.e.,
bandit actions) in Π.

Alternatively, we consider a linear bandit formulation of the RL problem. Indeed, it is known that the
value can be expressed in linear form as

v(π) = E(s,a)∼ρπ [r(s, a)] = ⟨ρπ, r⟩. (3)

Here, any ρπ ∈ K represents a possible action in the linear bandit formulation [1]. Notice that
|K| = |Π|, as any policy π ∈ Π can be written as π(a|s) = ρπ(s,a)∑

a′ ρπ(s,a′) , rendering the problem
intractable. Nevertheless, this formulation can be relaxed using a lower dimensional embedding of
ρπ and r. As such, we make the following assumption.
Assumption 3.1 (Linear Embedding). There exist a mapping f : Π → Rd such that v(π) =
⟨f(π), w⟩ for all π ∈ Π and some unknown w ∈ Rd.

We note that Assumption 3.1 readily holds when d = SA for f(π) ≡ ρπ and w = r. For efficient
solutions, we consider environments for which the dimension d is relatively low, i.e., d≪ SA.

Note that neural bandit approaches also consider linear representations [30]. Nevertheless, these
methods use mappings from states S 7→ Rd, whereas we consider mapping entire policies Π 7→ Rd

(i.e., embedding the function π). Learning a mapping f can be viewed as trading the effort of finding
good exploration strategies in deep RL problems to finding a good representation. We emphasize
that we do not claim it to be an easier task, but rather a different viewpoint of the problem, for which
possible new solutions can be derived. Similar to work on neural-bandits [30], finding such a mapping
requires alternating between representation learning and exploration.

3

3.1 RepRL

Algorithm 1 RepRL
1: Init: H0 ← ∅, πθ0 , fϕ0

randomly initialized
2: for k = 1, 2, . . . do
3: Representation Stage:

Map the policy network πθk−1
using representation network fϕk−1

(θk−1).
4: Decision Set Stage:

Dk ← ConstructDecisonSet(θk−1,Hk−1).
5: Bandit Stage:

Use linear bandit algorithm to choose πθk out of Dk.
6: Exploitation Stage:

Rollout policy πθk and store the return Gk inHk.

7: Update representation fϕk
.

8: Update bandit parameters ŵt, Vt (Equation (2)) with the updated representation.
9: end for

We formalize a representation-driven framework for RL, inspired by linear bandits (Section 2.1)
and Assumption 3.1. We parameterize the policy π and mapping f using neural networks, πθ and
fϕ, respectively. Here, a policy πθ is represented in lower-dimensional space as fϕ(πθ). Therefore,
searching in policy space is equivalent to searching in the parameter space. With slight abuse of
notation, we will denote fϕ(πθ) = fϕ(θ).

Pseudo code for RepRL is presented in Algorithm 1. At every episode k, we map the policy’s
parameters θk−1 to a latent space using fϕk−1

(θk−1). We then use a construction algorithm,
ConstructDecisonSet(θk−1,Hk−1), which takes into account the history Hk−1, to generate a
new decision set Dk. Then, to update the parameters θk−1 of the policy, we select an optimistic
policy πθk ∈ Dk using a linear bandit method, such as TS or OFUL (see Section 2.1). Finally, we
rollout the policy πθk and update the representation network and the bandit parameters according to
the procedure outlined in Equation (2), where xk are the learned representations of fϕk

. A visual
schematic of our framework is depicted in Figure 1.

In the following sections, we present and discuss methods for representation learning, decision set
construction, and propose two implementations of RepRL in the context of evolutionary strategies
and policy gradient. We note that RepRL is a framework for addressing RL through representation,
and as such, any representation learning technique or decision set algorithm can be incorporated as
long as the basic structure is maintained.

3.2 Learning Representations for RepRL

We learn a linear representation of a policy using tools from variational inference. Specifically,
we sample a representation from a posterior distribution z ∼ fϕ(z|θ), and train the representation
by maximizing the Evidence Lower Bound (ELBO) [18] L(ϕ, κ) = −Ez∼fϕ(z|θ)[log pκ(G|z)] +
DKL(fϕ(z|θ)∥p(z)), where fϕ(z|θ) acts as the encoder of the embedding, and pκ(G|z) is the return
decoder or likelihood term.

The latent representation prior p(z) is typically chosen to be a zero-mean Gaussian distribution.
In order to encourage linearity of the value (i.e the return’s mean) with respect to the learned
representation, we chose the likelihood to be a Gaussian distribution with a mean that is linear in
the representation, i.e., pκ(G|z) = N (κ⊤z, σ2). When the encoder is also chosen to be a Gaussian
distribution, the loss function has a closed form. The choice of the decoder to be linear is crucial,
due to the fact that the value is supposed to be linear w.r.t learned embeddings. The parameters ϕ
and κ are the learned parameters of the encoder and decoder, respectively. Note that a deterministic
mapping occurs when the function fϕ(z|θ) takes the form of the Dirac delta function. A schematic of
the architectural framework is presented in Figure 2.

4

Policy Network

Representation

Network

z
Linear Regressor

Figure 2: The diagram illustrates the structure of the networks in RepRL. The policy’s parameters
are fed into the representation network, which acts as a posterior distribution for the policy’s latent
representation. Sampling from this posterior, the latent representation is used by the bandits algorithm
to evaluate the value that encapsulates the exploration-exploitation tradeoff.

3.3 Constructing a Decision Set

The choice of the decision set algorithm (line 4 of Algorithm 1) may have a great impact on the
algorithm in terms of performance and computational complexity. Clearly, choosing Dk = Π,∀k
will be unfeasible in terms of computational complexity. Moreover, it may be impractical to learn
a linear representation for all policies at once. We present several possible choices of decision sets
below.

Policy Space Decision Set. One potential strategy is to sample a set of policies centered around the
current policy:

Dk = {θk + ϵi}Ni=1, ϵi ∼ N (0, ν2I), (4)

where ν > 0 controls how local policy search is. This approach is motivated by the assumption that
the representation of policies in the vicinity of the current policy will exhibit linear behavior with
respect to the value function due to their similarity to policies encountered by the learner thus far.

Latent Space Decision Set. An alternative approach involves sampling policies in their learned
latent space, i.e.,

Dk = {zk + ϵi}Ni=1, ϵi ∼ N (0, ν2I), (5)

where zk ∼ fϕ(z|θk). The linearity of the latent space ensures that this decision set will improve
the linear bandit target (UCB or the sampled value in TS), which will subsequently lead to an
improvement in the actual value. This approach enables optimal exploration w.r.t. linear bandits, as it
uniformly samples the eigen directions of the precision matrix Vt, rather than only sampling specific
directions as may occur when sampling in the parameter space.

Unlike Equation (4) constructing the set in Equation (5) presents several challenges. First, in order
to rollout the policy πθk , one must construct an inverse mapping to extract the chosen policy from
the selected latent representation. This can be done by training a decoder for the policy parameters
q(θ|z). Alternatively, we propose to use a decoder-free approach. Given a target embedding
z∗ ∈ argmaxz∈Dt

⟨z, ŵ⟩, we search for a policy θ∗ ∈ argmaxθ fϕ(z
∗|θ). This optimization problem

can be solved using gradient descent-based optimization algorithms by varying the inputs to fϕ. A
second challenge for latent-based decision sets involves the realizability of such policies. That is,

5

there may exist representations z ∈ Dk, which are not mapped by any policy in Π. Lastly, even
for realizable policies, the restored θ may be too far from the learned data manifold, leading to an
overestimation of its value and a degradation of the overall optimization process. One way to address
these issues is to use a small enough value of ν during the sampling process, reducing the probability
of the set members being outside the data distribution. We leave more sophisticated methods of
latent-based decision sets for future work.

History-based Decision Set. An additional approach uses the history of policies at time k to design
a decision set. Specifically, at time episode k we sample around the set of policies observed so far,
i.e.,

Dk =
⋃
ℓ∈[k]

{θℓ + ϵℓ,i}Ni=1, ϵℓ,i ∼ N (0, ν2I), (6)

resulting in a decision set of size Nk. After improving the representation over time, it may be
possible to find a better policy near policies that have already been used and were missed due to poor
representation or sampling mismatch. This method is quite general, as the history can be truncated
only to consider a certain number of past time steps, rather than the complete set of policies observed
so far. Truncating the history can help reduce the size of the decision set, making the search more
computationally tractable.

In Section 5, we compare the various choices of decision sets. Nevertheless, we found that using policy
space decisions is a good first choice, due to their simplicity, which leads to stable implementations.
Further exploration of other decision sets is left as a topic for future research.

3.4 Inner trajectory sampling

Vanilla RepRL uses the return values of the entire trajectory. As a result, sampling the trajectories
at their initial states is the natural solution for both the bandit update and representation learning.
However, the discount factor diminishes learning signals beyond the 1

1−γ effective horizon, preventing
the algorithm from utilizing these signals, which may be critical in environments with long-term
dependencies. On the other hand, using a discount factor γ = 1 would result in returns with a large
variance, leading to poor learning. Instead of sampling from the initial state, we propose to use
the discount factor and sample trajectories at various states during learning, enabling the learner to
observe data from different locations along the trajectory. Under this sampling scheme, the estimated
value would be an estimate of the following quantity: ṽ(π) = Es∼ρπ [v(π, s)]. In the following
proposition we prove that optimizing ṽ(π) is equivalent to optimizing the real value.

Proposition 3.2. For a policy π ∈ Π, ṽ(π) = v(π)
1−γ .

The proof can be found in the Appendix C. That is, sampling along the trajectory from ρπ approxi-
mates the scaled value, which, like v(π), exhibits linear behavior with respect to the reward function.
Thus, instead of sampling the return defined in Equation (1), we sample G̃(π) =

∑∞
t=0 γ

tr(st, at),
where s0 ∼ ρπ, at ∼ π(st), st+1 ∼ T (st, at), both during representation learning and bandit updates.
Empirical evidence suggests that uniformly sampling from the stored trajectory produces satisfactory
results in practice.

4 RepRL Algorithms

In this section we describe two possible approaches for applying the RepRL framework; namely, in
Evolution Strategy [45] and Policy Gradients [38].

4.1 Representation Driven Evolution Strategy

Evolutionary Strategies (ES) are used to train agents by searching through the parameter space
of their policy and sampling their return. In contrast to traditional gradient-based methods, ES
uses a population of candidates evolving over time through genetic operators to find the optimal
parameters for the agent. Such methods have been shown to be effective in training deep RL agents
in high-dimensional environments [31, 23].

6

2.5

1

0.1

Goal

M
ean R

ew
ard

ES RepRL

Figure 3: GridWorld visualization experiment. Trajectories were averaged across 100 seeds at various
times during training, where more recent trajectories have greater opacity. Background colors indicate
the level of mean reward.

At each round, the decision set is chosen over the policy space with Gaussian sampling around the
current policy as described in Section 3.3. Algorithm 3 considers an ES implementation of RepRL.
To improve the stability of the optimization process, we employ soft-weighted updates across the
decision set. This type of update rule is similar to that used in ES algorithms [31, 23], and allows for
an optimal exploration-exploitation trade-off, replacing the true sampled returns with the bandit’s
value. Moreover, instead of sampling the chosen policy, we evaluate it by also sampling around
it as done in ES-based algorithms. Each evaluation is used for the bandit parameters update and
representation learning process. Sampling the evaluated policies around the chosen policy helps the
representation avoid overfitting to a specific policy and generalize better for unseen policies - an
important property when selecting the next policy.

Unlike traditional ES, optimizing the UCB in the case of OFUL or sampling using TS can encourage
the algorithm to explore unseen policies in the parameter space. This exploration is further stabilized
by averaging over the sampled directions, rather than assigning the best policy in the decision set.
This is particularly useful when the representation is still noisy, reducing the risk of instability caused
by hard assignments. An alternative approach uses a subset of Dt with the highest bandit scores, as
suggested in Mania et al. [23], which biases the numerical gradient towards the direction with the
highest potential return.

4.2 Representation Driven Policy Gradient

RepRL can also be utilized as a regularizer for policy gradient algorithms. Pseudo code for using
RepRL in policy gradients is shown in Algorithm 4. At each gradient step, a weighted regularization
term d(θ, θ̃) is added, where θ̃ are the parameters output by RepRL with respect to the current
parameters for a chosen metric (e.g., ℓ2): Lreg(θ) = LPG(θ) + ζd(θ, θ̃).

After collecting data with the chosen policy and updating the representation and bandit parameters,
the regularization term is added to the loss of the policy gradient at each gradient step. The policy
gradient algorithm can be either on-policy or off-policy while in our work we experiment with
an on-policy algorithm. Similar to the soft update rule in ES, using RepRL as a regularizer can
significantly stabilize the representation process. Applying the regularization term biases the policy
toward an optimal exploration strategy in policy space. This can be particularly useful when the
representation is still weak and the optimization process is unstable, as it helps guide the update
toward more promising areas of the parameter space. In our experiments, we found that using RepRL
as a regularizer for policy gradients improved the stability and convergence of the optimization
process.

5 Experiments

In order to evaluate the performance of RepRL, we conducted experiments on various tasks on the
MuJoCo [43] and MinAtar [47] domains. We also used a sparse version of the MuJoCo environments,
where exploration is crucial. We used linear TS as our linear bandits algorithm as it exhibited good

7

Figure 4: The two-dimensional t-SNE visualization depicts the policy representation in the GridWorld
experiment. On the right, we observe the learned latent representation, while on the left, we see the
direct representation of the policy’s weights. Each point in the visualization corresponds to a distinct
policy, and the color of each point corresponds to a sample of the policy’s value.

performance during evaluation. The detailed network architecture and hyperparameters utilized in
the experiments are provided in Appendix F. According to the decision set comparison, presented at
Appendix E, RepRL demonstrated similar performance for the varying decision sets on the tested
domains. In what follows, we focus on policy space decision sets.

Grid-World Visualization. Before presenting our results, we demonstrate the RepRL framework
on a toy example. Specifically, we constructed a GridWorld environment (depicted in Figure 3)
which consists of spatially changing, noisy rewards. The agent, initialized at the bottom left state
(x, y) = (1, 1), can choose to take one of four actions: up, down, left, or right. To focus on
exploration, the rewards were distributed unevenly across the grid. Particularly, the reward for every
(x, y) was defined by the Normal random variable r(x, y) ∼ N

(
µ(x, y), σ2

)
, where σ > 0 and

µ(x, y) ∝ R1 exp
{
− (x−x1)

2+(y−y1)
2

a1

}
+R2 exp

{
− (x−x2)

2+(y−y2)
2

a2

}
+R31{(x,y)=goal}. That is,

the reward consisted of Normally distributed noise, with mean defined by two spatial Gaussians, as
shown in Figure 3, with R1 > R2, a1 < a2 and a goal state (depicted as a star), with R3 ≫ R1, R2.
Importantly, the values of R1, R2, R3, a1, a2 were chosen such that an optimal policy would take the
upper root in Figure 3.

Comparing the behavior of RepRL and ES on the GridWorld environment, we found that RepRL
explored the environment more efficiently, locating the optimal path to the goal. This emphasizes
the varying characteristics of state-space-driven exploration vs. policy-space-driven exploration,
which, in our framework, coincides with representation-driven exploration. Figure 4 illustrates a
two-dimensional t-SNE plot comparing the learned latent representation of the policy with the direct
representation of the policy weights.

MuJoCo. We conducted experiments on the MuJoCo suitcase task using RepRL. Our approach
followed the setting of Mania et al. [23], in which a linear policy was used and demonstrated excellent
performance on MuJoCo tasks. We utilized the ES variant of our algorithm (Algorithm 3). We
incorporated a weighted update between the gradients using the bandit value and the zero-order
gradient of the sampled returns, taking advantage of sampled information and ensuring stable updates
in areas where the representation is weak.

We first evaluated RepES on the standard MuJoCo baseline (see Figure 5). RepES either significantly
outperformed or performed on-par with ES. We also tested a modified, sparse variant of MuJoCo. In
the sparse environment, a reward was given for reaching a goal each distance interval, denoted as d,
where the reward function was defined as:

r(s, a) =

{
10− c(a), |xagent| mod d = 0

−c(a), o.w.

Here, c(a) is the control cost associated with utilizing action a, and xagent denotes the location of the
agent along the x-axis. The presence of a control cost function incentivized the agent to maintain its
position rather than actively exploring the environment. The results of this experiment, as depicted in
Figure 5, indicate that the RepRL algorithm outperformed both the ES and SAC algorithms in terms

8

Figure 5: MuJoCo experiments during training. The results are for the MuJoCo suitcase (top) and the
modified sparse MuJoCo (bottom).

Figure 6: MinAtar experiments during training.

of achieving distant goals. However, it should be noted that the random search component of the ES
algorithm occasionally resulted in successful goal attainment, albeit at a significantly lower rate in
comparison to the RepRL algorithm.

MinAtar. We compared the performance of RepRL on MinAtar [47] with the widely used policy
gradient algorithm PPO [33]. Specifically, we compared PPO against its regularized version with
RepRL, as described in Algorithm 4, and refer to it as RepPG. We parametrized the policy by a
neural network. Although PPO collects chunks of rollouts (i.e., uses subtrajectories), RepPG adjusted
naturally due to the inner trajectory sampling (see Section 3.4). That is, the critic was used to estimate
the value of the rest of the trajectory in cases where the rollouts were truncated by the algorithm.

Results are shown in Figure 6. Overall, RepRL outperforms PPO on all tasks, suggesting that RepRL
is effective at solving challenging tasks with sparse rewards, such as those found in MinAtar.

6 Related Work

Policy Optimization: Policy gradient methods [38] have shown great success at various challenging
tasks, with numerous improvements over the years; most notable are policy gradient methods
for deterministic policies [35, 22], trust region based algorithms [32, 33], and maximum entropy
algorithms [14]. Despite its popularity, traditional policy gradient methods are limited in continuous
action spaces. Therefore, Tessler et al. [42] suggest optimizing the policy over the policy distribution
space rather than the action space. In recent years, finite difference gradient methods have been
rediscovered by the RL community. This class of algorithms uses numerical gradient estimation by

9

sampling random directions [28]. A closely related family of optimization methods is Evolution
Strategies (ES) a class of black-box optimization algorithms that heuristic search by perturbing and
evaluating the set members, choosing only the mutations with the highest scores until convergence.
Salimans et al. [31] used ES for RL as a zero-order gradient estimator for the policy, parameterized
as a neural network. ES is robust to the choice of the reward function or the horizon length and it also
does not need value function approximation as most state-of-art algorithms. Nevertheless, it suffers
from low sample efficiency due to the potentially noisy returns and the usage of the final return value
as the sole learning signal. Moreover, it is not effective in hard exploration tasks. Mania et al. [23]
improves ES by using only the most promising directions for gradient estimation.

Policy Search with Bandits. Fox & Rolph [13] was one of the first works to utilize multi-arm
bandits for policy search over a countable stationary policy set – a core approach for follow-up
work [7, 3]. Nevertheless, the concept was left aside due to its difficulty to scale up with large
environments. As an alternative, Neural linear bandits [30, 46, 25] simultaneously train a neural
network policy, while interacting with the environment, using a chosen linear bandit method and
are closely related to the neural-bandits literature [48, 16]. In contrast to this line of work, our work
maps entire policy functions into linear space, where linear bandit approaches can take effect. This
induces an exploration strategy in policy space, as opposed to locally, in action space.

Representation Learning. Learning a compact and useful representation of states [19, 34, 40],
actions [41, 8], rewards [5, 26, 44], and policies [15, 11], has been at the core of a vast array of
research. Such representations can be used to improve agents’ performance by utilizing the structure
of an environment more efficiently. Tang et al. [39] utilizes policy representation to learn a generalized
value function. They demonstrate that the generalized value function can generalize across policies
and improve value estimation for actor-critic algorithms. In another study, Li et al. [21] enhance the
stability and efficiency of Evolutionary Reinforcement Learning (ERL) [17] by adopting a linear
policy representation with a shared state representation. In our research, we view the representation
problem as an alternative solution to the exploration-exploitation problem in RL. Although this shift
does not necessarily simplify the problem, it transfers the challenge to a different domain, offering
opportunities for the development of new methods.

7 Discussion and Future Work

We presented RepRL, a novel representation-driven framework for reinforcement learning. By opti-
mizing the policy over a learned representation, we leveraged techniques from the contextual bandit
literature to guide exploration and exploitation. We demonstrated the effectiveness of this framework
through its application to evolutionary and policy gradient-based approaches, leading to significantly
improved performance compared to traditional methods. In this work, we suggested reframing the
exploration-exploitation problem as a representation-exploitation problem. By embedding the policy
network into a linear feature space, good policy representations enable optimal exploration. This
framework provides a new perspective on reinforcement learning, highlighting the importance of
policy representation in determining optimal exploration-exploitation strategies.

As future work, one can incorporate RepRL into more involved representation methods, including
pretrained large Transformers [10, 6], which have shown great promise recently in various areas of
machine learning. Another avenue for future research is the use of RepRL in scenarios where the
policy is optimized in latent space using an inverse mapping (i.e., decoder), as well as more involved
decision sets. Finally, while this work focused on linear bandit algorithms, future work may explore
the use of general contextual bandit algorithms, (e.g., SquareCB Foster & Rakhlin [12]), which are
not restricted to linear representations.

8 Acknowledgments

This work was partially funded by the Israel Science Foundation under Contract 2199/20.

References
[1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320,

10

2011.

[2] Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In Artificial
Intelligence and Statistics, pp. 176–184. PMLR, 2017.

[3] Rajeev Agrawal, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically
efficient adaptive allocation schemes for controlled markov chains: Finite parameter space.
Technical report, MICHIGAN UNIV ANN ARBOR COMMUNICATIONS AND SIGNAL
PROCESSING LAB, 1988.

[4] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning, pp. 127–135, 2013.

[5] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision
processes. Mathematics of Operations Research, 22(1):222–255, 1997.

[8] Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine
learning, pp. 941–950. PMLR, 2019.

[9] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[11] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[12] Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits
with regression oracles. In International Conference on Machine Learning, pp. 3199–3210.
PMLR, 2020.

[13] Bennett L Fox and John E Rolph. Adaptive policies for markov renewal programs. The Annals
of Statistics, 1(2):334–341, 1973.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International conference
on machine learning, pp. 1861–1870, 2018.

[15] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

[16] Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In International
Conference on Artificial Intelligence and Statistics, pp. 240–278. PMLR, 2022.

[17] Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

[19] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised repre-
sentations for reinforcement learning. In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661–670, 2010.

[21] Pengyi Li, Hongyao Tang, Jianye Hao, Yan Zheng, Xian Fu, and Zhaopeng Meng. Erl-re:
Efficient evolutionary reinforcement learning with shared state representation and individual
policy representation. arXiv preprint arXiv:2210.17375, 2022.

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[23] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[25] Ofir Nabati, Tom Zahavy, and Shie Mannor. Online limited memory neural-linear bandits with
likelihood matching. arXiv preprint arXiv:2102.03799, 2021.

[26] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine.
Visual reinforcement learning with imagined goals. Advances in neural information processing
systems, 31, 2018.

[27] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron.
Equivariant architectures for learning in deep weight spaces. arXiv preprint arXiv:2301.12780,
2023.

[28] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[29] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning:
Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

[30] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[31] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[32] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. International conference on machine learning, pp. 1889–1897, 2015.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[34] Erez Schwartz, Guy Tennenholtz, Chen Tessler, and Shie Mannor. Language is power:
Representing states using natural language in reinforcement learning. arXiv preprint
arXiv:1910.02789, 2019.

[35] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. International conference on machine learning, pp.
387–395, 2014.

[36] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

12

[37] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

[38] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[39] Hongyao Tang, Zhaopeng Meng, Jianye Hao, Chen Chen, Daniel Graves, Dong Li, Changmin
Yu, Hangyu Mao, Wulong Liu, Yaodong Yang, et al. What about inputting policy in value func-
tion: Policy representation and policy-extended value function approximator. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 8441–8449, 2022.

[40] Guy Tennenholtz and Shie Mannor. Uncertainty estimation using riemannian model dynamics
for offline reinforcement learning. In Advances in Neural Information Processing Systems.

[41] Guy Tennenholtz and Shie Mannor. The natural language of actions. In International Conference
on Machine Learning, pp. 6196–6205. PMLR, 2019.

[42] Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: An
alternative approach for continuous control. Advances in Neural Information Processing
Systems, 32, 2019.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

[44] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially observable reinforcement learning.
Advances in neural information processing systems, 32, 2019.

[45] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

[46] Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. arXiv preprint arXiv:2012.01780, 2020.

[47] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

[48] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pp. 11492–11502. PMLR,
2020.

13

A Algorithms

Algorithm 2 Random Search / Evolution Strategy
1: Input: initial policy π0 = πθ0 , noise ν, step size α, set size K.
2: for t = 1, 2, . . . , T do
3: Sample a decision set Dt = {θt−1 ± δi}Ki=1, δi ∼ N (0, ν2I).
4: Collect the returns {G(θt−1 ± δi)}Ki=1 of each policy in Dt.
5: Update policy

θt = θt−1 +
α

σRK

K∑
i=1

[
G(θt−1 + δi)−G(θt−1 − δi)

]
δi

6: end for

Algorithm 3 Representation Driven Evolution Strategy
1: Input: initial policy π0 = πθ0 , noise ν, step size α, set size K, decision set size N , historyH.
2: for t = 1, 2, . . . , T do
3: Sample an evaluation set {θt−1 ± δi}Ki=1, δi ∼ N (0, ν2I).
4: Collect the returns {G(θt−1 ± δi)}Ki=1 from the environment and store them in replay buffer.
5: Update representation ft and bandit parameters (ŵt, Vt) using history.
6: Construct a decision set Dt = {θt−1 ± δi}Ni=1, δi ∼ N (0, ν2I).
7: Use linear bandit algorithm to evaluate each policy in Dt: {v̂(θt−1 ± δi)}Ni=1 .
8: Update policy

gt =
1

N

N∑
i=1

[
v̂(θt−1 + δi)− v̂(θt−1 − δi)

]
δi,

θt =θt−1 + αgt

9: end for

Algorithm 4 Representation Driven Policy Gradient
1: Input: initial policy πθ, noise ν, step size α, decision set size N , ζ, historyH.
2: for t = 1, 2, . . . , T do
3: for 1, 2, . . . ,K do
4: Collect trajectory data using πθ.
5: Update representation f and bandit parameters (ŵ,Σ) using history.
6: end for
7: for 1, 2, . . . ,M do
8: Sample a decision set D = {θ + δi}Ni=1, δi ∼ N (0, ν2I).
9: Use linear bandit algorithm to choose the best parameter θ̃ ∈ argmaxθ∈D⟨z, ŵ⟩ for z ∼

f(z|θ).
10: Compute

g =∇θ

[
LPG(θ) + ζ∥θ − θ̃∥2

]
,

θ =θ − αg

11: end for
12: end for

B Variational Interface

We present here proof of the ELBO loss for our variational interface, which was used to train the
representation encoder.

14

Proof.

log p(G;ϕ, κ) = log

∫
z

pκ(G|z)p(z)dz

= log

∫
z

pκ(G|z)
p(z)

fϕ(z|π)
fϕ(z|π)dz

= logEz∼fϕ(z|π)

[
pκ(G|z)

p(z)

fϕ(z|π)

]
≥ Ez∼fϕ(z|π)

[
log pκ(G|z)

]
+ Ez∼fϕ(z|π)

[
log

p(z)

fϕ(z|π)

]
= Ez∼fϕ(z|π)

[
log pκ(G|z)

]
−DKL(fϕ(z|π)∥p(z)),

where the inequality is due to Jensen’s inequality.

C Proof for Proposition 3.2

By definition:

ṽ(π) =
∑
s

ρπ(s)v(π, s)

=
∑
s

ρπ(s)
∑
a

π(a|s)

{
r(s, a) + γ

∑
s′

T (s′|s, a)v(π, s′)

}
= v(π) + γ

∑
s

ρπ(s)
∑
a

π(a|s)
∑
s′

T (s′|s, a)v(π, s′)

= v(π) + γ
∑
s′

ρπ(s′)v(π, s′)

= v(π) + γṽ(π),

where the second equality is due to the Bellman equation and the third is from the definition.
Therefore,

ṽ(π) = v(π) + γṽ(π) =⇒ ṽ(π) =
v(π)

1− γ

D Full RepRL Scheme

The diagram presented below illustrates the networks employed in RepRL. The policy’s parameters
are inputted into the representation network, which serves as a posterior distribution capturing
the latent representation of the policy. Subsequently, a sampling procedure is performed from the
representation posterior, followed by the utilization of a linear return encoder, acting as the likelihood,
to forecast the return distribution with a linear mean (i.e. the policy’s value). This framework is
employed to maximize the Evidence Lower Bound (ELBO).

15

Policy Network

Representation
Encoder

z Linear
 Decoder

Figure 7: The full diagram illustrates the networks in RepRL.

E Decision Set Experiment

The impact of different decision sets on the performance of RepRL was assessed in our evaluation.
We conducted tests using three specific decision sets as described in Section 3.3. The evaluation
was carried out on a sparse HalfCheetah environment, utilizing the RepES variant. When evaluating
the history-based decision set, we considered a history window consisting of 20 policies. In the
latent-based setting, the parameters corresponding to the selected latent code were obtained using a
gradient descent algorithm. The results showed that RepRL exhibited similar performance across the
various decision sets tested in different domains.

Figure 8: Plots depict experiments for three decision sets: policy space-based, latent space-based,
and history-based. The experiment was conducted on the SparseHalfCheetah environment.

F Hyperparameters and Network Architecture

F.1 Grid-World

In the GridWorld environment, a 8 × 8 grid is utilized with a horizon of 20, where the reward is
determined by a stochastic function as outlined in the paper: r(x, y) ∼ N

(
µ(x, y), σ2

)
, where σ > 0

16

and µ(x, y) ∝ R1 exp
{
− (x−x1)

2+(y−y1)
2

a1

}
+R2 exp

{
− (x−x2)

2+(y−y2)
2

a2

}
+R31{(x,y)=goal}. The

parameters of the environment are set as R1 = 2.5, R2 = 0.3, R3 = 13, σ = 3, a1 = 0.125, a2 = 8.

The policy employed in this study is a fully-connected network with 3 layers, featuring the use of
the tanh non-linearity operator. The hidden layers’ dimensions across the network are fixed at 32,
followed by a Softmax operation. The state is represented as a one-hot vector. please rephrase
the next paragraph so it will sounds more professional: The representation encoder is built from
Deep Weight-Space (DWS) layers [27], which are equivariant to the permutation symmetry of fully
connected networks and enable much stronger representation capacity of deep neural networks
compared to standard architectures. The DWS model (DWSNet) comprises four layers with a
hidden dimension of 16. Batch normalization is applied between these layers, and a subsequent fully
connected layer follows. Notably, the encoder is deterministic, meaning it represents a delta function.
For more details, we refer the reader to the code provided in Navon et al. [27], which was used by us.

In the experimental phase, 300 rounds were executed, with 100 trajectories sampled at each round
utilizing noisy sampling of the current policy, with a zero-mean Gaussian noise and a standard
deviation of 0.1. The ES algorithm utilized a step size of 0.1, while the RepRL algorithm employed a
decision set of size 2048 without a discount factor (γ = 1) and λ = 0.1.

F.2 MuJoCo

In the MuJoCo experiments, both ES and RepES employed a linear policy, in accordance with
the recommendations outlined in [23]. For each environment, ES utilized the parameters specified
by Mania et al. [23], while RepES employed the same sampling strategy in order to ensure a fair
comparison.

RepES utilized a representation encoder consisting of 4 layers of a fully-connected network, with
dimensions of 2048 across all layers, and utilizing the ReLU non-linearity operator. This was
followed by a fully-connected layer for the mean and variance. The latent dimension was also chosen
to be 2048. After each sampling round, the representation framework (encoder and decoder) were
trained for 3 iterations on each example, utilizing an Adam optimizer and a learning rate of 3e− 4.
When combining learning signals of the ES with RepES, a mixture gradient approach was employed,
with 20% of the gradient taken from the ES gradient and 80% taken from the RepES gradient. Across
all experiments, a discount factor of γ = 0.995 and λ = 0.1 were used.

F.3 MinAtar

In the MinAtar experiments, we employed a policy model consisting of a fully-connected neural
network similar to the one utilized in the GridWorld experiment, featuring a hidden dimension of 64.
The value function was also of a similar structure, with a scalar output. The algorithms collected five
rollout chunks of 512 between each training phase.

The regulation coefficient chosen for RepRL was 1, while the discount factor and the mixing factor
were set as γ = 0.995 and λ = 0.1. The representation encoder used was similar to the one employed
in the GridWorld experiments with two layers, followed by a symmetry invariant layer and two fully
connected layers.

17

	Introduction
	Preliminaries
	Linear Bandits

	RL as a Linear Bandit Problem
	RepRL
	Learning Representations for RepRL
	Constructing a Decision Set
	Inner trajectory sampling

	RepRL Algorithms
	Representation Driven Evolution Strategy
	Representation Driven Policy Gradient

	Experiments
	Related Work
	Discussion and Future Work
	Acknowledgments
	Algorithms
	Variational Interface
	Proof for propavgreward
	Full RepRL Scheme
	Decision Set Experiment
	Hyperparameters and Network Architecture
	Grid-World
	MuJoCo
	MinAtar

