
Good Actions Succeed, Bad Actions Generalize:
A Case Study on Why RL Generalizes Better

Meng Song
UC San Diego

Abstract—Supervised learning (SL) and reinforcement learning
(RL) are both widely used to train general-purpose agents for
complex tasks, but their generalization capabilities and underlying
mechanisms are not yet fully understood. In this paper, we provide
a direct comparison between SL and RL in terms of zero-shot
generalization. Using the Habitat visual navigation task as a
testbed, we evaluate Proximal Policy Optimization (PPO) and
Behavior Cloning (BC) agents across two levels of generalization:
(1) state-goal pair generalization within seen environments, and
(2) generalization to unseen environments. Our results show
that PPO consistently outperforms BC in both generalization
settings and on both evaluation metrics—success rate and SPL
(Success weighted by Path Length). Interestingly, even though
additional optimal training data enables BC to match PPO’s
zero-shot performance in SPL, it still falls significantly behind
in success rate. We attribute this to a fundamental difference in
how models trained by these algorithms generalize: BC-trained
models generalize by imitating successful trajectories, whereas
Temporal Difference (TD)-based RL-trained models generalize
through combinatorial experience stitching—leveraging fragments
of past trajectories (mostly failed ones) to construct solutions
for new tasks. This allows RL to efficiently find solutions in
vast state space and discover novel strategies beyond the scope
of human knowledge. Besides providing empirical evidence and
understanding, we also propose practical guidelines for improving
the generalization capabilities of RL and SL through algorithm
design.

I. INTRODUCTION

Supervised learning (SL) and reinforcement learning (RL)
are two fundamental training paradigms for learning a general
policy capable of solving various problems and diverse physical
tasks. In the era of foundation models, both SL and RL play
essential roles in guiding a general-purpose model to master
specific downstream tasks. However, to what extent they can
endow an agent’s generalization ability and how they generalize
remains unclear and has not been extensively explored [11, 5,
1].

To understand supervised learning and reinforcement learn-
ing’s full capabilities in generalization, we train SL and RL
agents from scratch and directly compare their zero-shot
performance. This is different from prior work [3] which runs
RL on a model pretrained by SL. Although removing RL’s
dependence on SL leads to the failure of a general agent on
most tasks, a few studies [15, 4] have shown that with careful
formulation of model inputs and reward functions, a pure RL
agent can achieve strong zero-shot generalization in certain
domains. In this paper, we use the Habitat visual navigation
task as a testbed because it encompasses both geometric and
visual variations while enabling the evaluation of both diverse

and optimal solutions. We train Proximal Policy Optimization
(PPO) [14] and behavior cloning (BC) agents and evaluate
their zero-shot generalization on two levels: state-goal pair
generalization, which assesses the agent’s ability to navigate
between unseen start and goal pairs in training scenes, and
scene generalization, which measures the agent’s navigation
ability in unseen scenes.

Our experiments show that PPO outperforms BC across both
zero-shot evaluation settings and performance metrics—success
rate in finding a path and success in finding the shortest
path (measured by SPL). Notably, while augmenting BC with
additional optimal training data can eliminate its performance
gap with PPO in SPL, the gap in success rate persists. This
suggests that PPO is trained to have the capability to always
find a feasible solution, whereas BC specializes in finding a
specific class of solutions. We suspect this arises from the
distinct generalization mechanisms of TD-based RL algorithms
and BC: RL generalizes by leveraging failed trajectories, while
BC generalizes by imitating successful ones.

Specifically, RL solves unseen tasks by stitching together
experiences [12, 6] collected during training, which are often
suboptimal or failed trajectories for the original tasks (Figure 1).
Prior work [7] refers to this stitching phenomenon as combinato-
rial generalization (Figure 2), which is attributed to the agent
performing dynamic programming to optimize the training
objective (i.e., TD learning). This notion of combinatorial
generalization is completely different from how supervised
learning (SL) generalizes. SL extracts features from the training
data and generates an adapted solution for the unseen task.
(Figure 3). Its generalization is limited to the specific class of
solutions defined by the training distribution. However, TD-
based RL can compose an exponentially large set of possible
solutions for the unseen task, which is particularly important
for solving tasks in vast state space. This combinatorial nature
of solution construction also holds the potential to creatively
solve tasks that humans could never discover. In some sense,
the distinction in the generalization behaviors of SL and RL
is a reflection of the fundamental difference between the two
definitions of AI: the ability to translate task instructions into
human-like behaviors (SL), and the ability to acquire skills and
discover solutions to achieve goals through interaction with
the world (RL).

In summary, our primary contributions are:
• We empirically demonstrate that a pure online RL algo-

rithm can generalize better than BC, not only within
a single training environment but also across unseen

Fig. 1: Trial-and-error data collection: The agent is commanded
to reach g0 but instead reaches g1 either due to random
exploration or the inability to reach g0. Although these
trajectories fail to accomplish the training tasks, they become
useful for composing skills to solve unseen tasks.

Fig. 2: Combinatorial generalization: The agent has visited the
gray and beige paths separately during training but has never
seen the red path, yet it can discover it after TD learning.

Fig. 3: Feature generalization: The agent has been trained on
a large set of optimal paths between different (s0, g) pairs.
When presented with an unseen (s0, g), it infers the optimal
path from s0 to g based on common features across training
samples, such as the shape of optimal paths and frequently
appearing decision-informative visual elements, etc.

environments.
• We find that although standard data augmentation can close

the generalization gap between BC and PPO in terms of
SPL, it fails to close the gap in success rate. We attribute
this to their distinct generalization behaviors: TD-based
RL generalizes by combinatorially stitching experiences,
whereas BC generalizes by imitating the training samples.

• Based on further analysis, we provide practical guidelines
for improving the generalization capabilities of both RL
and BC.

II. HABITAT VISUAL NAVIGATION TASK

A. Task Definition

We study the generalization abilities of SL and RL algorithms
in the Habitat point goal visual navigation task [13]. In this
task, the agent is initialized at a random starting position and

orientation in an indoor environment and asked to navigate to
a target location specified relative to itself (e.g. “Go 5m north,
10m east of you”) in the shortest path. At each timestep, in
addition to this relative goal information, the agent receives an
egocentric visual observation and takes an action from {stop,
move forward (0.25m), turn left (10◦), turn right (10◦)}. An
episode is considered successful if the agent issues a stop action
within 0.2m of the goal position as measured by the geodesic
distance. The episode terminates when either the episode length
reaches 500 steps or the number of collision steps reaches 200.

B. Goal Representation as Task Description

Note that in the task definition, the goal is specified
relative to the agent’s current location rather than an absolute
position. This design choice goes beyond a simple arithmetic
operation or the question of whether the robot is equipped
with GPS and a compass – it carries a deeper significance.
In fact, the subtle difference between absolute and relative
goal representations leads to a distinctly different nature of
the task. With an absolute goal, the task is framed as a
typical goal-conditioned RL problem, which usually requires a
large amount of early exploration and long-term planning. In
contrast, with a relative goal, the task becomes more analogous
to an instruction following problem, where the instruction
is conveyed not through language but through distance and
orientation measures.

In a single-room navigation task, we observed that replacing
the relative goal with an absolute goal is equivalent to removing
the goal input, leading to a 40% degradation in the success rate
for a PPO agent. Relative goal representations are not exclusive
to navigation tasks [8, 9, 10, 17], many recent works across
various robotics domains share a similar task specification
in spirit. For example, the Decision Transformer [2] uses
return-to-go as an input to measure task progress, while π0

[1] trains a robot foundation model capable of solving a wide
range of dexterous tasks by following language instructions.
We therefore hypothesize that formulating the task as an
instruction-following problem makes it easier to solve, scale,
and generalize.

III. PROBLEM FORMULATION

A. RL Formulation

In the Habitat visual navigation task, the egocentric visual
observation makes the true environment state only partially
observable. As a result, each scene is naturally formulated as a
POMDP M = (O,A,P,R, ρ,G, γ), where ρ is the initial state
distribution and G is the goal state distribution. At each timestep
t, the agent takes an action at based on the observation history
h0:t = (o0:t, a0:t−1) and then receives the next observation
ot+1 ∼ P (·|h0:t, at) and reward rt+1 ∼ R(·|h0:t, at). The
policy π(at|h0:t, g) and value function V π(h0:t, g) can be
instantiated using any memory-augmented model such as a
recurrent model or a transformer.

Given a set of scenes (POMDPs) M = {Mi}Ni=1, we
uniformly sample a specific scene Mi from it at the beginning
of each episode. We then draw an initial starting position and

orientation s0 ∼ ρi and a goal location g ∼ Gi to start the
episode.

B. Reward Function

We follow the definition of the reward function in [13, 15],
which is

rt =

{
s+ dt−1 − dt + λ if goal is reached
dt−1 − dt + λ otherewise (1)

where s = 2.5 is the success reward, λ = −0.0001 is the time-
elapse reward, and dt−1−dt represents the change in geodesic
distance to the goal from timestep t− 1 to t. Computing the
geodesic distance requires the ground-truth map during training
but is unnecessary at the test time, as the agent does not rely
on the reward at that stage.

In principle, the time-elapse reward λ should encourage
movement and shortest path discovery. However, the inaccurate
value estimation limits its long-term effectiveness. Therefore,
an additional distance-change reward is introduced to provide
stepwise guidance on how each action contributes to the final
goal. Our experiments show that removing this term causes
the agent to fail completely.

IV. ALGORITHMS

We use Proximal Policy Optimization (PPO) [14] and behav-
ior cloning (BC) as example algorithms from RL and supervised
learning to study their generalization and memorization abilities.
We choose PPO over other model-free algorithms because
[15] has shown that, by scaling up the training to 2.5 Billion
steps, PPO can achieve near-perfect zero-shot performance on
unseen environments in the evaluation task, making it a strong
competitor.

We train both algorithms on N training scenes and evaluate
them on M unseen scenes. In each training scene, we sample
K (s0, g) pairs for training and generate the optimal trajectory
for each (s0, g) using the shortest path planner.

Both PPO and BC policies are implemented as recurrent
neural networks that condition on the entire history rather than
a truncated context, as used in Transformers.

A. PPO

Given a training state-goal pair (s0, g) in scene M , PPO
collects a set of trajectories

Dk = {τi = (o0, a0, o1, r1, . . . , aTi
, oTi+1

, rTi+1
)}

by running πθk in environment M , then updates the policy πθ

by maximizing the following objective:

θk+1 = argmax
θ

1

|Dk|Ti

∑
τi∈Dk

Ti∑
t=0

L (h0:t, at, θk, θ) (2)

L (h0:t, at, θk, θ) = min
(
rk(θ)A

πθk (h0:t, at, g),

clip (rk(θ), 1− ϵ, 1 + ϵ)Aπθk (h0:t, at, g)
) (3)

where
rk(θ) =

πθ(at|h0:t, g)

πθk(at|h0:t, g)
(4)

Aπθk (h0:t, at, g) = Rt − V πθk (h0:t, g) (5)

Rt =

Ti+1∑
j=t+1

γj−trj (6)

We follow the architecture design in [15], which implements
the recurrent policy (actor) π(at|h0:t, g) and the recurrent
value function (critic) V π(h0:t, g) using a shared RNN encoder
(Figure 7).

B. Behavior Cloning

Given a set of optimal training trajectories

Dtrain = {τi = (o∗0, a
∗
0, o

∗
1, . . . , a

∗
Ti
, o∗Ti+1

)}

where each τi has an associated goal gi, the learning objective
of behavior cloning (BC) can be written as

argmax
θ

1

|Dtrain|Ti

∑
τi∈Dtrain

Ti∑
t=0

lnπθ(a
∗
t |h∗

0:t, gi) (7)

where
h∗
0:t = (o∗0:t, a

∗
0:t−1)

To ensure a fair comparison, the BC agent employs the same
architecture as the actor in PPO, but omits the critic (Figure
8).

V. EXPERIMENTS

A. Experimental Setup

We conduct experiments using the training and validation
sets of the Gibson dataset [16]. The agents are trained on a
subset of 4 scenes from the training set and evaluated on all
14 scenes in the validation set. The evaluation comprises three
settings:

• Seen (s0, g): Evaluate the agent’s memorization ability
on the seen (s0, g) pairs from the training scenes.

• Unseen (s0, g): Evaluate the agent’s zero-shot generaliza-
tion ability on unseen (s0, g) pairs from the training scenes.
This setting specifically assesses the agent’s geometric
generalization ability, which refers to its capability to
infer paths between new locations in previously seen
environments. This process primarily relies on the agent’s
understanding and reasoning of geometric information
such as location, distance, layout, and spatial structures.

• Unseen scenes: Evaluate the agent’s zero-shot general-
ization ability in unseen scenes. In this setting, beyond
geometric generalization, the agent must also demonstrate
visual generalization—the ability to transfer learned poli-
cies to a new environment based on visual understanding.
For example, the agent should learn to move forward
when a hallway is ahead and turn when a wall is in front,
regardless of variations in appearance. It must then apply
these learned skills in an unseen environment with new
spatial layouts and visual features.

During evaluation, to fully compare the learned policies, we
sample actions from the policy distribution of PPO and BC
instead of greedily selecting the most probable ones.

B. Datasets

Based on the experimental setup, we construct the training
and evaluation datasets as follows: We sample 2000 (s0, g)
pairs from each training scene for training and a separate set
of 200 pairs for unseen (s0, g) evaluation. Within the 2000
training pairs, we sample 200 pairs for seen (s0, g) evaluation.
For the unseen scenes evaluation, we use the full validation
set, which consists of 994 (s0, g) pairs from 14 scenes.

During training, for each (s0, g) pair, the PPO agent learns
from trajectories collected under its current policy, while BC
is trained on the optimal trajectories generated by the shortest
path planner.

C. Evaluation Metrics

The agent’s performance is measured using the official
evaluation metrics: success rate and SPL, where SPL stands
for Success weighted by Path Length, defined as follows:

SPL =
1

N

N∑
i=1

Si
li

max (pi, li)
(8)

where for the i-th episode, li is the length of the shortest path
between the start and goal, pi is the length of the agent’s path,
and Si is the binary indicator of success. SPL = 1 only when
the agent’s path exactly matches the ground truth shortest path.

Note that the success rate measures the agent’s ability to find
any path to the goal, allowing multiple solutions to the task,
while SPL evaluates the ability to find the unique shortest path
to the goal, which is more strict. The distinction of these two
metrics helps us identify the different generalization strategies
of BC and PPO in solving zero-shot tasks. PPO leverages
its combinatorial generalization ability to efficiently compose
diverse possible paths, increasing the likelihood of reaching new
goals and thereby achieving a high success rate. In contrast, BC
excels at extracting common patterns from the training shortest
paths and generalizing based on these patterns, allowing it to
attain a high SPL.

VI. RESULTS

We conduct experiments to compare and analyze the gener-
alization performance of BC and PPO agents by investigating
the following questions:

A. How do BC and PPO agents perform in both training and
zero-shot tasks?

As illustrated in Figure 4, when evaluating on seen (s0, g)
pairs, BC achieves a comparable success rate to PPO and
outperforms it by 13% in terms of SPL. In contrast, PPO
consistently outperforms BC in both zero-shot tasks and across
two evaluation metrics, especially when generalizing to unseen
(s0, g) pairs and when evaluated using success rate instead of
SPL. In this case, PPO achieves a 96.75% zero-shot success
rate.

This suggests that BC is good at memorization, while PPO
excels at generalization. In particular, PPO generalizes better in
finding any feasible path to the goal than the shortest path, as
its performance advantage is greater when measured by success

rate than by SPL. It is worth noting that these observations
hold not only to training scenes (MDPs), but also unseen
scenes (MDPs), which demonstrates the broadness of RL’s
generalization capabilities.

B. Is data augmentation able to close the gap between BC
and PPO in zero-shot generalization?

As the generalization abilities of PPO and BC rely on
different training data — PPO trains on trajectories collected
by its behavior policy, while BC trains on a static set of
expert demonstrations, which are of high quality but of lesser
amount — a natural question to ask is: Can we improve BC’s
generalization through data augmentation?

To answer this question, we augment BC’s training data
with the optimal trajectories of 2000 additional (s0, g) pairs in
each training scene. These pairs do not overlap with either the
original training pairs or the unseen (s0, g) pairs. As shown in
Figure 5, we observe that with more training demonstrations,
the augmented BC achieves even better memorization perfor-
mance, reaching nearly 100% on seen (s0, g) pairs. Additional
training data also improves BC’s zero-shot performance.

Interestingly, in both the unseen (s0, g) task and the unseen
scene task, augmented BC achieves a similar SPL to PPO,
but still lags significantly behind in success rate. In other
words, there are always (s0, g) pairs that PPO can successfully
navigate, but augmented BC cannot. Moreover, note that PPO’s
SPL is lower than its success rate, indicating that the path it
finds is not always the shortest. In contrast, BC and augmented
BC have equal SPL and success rate, meaning the paths they
find are always the shortest.

We hypothesize that this phenomenon can be attributed to the
distinct ways in which PPO and BC generalize. BC generalizes
by learning the common patterns in training data—specifically,
the shortest paths in our case. As a result, training with
sufficient shortest path demonstrations allows it to achieve
performance comparable to PPO in terms of SPL. In contrast,
PPO generalizes by recombining pieces of trajectories into any
possible paths between new (s0, g). Since most of these paths
do not share common features with the shortest paths and are
combinatorially numerous, PPO’s advantage in success rate
will always remain, even if BC is trained on an infinite number
of optimal demonstrations.

C. Does training in more scenes necessarily improve the
performance?

To understand the impact of the number of training scenes
on generalization, we train PPO and BC on 1 and 4 scenes
respectively, and plot their evaluation performance in Figure
6. Despite the variation in the number of training scenes, the
experiments consistently show that BC outperforms PPO in
memorization, while PPO outperforms BC in generalization,
especially in finding any feasible paths to the goal.

Notably, for both PPO and BC, training on more scenes
facilitates the generalization to unseen scenes, but reduces the
generalization performance on unseen (s0, g) and memorization

Fig. 4: Performance comparison of BC and PPO on the training
and zero-shot tasks.

performance on seen (s0, g). The performance decline is partic-
ularly noticeable for BC. We suspect that this is because increas-
ing the number of training scenes improves the agent’s visual
understanding and generalization ability while simultaneously
compromising its geometric generalization and memorization
abilities. One can imagine a scenario where similar (s0, g) pairs
exist in different scenes, but due to variations in layouts, their
optimal paths differ. This conflicting information introduces
confusion in the agent’s memory, making it difficult for the
agent to generalize correctly to new situations. Scaling up
the model and increasing the training data—both in (s0, g)
pairs and scenes—could potentially help reconcile the trade-off
between visual and geometric generalization.

VII. CONCLUSION AND DISCUSSION

In this paper, we investigate the generalization behaviors
of TD-learning-based reinforcement learning (RL) and super-
vised learning (SL) and how their distinct behaviors lead to
generalization gaps. We explore this problem in the Habitat
visual navigation task by training PPO and BC agents as
instantiations. We evaluate their generalization abilities in two
zero-shot settings: same-scene (s0, g) pair generalization and
across-scene generalization, and using two evaluation metrics:
SPL and success rate. Our results show that PPO exhibits
superior generalization compared to BC across both zero-shot
settings and evaluation metrics.

To understand the reasons behind this phenomenon, we
conduct further analysis. Our experiments suggest that PPO
significantly outperforms BC in zero-shot success rate because
it can reuse and recombine previously seen paths into a
combinatorial number of solutions for new tasks. This unique
generalization behavior stems from the dynamic programming

Fig. 5: Performance comparison of BC, augmented BC, and
PPO on the training and zero-shot tasks. The augmented BC
is trained on 2000 additional optimal trajectories per scene.

nature of TD learning and the acquisition of non-optimal
experiences through trial-and-error—capabilities that BC inher-
ently lacks. However, BC follows a distinct generalization
strategy, effectively extracting common patterns from the
training trajectories and generating solutions that follow similar
patterns to solve unseen tasks. This ability enables it to match
PPO’s zero-shot performance in finding the specific set of
solutions (such as the shortest path in our case) when trained
on a larger dataset, but not other possible solutions.

By identifying the different generalization behaviors of RL
and SL, we further provide practical suggestions on how
generalization can be improved. (1) For TD-based RL methods,
we suggest incorporating a maximum entropy regularization
term into the regular RL objective to further improve its
generalization ability. Maximum entropy RL preserves all
possible solutions to the training tasks rather than over-
committing to a single solution, potentially offering greater
capacity for combinatorial generalization. (2) For supervised
learning (SL) methods, we recommend training on data of
varying quality, including noisy and sub-optimal trajectories,
to generate diverse solutions for new tasks and improve the
success rate. (3) For both RL and SL, the policy should
be multimodal to allow sufficient expressiveness. We also
encourage future work on designing new algorithms that
combine the best of both worlds—composing diverse solutions
for new tasks while adapting learned patterns to novel cases.

REFERENCES

[1] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim

Fig. 6: Performance change of BC and PPO as the number of
training scenes increases from 1 to 4, evaluated on both the
training and zero-shot tasks.

Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell,
Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xi-
aoyang Shi, James Tanner, Quan Vuong, Anna Walling,
Haohuan Wang, and Ury Zhilinsky. π0: A vision-language-
action flow model for general robot control, 2024. URL
https://arxiv.org/abs/2410.24164.

[2] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer:
Reinforcement learning via sequence modeling, 2021.
URL https://arxiv.org/abs/2106.01345.

[3] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang
Tong, Saining Xie, Dale Schuurmans, Quoc V. Le, Sergey
Levine, and Yi Ma. Sft memorizes, rl generalizes: A
comparative study of foundation model post-training,
2025. URL https://arxiv.org/abs/2501.17161.

[4] Marco Cusumano-Towner, David Hafner, Alex Hertzberg,
Brody Huval, Aleksei Petrenko, Eugene Vinitsky, Erik
Wijmans, Taylor Killian, Stuart Bowers, Ozan Sener,
Philipp Krähenbühl, and Vladlen Koltun. Robust au-
tonomy emerges from self-play, 2025. URL https:

//arxiv.org/abs/2502.03349.
[5] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning

capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

[6] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker,
and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2021. URL https://arxiv.org/abs/
2004.07219.

[7] Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin
Eysenbach. Closing the gap between td learning and
supervised learning – a generalisation point of view, 2024.
URL https://arxiv.org/abs/2401.11237.

[8] Saurabh Gupta, Varun Tolani, James Davidson, Sergey
Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation, 2019. URL
https://arxiv.org/abs/1702.03920.

[9] Noriyuki Kojima and Jia Deng. To learn or not to learn:
Analyzing the role of learning for navigation in virtual en-
vironments, 2019. URL https://arxiv.org/abs/1907.11770.

[10] Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen Koltun.
Benchmarking classic and learned navigation in complex
3d environments, 2019. URL https://arxiv.org/abs/1901.
10915.

[11] OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.
org/abs/2303.08774.

[12] Seohong Park, Kevin Frans, Benjamin Eysenbach, and
Sergey Levine. Ogbench: Benchmarking offline goal-
conditioned rl, 2025. URL https://arxiv.org/abs/2410.
20092.

[13] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh,
and Dhruv Batra. Habitat: A Platform for Embodied AI
Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[15] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
Dd-ppo: Learning near-perfect pointgoal navigators from
2.5 billion frames, 2020. URL https://arxiv.org/abs/1911.
00357.

[16] Fei Xia, Amir Zamir, Zhi-Yang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: Real-
world perception for embodied agents, 2018. URL
https://arxiv.org/abs/1808.10654.

[17] Jihan Yang, Runyu Ding, Ellis Brown, Xiaojuan Qi, and
Saining Xie. V-irl: Grounding virtual intelligence in real
life, 2024. URL https://arxiv.org/abs/2402.03310.

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2502.03349
https://arxiv.org/abs/2502.03349
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2401.11237
https://arxiv.org/abs/1702.03920
https://arxiv.org/abs/1907.11770
https://arxiv.org/abs/1901.10915
https://arxiv.org/abs/1901.10915
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.20092
https://arxiv.org/abs/2410.20092
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1911.00357
https://arxiv.org/abs/1911.00357
https://arxiv.org/abs/1808.10654
https://arxiv.org/abs/2402.03310

APPENDIX A
IMPLEMENTATION AND EXPERIMENT DETAILS

A. Environment and Robot Setup

Table I provides details of the environment and robot setup.

TABLE I: Environment and Robot Setup

Hyperparameter Value

Visual observation size 224× 224× 3
Discrete actions 4
Forward movement resolution 0.25 meter
Rotation resolution 10 degree
Goal coordinate system polar
Goal dimension 2
Maximum steps per episode 500
Maximum collisions per episode 200

B. Model Architectures

Figures 7 and 8 illustrate the architectures of the PPO and
BC agents, respectively, with detailed configurations provided
in Table II.

Fig. 7: PPO Architecture

Fig. 8: BC Architecture

C. Training Parameters

Training parameters for PPO and BC agents are listed in
Tables III, IV, and V.

TABLE II: Architecture Hyperparameters for PPO and BC

Hyperparameter Value

Visual encoder ResNet 18
Goal encoder 1 layer MLP
Action encoder 1 layer MLP
RNN Unit GRU
RNN hidden state dimension 512
Policy head 1 layer MLP
Value network 1 layer MLP
Observation embedding dimension 512
Goal embedding dimension 32
Action embedding dimension 32

TABLE III: Common Training Parameters for PPO and BC

Hyperparameter Value

Number of parallel environments 4
Batch size 128× 4 = 512
Length of rollout buffer 128

TABLE IV: Hyperparameters for PPO

Hyperparameter Value

Optimizer Adam
Adam ϵ 1× 10−5

Learning rate 2.5× 10−4

Discount factor γ 0.99
Clip range 0.2
GAE λ 0.95
KL coefficient 0
Entropy coefficient 0.01
Value loss coefficient 0.5
Gradient clip for actor and critic 0.5
Epochs per update 4
Total training steps 5× 106

TABLE V: Hyperparameters for BC

Hyperparameter Value

Optimizer AdamW
Learning rate 1× 10−4

Total training epochs 200

	Introduction
	Habitat Visual Navigation Task
	Task Definition
	Goal Representation as Task Description

	Problem Formulation
	RL Formulation
	Reward Function

	Algorithms
	PPO
	Behavior Cloning

	Experiments
	Experimental Setup
	Datasets
	Evaluation Metrics

	Results
	How do BC and PPO agents perform in both training and zero-shot tasks?
	Is data augmentation able to close the gap between BC and PPO in zero-shot generalization?
	Does training in more scenes necessarily improve the performance?

	Conclusion and Discussion
	Appendix A: Implementation and Experiment Details
	Environment and Robot Setup
	Model Architectures
	Training Parameters

