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Abstract

We study the finite-horizon Restless Multi-Armed Bandit (RMAB) problem with
N homogeneous arms. Prior work has shown that when an RMAB satisfies a
non-degeneracy condition, Linear-Programming-based (LP-based) policies derived
from the fluid approximation, which captures the mean dynamics of the system,
achieve an exponentially small optimality gap. However, it is common for RMABs
to be degenerate, in which case LP-based policies can result in a ©(1/v/N)
optimality gap per arm. In this paper, we propose a novel Stochastic-Programming-
based (SP-based) policy that, under a uniqueness assumption, achieves an O(1/N)
optimality gap for degenerate RMABs. Our approach is based on the construction
of a Gaussian stochastic system that captures not only the mean but also the variance
of the RMAB dynamics, resulting in a more accurate approximation than the fluid
approximation. We then solve a stochastic program for this system to obtain our

policy. This is the first result to establish an @(1 /) optimality gap for degenerate
RMABs.

1 Introduction

The Restless Multi-Armed Bandit (RMAB) problem is an important framework in sequential decision-
making, where a decision maker selects a subset of tasks (arms) to work on (pull) at each time step to
maximize cumulative rewards, under known model parameters [29]]. Unlike the classical (restful)
bandit [[11]], in the restless variant, the state of each arm evolves stochastically regardless of whether
it is pulled. RMABs have been widely applied in domains such as machine maintenance [9, [12],
healthcare resource allocation [22] 23], and target tracking [[19} 21]], to name a few, where optimal
decision-making under uncertainty is critical. A general RMAB is PSPACE-hard [25]], and finding
optimal policies is computationally challenging, especially as the number of arms grows. Recently,
there have also been efforts to use deep learning and reinforcement learning to learn heuristic policies
for RMABES, such as [1} 118} 24! 30} 131].

In this paper, we focus on the finite-horizon version of the RMAB problem with N homogeneous
arms and horizon H, where each arm follows the same (time-dependent, known) state transition
and reward function. While computing the exact optimal policy is impractical, the homogeneity of
the model allows for the design of computationally efficient policies. One such class of policies is

'We adopt standard asymptotic notation throughout this paper. Specifically, for functions f(NN) and g(IV),
we write f(N) = O(g(N)) if there exist positive constants C' and Ny such that |f(N)| < C|g(N)| for
all N > Ny. Similarly, we write f(N) = Q(g(N)) if g(N) = O(f(N)), and f(N) = O(g(N)) if both
f(N) = O(g(N)) and f(N) = Q(g(N)) hold simultaneously. Additionally, we use O(-) and O(-) notation to
indicate that logarithmic factors are omitted.
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based on fluid approximation, which transforms the original N-armed RMAB problem into a Linear
Program (LP), and an LP-based policy can be efficiently computed based on the solution to the LP.

Optimality gap. In [13], an LP-based index policy was proposed and achieves an o(1) optimality
gap. This gap was later improved to O(log N/v/N) in [34]], and subsequently to O(1/+v/N) in [7].
In the numerical experiments of [7]], it was observed that while this O(1/ VN ) gap appears tight for
certain problems, in others the gap converges to zero more rapidly. This empirical observation was

theoretically confirmed in [36], where it was shown that under a non-degenerate condition (formally
defined in Definition[3.1), the gap is at a smaller order of O(1/N).

Non-degenerate condition. This non-degenerate condition has since become a key assumption in
subsequent works. [[10] shows that, under this condition, the optimality gap becomes exponentially
small when the rounding error induced by scaling the fluid approximation by N is eliminated. Further
generalizations of the non-degenerate condition have been made in [8], extending it to multi-action
and multi-constraint RMABs (also known as weakly coupled Markov decision processes). In [33]],
the non-degenerate condition was further extended to settings with heterogeneous arms.

Prevalence of degenerant RMABs. Despite the central role played by the non-degenerate condition,
many RMAB problems are degenerate. Notable examples, which originate from real-world appli-
cations, have been discussed in [[7, 8, 36]. Moreover, a numerical study presented in Appendix [B.T]
revealed that a significant proportion (about 50% for some cases) of randomly generated RMABs
are degenerate, and almost all of them satisfy the Uniqueness Assumption[d.T] This highlights the
practical importance of addressing degenerate RMABs.

However, to the best of our knowledge, in all previous works, when an RMAB is degenerate, the best
known optimality gap is O(1/+/N). It is widely believed that this upper bound is also order-wise
tight under LP-based policies, making it ©(1/+/N). We will formally prove this result in Theorem
A.2] by using an example.

These results led us to ask the following central question of this paper:

Does there exist a computationally efficient algorithm for degenerate RMABs with an optimality gap
order-wise smaller than O(1/V/'N)?

Contributions. This paper answers the question affirmatively
and includes the following results: 0.76
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degenerate example in Section [3] demonstrating in Theo-
rem 4.2 that not only the LP-based policy has ©(1/v/N) optimality gap, but also the LP upper
bound has ©(1/ VN ) gap from the optimal value. This indicates that the LP upper bound, which
is a widely used baseline, itself is not tight for degenerate RMABs.

As an illustration, consider a degenerate RMAB example with 2 states and a horizon of 2 steps
(the details can be found in Section[3.3). Given the small problem size, the optimal policy can be
computed exactly through brute-force methods. As shown in Figure[T} the performance of the policy
obtained by solving the Gaussian stochastic system is already very close to the true optimal value.



Considering N xoptimality gap (i.e. the total optimality gap of the NV arms with respect to the optimal
policy), it remains bounded under the SP-based policy as IV increases, which confirms the O(1/N)
optimality gap; while the total optimality gap for the LP-based policy appears to grow unbounded.

Related work. A comparison of state-of-the-art results in finite-horizon RMABs with this work is
provided in Table

Table 1: Optimality gap and assumptions in finite-horizon RMABs

Paper Gap Assumption

Brown and Smith [7]] O(1/V/N) General

Gast et al. [10] O(exp(—CN)) Non-degeneracy

This Work O(1/N) Degeneracy & Uniqueness Assumption

Gaussian approximations, rooted in the central limit theorem, are widely used to approximate
stochastic processes. In heavy-traffic queueing analysis, this yields the diffusion approximation,
where the centered, scaled limit is a diffusion process; see early work in [4} 15 [16, [17]. This literature
typically studies fixed policies and establishes convergence (or rates) to the diffusion limit. In contrast,
we aim to design near-optimal policies for discrete-time RMABs via a second-order Gaussian
approximation.

Closer to our setting is approximate diffusion control (e.g., [2,[13}14]), which replaces the original
problem with a diffusion control problem solved through the Hamilton—Jacobi—Bellman (HJB)
equation. Recent work [6] shows HIBs arise from second-order value-function approximations of
general MDPs. However, solving HIBs is notoriously difficult, especially when diffusion coefficients
are control dependent, yielding highly nonlinear PDEs. This actually motivates our alternative
second-order approach, detailed in Section 3]

Notational convention. Vectors are row vectors by default. Throughout the paper, we consider three
systems: the V-armed RMAB system, the fluid system, and the Gaussian stochastic system. As a
general convention, variables and functions with “ = ” are for the fluid system, while those with “ =~
are for the Gaussian stochastic system. The terms “action” and “control” are used interchangeably in
the context of decision-making.

2 Problem formulation

RMAB model. We consider the H-horizon Restless Multi-Armed Bandit (RMAB) problem with N
homogeneous arms. Each arm is modeled as a Markov Decision Process (MDP) with state space
S :=1{1,2,...,S} and action space A := {0,1}. Ateach time step h (1 < h < H), the decision
maker decides which arms to take action 1, also referred to as the pulling action, subject to the budget
constraint that exactly a/N arms should be pulled. Here 0 < v < 1 and we assume N is an integer.
After the actions are applied, the N arms evolve independently. Specifically, the state transitions
froms € SV to's’ € SV with probability Py, (s’ | s,a) = [T_; Pu(s), | $n,an), where (s,,a,)
denotes the state-action pair for the n-th arm, and Py (- | -, a) is the transition kernel under action a.
For convenience, we refer to this RMAB system with NV arms as the N-system.

At each time step h, the decision maker collects an additive reward Zi:;l 71 (Sn, an), where r4,(s, a)
denotes the reward for the state-action pair (s,a) at time h and is assumed to be nonnegative
without loss of generality. The objective is to find a policy 7V, which maps the bandit state
vector s, = (81,4, S2,h, - - - » SN,5) O an action vector aj, = (a1, a2.4, - ..,an,,) for each h, that
maximizes the total expected reward per arm over the horizon:

H N
1
VI = max > N > B (S Gnn)] (1)
h=1 n=1
N
st. Y app=aN, 1<h<H )
n=1



To reduce the computational complexity, we leverage the fact that the /N arms are homogeneous and
aggregate the states of individual arms. This gives us a simplified representation of the bandit state,
which facilitates subsequent analysis and policy design. Specifically, we represent the bandit state
at time h as a vector X;, = (X(s))ses € A%, where each X},(s) denotes the fraction of arms in
state s € S. Here, A%, is a discrete subset of A, the probability simplex over S, such that each
X € Af\, satisfies that Nx has all integer entries. Similarly, we represent the action at time / as a
vector Y, = (Y3,(8,a))ses.aca € A%?, where each Yy, (s, a) denotes the fraction of arms in state s
taking action a. We treat Y}, as a row vector of length 25. We also write Y (-,0) = (Y5(s,0))ses
and Y, (-, 1) = (Y(s,0))ses, which are both row vectors of length S.

Under the new state and action representation, given an action Y, = yy, the state evolves as

1 S,a
X1 = 5 2, U o), 3)

where Ugf’a) (yn) € N9 follows a multinomial distribution multi( Ny, (s, a), Pp(- | s,a)), and the
U;f’a) (yn)’s for different (s, a)’s are independent.

Under the new state and action representation, a policy 7'V maps the state X, to an action vector Y,
for each h. We also rewrite the reward function as a vector rj, = (7, (S, @))ses,ac A € R2%. Suppose
the initial state of the [V-system is X1 = Xjy; € A}g\,. Then the objective of the RMAB problem can
be reformulated as:

H
Vojgt(xini,l) = mw%x ZEWN [rhY;Lr] 4

h=1
st. Y Vi(s,1)=a, 1<h<H, 5)
YL(,0)+ YL, 1) =X, Y,eA¥ 1<h<H. (6)

Here () corresponds to the budget constraint, and (6] ensures that Y7, is a valid action for state Xj,.

Fluid approximation. One classical approach to address the complexity of RMAB is to consider a
fluid approximation as in [[7, [10, [15} 134} 36], where the stochastic state transition is replaced by its
expected value, leading to a deterministic transition at each step:

Xpi1 = un(s,a)Pu(- | 5,a). (7)

s,a

This fluid system smooths out the stochastic fluctuations in the N-system and leads to the following
Linear Program (LP), which we refer to as the fluid LP:

H
Vip (Xini, 1) == max Ly, (8)
LP( ) (Xn,Yr)ne{1,2,....H} hz::I hYh
st. Y uyn(s,1)=a, 1<h<H, 9)
yh(70)+yh(71) :Xh(')v Yr 207 1 §h§H7 (10)
X1 = Xini, Xpt1() = th(&a)Ph (]sa), 1<h<H-L1 (1)

s,a

Let X* = (X})he{1.2,...q} and y* = (¥} )ne{1,2,....q} be an optimal solution to this fluid LP.
Note that this LP can be efficiently solved. Furthermore, it has been shown that Vojgt (Xini, 1) <
VLp(xini, 1); see, for instance, [36, Lemma 1] or [32, Lemma 3]. That is, the optimal value of the
LP provides an upper bound on the optimal value of the RMAB problem. Based on the solution to
this LP, LP-based policies can be obtained but have ©(1/+/N) optimality gap per arm in degenerate
RMABESs, as we pointed out in the Introduction.



3 Gaussian approximation and SP-based policy

3.1 Gaussian stochastic system

The performance of LP-based policies is inherently limited by how accurately the fluid system
approximates the original N-system. To design policies that outperform the LP-based policies, we
construct a Gaussian stochastic system that better approximates the original N-system by capturing
not only the mean but also the variance of the system. This Gaussian stochastic system is centered
around y*, an optimal solution to the fluid LP. We then search for an optimal policy for the Gaussian
stochastic system in a neighborhood of y*, which adjusts y* to account for the stochasticity. This
policy is then applied to the /NV-system after properly handling the integer effect.

Specifically, we construct a Gaussian stochastic system with state space A and action space A2,
The system has the same initial state x;,; as the N-system. Under action vector yy,, the state of the

Gaussian stochastic system at the next time step, Xh+1, is a random vector of the following form:

Xthl = PrOjAS (Z yh(s7a)Ph(' | 5, CL) + Zh/\/ﬁ) ) (12)

s,a

where Zj, is a Gaussian random vector with distribution N'(0,T',(y7)), and Z;’s are independent
across steps. The covariance matrix I';, (y};) is a constant matrix independent of IV, with its explicit
expression given in Appendix |Al The projection, Proj,s (+), is onto the simplex A under the
lo-distance. This projection will not be used with a high probability. Indeed, it can be shown
that 3, . yn(s,a)Pp(- | s,a) + Zn/V'N € A occurs with probability 1 — O(1/N'8N), see
Lemma C.8 of [33] for a proof.

We now explain how the Gaussian stochastic system captures the mean and variance of the /NV-system.
Suppose the action at time A is y. Ignoring the projection, we have X1 = >, yn(s,a)Py(- |

s,a) + Zy/V/N. The term > s.a Un(s,@)Pr(- | s,a) is the expectation of the state Xj,41 in the
N-system, which is the same as the state x5, in the fluid system under action yj. The additional
term, Zy, / V/N, is random, and by construction, its covariance matrix matches that of Xy, ; in the
N-system if y;, = y7,. Therefore, this term captures the variance of the N-system when y;, is close
to the optimal solution y; of the fluid LP.

We remark that a key innovation of our approach is to replace the otherwise (state,action)-dependent
diffusion terms with (state,action)-independent ones. We construct the Gaussian system so that the
covariance of the noise is fixed—chosen from the fluid-optimal solution y; —rather than depending
on yy,. This enables the use of stochastic-programming techniques that require action-independent
randomness, such as the EDDP algorithm [20, Algorithm 3] we employ in Section[5] Conceptually,
this is a further “simplification” of the classical diffusion approximation: although the covariance
is fixed at y;, the resulting approximation retains the same order of error for our problem (a point
established in Theorem [4.1)) while remaining computationally tractable.

This simplification is justified by scale separation: in the N-system, stochastic fluctuations are
O(1/+/'N) relative to the deterministic drift (see the 1/+v/N factor multiplying Zj, in (T2))). Hence the
covariance induced by the fluid-optimal action serves as a robust surrogate for the action-dependent
covariance without changing the asymptotic accuracy, a property that typically does not hold in
traditional diffusion control but is available here due to the central limit theorem scaling.

3.2 Stochastic-Programming-based (SP-based) policy

After constructing the Gaussian stochastic system, we search for an optimal policy in the Gaussian
stochastic system. However, we restrict the search to a neighborhood of y*, since the Gaussian
stochastic system closely approximates the /V-system when the state and action of the /N-system stay
close to y*. In particular, given a fixed parameter d := 2log N/v/N = ©(1/v/N), we define the
following policy class:

IO, (y*) := {7r: V1< h<H, |[r(xp,h) =yl < Kkzron, if [|Xn — X} |lco < 2n0N;

. . (13)
T = Tpre for a predefined policy e, if [|[xn — X} [loo > 210N }-



Algorithm 1 Stochastic-Programming-based (SP-based) policy

1: Input: An optimal solution y* to LP (8); constants zp, d and x; a predefined policy mpre
2: if y* is non-degenerate then

3 Use an LP-based policy

4: Break

5: end if

6: Solve the Gaussian stochastic program (T4) to obtain an optimal policy 7™* € Il;, (y*)
7: for h =1to H do

8: Xj, < state of the N-system at time h

9: if ||Xh - X;;Hoo < zp6n then
10 Y, < round(7N* (x5, h))
11: else
12: Y, < round(mpre (Xp, 1))
13: end if
14: Apply action Yy,

15: end for

Here « is a positive constant with value x := max {2 + 65, 3 4 2ry.xHS/0}, where rpax =
maxs qp 7'h(S,a); o is a constant depending on the fluid LP; z;, for 1 < h < H is a recursive
sequence. The explicit expressions for these constants are collected in Appendix A of [33]]. We note
that all of them are independent of N, and can be computed or estimated solely from the fluid LP (8).

We now explain the reasoning behind the definition of the policy class Il (y*). We restrict
corrections to a O(1/+/N) neighborhood of the fluid-optimal state—action. When the LP has a
unique solution, an optimal N-system policy lies within this neighborhood (see Lemma C.1 of
[33] for a proof); hence our restriction retains optimal policies while ensuring that the second-
order approximation incurs only O(1/N) error (see Lemma C.4 of [33]] for a proof). Enlarging
the neighborhood inflates the approximation error, whereas shrinking it risks excluding the true
optimum—so O(1/v/N) is the “right” scale for our method. Moreover, since the smallest gap
of interest is O(1/N) and the process leaves this neighborhood with probability O(1/N'& )
(Lemma C.8 of [33])), the contribution of out-of-neighborhood behavior is negligible. Consequently,
we do not distinguish between policies optimized only locally and those also optimized outside the
neighborhood; whenever the state exits, we simply follow a predefined policy as in (T3).

We then formulate the following Gaussian stochastic program (SP):

H
max E {r ?T} 14
mellsy (v*) hz::l hh ( )
st. Y Vi(s,1)=a, 1<h<H, (15)
Yi(,0)+ Ya(,1) =X, Y,>0, 1<h<H, (16)

X1 = Projus (Z Yi(s,a)Py(- | s,a) + zh/\/ﬁ> , 1<h<H-1. (17

s,a

We now present our SP-based policy, formally described in Algorithm[I] The core idea of this policy
is to solve the Gaussian stochastic program and obtain an optimal policy 7V* € TIs, (y*). This
policy is then applied to the /N-system through a simple rounding procedure. It guarantees that the
action generated by the algorithm pulls an integer number of agents. Since when computing the
first- and second-order approximations, we extend the state and action spaces from their original
discrete sets (with granularity 1/N) to continuous-valued probability simplices. The action computed
in this continuous domain must subsequently be converted back to the discrete domain, ensuring that
all values multiplied by N are integers and thus applicable to the N-agent problem. This rounding
procedure is explicitly detailed in Appendix [A] in which we showed alongside that the rounding error
is of order O(1/N).



We remark that we only use the policy 7V** when the RMAB is degenerate. When the RMAB
is non-degenerate, our policy defaults to a LP-based policy, which prior work (see Introduction)
has shown to achieve an exponentially small optimality gap (in terms of V) relative to Vp. The
definition of non-degeneracy is given below, and it is easy for an algorithm to check whether an
RMAB is non-degenerate or not.

Definition 3.1 (Non-degeneracy [8, 10, 36]). An RMAB is non-degenerate if, its corresponding fluid
LP (BI) admits an optimal solution y*, such that for each h with 1 < h < H, there exists at least one
state s € S such that yj(s,0) > 0 and y; (s, 1) > 0.

3.3 Illustration of the SP-based policy on a degenerate example

We illustrate the SP-based policy via a two-state RMAB with horizon H = 2 and pulling budget
a = 0.5. The rewards are given by 71(1,1) = ro(1,1) = 1, with all other (h, s, a)-tuples being
rp(s,a) = 0. The transition probabilities at h = 1 are P1(1 | 1,1) = 0.2, P4(1 | 1,0) = 0.9,
Pi(1]2,1) =0.7,P1(1]2,0) = 0.25. Assume at h = 1 there are N/2 arms in state 1, and the
other N/2 arms are in state 2.

N-system problem. Note that at time 2 = 2, only r2(1,1) = 1, so the optimal action at h = 2 is
to pull as many arms in state 1 as possible, i.e., Y2(1,1) = min{0.5, X2(1)}. Therefore, we only
need to decide the optimal action at b = 1. We further notice that since X;(1) = X;(2) = a = 0.5,
the entries of Y are all determined by Y (1, 1) as follows

Y1(1,0) = Y1(2,1) = 0.5 — Y(1,1),  Y1(2,0) = Y3(1,1).

Therefore, we only need to optimize Y7 (1, 1). The N-system optimal policy is given by the solution
of the following problem

Yi(1,1) + E [min {0.5, X5(1)}]. 18
0<yi(11)<0.5 1(1,1) + E[min {0.5, X5(1)}] (18)

Fluid LP and its optimal solution. In the fluid system, we replace X2 (1) with its mean z5(1) =
Ysabi(s;a)Pi(l]s,a) =0.8—1.15 x y1(1,1). Then the fluid LP is

Vi = 1,1) 4 min {05, 0.8 — 1.15 x (1, 1 19
e OSylr(I}f%go.syl(’ ) + min {0.5, xy1(1,1)}, (19)

which exchanges the expectation and the min operator in the N-system problem (I8)). The optimal
solution is g3 (1,1) = 0.2609. One can verify that this problem is degenerate (see Definition .

SP-based policy. Given the fluid solution y* above, the corresponding Gaussian stochastic program
is

. A
max  Vi(1,1) +E [min{0.5, 0.8 — 1.15 x V;(1,1) + = 41, 20
e N [ { 1L 1) \/NH 20

where Z; LN (0, 0.1624). Since we are searching for an optimal solution around y7, let Y3 (1,1) =
yi(1,1) 4+ TCN Then the stochastic program can be written as

1
1(1,1) 4+ 0.5 + — max (¢ + E [min {0, Z; — 1.15¢}]),
yi(1,1) Wi ax ( [min {0, Z, 1)

which is equivalent to the following problem
max ¢+ E [min {0, Z; — 1.15¢}].

There exists an explicit and unique solution to the problem above, and the solution can be numerically
computed and is ¢ = 0.3940 (for more details please refer to Appendix D of [33]]). Therefore,
the SP-based policy is given by round(Y;*(1,1)) = round(0.2609 + 0.3940/+/N). This SP-based
policy outperforms LP-based policies, as illustrated in Figure|l|in the Introduction.



Some insights. We compare the fluid approximation in (T9) with the Gaussian approximation in
(20) when they both take an action y (1,1) = Y1(1,1) = y¥(1,1) + ¢/V/N for a positive constant
c. In the fluid system, the reward for A = 2 is min {0.5, 0.8 — 1.15 x y;(1, 1)}, which is capped
at 0.5. One can verify that this deviates from the value E [min {0.5, X3(1)}] in the N-system by

O(1/+/N), caused by the exchange of the expectation and the min operator. In contrast, in the
Gaussian stochastic system,

. ~ Zy . 71— 1.15¢
E lmin<0.5,0.8-1.15x Y1 (1,1)+ — | =054+ FE |min{ 0, ——— ¢ |,
[ { LDF IR H { { VN H

which can be verified to be O(1/N) away from the value IE [min {0.5, X5(1)}] in the N-system and
thus giving a better approximation. This better approximation allows us to find a better policy near
y7(1,1). The inaccuracy of the fluid approximation is in fact a fundamental reason that LP-based

policies have a ©(1/ VN ) optimality gap for some degenerate RMABs, whereas the correction in
our SP-based policy reduces the ©(1/v/N) inaccuracy to O(1/N).

4 Main theoretical results

In this section, we present our main theoretical results. We will frequently use the following quantities.
Let V¥ (x5, h) and QY (xp,, y1, h) denote the value function and Q-function of policy 7 evaluated

in the N-system; and VN (x5, h) and QY (x4, v, h) denote the value function and Q-function of a
policy 7 evaluated in the Gaussian stochastic system. Further, we consider the following optimal
policies within the policy class IT;,, (y*):

7NV e argmax VN (xp, h),
m€llsy (¥*)

which is referred to as the locally-SP-optimal policy. We sometimes say that we apply the locally-
SP-optimal policy 7V* to the N-system and denote its value function as Vﬁ%.* (xp, h), with the

understanding that we apply 7#™V* with the rounding procedure, detailed in Appendix

4.1 Global optimality

Assumption 4.1 (Uniqueness). The fluid LP in (8) has a unique optimal solution y™.

Note that once we obtain an optimal solution to Theorem 4.1: prove gap = O(1/N)

the LP, verifying uniqueness is straightforward

[31.

Theorem 4.1 (Global optimality). Consider an /N — VN, VN

RMAB that satisfies the Uniqueness Assump- opt T i

tion Then the locally-SP-optimal policy, |Lemma C.1 (Proximity

7N when applied to the N -system (with round-  |of optimal policy) 2 D

. . . . A s N

ing), achieves an optimality gap of O(1/N); /@ X

Le., Lemma C.2 / Lemma C.3

~ (Value (Evaluation

Vojgt (Xini» 1) — Vﬁj\ffvs* (Xini, 1) = O(1/N), difference) \N/I)’N difference)

where Vojgt is the optimal value function, and

Fi 2: Proof Struct f Thi 4.1
Vﬁ]\f\,ﬂ* is the value function of #N:* both in the tgure root Structure 0 corem

N-system.

A detailed proof of Theorem[d.1]is presented in Appendix C of [33]]. Below, we provide an outline
and highlight some novel and technically interesting components of the proof. It consists of proving
the following statements, as illustrated in Figure
* Prove that Vojgt = VWIYV_,* (Lemma C.1 of [33]]), where wN"* is the locally optimal policy within
the policy class 115, (y*). This is proved by showing that a (globally) optimal policy for the
N-system belongs to the policy class IT;,, (y*) under Assumption



* Prove that |V . (x,h) — Vﬁ%,*(x, h)| = O(1/N) (Lemma C.2 of [33]) and |I~/7~TJYV,*(X, h) —
VL (x,h)| = O(1/N) (Lemma C.3 of [33]. These two lemmas are enabled by the fact that
we restrict the policies 7* and #* to Ils, (y*), i.e., a ©(1/v/N)-neighborhood of y*, which
translates into a Wasserstein distance of (7)(1 /N) between the respective next-state distributions
in the N-system and in the Gaussian stochastic system.

We next highlight two interesting components in the proofs.

* Characterization of optimal policies in the N-system. Lemma C.1 of [33] establishes that under
Assumption there exists an optimal policy of the N-system whose actions are close to the
optimal fluid solution y*. This result is noteworthy because optimal policies of the N-system are
not well-understood in the literature. Prior work often circumvents this by only studying the LP
upper bound V1p, which can be loose as shown in Theorem

» Approximate Lipschitz continuity in the Gaussian stochastic system. A key step in proving
Lemmas C.2 and C.3 of [33]] is to establish an approximate local Lipschitz property of the value

function Vﬁ]\,{,,* in the Gaussian stochastic system, where restricting the policy to 7¥* introduces
technical challenges. We overcome these challenges through the careful construction of an action

mapping.
4.2 The ©(1/v/N) optimality gap of LP-based policies

To complement Theorem |4.1] we next present a result showing that the ©(1/+/N) optimality gap is
fundamental to a large class of LP-based policies. Specifically, consider the following policy class,
which includes a large class of LP-based policies such as those in [[7, [10, 36]:

Maia(y*) = {m: [|[7(xn, h) = yilleo < Ellxn — X} |loc, VI < h < HY, (2D

where (x*, y*) is an optimal solution of the fluid LP in (8). It has been shown in [10, Theorem 1]

that any policy in ITgq(y*) has an O(1/+v/N) optimality gap. We now show that there exist RMAB
instances where this optimality gap order is tight. The result is established based on the example
given in Section[3.3] and the detailed proof is presented in Appendix D of [33].

Theorem 4.2 (Fluid gap). There exist RMAB instances for which all LP-based policies in Ig,iqa(y*)
have an ©(1/v/'N) optimality gap; i.e., V.Y, (Xini, 1) — V{4 (Xini, 1) = ©(1/V'N), where V.Y is
the optimal value function, and VHNuid is the value function of the optimal policy within the policy
class g,ia(y*). Moreover, there is an ©(1/ V/N) gap between the optimal value of the N -system
and the optimal value of the fluid LP in ®); i.e., Vip(Xini, 1) — V&, (xini, 1) = O(1/V'N).

We remark that although this theorem is proved via a specific example, we believe the result to hold
more broadly for many degenerate RMABs. The ©(1/+/N ) optimality gap of LP-based policies stems
from the ©(1/ VN ) approximation error in the fluid approximation, which arises when exchanging
the expectation and the minimum operator, as shown in the example in Section[3.3] This phenomenon
is common in degenerate RMABs.

4.3 Performance improvement

Under the Uniqueness Assumption we have shown that our SP-based policy achieves an @(1 /N)
optimality gap. When this assumption does not hold, the same optimality gap may not apply.
However, Theorem [4.3] below shows that the SP-based policy can still yield improvement over
LP-based policies.

Let y* be any optimal solution to the fluid LP in (§), and let 7V-* be the corresponding SP-based
policy. Recall that Vﬁ]\,@ (Xini, 1) and QQN,* (Xini, ¥1, 1) denote the value function and the Q-function
of the policy #V-* in the Gaussian stochastic system, where in the Q-function action y is applied at
time 1. Theorem [4.3|states that if the action given by the SP-based policy 7#™V* at time 1 is “strictly”
better than the optimal LP-based action y] in the Gaussian stochastic system, then the SP-based

policy improves over any LP-based policy in Ilgyiq(y*) by Q(1/v/N) in the N-system.



Theorem 4.3 (Performance improvement). If there exists a positive constant € independent of
N such that Vﬁ%,*(xini, 1) — QQN,* (Xini, ¥y7,1) > e/\/ﬁ then for any m € Iy,a(y*), we have
Vﬁ]\ll\l,* (xinia 1) - Vq-rN(Xinia 1) = Q(]-/\/N)

Note that a key strength of this result is that we only need to evaluate the first step action y7 in

the Gaussian stochastic system, and the result then holds for all policies in ITguq(y*). We refer to
Appendix E of [33]] for a detailed proof of Theorem 4.3]

S Numerical experiments
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Figure 3: Comparison of LP- and SP-based policies on a machine maintenance example. Top row:
total reward difference (SP minus LP) with 2-sigma error bars. Bottom row: reward per arm.

We evaluated the performance of our SP-based policy (Algorithm |1) on a machine maintenance
problem [9][12], an RMAB formulation motivated by real-world trade-offs in preventive maintenance
and resource allocation. The resulting SP is solved using the EDDP algorithm [20, Algorithm 3].
The details of the experiments are presented in Appendix [B] along with an empirical study of the
computational complexity of EDDP for solving the SPs arising from RMABs across varying problem
sizes.

We performed two sets of experiments where the problem instances are degenerate: one set where the
fluid LP solution is unique (Figure[3aland[3c) and one set where it is not unique (Figure [3b]and [3d).
For both sets, computing the optimal policies is intractable. In each set of experiments, we evaluated
the performance of our SP-based policy and the LP-based policy on a sequence of problems with
increasing numbers of machines N, and compared the total reward difference. Figure [3|demonstrates
that the improvement of our SP-based policy over the LP-based policy grows with IV in both settings.

6 Conclusion

In this paper, we proposed an SP-based policy for finite-horizon RMABs, leveraging a carefully
constructed Gaussian approximation. Motivated by degenerate examples where fluid approximation

alone fails to break the ©(1/+v/N) gap, we showed that our policy achieves an O(1/N) optimality

gap under the uniqueness assumption, and can achieve Q(v/N) improvement over a large class of
LP-based policies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper proposes a new Algorithm I] that achieves order-wise improvements
over existing algorithms in the literature on the challenging finite-horizon RMAB problem.
We believe that these claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Uniqueness Assumption [4.1] and the Degeneracy Definition [3.1] are
thoroughly discussed in the main paper, along with an empirical study of how likely these
conditions are met in RMAB instances. When the Uniqueness Assumption does not hold,
we established a performance improvement result in Theorem 4.3 which is weaker than the
global optimality result.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs of the theoretical results for the three theorems presented in the
main paper can be found in the arXiv version [33].

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All parameters of our numerical experiments and the algorithm used to solve
our problem are provided and discussed in Appendix [B]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our new Algorithm [I]is presented with pseudocode in the main paper and
is straightforward to implement. The Explorative Dual Dynamic Programming (EDDP)
algorithm we employ is from [20], with pseudocode provided in that paper. The code is
included in the supplemental materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All our experimental setting details, including the choice of the parameters,
are provided in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The 2-sigma error bars are included in Figure [3]and Figure ] (in the appendix).

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resource of conducting the numerical experiments are detailed
in Appendix [B] with a computation time analysis as well. All numerical experiments in this
paper were conducted on a personal laptop equipped with a 13th Gen Intel(R) i9-13980HX
CPU. All the experiments are based on solving reasonable size linear programs, for which
well-established solution packages are available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed and confirm that our research conforms with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper is a theoretical paper that advances research on the topic of restless
bandits, which has many practical applications in machine maintenance, healthcare, etc.
None of them should be highlighted as potential negative social impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More details of the Gaussian stochastic system and the SP-based policy

The covariance matrix I';, (y; ). Recall that when applying an action vector yy, the state of the
Gaussian stochastic system at the next time step, X}, 1, is a random vector of the following form:

Xthl = Projas (Z yn(s,a)Pr(- | s,a) + Zh/\/ﬁ> ,

s,a

where Zj, is a Gaussian random vector following the distribution N'(0,T',(y7,)). The covariance
matrix I';, (y}) is a constant matrix independent of IV, and it is defined as follows.

Define, for (h, s,a) € [1, H] x § x A, the matrix X;,(s, a) of size |S| x |S]|, for which the (3, j)-th
entry is:

—Pu(i | 5,a)Py(j | s,a), ifi#j o
Pu(i|s,a)(1 = Pp(i]|s,a)), ifi=j.
Then
Tun(yn) = Zy}i(s,a)Eh(S,a), 23)

s,a

Note that 'y, (y7,) /NN is the covariance matrix of the state X1 in the N-system if the action at time
hisyr.

Rounding procedure. Throughout this paper, we represent systems and controls as “fractions” of
the total population IV of arms, using vectors such as x, y. In the unnormalized-scale system, the
coordinates of Nx and Ny therefore need to be integers. If these quantities are not integers, they
are implicitly understood to be appropriately rounded via some rounding procedure. For example,
after obtaining y from the SP-based policy, we need to applying rounding before using it for the
N-system.

Formally, a rounding procedure is to solve the following problem: Given an integer N € N and
X € A}g\, so that NX have integer coordinates, then, for any Y € Yx, we need to construct
Y = round(Y) € Yx for which NY® have integer coordinates.

This can be accomplished as follows. Set

YN(s,1) = 7LNYZ$’ DI , YN (5,0) = [NY(5,0)] ,forl <s<S-—1; (24)
S—1 S—1

YN(S,1) i =a— Z YN(s,1), YN(5,0):=1—a— Z Y (s,0). (25)
s=1 s=1

It is then easy to verify that, Y” := round(Y) defined in (24)-(25) indeed satisfies all these required
conditions. Furthermore, by construction, it holds true that
1 1
Y - (Y < —=0(= 26
1Y~ round(¥)], < 1 = O(+). 26)

independently of X and Y € Vx.

B More details of numerical experiments

This appendix is a collection of more details on various numerical experiments conducted to confirm
the theoretical results of this paper. It is structured as follows:

* Appendix[B.1|studies how likely an RMAB instance is degenerate or satisfies the Uniqueness

Assumption

* Appendix [B.2]is centered around numerically solving the SP (I4), which appears in Algo-
rithm[I1

* Appendix [B.3]displays the parameters and implementation details of the RMAB examples
used in Section
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All numerical experiments in this paper were conducted on a personal laptop equipped with a 13th
Gen Intel(R) 19-13980HX CPU. We note that our experiments are based on solving reasonable size
linear programs, for which well-established solution packages are available. We implement the
solutions using the Python package PuLP and the Gurobi LP solver.

B.1 Degeneracy and Uniqueness Assumption 4.1in RMAB instances

We conducted a numerical study on how likely a randomly generated RMAB instance is degenerate
(Definition [3.T) and the corresponding LP (8) satisfies the Uniqueness Assumption d.1]

In this experiment, an RMAB instance is generated as follows: Each parameter is sampled via i.i.d.
exp(1) and normalized properly as in the initial condition x;,; and in the transition kernels P;,. We
fix @« = 0.4 and H = 5. We considered two scenarios: “fully-dense” where all entries of a transition
kernel are positive; “half-sparse” where half of the entries of each row of a transition kernel are 0. We
varied the number of sizes per arm S = 5,10, 15, 20 and tested the degeneracy and the Uniqueness
Assumption over 10,000 such RMAB instances, and recorded the numbers in percentage. The
results are presented in Table [2]

Table 2: Proportion of RMAB instances satisfying degeneracy and Uniqueness Assumption

Transition Kernel S Degenerate Satisfy Uniqueness Assumption
Fully-dense 5 11.2% 100%
Fully-dense 10 8.7% 100%
Fully-dense 15 6.1% 100%
Fully-dense 20 5.1% 100%
Half-sparse 5 51.3% 100%
Half-sparse 10 33.3% 100%
Half-sparse 15 28.1% 100%
Half-sparse 20 20.3% 100%

We note that overall, degenerate RMABs are a significant proportion among all instances, especially
in the half-sparse setting. In addition, all these randomly generated RMABs satisfy the Uniqueness

Assumption @1}

B.2 Numerically Solving SP (T4)

This section presents the details of the numerical method we used to solve the SP (T4). To solve
the SP (14), we can transform and simplify it to an N-independent and projection-free SP, see
Equation (29) of [33] for details. It is a Stochastic Linear Program, which is significantly easier
to solve than the original N-armed RMAB Problem (@) because the “noise” Zj,’s are predefined
Gaussian random vectors whose distributions are independent of the state and action of the system.
For such a problem, there exist computationally efficient methods. In our numerical examples,
we numerically solved it using the standard Sample Average Approximation (SAA) approach [28|
Chapter 5] and the Explorative Dual Dynamic Programming (EDDP) algorithm [20], which is an
enhancement of the classical Stochastic Dual Dynamic Programming (SDDP) [26} 27]].

We also evaluated the computational complexity of EDDP when varying H and S. The results are
shown in Figure @ and include 2-sigma error bars. Each recorded computation time in the figures
was averaged from running EDDP on 1,000 RMAB instances, with each instance solved for 10
independent SAA realizations. The results in Figure [ clearly illustrate that the computational
complexity under EDDP increases linearly with respect to the problem parameters H and S.

B.3 Parameters and implementation details of the RMAB examples used in Section

The RMAB examples used in Section [5|model a machine maintenance problem. Each machine has
five states, where a higher state represents a more deteriorated condition. The first state is a pristine
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Figure 4: The computation time of EDDP.

state. Under action 1 (performing maintenance), a deteriorated machine has a high probability of
returning to the pristine state. Under action O (not performing maintenance), the machine gradually
deteriorates and has an increasing probability of breaking down as the state worsens. When a
breakdown occurs, the machine must be replaced (returning to the pristine state) and incurs a high
cost. The negative rewards (i.e., costs) reflect the nature of this model. Note that we can add a
sufficiently large common constant to all rewards to offset them, making the values non-negative, as
per our reward convention discussed in the main paper.

In these RMAB examples, we set H = 5 and o = 0.4. We consider arms representing machines each
described by a 10 states MDP constructed from two distinct machine types, each having 5 states. The
initial state of an arm determines its machine type. Consequently, the transition kernels are structured
into two block matrices of size 5. Such a block-structured kernel enables the modeling of multiple
machine types under the assumption of homogeneous arms. In other words, the homogeneous RMAB
model can be used for heterogeneous systems with a finite number of types. All numerical parameters
provided below are recorded with 4 digits of precision.

P(-|-0)=
[0.5415 0.4585 0 0 0 0 0 0 0 0 ]
0.5471 0.2265 0.2265 0 0 0 0 0 0 0
0.7067 0 0.1467 0.1467 0 0 0 0 0 0
0.8578 0 0 0.0711 0.0711 0 0 0 0 0
0.9214 0 0 0 0.0786 0 0 0 0 0
0 0 0 0 0 0.6396 0.3604 0 0 0
0 0 0 0 0 0.5694 0.2153 0.2153 0 0
0 0 0 0 0 0.6453 0 0.1773 0.1773 0
0 0 0 0 0 0.7007 0 0 0.1496 0.1496
| 0 0 0 0 0 0.7097 0 0 0 0.2903 |
P(|1)=
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1 0 0 0 0 0 0 0 0 0
0.7337 0.2663 0 0 0 0 0 0 0 0
0.7265 0 0.2735 0 0 0 0 0 0 0
0.6146 0 0 0.3854 0 0 0 0 0 0
0.6054 0 0 0 0.3946 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 ’

0 0 0 0 0 0.6037 0.3963 0 0 0

0 0 0 0 0 0.6004 0 0.3996 0 0

0 0 0 0 0 0.7263 0 0 0.2737 0
.0 0 0 0 0 0.6138 0 0 0 0.3862 |

xini:[O 05 0 0 0 0 05 0 0 0],

r(-,O):[O —5.4707 —7.0669 —8.5784 —9.2141 0 -—5.6942 —6.4534 —7.0074 —7.097}.

In the first set of experiments, we use
I'(',].):
[—1.9963 —2.085 —2.035 —2.0661 —1.9581 —1.994 —1.9647 —2.2478 —2.0468 —2.2821},

which results in a fluid LP with a unique optimal solution. In the second set of experiments, we use
r(,1)=]-2 -2 -2 -2 -2 -2 -2 -2 -2 —2} ,

which leads to a fluid LP with multiple optimal solutions.

The LP-based policy we compared with is the LP-update policy (also referred to as the LP policy with
resolving) proposed in [[7,[10]]. These studies reported that LP-update is one of the best-performing
LP-based policies for finite-horizon RMABs. As mentioned earlier, we used EDDP [20] to obtain the
SP-based policy. The predefined policy in Line 12 of Algorithm[T]is specified as follows: If, during
the execution of the algorithm, the N-system state deviates significantly from the initially selected
optimal LP solution — where “significant” is defined as any coordinate exceeding a threshold of
20, a new LP is resolved using the current initial state of the /N-system and the remaining horizon,
similar to the LP-update/resolving policy, and then the first action from the new LP is applied.

In addition, we conducted further tests on several machine maintenance instances, keeping the
problem size and structure fixed while varying the reward and transition parameters. All of these
instances have unique LP solutions. The observed total reward gaps, shown in Table 3] are of the
same order of magnitude as the example in Figure [3a|for N = 100.

Table 3: Additional experiments for machine maintenace.

Instance Total Reward Gap for N = 100 Machines (mean =+ std)

1 9.35£1.21
2 10.13 £1.53
3 12.44 £1.97
4 7.57£1.35
5 13.52 £1.56
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